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Abstract

Stream cipher encryption works by modulo-2 adding plaintext bits to keystream bits, which are in turn produced by succes-

sively updating a finite-state machine initialized to a secret starting state. PudgyTurtle is a way to encode the plaintext in a 

keystream-dependent manner before encryption. Since it can use keystream from any stream cipher, PudgyTurtle functions 

somewhat like an encryption mode. The process begins by generating successive 4-bit groups of keystream (‘nibbles’) until 

one of them matches the current plaintext nibble to within one bit. The number of keystream nibbles required, as well as the 

nearness of this match, is then encoded into a variable-length codeword. Finally, this codeword is encrypted by modulo-2 

addition to an equal amount of keystream. Compared to normal binary-additive stream ciphers, this process is less efficient 

(i.e., more time is required to generate extra keystream nibbles, and more space is needed for the codewords than for the 

plaintext). However, with this cost comes a benefit: PudgyTurtle resists time-memory tradeoff attacks better than standard 

stream encryption.

Keywords Symmetric-key cryptography · Stream ciphers · Time-memory tradeoff · Birthday paradox · Error-correcting 

codes · Hellman chains

Introduction

Binary-additive stream ciphers (BASC) encrypt by mod-

ulo-2 adding each plaintext bit ( x
i
 ) to a keystream bit ( k

i
 ), 

thus producing ciphertext yi = xi ⊕ ki , where ⊕ denotes the 

XOR operation. Because of the self-inverting property of 

modulo-2 addition, decryption is accomplished in a similar 

manner: yi ⊕ ki = (xi ⊕ ki)⊕ ki = xi ⊕ 2ki = xi.

The sequence of bits, K = k1, k2,… , is called the key-

stream. K is produced by the keystream generator (KSG)—

a finite-state machine operating on an n-bit state, S. Since 

details of the KSG are assumed to be public, its starting-state 

( S
0
 ) must include a secret key. The starting-state may also 

incorporate an initialization vector (IV), which need not be 

secret (e.g., it can be a publicly shared random ‘nonce’, or 

can be generated by each communicating party from a coun-

ter). Unique IVs allow the same secret key to be used for 

more than one message.

The KSG works by applying an update func-

tion � ∶ {0, 1}n
→ {0, 1}n and an output function 

o ∶ {0, 1}n
→ {0, 1} to the current n-bit state. Thus, 

k
i
= o(S

i
) = o(�(S

i−1
)) . Functions o and � are designed to 

make K appear random and unpredictable, which makes it 

hard to reconstruct any previous state from any sub-sequence 

of keystream. PudgyTurtle uses the keystream to encode 

the plaintext into a sequence of variable-length codewords 

and then encrypts these codewords. This process is cipher-

agnostic, in that no constraints are placed on the KSG. 

Plaintext X is first separated into 4-bit groups (‘nibbles’), 

X1, X2,… , where X
i
= (x

4i−3
‖x

4i−2
‖x

4i−1
‖x

4i
) and ‖ stands 

for concatenation. For each X
i
 , new keystream nibbles are 

generated until one matches X
i
 to within a 1-bit tolerance. 

A codeword ( C
i
 ) is then created using the number of failed 

matching attempts, plus some error-correcting information. 

This codeword is encrypted with a mask, M
i
 —a (possibly 

non-contiguous) sequence of keystream nibbles of the same 

length as C
i
—thus producing ciphertext

Y
i
= C

i
⊕ M

i
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Stream-Cipher Cryptanalysis

A major goal of stream-cipher cryptanalysis is to reconstruct 

any KSG state used during encryption. Once discovered, the 

generator can then be run forward (and, if � is reversible, 

backwards) from that state to recreate the keystream and 

decrypt the ciphertext.

Some stream ciphers are susceptible to direct attacks, 

which exploit algebraic, key-scheduling, statistical or other 

structural weaknesses particular to individual crypto-algo-

rithms [11, 21, 36, 38, 39]. If no direct attack is known, 

then an exhaustive key-search may be attempted. It might 

seem that, for any KSG with a sufficiently large state-size, 

this so-called brute-force cryptanalysis would be infeasible. 

However, this is not always true: cryptanalytic time-memory-

data tradeoffs (TMDTOs), also called collision attacks, are 

probabilistic methods which take advantage of the Birthday 

Paradox to speed up an exhaustive search to practical levels 

(e.g., only 2n∕2 operations instead of 2n ) [16, 26, 29]. These 

attacks, described more fully in Sect. 5, have proven success-

ful against a variety of stream ciphers [6, 13, 48].

TMDTO attacks against stream ciphers require a sample 

of known keystream, K′ , obtained by XOR’ing some known 

plaintext, X′ , to the intercepted ciphertext at the correct off-

set. PudgyTurtle, however, changes the plaintext–ciphertext 

relationship into something different than a simple XOR, 

thus making it harder to obtain K′ from X′ . On the one hand, 

this property makes PudgyTurtle less efficient than standard 

binary-additive stream-ciphers: its codewords take up more 

space than the original plaintext (‘pudgy’), and its encoding 

procedure needs extra time to match each plaintext nibble 

to the keystream (‘turtle’). On the other hand, these features 

also increase the difficulty of a collision attack.

Coding and Cryptography

Coding theory has been part of modern cryptology since 

the work of Shannon in the late 1940’s [50]. Hellman 

extended these ideas for cryptosystem design, comment-

ing on the ‘duality’ between ciphers and error-correcting 

codes (ECCs) [25]. Other cryptographers have also investi-

gated various aspects of coding. For example, Bellare and 

Rogaway explored semantic security and authentication in 

cryptosystems that include a ‘key-less encoding’ step (e.g., 

prepending a counter or IV, and appending a checksum to 

the message) [7].

Another cryptographic application of coding is ‘rand-

omized encryption’ [47], in which one ciphertext is chosen 

randomly from among a family of possibilities. An early 

instantiation of this idea for asymmetric cryptosystems 

was by McEliece, who proposed adding random noise after 

encoding the plaintext with a binary Goppa-type ECC [40]. 

Here, the private key (G) is the ECC’s generator matrix and 

the public key ( G′ ) is obtained by multiplying G by permuta-

tion and scrambling matrices. Security arises from the fact 

that a fast method exists for decoding and error-correction 

given G, but the generalized linear decoding problem given 

G
′ is NP-complete [9]. More recently, similar ideas have 

appeared in the realm of quantum-resistant cryptography 

(e.g., lattice-based systems relying on the difficulty of find-

ing the closest vector to one that has been perturbed by noise 

[45, 46]).

With regard to stream ciphers, several approaches exist 

for randomized encryption. Kara and Erguler [32, 33] pro-

posed using an ECC to encode the plaintext, which is then 

encrypted with a ‘noisy keystream’ (i.e., the modulo-2 sum 

of the true keystream and random binary noise). The receiver 

decrypts the ciphertext into a noisy state, then recovers the 

plaintext by using the ECC. Importantly, the additive noise 

does not need to be reconstructed by the receiver—unlike 

a cryptographic key. Another ECC-based approach is based 

on the ‘learning parity with noise’ (LPN) problem, analyzed 

by Fossorier [20]. For example, Imai and Mihaljević [42] 

proposed an LPN-based system in which external random-

ness is not just used for additive noise, but also as a basis 

for homophonic coding (i.e., each plaintext group can be 

encoded in multiple ways).

PudgyTurtle is similar to these approaches in some ways: 

its ciphertext is longer than its plaintext; and its encoding 

changes the plaintext–ciphertext relationship from a simple 

XOR into something more complex. However, PudgyTurtle 

also has several important differences. First, unlike some 

‘encode-then-encipher’ ideas [7], PudgyTurtle’s encod-

ing is key-dependent, not key-less. Second, PudgyTurtle 

is deterministic: it is not randomized encryption and does 

not require an external noise source [32, 33, 40]. Third, 

PudgyTurtle operates on small (4-bit) plaintext groups: mes-

sage padding is not required, nor are complex vector and 

matrix operations. Fourth, PudgyTurtle’s codewords do not 

contain any raw plaintext, unlike other ECC-based systems. 

Rather, information about the relative position of various 

keystream nibbles is what actually gets encoded. Finally, 

PudgyTurtle does not suffer from decoding failures, as may 

(in rare cases) occur with some ECC-based systems [41].

Stream-Cipher Modes

PudgyTurtle is not a cipher itself, but operates alongside 

existing stream ciphers. In this respect, it resembles an 

‘encryption mode’. Some stream-cipher modes are intended 

to add advanced features, like authenticated encryption, by 

using a BASC as the crypto-primitive [1, 10, 49]. Other 

stream-cipher modes are designed to resist TMDTO 

attacks, such as by continuously incorporating the secret 

key/IV into the KSG’s state-update function [2, 3, 43]. The 
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‘FP(1)-mode’, used by the LIZARD cipher for instance 

[24], describes how to re-synchronize the KSG state in a 

particular key- and IV-dependent manner [23]. In theory, 

systems like these, which can be analyzed as pseudoran-

dom functions [8], could make TMDTO attacks harder (e.g., 

by breaking the state-space into a set of mutually exclusive 

‘keystream equivalence classes’, each requiring a separate 

attack). In practice, security concerns may still exist, due to 

weak keys, key-scheduling or other issues [15, 18, 19, 24].

Like these stream-cipher modes, PudgyTurtle also 

attempts to make TMDTO attacks harder. However, rather 

than altering initialization or re-synchronization procedures, 

PudgyTurtle instead takes the keystream and uses it in two 

different ways:

• A binary-additive (codeword ⊕ mask) process;

• A non-binary-additive (plaintext-keystream matching) 

process;

PudgyTurtle can still be compatible with other stream-cipher 

modes. Whether KSG initialization and re-synchronization 

happens ‘simply’ (as in Trivium or A5/1) or by a more 

complex protocol (as in LIZARD), the keystream produced 

works equally well for PudgyTurtle.

Outline

After Sect. 2 presents some notation, Sects. 3 and 4 describe 

the PudgyTurtle algorithm and its output in detail. Section 5 

introduces TMDTO attacks, and Sect. 6 discusses some gen-

eral obstacles to performing such attacks against PudgyTur-

tle. Section 7 proposes two new TMDTO attacks against 

PudgyTurtle, and Sect. 8 describes how to quantify their 

performance. These new attacks are then implemented in 

Sect. 9, using a toy cipher as the KSG. We show that both 

attacks are less efficient than two well-known tradeoffs from 

the literature. Finally, Sect. 10 suggests some potential limi-

tations of PudgyTurtle.

Notation

Hexadecimal values are prefixed by ’0x’ and binary values 

have ‘2’ as a subscript. For example, 242 could be written 

as 0xF2 or 11110010
2
.

Hamming weight h(a) is the number of 1’s in binary vec-

tor a.

Floor function ⌊x⌋ is defined as ⌊x⌋ = s , when x = s + � , 

assuming that s ∈ {0, 1, 2,…} and � ∈ [0, 1).

Single vertical bars denote the number of elements in a 

set (e.g., |K| is the size of the key-space).

Throughout, X refers to plaintext, K to keystream, and Y 

to ciphertext, with the following embellishments:

• Lowercase letters with subscripts ( xi, ki, yi) represent 

individual bits.

• Uppercase letters with subscripts denote groups of bits: 

X
i
 and K

i
 are (4-bit) nibbles; Y

i
 is one or more (8-bit) 

bytes.

• Uppercase letters with a prime ( ′ ) are assumed to be 

known to the attacker (e.g., X′ is the ‘known plaintext’ 

and K′ the ‘known keystream’).

• Uppercase letters with double-subscripts denote indi-

vidual bytes within a multi-byte symbol. For example, 

if Y
i
 is two bytes long, then its first and second bytes are 

Y
i,1 and Y

i,2.

• Uppercase letters with parentheses denote an n-bit seg-

ment of a longer sequence, where n is the size of the 

KSG-state. Depending on context, these segments may 

be called ‘windows’, ‘prefixes’, or ‘fragments’. For exam-

ple, K(a) = {k
a
, k

a+1, k
a+2,… , k

a+n−1} means n bits of 

keystream starting at bit a.

• K
t(i) stands for the keystream nibble that matches plain-

text nibble X
i
 to within 1 bit.

• N
X , N

K
 , and N

Y
 represent the number of symbols of plain-

text, keystream, and ciphertext, whereas L
X
 , L

K
 , and L

Y
 

are their actual lengths in bits;

PudgyTurtle

This section provides details of PudgyTurtle encryption and 

decryption. A descriptive overview is offered, followed by 

an algorithmic explanation. Table 1 can also be consulted 

as a visual aid. 

Overview

The first task is to encode each plaintext nibble X
i
 into a 

variable-length codeword, C
i
 , written as

where

• O
i is a variable-length overflow indicator, which contains 

zero or more copies of the special byte 0xFF (see details 

below);

• F
i
= 0, 1, 2,… is the failure-counter, which counts the 

number of un-successful attempts to match X
i
 to a key-

stream nibble. Since F
i
 is zero-indexed, F

i
= 0 means 

that the one keystream nibble had to be generated in 

order to match X
i
 , and so on.

• D
i is the discrepancy-code (see details below), which 

describes the mismatch pattern between X
i
 and K

t(i) , 

thereby allowing single-bit error correction by the 

receiver;

C
i
= O

i
‖ F

i
(modulo 32) ‖ D

i
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The PudgyTurtle process begins by saving the first two 

keystream nibbles ( K
1
‖K

2
 ) as mask M

1
 and setting the first 

failure-counter F
1
 to 0. Then, each new keystream nibble 

is compared to X
1
 , starting from K

3
 . If it differs from X

1
 by 

more than one bit, then F
1
 is incremented, a new keystream 

nibble is generated, and the search continues (i.e., X
1
 is then 

compared to K
4
 and so on) until a match is found.

Once the keystream nibble K
t(1) that matches X

1
 is discov-

ered, the nearness of this match is captured by discrepancy-

code D1 = d(X1, K
t(1)) . The general rule for d() is 

If X
i
⊕ K

t(i) is... then d(X
i
, K

t(i)) is...

0000
2

000
2
 = 0

0001
2

001
2
 = 1

0010
2

010
2
 = 2

0100
2

011
2
 = 3

1000
2

100
2
 = 4

The 8-bit codeword C
1
 is then constructed by concatenat-

ing F
1
 modulo 32 (which is 5 bits) together with D

1
 (which is 

3 bits). Finally, the ciphertext is produced by encrypting the 

codeword with the mask: Y
1
= C

1
⊕ M

1
 . This process then 

repeats for the next plaintext nibble, X
2
 , starting with F

2
= 0 

and using keystream beginning at K
t(1)+1

 . Table 1 provides 

a visual example of how a short message is encoded and 

encrypted via PudgyTurtle.

Over�ow Events

This match-encode-encrypt cycle has one caveat: if a failure-

counter (say F
1
 ) is ≥ 32, it can no longer be represented by 

5 bits, and this overflow event triggers a special encoding 

process: first, an 0xFF byte is pre-pended to C
1
 ; second, 

mask M
1
 is expanded to include the next two available key-

stream nibbles, which would be K
35

 and K
36

 in this case. That 

is, M1 ← M1,1‖M1,2 = M1,1 ‖ (K35‖K36) = K1‖K2‖K35‖K36 . 

Attempts to match X
1
 then continue, starting from keystream 

nibble K
37

 and F
1
 = 32. When a match is found, its codeword 

will be two bytes instead of one:

In the unlikely event that no match occurs even within the next 

32 keystream nibbles, this overflow process can be repeated 

(i.e., both the codeword C
1
= ����‖����‖(F

1
mod 32)‖D

1
 

and mask M
1
= K

1
‖K

2
‖K

35
‖K

36
‖K

69
‖K

70
 would become 

three bytes long).

The overflow byte 0xFF is made by concatenating the 

5-bit failure-counter 31 = 11111
2
 together with the 3-bit 

symbol 111
2
 . There is no theoretical reason to choose 111

2
 : 

any 3-bit discrepancy-code not already in use could also 

serve (i.e., either 101
2
 or 110

2
 ). Practically, however, using 

111
2
 allows for easy specification of the overflow indicator: 

if n
O
= ⌊F

i
∕32⌋ is the number of overflow events that occur 

while encoding X
i
 , then

In software, ∅ is implemented as an ‘empty string’. For 

example, two overflow events means O
i
= 2

16
− 1 = 

0xFFFF.

Because of overflow events, each mask ( M
i
 ), codeword 

( C
i
 ) and ciphertext symbol ( Y

i
 ) can be one or more bytes. 

Most of the time, however, there are no overflows, so O
i
 is 

the empty string and each of these symbols is just one byte 

long.

Algorithmic Description

The PudgyTurtle encoding/encryption process can also be 

conceptualized as an algorithm: 

C1 = C1,1‖C1,2 = ����‖(F1 mod 32)‖D1

O
i
=

{

� if n
O
= 0

2
8n

O − 1 if n
O
> 0

Table 1  PudgyTurtle encryption process

Each column illustrates the encryption of one nibble of the plain-

text message “Hi” (Row 1, ASCII characters 0x48 and 0x69). Row 

2 shows the keystream nibbles. Row 3 depicts the two keystream 

nibbles set aside for each mask. The failure-counter (Row 4) incre-

ments from zero until a keystream nibble matches the plaintext nibble 

to within a 1-bit tolerance, as quantified by the Hamming distance in 

Row 5 (e.g., the first Hamming-distance, between K
3
 = 0xB = 1011

2
 

and X
1
 = 4 = 0100

2
 , equals 4). When this Hamming distance first 

becomes ≤ 1, a match occurs, the nearness of which is captured by 

the discrepancy-code (Row 6). For example, the notation “8 versus 

0” above “100” means that X
2
 = 8 = 1000

2
 differs from its matching 

keystream nibble K
8
 = 0 = 0000

2
 in the most-significant bit, so the 

discrepancy code is 100
2
 . Row 7 shows how each codeword is built 

by concatenating the 5-bit failure counter (normal font) and the 3-bit 

discrepancy code  (boldface). Finally, encryption is accomplished by 

XOR’ing the mask (shown again in Row 8, as binary) and the code-

word, thus producing the ciphertext in Row 9

1 Message ASCII 0x48 = “H” ASCII 0x69 = “i”

Plaintext nibble 4 8 6 9

2 Keystream (hex) 5,3,B,1,4 2,3,0 D,8,5,C,D,2 A,5,7,D

3 Mask (hex) 5 3 2 3 D 8 A 5

4 Failure-counter 0,1,2 0 0,1,2,3 0,1

5 Hamming 

distance

4,2,0 1 2,2,3,1 3,1

6 Discrepancy-

code

4 versus 4 8 versus 0 6 versus 2 9 versus D

000 100 011 011

7 Codeword 00010000 00000100 00011011 00001011

8 Mask (binary) 01010011 00100011 11011000 10100101

9 Ciphertext 01000011 00100111 11000011 10101110

0x43 0x27 0xC3 0xAE
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1. Initialize

• Let plaintext nibble index i = 1

• Let keystream nibble index j = 1

• Let the index of the keystream nibble that matched 

the previous plaintext nibble t(i − 1) = t(0) = 0

• Let failure counter F
i
= F

1
= 0

2. FindMatch

• If F
i
 mod 32 = 0, then j ← j + 2 ; endif

• If h(Xi ⊕ Kj) > 1 , then

F
i
← F

i
+ 1

j ← j + 1

Go to FindMatch

  else

t(i) ← j

  endif

3. Encode

• Make the overflow indicator:

Let n
O
= ⌊F

i
∕32⌋;

If n
O
= 0 , then O

i
← ∅;

If n
O
≠ 0 , then O

i
← 2

8n
O
− 1;

• Make the discrepancy-code:

If X
i
= K

t(i) , then D
i
← 0;

If X
i
≠ K

t(i) , then D
i
← 1+ log

2
(X

i
⊕ K

t(i))

• Make the codeword:

C
i
← O

i
‖ F

i (modulo 32)‖ D
i
 , where O

i
 is either 

not present or is a multiple of 8 bits, F
i
 (mod 32) is 

5 bits, and D
i
 is 3 bits.

4. MakeMask

• Let M
i
= � (‘empty string’)

• For n = 0 to n
O
 , do:

– Let a = t(i − 1) + 1 + 34n

– M
i
← M

i
||(K

a
||K

a+1
)

5. Encrypt

• Y
i
← C

i
⊕ M

i

6. Update

• j ← t(i) + 1

• i ← i + 1

• F
i
← 0

• Go to FindMatch

Decryption

One difference between PudgyTurtle decryption and encryp-

tion is that because of overflow events, ciphertext symbols 

Y1, Y2,… may not all be the same length. Put another way, 

N
Y
 always equals N

X
 , but ciphertext length L

Y
 does not 

always equal N
Y
 bytes. Thus, decryption requires a sepa-

rate ‘unmasking’ of individual bytes within each ciphertext 

symbol.

The first byte of Y is unmasked by XOR’ing it with M
1
 = 

( K
1
‖K

2
 ), thereby producing the first byte of the first code-

word. If this byte is not equal to 0xFF, then the byte is split 

into its first 5 bits (failure-counter F
1
 modulo 32) and its last 

3 bits (discrepancy-code D
1
 ). Next, F

1
 + 1 new keystream 

nibbles are generated. The final one of these, K
t(1) , is the one 

that matches the original plaintext nibble to within one bit. 

The plaintext is then recovered by inverting the discrepancy 

code, as shown below: 

If D
1
 is... then X

1
 is...

000
2

K
t(1) ⊕ 0000

2

001
2

K
t(1) ⊕ 0001

2

010
2

K
t(1) ⊕ 0010

2

011
2

K
t(1) ⊕ 0100

2

100
2

K
t(1) ⊕ 1000

2

Or more generally,

If, however, unmasking the first byte of Y produces 0xFF, 

then an overflow event has occurred (i.e., Y
1
> 1 byte long). 

In this case, 32 keystream nibbles must be generated and dis-

carded, after which the next 2 keystream nibbles ( K
35
‖K

36
 ) 

are used to unmask the second byte of Y (i.e., Y1,2 ), which 

is then split into F
1
 and D

1
 as described above. (In the rare 

case that Y1,2 is also 0xFF, this overflow process can be 

repeated.)

Y
2
 is decrypted in a similar manner, starting one nibble 

beyond the current keystream position. That is, the first 

byte of Y
2
 is unmasked by XOR’ing it with ( K

t(1)+1
‖K

t(1)+2
 ), 

and—depending upon whether or not the result is 0xFF—

analogous steps are followed. This byte-by-byte unmask-

ing-decoding cycle continues for each of the N
Y
 ciphertext 

symbols.

Packet Systems

Some stream ciphers, like E0 for Bluetooth A5/1 for 

mobile telephony, operate in packet mode: the keystream 

X
i
= K

t(i) ⊕ d
−1(D

i
)

=

{

K
t(i) if D

i
= 0

K
t(i) ⊕ 2D

i
−1 if D

i
= 1, 2, 3, or 4
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is generated in short segments, and re-synchronized with a 

new IV or counter after each such packet [23]. For example, 

A5/1 produces 228 bits of keystream at a time, after which 

its IV (‘frame number’) needs to be incremented. With a 

little extra book-keeping, PudgyTurtle can work with such 

systems. All that is required is to keep track of the number of 

available keystream nibbles remaining in the current packet, 

and then to re-synchronize whenever needed—whether dur-

ing mask generation, plaintext–keystream matching or an 

overflow event. The only constraint is that, since PudgyTur-

tle operates on nibbles, the packet size (in bits) must be a 

multiple of four.

Statistics

PudgyTurtle’s encoding procedure depends upon a ran-

dom process with an underlying geometric distribution: 

each uniformly distributed keystream nibble either ‘suc-

ceeds’ in matching the current plaintext nibble or ‘fails’ to 

match. One success after F failures occurs with probability 

g(F, p) = (1 − p)Fp , where p = 5∕16 describes the five ways 

a match can happen between two 4-bit symbols (i.e., one 

exact match plus four 1-bit mismatches).

The mean of this distribution is 1∕p = (5∕16)−1 = 3.2 , 

which implies that 3.2 keystream nibbles (12.8 keystream 

bits) on average will be required to match each plaintext 

nibble.

Overflow events (i.e., F ≥ 32 ) occur with probability

Thus, one overflow event is expected for every 4∕pO ≈ 

644664 bits (80583 bytes).

Ciphertext Length

Because of the probabilistic nature of the plaintext/key-

stream matching process, the ciphertext length is not known 

exactly until after encryption. For the plaintext, L
X
= 4N

X
 

bits. For the ciphertext, however,

bits, where N
O
 is the total number of overflow events. Thus, 

the ciphertext includes (L
Y
∕8) − N

X
 ‘extra’ bytes due to the 

need to encode, on average, NO ≈ NX ⋅ pO overflow events.

pO = 1 − Pr(F ≤ 31)

= 1 −

31
∑

j=0

(1 − p)j × p

= 6.2047813 × 10
−6

LY = 8(NX + NO) ≈ 8NX(1 + pO)

Expansion Factors

The ciphertext expansion factor (CEF) can be written

The key expansion factor (KEF) is the amount of required 

keystream as a multiple of the plaintext length. For normal 

stream-cipher operation, KEF = 1. For PudgyTurtle, KEF ≈ 

5.2. This value is obtained by adding 3.2 (the average num-

ber of keystream nibbles required to match each plaintext 

nibble) to 2 (the average number of nibbles used by each 

mask).

Testing

These predictions were tested using three different plaintext 

sources: an English-language ASCII document1 (‘English’); 

a JPEG-formatted digital photograph2 (‘Image’); and a file 

entirely composed of 0x00 bytes (‘Zeros’). A 1280000-byte 

sample of each plaintext was encrypted using Trivium [14] 

as the PudgyTurtle KSG, with session key 0x0123456789 

ABCDEF1234  and initial value 0x6666699999 

aaaaa55555. Results are shown in the left half of Table 2. 

As expected, CEF ≈ 2 and KEF ≈ 5.2.

PudgyTurtle ciphertext should appear random and uni-

formly distributed no matter what is the underlying statisti-

cal structure of the plaintext. This was confirmed using two-

sample Kolmogorov–Smirnov tests (right half of Table 2). 

Specifically, single-byte frequencies were compared between 

each pair of ciphertexts and also between each ciphertext 

and a collection of 2560012 uniformly distributed random 

bytes (‘Random’). The non-significant p-values (Column 

7) show that the ciphertexts are indistinguishable from one 

another, and also from random data. At this level of scrutiny, 

PudgyTurtle does not appear to leak information about its 

underlying plaintext statistics.

Time Memory Tradeo�s

Here we introduce TMDTO attacks—especially those that 

target stream-ciphers, and review two in detail. Readers 

already familiar with these ideas may wish to skip to Sect. 6.

CEF =
LY

LX

≈
8NX(1 + pO)

4NX

≈ 2

1 Source: Smith (2002) An Inquiry into the Nature and Causes of 

the Wealth of Nations. Project Gutenberg, Urbana, Illinois, retrieved 

December 15, 2018 from www.guten berg.org/ebook s/19033 .
2 Source: www.webba viati on.co.uk/manch ester /tower const ructi 

on-cb184 00.jpg.

http://www.gutenberg.org/ebooks/19033
http://www.webbaviation.co.uk/manchester/towerconstruction-cb18400.jpg
http://www.webbaviation.co.uk/manchester/towerconstruction-cb18400.jpg
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Background

A time-memory tradeoff is a general-purpose probabilis-

tic method for solving certain problems in cryptology and 

computer science, like inverting a one-way function [16]. 

Consider Y = E(X, key) which uses one of N possible keys to 

encrypt X. If no direct way to determine E−1 is known, then 

the cryptanalyst can instead attempt a brute-force solution. 

In one such approach, the adversary chooses a likely string 

(e.g., X′ = "Dear Sir or Madam:"), and encrypts this 

string under every possible key in advance. The resulting N 

pairs { key
i
, E(X�, key

i
) } are stored in a large table. Upon 

intercepting the ciphertext, the actual key can then quickly 

be found by searching Y for any sub-string that matches an 

E(X�, key
i
) in the table. An alternative approach assumes that 

the attacker knows some of the plaintext. The corresponding 

portion of Y is then decrypted under every possible key until 

the result matches this known plaintext.

Either way, it would seem that brute-forcing the key 

requires N memory units (to store the table) or N time units 

(to perform the decryptions), implying that such an attack 

could be foiled by choosing a large-enough N. However, this 

need not be the case: TMDTO attacks can efficiently cover 

enough of the search-space that the probability of success 

becomes ≫ 0 while the complexity remains ≪ N [29].

TMDTO Attacks

TMDTO attacks against stream ciphers proceed in two 

phases: a precomputation phase, during which one or more 

tables are constructed from a set of randomly chosen KSG-

states; and a realtime phase, during which the table(s) are 

searched for fragments of known keystream. Tradeoff curves 

involve several parameters [27]:

• N = 2
n is the search-space. For block ciphers, N = |K| , 

the size of the key-space. For stream ciphers, N = |S| , 

the number of possible KSG-states;

• P is the time required for the precomputation phase;

• M is the amount of memory required to store the precom-

puted table(s);

• T is the time required to complete the realtime phase;

• D is the amount of plaintext known to (or chosen by) the 

attacker;

For PudgyTurtle, one more parameter is also useful:

• D
′ is the amount of realtime data. For binary-additive 

stream ciphers, D
�
= D . For PudgyTurtle, however, 

D
′ ≥ D.

Distributed computing can improve the efficiency of many 

tradeoffs. These effects can be described with another 

parameter, W, representing the number of parallel proces-

sors [27].

For block ciphers, Hellman proposed a tradeoff of 

TM
2
= N

2 , using one chosen plaintext ( D = 1 ) and a very 

long precomputation phase ( P = N ) [26]. One reasonable 

point on this curve is M = T = N
2∕3 . Oechslin’s ‘rainbow 

table’ method [44] somewhat improves Hellman’s tradeoff 

and reduces its need for time-consuming disc-access opera-

tions [37].

For stream ciphers, Babbage [5] and Golić [22] indepen-

dently developed the ‘BG-attack’, whose tradeoff of TM = N 

(with P = M and T ≤ D ) arises from the Birthday Para-

dox. Here, the point M = T = N
1∕2 appears more efficient 

than Hellman’s N2∕3 . However, direct comparisons can be 

misleading: one attack targets block ciphers, and the other 

stream ciphers; one uses a single chosen plaintext/ciphertext 

Table 2  Ciphertext statistics

PudgyTurtle-encryptions of three different 1280000-byte plaintexts: an ASCII-formatted English-language 

book, a JPEG image, and a file containing only 0x00 bytes. Shown here are the ciphertext length (Col-

umn 2), ciphertext expansion factor (CEF, Column 3), and keystream expansion factor (KEF, Column 4). 

As expected, CEF ≈ 2 and KEF ≈ 5.2. The right half of this table (Columns 5–7) reports two-point Kol-

mogorov–Smirnov tests comparing the byte-distribution among the different ciphertexts, and also between 

each ciphertext and a file of 2560012 uniformly-distributed random bytes (‘Random’). The non-significant 

p-values (Column 7) suggest that the ciphertexts do not statistically differ from one another, nor from ran-

dom bytes

Plaintext source Length (bytes) CEF KEF Kolmogorov–Smirnov tests

Comparison KS p-value

English 2560014 2.00 5.2002 Versus random 0.000923 0.26

Versus image 0.000634 0.68

Versus zeros 0.000901 0.25

Image 2560017 2.00 5.1996 Versus random 0.000558 0.82

Versus zeros 0.000485 0.92

Zeros 2560010 2.00 5.1963 Versus random 0.000441 0.96
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pair, and the other exploits more realtime data; one uses 

multiple tables, and the other just one; and so on.

Biryukov and Shamir adapted some of Hellman’s meth-

ods to create another TMDTO attack against stream ciphers, 

which accounts for D in detail [12]. The tradeoff of this ‘BS-

attack’ is TM
2
D

2
= N

2 , with P = N∕D and D2 ≤ T ≤ N  . 

For example, one point on this curve, assuming N ≈ 2
100 , 

is P = T = N
2∕3 = N

66 , and M = D = N
1∕3 = N

33 . The BS-

attack uses many tables, all related through a simple function 

like bit permutation.

The goal of both the BG- and BS-attacks is to recover a 

KSG state. However, TMDTO attacks designed to recover 

the secret key/IV combination have been proposed by Hong 

and Sarkar [30] and discussed by Dunkelman and Keller 

[18]. Tradeoffs in these approaches take the general form of 

TM
2
D

2
= N

2
V

2 , where V is the number of IV’s [27].

Another improvement in TMDTO attacks is sampling 

[13], whose main idea is to limit the attack to a smaller space 

of special points (e.g., KSG states that begin with a certain 

number of 0’s in a row) [4]. Limiting the precomputed table 

to these points speeds up the realtime phase, since a table-

search is only required when the known keystream fragment 

also happens to start with this string. This method offers dif-

ferent advantages against different ciphers: the tradeoff curve 

itself may change; its range of parameters may expand; and/

or practical speedups (e.g., fewer disk-access operations) 

may become possible [31, 51].

The BG-Attack

Here we describe in detail the original BG-attack [5, 22]. 

During the precomputation phase, M unique n-bit starting 

states S
i
 are chosen. Each of these is used to initialize the 

KSG, after which its prefix, e(S
i
) (i.e., the first n bits of key-

stream) is computed. The { S
i
, e(S

i
) } pairs are then stored in 

a M × 2 table, sorted by prefix.

During the realtime phase, it is assumed that the adver-

sary possesses D + n − 1 bits of known plaintext, X
′ . 

From these data, the known keystream, K′ , is obtained by 

XOR’ing X′ and the ciphertext at the appropriate position. 

Then, starting at bit-offset a = 1, an n-bit sliding window 

is applied to K′ to produce a known keystream fragment, 

K
�(a) = {k

a
, k

a+1, k
a+2,… , k

a+n−1} . The table is searched for 

any prefixes that match this fragment. If none are found, the 

sliding-window is advanced by one position, and the table 

is searched for K�(a + 1) —a process which may be repeated 

up to D times. If a matching prefix e(S�) is found, then its 

paired state, S′ , likely reflects the KSG at some point during 

encryption. If keystream obtained by seeding the KSG with 

S
′ correctly decrypts the relevant portion of Y into X′ , then 

the attack succeeds.

The tradeoff curve TM = N  suggests that the original 

search-space can be covered more efficiently than exhaustive 

search. For example, time and memory resources can be 

balanced by choosing T = M = D =

√

N . More generally, 

letting M = 2
m and T = 2

t , other tradeoffs can also be made, 

subject to m + t ∼ n.

The BS-Attack

Biryukov and Shamir’s method (the so-called ‘BS-attack’) 

expands Hellman’s time-memory tradeoff for block ciphers 

into the realm of stream ciphers [12]. Unlike Hellman’s orig-

inal idea, however, which assumed a single block of chosen 

plaintext ( D = 1 ), the BS-attack allows attackers to take full 

advantage of D bits of known plaintext.

Since D may be constrained by factors external to the 

cryptosystem itself, it is taken as a predetermined ‘given’ 

from which the other parameters are calculated. After speci-

fying D, the cryptanalyst next chooses m and t (explained 

below) which satisfy Hellman’s ‘matrix-stopping rule’: 

mt
2
= N.

During the precomputation phase, t/D tables are con-

structed, each of dimension m × 2 . The first column’s entries, 

called ‘start points’ ( SP
i
 ), are m unique, randomly selected 

n-bit KSG-states. The second column’s entries, called ‘end 

points’ ( EP
i
 ), are obtained by applying a function t-many 

times to each corresponding start-point:

where f ∶ {0, 1}n
→ {0, 1}n is explained below. The inter-

mediate results of this composition of functions are called 

a Hellman chain. To save memory, only the first and last 

links of each chain need to be stored, but—if required—any 

link can be regenerated from the start-point. Each row thus 

‘covers’ t keys, and an m-row table covers mt keys while only 

requiring m ⋅ 2n bits of storage.

The function f(S) is itself composed of two other func-

tions, e and r, where e(S) is the first n bits of keystream (the 

‘prefix’) produced by the KSG from state S, and r changes 

this prefix in some simple way, like permuting its bits or 

XOR’ing it to a constant. Each table has a unique version 

of r, so

refers to the version of f used in table z, where 

z = 1, 2,… , t∕D.

During the realtime phase of the BS-attack, known key-

stream K′ is split into successive n-bit fragments, K�(a) , 

where a = 1, 2,… , D . For each fragment, the search begins 

by checking whether or not rz(K
�(a)) matches an end-point 

of any table. If no matches are found, then the adversary 

modifies the search-target by one application of f, and now 

searches the end-points for fz(rz(K
�(a))) . The attacker may 

repeat this, searching through a so-called realtime Hellman 

EPi = f ◦ f ◦ f … ◦ f (SPi) = f (t)(SPi)

fz(S) = rz ◦ e(S)
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chain by applying f up to t times. If still no match has been 

discovered, then the next known-keystream fragment, 

K
�(a + 1) , is processed the same way, until all D fragments 

have been tried.

When a match is found, the attacker wishes to find the 

KSG-state, S′ , for which K�(a) is the prefix: K�(a) = e(S�) . 

The first step is to regenerate the appropriate precomputed 

chain. For example, suppose that the �-th realtime applica-

tion of f matches the i-th end-point of the z-th precomputed 

table:

The adversary then reconstructs the i-th precomputed chain 

(by (t − �) applications of fz ) to ‘meet’ the beginning of their 

realtime chain f (t−�)
z

(SPi) = rz(K
�(a)) . This holds because 

EPi = f (t)(SPi) = f (�)f (t−�)(SPi) = f (�)(rz(K
�(a)) . Finally, the 

desired result is the precomputed-chain state immediately 

preceding this one:

The cryptanalyst knows that the first n bits of keystream gen-

erated by KSG-state S′ will equal K�(a) , since the attack has 

been set up so that f (t−�)(SPi) = f (S�) = r(e(S�)) = r(K�(a)) 

and therefore e(S�) = K
�(a) . If this new keystream correctly 

decrypts the message, the attack succeeds. Otherwise, a 

false-alarm has been discovered, and the attack continues.

The BS time-memory-data tradeoff can now be appre-

ciated in more detail. Taking each table-search as one 

‘time-operation’, the BS-attack requires searching t/D dif-

ferent tables, for one of D known keystream fragments, 

and repeating each search for t applications of f, so that 

T = (t∕D) ⋅ D ⋅ t = t
2 . For t/D tables containing m rows 

each, the memory requirement is M = mt∕D . Thus, from 

Hellman’s matrix-stopping rule N = mt
2 , the BS-tradeoff is

It is important to note that Biryukov and Shamir’s approach 

does not require multiple tables. Rather, the number of 

tables (t/D) just factors into the tradeoff: using one table 

means performing the attack with a relatively bigger table 

and relatively shorter realtime phase, for a given D. The 

toy cipher used in Sect. 9 has low enough computational 

and memory requirements that a ‘one-table’ tradeoff (e.g., 

m = t = D ∼ N
1∕3 ) can be implemented as reasonably a 

multi-table tradeoff.

f (�)
z

(rz(K
�(a)) = EPi

S� = f (t−�−1)

z
(SPi)

N
2 = (mt

2)2 = (mt)2t
2 = (MD)2T = TM

2
D

2

PudgyTurtle and Collision Attacks

This section describes some of the challenges associated 

with TMDTO attacks against PudgyTurtle. As we have seen, 

what the adversary has is known plaintext X′ , but what the 

attacker actually needs is known keystream, K′ . This obser-

vation reveals two (sometimes unstated) assumptions behind 

TMDTO attacks:

• Known plaintext equals known keystream. With binary-

additive stream ciphers, K′ can be easily obtained by 

XOR’ing the intercepted ciphertext with X′.

• Known keystream is contiguous, or at least predictably 

spaced [27]. TMDTO attacks involve successively apply-

ing a sliding window to K′ , thereby obtaining targets to 

search for within the precomputed table(s). It is assumed 

that an n-bit window produces n bits of useful data.

With PudgyTurtle, neither assumption holds. First, because 

the plaintext–keystream interaction during encoding is 

probabilistic, a single known plaintext–ciphertext pair is 

consistent with many different keystreams. Second, because 

some keystream nibbles are skipped during encryption, each 

keystream fragment contains irregularly spaced gaps of data 

which remain unknown to the attacker. By making it harder 

to obtain K′ from X′ , the realtime phase of TMDTO attacks 

against PudgyTurtle becomes more difficult.

Central to this discussion is the idea that a particular 

(X, Y) pair can be consistent with many different keystreams. 

To see how this is possible, recall from Table 1 that plaintext 

0x48 (“H” in ASCII) produced codewords {0x10, 0x04} 

and ciphertext 0x4327 under keystream 0x53B14230.

Yet, this same ciphertext could also have resulted from 

different encodings of plaintext 0x48 under different key-

streams. For example, the keystream {K1, K2, �, K4, K5, �} 

exactly matches each plaintext nibble on the first attempt 

(i.e., no failures), making two 0x00 codewords. Therefore, 

if the masks ( K
1
‖K

2
 ) and ( K

4
‖K

5
 ) were chosen to be the 

same as their corresponding nibbles in the original cipher-

text (i.e., keystream {4,3,4,2,7,8}), then Y will also 

be 0x4327:

Similarly, if a nibble within one mask happened to be one 

bit off, then the same ciphertext would still result if its cor-

responding discrepancy code was also one bit off. This 

might happen, for instance, if the second mask ( K
4
‖K

5
 ) 

was 0x26 instead of 0x27, and the second discrepancy 

code was 001
2
 instead of 000

2
—meaning that K

6
 would be 

X
2
⊕ 0001

2
= ���⊕ 0001

2
= 1001

2
= ��� instead of 0x8. 

Thus, keystream {4,3,4,2,6,9} would also produce the same 

Y
1
= C

1
⊕ M

1
= ����⊕ (K

1
‖K

2
) = ����⊕ ���� = ����

Y
2
= C

2
⊕ M

2
= ����⊕ (K

4
‖K

5
) = ����⊕ ���� = ����
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ciphertext: Y
2
 would remain 0x27, but would be calculated 

as:

Many other keystreams would also produce this same 

ciphertext. A few examples are given in Table 3.

Tentative Keystream

TMDTO attacks against PudgyTurtle may have to contend 

with many possible keystreams, rather than just the single 

‘known keystream’ required to attack a BASC. Here, we 

describe how the adversary builds a set of tentative key-

streams from the intercepted ciphertext, the known plaintext, 

a hypothesized encoding, and something called the ‘verified 

sequence’. These tentative keystreams become the input to 

our new TMDTO attacks against PudgyTurtle.

The Model. Tentative keystreams are based on different 

models of how X′ is encoded. Ignoring overflow events for 

now, each model, Cj
⊂ C , is a collection of codewords—

one failure-counter and discrepancy-code for each nibble of 

known plaintext:

Y
2
= C

2
⊕ M

2
= ����⊕ (K

4
‖K

5
) = ����⊕ ���� = ����

Cj = {C
j

1
, C

j

2
,… , C

j

NX�
}

= {(F
j

1
‖D

j

1
), (F

j

2
‖D

j

2
),… (F

j

NX�
‖D

j

NX�
)}

where j = 1, 2,… , |C| . We emphasize that F
j

i
 and D

j

i
 are just 

guesses, not necessarily the actual failure-counter ( F
i
 ) and 

discrepancy code ( D
i
 ) that produced Y

i
 from X′

i
.

To specify a particular model, C∗ , the components of each 

codeword, F∗
i
∈ {0, 1, 2,… , 31} and D∗

i
∈ {0, 1, 2, 3, 4} , can 

either be chosen randomly or taken from a list—perhaps 

ordered by probability of occurrence. Since discrepancy-

codes are equiprobable, the probability of any model can be 

ranked according to the product of the probabilities of its 

f a i l u r e - c o u n t e r s : 

Pr(C∗) = g(F∗
1
, p) × g(F∗

2
, p) ×⋯ × g(F∗

NX�
, p).

As a specific example assuming that X′ is 4 nibbles long, 

we use the following randomly chosen model

Thus, failure-counter F∗

1
 is 1, discrepancy code D∗

1
 is 3, 

F
∗

2
= 2, D

∗

2
= 0 , F∗

3
= 0 , and so on.

Verified sequence. Given our model C∗ from above, the 

next step is to build its verified sequence, V∗ . This sequence 

marks which nibbles of the tentative keystream can be pre-

dicted by the model, and which ones remain unknown (i.e., 

keystream nibbles that would have been skipped-over and 

discarded during encoding because they failed to match a 

plaintext nibble).

Specifically, V∗

i
 = 0xF = 1111

2
 if the i-th tentative key-

stream nibble can be predicted by the model, and V∗

i
 = 0x0 

= 0000
2
 otherwise. This means that each nibble of X′ adds 

three 0xF nibbles to V∗ : two coinciding with the mask, 

and one positioned where the keystream nibble would have 

matched the plaintext nibble. The number of intervening 

0-nibbles corresponds to the failure-counter. For example, 

if some failure-counter in the model were 3, its correspond-

ing representation in V∗ would be ...FF000F.... Similarly, a 

failure-counter of 0 would correspond to … ���… in V∗ , and 

so on. Thus, the Hamming weight of the verified sequence 

is h(V) = 3L
X� = 12N

X� bits.

The verified sequence for our model C∗ is shown below, 

where #’s mark the verified-sequence nibbles associated 

with each mask, F∗ shows the progression of each failure-

counter, and *’s mark the verified-sequence nibble associ-

ated with each plaintext–keystream match: 

C
∗ = {C

∗
1
, C

∗
2
, C

∗
3
, C

∗
4
}

= {����, ����, ����, ����}

= {00001011, 00010000, 00000100, 00001001}

= {00001‖011, 00010‖000, 00000‖100, 00001‖001}

= {1‖3, 2‖0, 0‖4, 1‖1}

Table 3  Different keystreams; same ciphertext

The original keystream (top) transforms plaintext 0x48 into the 

ciphertext 0x4327. However, other encodings produced by other 

keystreams can also have the same effect

Plaintext Keystream Codewords Ciphertext

Actual keystream

0x48 5,3,B,1,4,2,3,0 0x10, 0x04 0x4327

Other keystreams producing the same ciphertext

0x48 4,3,4,2,7,8 0x00, 0x00 0x4327

4,3,4,2,6,9 0x00, 0x01

4,2,5,2,7,8 0x01, 0x00

4,2,5,2,6,9 0x01, 0x01

…

5,3,B,1,4,2,7,8 0x10, 0x00

5,3,B,1,4,2,6,9 0x10, 0x01

5,3,B,1,4,2,5,A 0x10, 0x02

5,3,B,1,4,2,3,C 0x10, 0x04

…

4,B,B,4,2,F,7,8 0x08, 0x08

…
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Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Masks # # # # # # # #

F
∗ 0 1 0 1 2 0 0 1

Matches * * * *

V
∗ F F 0 F F F 0 0 F F F F F F 0 F

(‘verified’), and 4 remain unknown. Different models would 

produce other tentative keystreams, a collection of which 

become inputs for the realtime phase of our TMDTO attacks 

against PudgyTurtle.

TMDTOs and PudgyTurtle

After clarifying some terminology, we describe two new 

TMDTO attacks against PudgyTurtle (i.e., ‘modified’ ver-

sions of the BG- and BS-attacks), and also discuss how these 

new attacks differ from their original counterparts.

Terminology

During the realtime phase of our attacks, a hit refers to any 

instance in which an n-bit fragment of realtime data (ten-

tative keystream) matches an entry in the second column 

of the precomputed table. Every hit falls into one of two 

categories: high-quality and spurious. High-quality hits are 

cryptographically significant events and must therefore be 

investigated further via a test-decryption. Spurious hits, on 

the other hand, occur by chance and may therefore simply 

be ignored.

Filling in. Finally, the tentative keystream K�∗ is created 

by filling in the non-zero elements of V∗ . To illustrate this 

process, assume that the known plaintext X′ is "Hi" (ASCII 

0x4869) with corresponding ciphertext 0xEE7D22C3.

Since the first ciphertext byte Y
1
 = 0xEE is made by 

XOR’ing first codeword ( F∗

1
‖D

∗

1
 ) with the first mask 

( K�∗

1
‖K

�∗

2
 ), the attacker knows that (K�∗

1
‖K

�∗
2
) = Y

1
⊕ (F∗

1
‖D

∗
1
) 

= 0xEE ⊕ (00001
2
‖011

2
) = 0xEE ⊕ 0x0B = 0xE5. Next, 

because F∗

1
= 1 , the cryptanalyst deduces that one tenta-

tive keystream nibble ( K�∗

3
 ) was skipped because it failed 

to match X′

1
 , and that next tentative keystream nibble ( K�∗

4
 ) 

matched X′

1
 to within one bit. Its value can therefore be filled 

in by inverting discrepancy code D∗

1
 = 3:

At this point, the first codeword has been used to fill in the 

first 4 nibbles of tentative keystream K�∗ = E, 5, ?, 0… , 

where ? represents the ‘unknown’ nibble corresponding to 

V
∗

3
= 0 . The complete tentative keystream (shown in the final 

row of the diagram below) can be constructed by continuing 

this pattern. 

K
�∗

4
= X

�

1
⊕ d

−1(D∗

1
)

= X
�

1
⊕ 2

D
∗
1
−1

= ���⊕ 2
3−1

= 0

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Masks # # # # # # # #

F
∗ 0 1 0 1 2 0 0 1

Matches * * * *

V
∗ F F 0 F F F 0 0 F F F F F F 0 F

E 5 ...

E 5 ? 0 ...

E 5 ? 0 6 D ...

E 5 ? 0 6 D ? ? 8 ...

E 5 ? 0 6 D ? ? 8 2 6 ...

E 5 ? 0 6 D ? ? 8 2 6 E ...

E 5 ? 0 6 D ? ? 8 2 6 E C A ...

K
�∗ E 5 ? 0 6 D ? ? 8 2 6 E C A ? 8

To summarize, we have described how the adversary 

builds a tentative keystream from one particular 4-codeword 

model, in conjunction with a 4-nibble known plaintext and 

its corresponding 4-byte ciphertext. This particular tentative 

keystream contains 16 nibbles, of which 12 can be predicted 

Each high-quality hit has one of two outcomes: a valid 

hit leads to a correct decryption of some portion of Y into 

X
′ ; a false-alarm, on the other hand, means that the test-

decryption was not correct.
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If any table contains one or more valid hits, the attack is 

deemed a success; otherwise it’s a failure. Failures happen 

either when there are no high-quality hits (i.e., all hits are 

spurious) or when all high-quality hits are false-alarms.

Hamming-Weight Threshold

During the normal BG- and BS-attacks, all hits are 

assumed to be high-quality; none are ignored. During our 

new TMDTO attacks, however, spurious hits abound. The 

reason for this that an ‘unknown’ nibble from the tentative 

keystream fragment (marked as ‘?’ in the illustrations in 

Sect. 6.1) could theoretically match any similarly located 

nibble in the precomputed table.

Fortunately, a simple technique allows the attacker to 

distinguish high-quality hits from spurious ones. A Ham-

ming-weight threshold, � ≤ n , is applied to each n-bit frag-

ment of the verified sequence. If the Hamming-weight of a 

verified-sequence fragment is ≥ � (i.e., if it has fewer than 

n − � ‘unknown’ bits), then any hits discovered while inves-

tigating its corresponding n bits of tentative keystream are 

defined as high-quality. Using � avoids many unnecessary 

test-decryptions, thereby speeding up our TMDTO attacks 

considerably.

� is chosen to reduce the number of total hits down to 

a more reasonable number of high-quality hits, subject to 

constraints imposed by the attacker’s processing power. In 

practice,

appears to generate an adequate number of high-quality 

hits while also allowing reasonably fast computation. In 

the numerical experiments below (Sect. 9), choosing � in 

this range produced roughly 200–400 high-quality hits per 

model, with successful attacks taking ∼ 1 day to 1 week on 

off-the-shelf laptops with  Intel® I3/I5-generation processors. 

We emphasize that the exact value of this parameter is not 

crucial: � could always be chosen as n/2, for instance, if the 

attacker is willing to wait somewhat longer for their results.

First TMDTO Attack

Our first attack is inspired by the Babbage–Golić method, 

but differs substantially by its use of multiple keystream 

models containing partly-unknown data.

PARAMETER SELECTION

Given state-size N = 2
n and D bits of known plaintext, 

choose table-size M = N∕D (e.g., M =

√

N is a common 

choice), and Hamming-weight threshold �;

2

3
n ≤ � ≤

3

4
n

PRECOMPUTATION PHASE

Choose M unique n-bit KSG states S
i
 . Starting from each 

one, produce an n-bit prefix e(S
i
) , and store the { S

i
, e(S

i
) } 

pairs in a table.

Note: Depending upon the search strategy (see 

Sect. 7.3.2), this table may be sorted by prefixes or left 

un-ordered;

REALTIME PHASE

1. Choose a model, Cj;

2. Calculate the verified sequence, V j;

3. Fill in the tentative keystream, K′j;

4. Test K′j as follows:

(a) Set a, the offset of an n-bit sliding-window, to a = 1;

(b) Apply the sliding window to V j , producing the n-bit 

verified sequence fragment V j(a);

(c) If h(V j(a)) < � , then assume that any hits will be spuri-

ous. Instead of searching the table, set a ← a + 1 and 

return to 4(b);

(d) Assuming V j(a) ≥ � , apply the sliding window to the 

tentative keystream to produce n-bit fragment, K�j(a);

(e) Bit-by-bit multiply K�j(a) by V j(a) . We denote this by 

K�j(a)⊗ V j(a) and refer to the result as the verified ten-

tative keystream fragment. This ensures that any bits 

left ‘undefined’ in software implementations are actu-

ally set to 0;

(f) Adjust each prefix in the precomputed table the same 

way, thus creating M verified prefixes e(Si)⊗ V j(a);

(g) Search the table for any verified prefixes that match the 

verified tentative keystream fragment. For simplicity, 

we imagine a sequential (row-by-row) search;

(h) If a matching verified prefix (“high-quality hit”) is 

found, then use its paired state ( S′ ) to perform a test-

decryption:

• Loadthe KSG with S′;

• Generate enoughkeystream to decrypt Y into asmuch 

of X′ aspossible. For standard stream-cipher opera-

tion, decryption is assimple as XOR’ing this newly 

generated keystream with Y (starting at offset a). For 

PudgyTurtle, however, somecomputational effort is 

required to determine the ‘firstdecryptable’ byte of 

Y, asdescribed in Sect. 7.3.1.

• If the test decryption matchesX
′,then a valid hit has 

been discovered: label the attack a success andSTOP.

• If thetest decryption does not match X′,then a false-

alarm has occurred: return to Step 4(g) to continue-
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searching for the same verified tentative keystream 

fragment,starting from next row of the table;

(i) If no high-quality hits were discovered, or if they 

were all false-alarms, then try again with the next 

tentative keystream fragment: set a ← a + 1 and go 

to 4(b). This can be repeated up to D′ times, where 

D
�
= KEF × D ≈ 5.2D.

5. If the entire tentative keystream has been searched with-

out finding any valid hits, then repeat the whole process 

with a new model: set j ← j + 1 and return to Realtime 

phase, Step 1;

Adjusting the State

The output of this attack consists of a putative KSG-state S′ 

and the bit-offset, a, of its corresponding tentative keystream 

fragment, K�(a) . A test-decryption must then be performed 

to determine whether keystream produced from S′ yields a 

valid hit or a false-alarm. For the standard attacks against a 

BASC, test decryptions are simple: generate keystream start-

ing from S′ , XOR this new keystream to the ciphertext at bit 

a, and then compare the result to the known-plaintext—also 

starting from a. With PudgyTurtle, however, test decryp-

tions are more complicated. Since PudgyTurtle operates on 

nibbles (not bits) and ‘skips’ some of the keystream, the 

cryptanalyst cannot simply decrypt starting from bit a, but 

must instead determine A, the offset of the ‘first decrypt-

able’ ciphertext byte.

To simplify notation, we drop the superscript j and just 

consider the model currently being analyzed. Define Z(i) as 

the number of keystream nibbles required to encode/encrypt 

the plaintext {X1, X2,… , X
i
} up to its ith nibble, using the 

model {C1, C2,…} = {(F1‖D1), (F2‖D2),…}:

The ‘3’ accounts for the extra 0xF’s in each verified 

sequence fragment (e.g., F
1
= 2 would correspond to veri-

fied sequence fragment 0xFF00F, and therefore Z(i) would 

equal F
1
+ 3 = 5 , not just two). Thus, encoding/encrypting 

the current plaintext nibble, X
i
 , uses the keystream fragment

and encrypting the next plaintext nibble, X
i+1

 , uses key-

stream starting from nibble K
Z(i)+1

.

Since bit a corresponds to nibble ⌊a∕4⌋ , the new index, 

A, is found by calculating the smallest Z(A) such that 

Z(A) ≥ ⌊a∕4⌋ . Practically, it is convenient to decrypt the 

ciphertext into ‘full’ plaintext bytes only. For example, the 

Z(i) =

i
∑

u=1

(3 + F
u
) = 3i +

i
∑

u=1

F
u

K
Z(i−1)+1, K

Z(i−1)+2,… , K
Z(i)

second plaintext byte ( X
3
‖X

4
 ) is produced by decrypting the 

ciphertext from byte Y
3
 . Decryption starting at Y

4
 , however, 

would produce only half of this plaintext byte, which may 

cause practical difficulties when comparing files. For this 

reason, we only allow test-decryptions to start from odd-

numbered ciphertext bytes: if A turns out to be even, increase 

it by one.

After this adjustment process, ciphertext starting from 

byte Y
A
 can be decrypted into plaintext starting at nibble X

A
 

(i.e., plaintext byte (A + 1)∕2 ), using keystream

This keystream is produced by loading the KSG with S′ and 

then updating the state 4(Z(A) + 1) − a times before generat-

ing any keystream.

Comparison to Traditional BG-Attack

Although this new attack broadly resembles the method of 

Babbage and Golić, there are several important differences. 

First, our new attack requires multiple ‘tentative keystreams’ 

rather than a single known keystream. Second, our attack 

allows for unknown bits in each table-search, something 

not necessary for the traditional BG-attack. Third, our 

attack includes a new parameter (Hamming-weight thresh-

old � ) to reduce spurious hits, which are not a significant 

problem for the original BG-attack. Fourth, once a hit is 

found, our method requires further adjusting the KSG-state 

before each test-decryption, which is also not needed dur-

ing the standard BG-attack. Fifth, sorting takes longer in 

our attack. Even though there is only one table, each prefix 

in its second column must be bitwise multiplied by V j(a) 

(‘verified’) before comparison with the current tentative 

keystream fragment. This operation changes the values of, 

and therefore the sorted order of, these prefixes each time. 

Thus, if sorting is used, the table must be re-sorted with 

each new application of the sliding window. (Alternatively, 

it can be left unsorted, and searched row-by-row.) Finally, 

our attack’s table-search procedure is more involved. Each 

prefix in the table is unique, but each verified prefix need 

not be. A binary search returns an index of a matching ele-

ment but not necessarily a particular index of a repeated 

matching element. For example, suppose that KSG-state S
w
 

is correct, and that the table contains three different prefixes 

e(S
u
) ≠ e(S

v
) ≠ e(S

w
) which become identical once they are 

verified: e(Su)⊗ V j(a) = e(Sv)⊗ V j(a) = e(Sw)⊗ V j(a) = P . 

A binary search for P might return e(S
u
) or e(S

v
) instead of 

e(S
w
) , incorrectly leading the cryptanalyst to dismiss the hit 

as a false-alarm after a failed test-decryption using states S
u
 

or S
v
 . The cryptanalyst must therefore check whether or not 

the prefix associated with each high-quality hit is unique 

and, if not, also perform test-decryptions using KSG-states 

K
� = K

Z(A−1)+1, K
Z(A−1)+2,…
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associated with any other identical verified prefixes. (Alter-

natively, the attacker can do a simple sequential search 

through the whole table for each K�(a) fragment, as men-

tioned above).

TMDTO Attack #2

Our second TMDTO-attack is inspired by the method of 

Biryukov and Shamir [12, 26]. However, building Hellman 

chains from an initially uncertain state produces various diffi-

culties not seen in the classical BS-attack, as discussed below.

Variant Keystream Fragments and Tentative Hellman 

Chains

One way to modify the BS-attack to deal with ‘unknown 

bits’ is to use many realtime Hellman chains instead of just 

one. These chains are constructed from variants of each ten-

tative keystream fragment. If fragment K�(a) has u unknown 

bits, then it will have 2u variants, denoted KV
0
(a) , KV

1
(a) , 

… , KV2u−1(a) . During the realtime phase of our new attack, 

each variant initiates its own Hellman chain.

The i-th variant of K�(a) is constructed by replacing each 

of its unknown bits with one bit from the binary expansion 

of i. Letting K�(a) = {k1, k2,… , k
n
} , V(a) = {v1, v2,… , v

n
} , 

and i = {b1, b2,… , b2u} , then a simple algorithm to build 

KV
i
(a) is: 

1. Set counter s = 1;

2. For every bit j = 1, 2,… , n of K�(a):

• If vj = 1 , then kj is unchanged;

• If vj = 0 , then { kj ← bs and s ← s + 1};

As a concrete example assuming a 24-bit KSG state, let 

K
�(a) = �������� and V(a) = �������� . Since V(a) has six 

0-bits (meaning that K�(a) has 6 unknown bits), we construct 

2
6 variants as shown below, with unknown bits in boldface: 

V(a) 1111 1111 1111 0000 1111 0011 0xFFF0F3

K
�(a) 1010 0000 1011 1100 1101 1110 0xA0BCDE

KV
0
(a) 1010 0000 1011 0000 1101 0010 0xA0B0D2

KV
1
(a) 1010 0000 1011 0000 1101 0110 0xA0B0D6

KV
2
(a) 1010 0000 1011 0000 1101 1010 0xA0B0DA

… … … …

KV
62
(a) 1010 0000 1011 1111 1101 1010 0xA0BFDA

KV
63
(a) 1010 0000 1011 1111 1101 1110 0xA0BFDE

During the realtime phase of our attack, these variant key-

stream fragments are then used to create the initial links of 2u 

tentative Hellman chains, as illustrated in Fig. 1. From each 

variant, a (t + 1)-link chain is made by defining the 0-th link 

of the i-th chain as H
i
[0] = r(KV

i
(a)) and each subsequent 

link as Hi[�] = f (Hi[� − 1]) = f (�)(Hi[0]).

Modi�ed BS Attack

Here we describe our second TMDTO attack (a modified 

version of the Biryukov–Shamir attack), which uses variant 

keystream fragments and tentative Hellman chains.

PARAMETER SELECTION

Given N = 2
n (the state-space size) and D (the quantity of 

known plaintext), choose m and t such that N = mt
2 , and 

choose Hamming-weight threshold � ≤ n;

PRECOMPUTATION PHASE

1. Create t/D simply-related r-functions, one for each table;

2. Construct t/D different m × 2 tables. The first column 

contains start-points, SP1, SP2,… , SP
m

 ; the second 

contains end-points EPi = f (t)
v
(SPi) , where fv = rv◦e , 

for i = 1, 2,… , m rows, and v = 1, 2,… , (t∕D) tables.

Fig. 1  Tentative Hellman 

chains. A keystream fragment 

with 6 unknown bits, K�(a) , is 

used to create 26 variant key-

stream fragments, KV
i
(a) , where 

i = 0, 1, 2,… , 63 . From these 

variants, the zero-th link of 

each chain, H
i
[0] , is obtained by 

applying Hellman’s r-function. 

Each chain is then extended, 

by t applications of Hellman’s 

f-function

K (a) →



































































r f f f

KV0(a) → H0[0] → H0[1] → · · · → H0[t]

r f f f

KV1(a) −→ H1[0] −→ H1[1] −→ · · · −→ H1[t]

...
...

...

r f f f

KV63(a) −→ H63[0] −→ H63[1] −→ · · · −→ H63[t]
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  Note: We drop the v (table) subscript below for con-

venience, but emphasize that all steps occur for each 

table;

REALTIME PHASE

1. As in the modified BG-attack, choose a model Cj , and 

determine its verified sequence V j and tentative key-

stream K′j.

2. For each bit-offset a = 1, 2,… , D
� , extract an n-bit frag-

ment of both the verified sequence and the tentative key-

stream, denoted V j(a) and K�j(a) respectively. As before, 

D
�
≈ 5.2D.

3. Let u = n − h(V j(a)) be the number of unknown bits in 

the current tentative keystream fragment.

4. If u > n − � (i.e., too many unknown bits), then incre-

ment a and return to Realtime Step 2;

5. Assuming that u ≤ n − � , create variant tentative key-

stream fragments KV
j

i
(a) , where i = 0, 1, 2,… , 2u

− 1 , 

as described in Sect. 7.4.1.

6. Apply Hellman’s r-function to each of the 2u variant 

keystream fragments H
j

i
[0] = r(KV

j

i
(a)) , thus forming a 

set of initial (zero-th) links of each tentative Hellman 

chain { H
j

0
[0] , H

j

1
[0] , H

j

2
[0] , … H

j

2u−1
[0]};

7. Search the end-points of the precomputed tables for each 

of these 2u initial links:

• If NO match is found, then update the search-targets 

to H
j

i
[1] = f (H

j

i
[0])) for i = 0, 1,… , 2u

− 1 , and search 

the tables again. If no match is found, continue this 

process t-many times, with the final 2u search-targets 

being H
j

i
[t] = f (t)(H

j

i
[0]));

8. If a match IS found (a ‘high-quality hit’), determine 

the desired KSG-state, S′ , as follows. For concrete-

ness, assume that the 42-nd endpoint (row) of the table 

matched the 5-th tentative Hellman chain after � applica-

tions of f: 

(a) First, regenerate the precomputed Hellman-chain until 

it matches H
j

5
[0] by computing f (t−�)(SP

42
).

(b) Test the predecessor state, S� = f (t−�−1)(SP
42
) as fol-

lows:

⇒  Update S′ as described in Sect.  7.3.1 to produce a 

new KSG-state and ciphertext byte-offset A for test 

decryption;

⇒  Perform a test-decryption from Y
A
 using keystream gen-

erated from the updated version of S′;

H
j

5
[�] = f (�)(H

j

5
[0]) = EP

42

⇒  If this decryption matches the known-plaintext starting 

at X
A
 (‘valid hit’), then the attack succeeds. If not, return 

to Realtime Step 7 and continue searching.

Comparison to Traditional BS-Attack

Compared to the original BS attack, our modified attack 

employs multiple realtime Hellman-chains instead of just 

one. Otherwise, this modified attack differs from the stand-

ard BS-attack in mostly the same ways that the modified-BG 

attack differs from its original counterpart: (1) it uses models 

to generate tentative keystreams containing ‘unknown’ bits, 

leading to many spurious hits, which in turn must be rejected 

by the inclusion of a Hamming-weight threshold parame-

ter—none of which apply to the standard BS-attack; and 

(2) the KSG-state, once discovered, must be adjusted before 

attempting a test-decryption, unlike the original BS-attack. 

One similarity with its original counterpart, however, is 

that sorting the precomputed table(s) helps. In our modified 

attack, end points ( EP
i
 ) do not need to be ‘verified’ (i.e., bit-

wise multiplied by the verified sequence fragment), as they 

do in the modified BG-attack. In essence, tentative Hellman 

chains fix the problem of unknown bits. Thus, quick-sort 

and binary-search techniques will speed up this attack just 

as they would the original BS-attack, and more dramatically 

than the modified BG-attack.

Quantifying the New TMDTO Attacks

How do our new TMDTO attacks compare to the standard 

BG- and BS-tradeoffs? Since the precomputation phase of 

these attacks are similar to their original counterparts, we 

neglect this phase and instead focus on the realtime duration 

of each attack.

T̂  stands for the number of realtime operations, where 

a ‘time operation’ is defined as either one table-search or 

one test-decryption. Normally, test-decryptions are ignored, 

since only one is required (or perhaps just a few) [28]. With 

PudgyTurtle, however, the abundance of ‘unknown’ bits 

means that most test-decryptions produce false alarms, 

and therefore should be counted. This parameter can be 

expressed as

where

• N
searches is the number of table-searches performed per 

model;

• Ndecrypts is the number of test-decryptions per model;

T̂ =

Nsearches + Ndecrypts

Pvalid
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• P
valid is the probability that a model yields a valid hit (i.e., 

successful test-decryption). Specifically, 

 where N
valid

 is the observed number of valid hits and 

N
trials

 equals the number of tables used multiplied by the 

number of models tested per table.

Normally, N
valid

= 1 , since an attack stops once success is 

achieved. In these experiments, however, some attacks are 

allowed to run through a predetermined number trials, pos-

sibly producing > 1 valid hit.

The standard BG and BS tradeoffs have time-parameters 

T
BG

= N∕M  and T
BS

= N
2∕(M2

D
2) . We compare these 

benchmarks to T̂
BG

 and T̂
BS

 , which represent the number of 

realtime operations actually observed during the numerical 

experiments below.

Implementing the TMDTO Attacks

Here, we launch two new TMDTO attacks against PudgyTur-

tle and discuss their performance in a variety of situations. 

For the first several attacks, the KSG will be a 24-bit maxi-

mal-period, nonlinear feedback shift register (NLFSR) [17], 

with the following specifications:

• Initial state S
0
 is 0xAAA AAA  = 1010...10

2
.

• State S
t
= (s0, s1,… , s23) evolves according to:

     o(S
t
) = s

0
 is the output bit;

     b = s
0
⊕ s

1
⊕ s

8
⊕ s

9
⊕ s

15
⊕ (s

7
⋅ s

18
) is the feed-

back bit;

P
valid

= N
valid

∕N
trials

     �(S
t
) = S

t+1 = (s1, s2,… , s23, b) is the state-update 

function;

We emphasize that this is not intended to be a secure KSG, 

but only a ‘toy’ cipher for illustrative purposes. Its small 

key-space of N = 224 = 16777216 makes for efficient com-

putations (e.g., using the standard tradeoff parameters like 
√

N = 4096 or N1∕3 = 256).

For simulations requiring larger-sized KSG’s, we use 

linear feedback shift registers (LFSRs) instead of nonlinear 

ones. The reason for this is pragmatic: maximal-period NLF-

SRs are difficult to find, and Dubrova’s well-known source 

only goes up to n = 25 [17]. Obviously, there are easier ways 

to break LFSR-based ciphers than a TMDTO attack, but 

again these examples are for explanatory purposes only.

Modi�ed BG Attack

Below are results of the first new TMDTO attack against 

PudgyTurtle.

Experiment 1: Contrived Plaintexts

This experiment is designed to confirm the general feasi-

bility of our approach. Modified BG-attacks are performed 

against two ‘contrived’ plaintexts, which have been specifi-

cally tailored to bias the results toward success by limiting 

the number of unknown bits:

• The “EVERY-3” plaintext is constructed by taking every 

third nibble of the actual keystream. This forces each 

Table 4  Modified BG-attack 

against two contrived plaintexts

Scenarios were constructed so that the tentative keystream either contained no unknown bits (EVERY-3, 

upper section of table) or very few unknown bits (EVERY-3-OR-4, lower section of table). Next, attacks 

were carried out assuming that one parameter was fixed at ≈
√

N bits (4096 or 4104, in boldface): either 
√

N bits of known plaintext (Rows 1 and 3); or 
√

N bits of verified tentative keystream (Rows 2 and 4); or 
√

N bits of total tentative keystream (Rows 2 and 5). Note that for EVERY-3, there is no difference between 

the second and third assumption. Each attack used a single tentative keystream model and 1000 precom-

puted tables. In these contrived scenarios, success was common (> 600/1000 tables), and successful tables 

contained > 1 valid hit. Unsurprisingly, the attacker enjoyed more success when granted more realtime 

data (Rows 1 & 3 vs. Rows 2, 4, & 5). False-alarms occurred in both scenarios, but became noticeably 

more frequent when the known keystream contained unknown bits (rightmost column, lower vs. upper sec-

tion of table)

Known plaintext Verified tenta-

tive keystream

Total tentative 

keystream

Successful tables 

(out of 1000)

Valid hits 

per success

False-alarms 

per valid hit

EVERY-3

1 4096 12288 12288 952 3.05 0.02

2 1368 4104 4104 629 1.50 0.07

EVERY-3-OR-4

3 4096 12288 15000 974 3.70 59.38

4 1368 4104 5032 706 1.70 61.76

5 1112 3336 4096 605 1.56 63.93
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codeword to be 0x00 and every nibble of the verified 

sequence to be 0xF;

• The “EVERY-3-OR-4” plaintext forces every code-

word to be either 0x00 (i.e., an exact match on the first 

attempt) or 0x08 (i.e., one failure followed by an exact 

match). This is accomplished by comparing the two key-

stream nibbles after each mask. If they differ by more 

than 1 bit, the second one is taken as the plaintext nibble, 

producing codeword 0x08 and adding 0xFF0F to the 

verified sequence. If they are within ≤ 1 bit of each other, 

then the first one is taken instead, producing codeword 

0x00 and adding 0xFFF to the verified sequence. The 

net result is a verified sequence with mostly 0xF’s and 

some 0x0’s.

This experiment also examines the question, “how much 

realtime data is there?” The usual TMDTO attack against a 

BASC grants the attacker D bits of known plaintext, which 

is assumed to also mean D = L
X� bits of known keystream. 

Since PudgyTurtle is not a BASC, however, its L
X′ bits of 

known plaintext becomes L
K′ bits of tentative keystream, 

of which only h(V) are known (i.e., ‘verified’ as corre-

sponding to a 1-bit in V), such that L
X� ≤ h(V) ≤ L

K� . So, 

does “ D′ bits of realtime data” mean that the adversary has 

D
�
= D = L

X� bits of known plaintext, or D� = h(V) bits of 

verified-sequence, or D�
= L

K� bits of tentative keystream? 

Although the answer is open to interpretation, attacks are 

performed under each of these assumptions.

Table 4 shows modified BG-attacks against both con-

trived plaintexts, with different values fixed at ≈
√

N bits 

(for technical reasons, this may be 4096 or 4104). The value 

that is fixed is

• L
X� ≈ 4096 , in Rows 1 and 3;

• h(V) ≈ 4096 , in Rows 2 and 4;

• L
K� ≈ 4096 , in Rows 2 and 5.

(Note: For EVERY-3, h(V) = L
K� , so Row 2 works for both 

assumptions). Each row shows the result of a modified BG-

attack using one model and 1000 different precomputed 

tables. Columns 1–3 show the relative sizes of X′ , h(V), and 

K
′ , with the fixed value in boldface. Column 4 shows the 

number of successes. The probability of success increases 

with more realtime data, being highest for Rows 1 and 3 

(i.e., when D = 4096 and D
�
= L

K� = 12, 288 ). Column 

5, the average number of valid hits per success, illustrates 

that a single table may contain multiple valid hits. False-

alarms (Column 6) occur occasionally even when the veri-

fied sequence is all 1’s (EVERY-3), but become much more 

likely when the verified sequence contains even a minimal 

number of unknown nibbles (EVERY-3-or-4).

For all subsequent experiments, we assume that the 

attacker has D bits of known plaintext and D�
≈ 5.2D bits of 

realtime data (tentative keystream)—a conservative assump-

tion most advantageous to the adversary.

Experiment 2: Hamming-Weight Threshold

Since the previous experiment used contrived plaintexts 

which exactly (or nearly) matched the original keystream, 

all hits were taken to be high-quality rather than spurious. 

When the plaintext and model are unrestricted, however, 

spurious hits become more likely. This experiment shows 

how different values of Hamming-weight threshold � reduce 

Table 5  The Hamming-weight threshold

The modified BG-attack was performed using a range of thresholds 

( � ) for distinguishing high-quality hits from spurious ones. Each 

attack used the same precomputed table, the same 250 models, a 

24-stage NLFSR as the KSG, and assumed that the attacker knows 

4096 bits of ‘English’ plaintext. For each threshold in Column 1, 

the corresponding number of total (Column 2), high-quality (Col-

umn 3, averaged over 250 models), and valid (Column 4) hits are 

shown. Lower threshold values ( � = 10–12) do not improve effi-

ciency much—thousands of test-decryptions are still required for 

each model. Mid-range values ( � = 14–16) improve efficiency by 

reducing the number of high-quality hits (and test-decryptions) while 

still achieving success. Higher values ( � ≥ 18 ) reduce success—so 

few high-quality hits are obtained overall that finding any valid hits 

among them becomes unlikely. In practice, choosing � so as to pro-

duce several hundred high-quality hits afforded a reasonable balance 

between an attack’s computational cost and its likelihood of success

� Total hits High-quality hits 

(avg)

Valid hits

10 5324798 8025.7 6

12 5324899 5272.6 6

14 5325373 425.6 5

16 5325323 194.6 5

18 5324958 25.9 0

20 5325073 11.9 0

22 5325381 1.0 0

24 5325025 0.3 0

Table 6  How successful is TMDTO attack #1?

Shown here are modified BG-attacks against 4096 bit samples 

of three plaintexts (English, Image, and Zeros) encrypted using 

PudgyTurtle with a 24-bit NLFSR. Each attack used 1 precomputed 

table, 1000 tentative keystream models, and Hamming-weight thresh-

old � = 15 . Each model produced ≈ 270 high-quality hits (Column 2), 

and the success rate ranged from 0.2 to 1.6% (Column 3)

Plaintext source High-quality hits (avg) Valid hits

English 271.9 4

Image 271.8 2

Zeros 269.5 16
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the total number of hits to a reasonable number of ‘high-

quality’ hits.

Modified BG-attacks were performed against encrypted 

English using the same precomputed table and same 250 

randomly-chosen models, but a different � each time. As 

shown in Table 5, many values of � can still produce suc-

cessful attacks, even with substantially fewer high-quality 

than total hits (Column 3 vs. Column 2). Making � too small 

slows down the attack (i.e., more high-quality hits occur than 

are needed for success), but making � too big risks missing a 

valid hit (e.g., when � ≥ 18, there are too few hits overall for 

success). Attackers choose � pragmatically, balancing com-

putational resources against the number of high-quality hits 

(Sect. 7.2). In our experiments, for example, � = 15 works 

well for n = 24.

Experiment 3. How Successful is TMDTO Attack #1?

Table 6 shows the modified BG-attack carried out against 

each of the three plaintexts from earlier (English, Image, and 

Zeros), with one table, 1000 models, n = 24, D = 4096, and 

� = 15. The success rate, P
valid

 ranged from 0.2 to 1.6%. No 

successful attack produced more than 1 valid hit, but all had 

≈ 270 high-quality hits (i.e., false-alarms).

How does the time required by this new attack compare to 

the usual BG-tradeoff of T
BG

=

√

N = 4096? Assuming that 

≈ (1 − �∕n) of the tentative keystream fragments exceed the 

Hamming-weight threshold, N
searches

 may be estimated as 

D
�(1 − �∕n) ≈ 5.2D(1 − 15∕24) ≈ 8192 . Ndecrypts can be 

estimated as 270, the average number of high-quality hits. 

Dividing by the probability of success, we estimate the num-

ber of realtime operations T̂ = (Nsearches + Ndecrypts)∕Pvalid to 

be

or 528875 ≤ T̂ ≤ 4231000, which exceeds T
BG

= 4096 by 

more than 100-fold.

Experiment 4. Scaling the Modi�ed BG-Attack

Experiment 3 suggests that our modified BG-attack requires 

more time than predicted by the original BG-attack. Is this 

result simply a fluke for n = 24, or does it apply to other 

state-sizes? To address this issue, we repeated the attack 

for several different values of n, using LFSRs for n > 25 

as mentioned earlier. Also in this experiment, N
searches

 and 

Ndecrypts were counted rather than estimated.

For KSG sizes n = 20, 24, 28, and 32, a modified BG-

attack was initiated against PudgyTurtle-encrypted Eng-

lish. Each precomputed table had 2n∕2 rows, and allowed 

the attacker 2n∕2 bits of known plaintext. Hamming-weight 

thresholds were �=13 (for n=20); �=15 (for n=24); �=19 

(for n=28); and �=23 (for n=32).

The upper section of Table 7 shows the results. The proba-

bility of success ( N
valid

∕N
trials

 ) ranged from 4/20000 = 0.02% 

to 19/5000 = 0.38%. The number of table-searches (Column 

4) scaled with amount of known plaintext (D), while the 

number of decryptions (‘high-quality hits’) remained fairly 

constant in the range 250–350 (Column 5), based on the 

8192 + 270

0.016
≤ T̂ ≤

8192 + 270

0.002

Table 7  Two new TMDTO attacks against PudgyTurtle

Shown here are modified BG-attacks (upper section) and modified BS-attacks (lower section) against English-language plaintext encrypted with 

a ‘toy’ cipher based on a nonlinear or linear feedback shift register, and PudgyTurtle. Column 1 shows the KSG state-size. Columns 2 and 3 

show the number of valid hits and the number of trials required to obtain them. Columns 4 and 5 show the number of table-searches and test-

decryptions required per model (i.e., per tentative keystream). Column 6 shows the realtime duration of each attack, obtained by dividing the 

number of time-operations per model ( Nsearches + Ndecrypts ) by the probability of a successful model ( N
valid

∕N
trials

 ). Finally, Column 7 shows the 

ratio of observed attack times to those predicted by the classical BG-tradeoff ( T
BG

= N∕D ) and BS-tradeoff ( T
BS

= N
2∕(M2

D
2) = t

2 ). Note that 

this ratio always exceeds 1. One experiment (final row) did not succeed within the pre-specified number of trials. For this case, N
valid

 is reported 

as < 1 , and the number of time-operations as a lower-bound
a No valid hits obtained: probability of success < 1/3500

n N
valid

N
trials

N
searches

Ndecrypts T̂
BG

T̂
BG

∕T
BG

Modified BG-attack

20 19 5000 3302 321.9 953658 931.3

24 27 20000 10040 251.4 7623260 1861.1

28 4 20000 35276 252.1 177640512 10842.3

32 1 20000 121203 293.8 2429935872 37077.9

T̂
BS

T̂
BS
∕T

BS

Modified BS-attack

20 11 5000 5786870 352.8 2630555904 160556.4

24 7 5000 17562500 268.5 12544834560 191419.0

28 <1a 3500 69665100 272.7 >243828817920 >930133.1
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choices for � . Our main finding is that the observed number 

of realtime operations always exceeded that predicted by the 

standard BG-tradeoff (i.e., T̂
BG

∕T
BG

> 1 , Column 7). This 

suggests that our finding is not a one-off result for n = 24, 

but applies more generally to PudgyTurtle.

Modi�ed BS Attack

Similar to the methods of Experiment 4, we also per-

formed our second (‘modified BS’) TMDTO attack against 

PudgyTurtle-encrypted English. The KSG and attack param-

eters were: 

n KSG � D t m

20 NLFSR 12 128 128 64

24 NLFSR 15 256 256 256

28 LFSR 19 512 512 1024

The r-function used for Hellman chains was simply the 

KSG-state XOR’d to the least-significant n bits of a constant,

where R
0
 = 0x5075646779547572—sixty-four bits rep-

resenting the letters “PudgyTur” in ASCII.

For convenience, each attack was carried out using only 

one precomputed table at a time (i.e., t∕D = 1 ), so that 

D = t ≈ m ≈ 2
n∕3 . However, an attack could be repeated 

several times with new tables, as summarized by the N
trials

 

parameter. Results are shown the lower section of Table 7. 

Again, as in Experiment 4, we observed that T̂
BS
∕T

BS
> 1 

(Column 7).

Note that the n = 28 attack did not succeed within the pre-

specified number of trials. In this case, we reported N
valid

 as 

< 1 and provided a lower-bound on T̂
BS

 (i.e., if the attack had 

continued until getting a valid hit, the success probability 

would be smaller and T̂
BS

 would be higher). These findings 

appear robust to variations in P
valid

 : even if this probabil-

ity was ∼ tenfold higher than observed, ratios in Column 7 

would still exceed 1.

Limitations of PudgyTurtle

Despite its improved resistance against TMDTO attacks, 

PudgyTurtle also has some drawbacks related to short 

plaintexts, side-channel attacks, and variable time and space 

requirements.

Plaintext–Ciphertext Mismatch

Length differences between a very short plaintext and its 

ciphertext could potentially leak one byte of keystream. 

r(S) = (S ⊕ R
0
)⊗ (2n − 1)

Consider a one-nibble (4-bit) plaintext X = X
1
 . If the 

ciphertext is observed to be 2 bytes instead of just one (i.e., 

Y = Y1,1 ‖ Y1,2 ), then the adversary will know that one over-

flow event has occurred, and that the keystream has the fol-

lowing structure:

The attacker can thus recover the first keystream byte by 

computing (K1‖K2) = Y1,1⊕ 0xFF. If, in addition to know-

ing the plaintext length, the attacker also knows the value of 

X
1
 , then more information can be inferred. Specifically, the 

Hamming distance between X
1
 and Kj (for j > 2 ) must be > 

1, except for K
35

 and K
36

 (which are unrestricted) and K
t(1) 

(whose Hamming-distance is ≤ 1 from X
1
 ). This reduces 

the number of possible keystreams in an exhaustive search 

from 16
t(1)−2 down to 11t(1)−5

⋅ 162
⋅ 5 ≈ 0.008 ⋅ 23.46×t(1) . On 

a practical note, however, even if t(1) takes its smallest pos-

sible value of 37, this still leaves 2121 possibilities.

What about slightly longer plaintexts? Consider 

a 4-nibble (2-byte) plaintext which produces the 5-byte 

ciphertext 0xAABBCCDDEE in Table 8. Realizing that 

an overflow event has occurred, the adversary’s goal is to 

determine the identity and position of one byte of keystream, 

KB
a
= (K

a
‖K

a+1
).

There are four equi-probable ways (lower section of 

Table 8) for five ciphertext bytes to represent a 4-codeword 

message containing one overflow event. As shorthand, c
i
 

denotes the final byte of the codeword with the overflow 

event:

In Case #1 (i.e., when F
1
≥ 32 ), the attacker knows that 

KB
1
= ����⊕ ���� . In Case #2 (i.e., when F

2
≥ 32 ), 

the attacker could surmise that KB
a
= ����⊕ ���� 

occurs at one of 32 geometrically-distributed locations in 

the keystream, since C
1
 could encode any of 32 possible 

K = K1, K2,… , K35, K36,… , K
t(1)

C
i
= ���� || ((F

i
mod 32)||D

i
) = ���� || c

i

Table 8  Plaintext–ciphertext mismatch

The 5-byte ciphertext (top) results from encrypting a 4-nibble plain-

text whose encoding produced one overflow event. The lower section 

shows each possible location of the overflow event, where (0xFF c
i
 ) 

means that codeword C
i
 contains the overflow

Ciphertext bytes

0xAA 0xBB 0xCC 0xDD 0xEE

Codewords

#1 (0xFF c
1
) C

2
C

3
C

4

#2 C
1

(0xFF c
2
) C

3
C

4

#3 C
1

C
2

(0xFF c
3
) C

4

#4 C
1

C
2

C
3

(0xFF c
4
)
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failure-counters. Similarly, for cases #3 and #4, KB
a
 could 

be in any of 64 or 96 different positions, respectively. The 

probability of guessing KB
a
 declines as the message gets 

longer and as a moves farther away from the beginning of 

the keystream.

For example, assuming that the third code-

word, C
3
= (����‖c

3
) encodes the overf low, the 

probability of correctly guessing that KB
a
 equals 

Y
3
⊕ ���� = ����⊕ ���� = ���� is

where, as before, g(F, p) is the geometric distribution with 

F failures and p = 5/16, and a = 1 + (F
1
+ 3) + (F

2
+ 3) . 

For our short message, this probability ranges from as little 

as Pr(KB
69

= ����) ≈ 8 × 10
−12 (when F

1
= F

2
= 31 ) to as 

much as Pr(KB
7
= ����) ≈ 0.0976 (when F

1
= F

2
= 0).

Importantly, this seemingly high value (0.0976) actually 

represents the conditional probability Pr(KB
7
 = 0xCC, given 

that [ C
3
 contains the overflow] AND [one overflow occurs 

in 4 encodings]). The true probability, including the a priori 

chance of both conditions, is actually only

where

is the probability of a ‘no overflow’ encoding.

For the general case of a N
X
-nibble plaintext producing a 

(N
X
+ 1)-byte ciphertext, the probability of guessing KB

a
 ’s 

identity and location is:

We performed this calculation for various N
X
 , with the fol-

lowing results: 

N
X

Pr(Guessing 1 keystream byte)

Best-case Typical-case

4 1.55×10
−6 1.00×10

−6

16 3.88×10
−7 1.16×10

−8

64 9.69×10
−8 8.18×10

−10

256 2.42×10
−8 1.74×10

−11

Pr(KBa = ����) = g(F1, p) ⋅ g(F2, p)

= p2
⋅ (1 − p)F1

⋅ (1 − p)F2

Pr(KB
7
= ����) = (0.0976)

(

1

4

)

�
3 (1 − �)

≈ 0.0000016

� =

31
∑

i=0

p (1 − p)i

��(KBa = Ys ⊕ ����) =

(

1

NX

)

�
NX−1(1 − �)

s−1
∏

i=1

g(Fi, p)

=
�NX−1(1 − �)ps−1

NX

s−1
∏

i=1

(1 − p)Fi

N
X

Pr(Guessing 1 keystream byte)

Best-case Typical-case

1024 5.88×10
−10 2.04×10

−13

 The middle column is an unlikely ‘best-case’ scenario in 

which every failure-counter happens to be 0; the rightmost 

column represents the ‘typical’ scenario, obtained by 1000 

simulations of randomly-chosen, geometrically-distributed 

failure-counters. As can be seen, the probability diminishes 

as messages get longer and when failure-counters are chosen 

realistically.

To summarize, we have quantified the probability that 

an attacker could guess a single keystream byte given the 

knowledge that a N
X
-nibble plaintext has been encrypted 

into a ( N
X
+ 1)-byte ciphertext. In practice, though, this par-

ticular information (i.e., 8 bits of a long keystream) may be 

of little use in breaking any stream-ciphers with adequate 

state-size currently in widespread use.

Side-Channel Attacks

If implemented straightforwardly, PudgyTurtle encryp-

tion exhibits data-dependent execution times, which could 

expose it to a timing-based side-channel attack [34]. By 

comparing timing differences during the encryption of each 

plaintext nibble, it might be possible to determine F
i
 , the 

failure counter that encodes plaintext nibble X
i
 . Knowing 

F
i
 , the codeword C

i
 only has 5 possibilities instead of 32 × 5 

= 160. In this case, the maximum number of models to test 

during a collision attack (i.e., |C| = 5
N

�

X ) might become small 

enough to fully enumerate. Even so, practical difficulties 

are still significant: a 16-byte (32-nibble) plaintext would 

produce |C| > 2
64 possibilities.

Standard countermeasures against timing attacks include 

constant-time execution, blinding, and chunking. Constant-

time execution is difficult to achieve in practice, difficult to 

maintain (i.e., unpredictable changes may occur with CPU 

firmware updates), and difficult to implement without a per-

formance penalty. Blinding incorporates a random element 

into encryption so that the execution-time becomes uncor-

related with the plaintext or key, but also adds complexity 

to the algorithm. Chunking (also called bucketing) breaks a 

large, variable-length computation into fixed-length pieces 

which are then returned at predetermined points in the exe-

cution cycle [35].

Chunking may be the most appropriate way to harden 

PudgyTurtle against timing attacks. One idea, for exam-

ple, would be to always generate the same-sized ‘chunk’ of 

keystream for each plaintext nibble, thus making execution 

time independent of the failure-counter. Each encryption 

cycle would then proceed as follows, assuming X
i
 is being 
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encrypted with keystream starting at K
a
 generated from 

KSG-state S
4a

 : 

1. Generate 34 keystream nibbles Ka+j for j = 0, 1, 2,… , 33 , 

saving each nibble and its associated KSG-state;

2. Let ( K
a
‖K

a+1
 ) be the mask;

3. Calculate h(Xi, Ka+j) for each 2 ≤ j ≤ 33;

4. Calculate d(Xi, Ka+j) for each 2 ≤ j ≤ 33;

5. Pick the first j ≥ 2 (call it j = u ) for which the Ham-

ming-distance in Step 3 is ≤ 1;

6. Encode the match between X
i
 and K

a+u
 . If no match was 

found (overflow event), then use 0xFF as the codeword;

7. Encrypt the codeword by XOR’ing it with the mask;

8. Let a ← u + 1 ; let i ← i + 1 ; and set the KSG-state to 

saved state S
4(u+1)

9. Go to Step 1

Timing attacks are exquisitely dependent on the specific 

hardware and software used to implement the cryptosys-

tem. Carrying out such an attack is beyond the scope of 

this paper, and results would in any case be limited to one 

particular set of implementation choices. We suggest this as 

an important topic for future research.

The ‘chunking’ approach described here would keep KEF 

and CEF the same, but would take longer to encrypt each 

message. Specifically, let t
g
 be the time needed to generate 

one keystream nibble; t
h
 the time required to calculate the 

Hamming-distance between two 4-bit numbers; and t
d
 the 

time it takes to calculate a discrepancy code. On average, 

PudgyTurtle needs PT = 5.2tg + 3.2th + td time to encrypt 

each plaintext nibble. With chunking, each encryption cycle 

would need 34 keystream nibbles, 32 Hamming-distance cal-

culations, and 32 discrepancy code calculations, requiring 

time PTchunk = 34tg + 32th + 32td.

Keystream generation takes longer than calculating 

Hamming weights or discrepancy-codes, since the latter 

two operations could be accomplished by small-sized table 

lookup. Thus, we assume that t
h
= t

d
= x and t

g
= �x , where 

� > 1 . From this, it follows that

Although chunking introduces an execution-time penalty, 

it actually works better as the gap widens between t
g
 and 

t
h
 (or t

d
 ). For example, PudgyTurtle with chunking would 

run about 8.4 times slower when � = 2 ; but only 7 times 

slower when � = 10 ; and just 6.6 times slower when � = 50

—approaching the limiting value of PT
chunk

 = 6.54 ×PT  . 

The exact value for � , of course, depends on hardware and 

software implementation details.

PT
chunk

PT
=

34�x + 32x + 32x

5.2�x + 3.2x + x

=
34� + 64

5.2� + 4.2

Variability

Overflow events make it impossible to know the exact 

ciphertext length until after encryption. For situations 

involving fixed-length message fields, PudgyTurtle’s vari-

able output-size may be problematic. One solution would be 

to allow space within a fixed-length string for either overflow 

events or padding. For example, if L bits of plaintext produce 

2L + b bits of PudgyTurtle ciphertext on average, users could 

agree to use a fixed data-block size of, perhaps, 2L + 2b . In 

the extremely rare case that this L-bit message required more 

than 2b overflow bits, it would have to be rejected and re-

encrypted with a different key; otherwise, any of the 2b bits 

not used to encode overflows would become padding (either 

a predetermined pattern or random bits).

Not only is the ciphertext length variable, but so is the 

total time needed for encryption. For many encryption appli-

cations (e.g., email, file storage), this may not be problem-

atic. For high-throughput, low-latency applications, however, 

small fluctuations in the duration of the ‘crypto’ component 

could potentially degrade overall system performance.

Conclusions

PudgyTurtle is a way to implement keystream-dependent, 

variable-length encoding of plaintext before stream-encryp-

tion. In some ways, it resembles an encryption mode for 

stream ciphers, in that its goal is to work along with existing 

systems. PudgyTurtle is less efficient than normal stream-

cipher operation: it produces about twice as much ciphertext 

and requires about five times as much keystream. However, 

it is also more robust against TMDTO attacks.

The cryptographic literature contains other approaches 

aimed at making TMDTO attacks against stream ciphers 

harder, such as using error-correcting codes [32, 33, 40, 42] 

and certain encryption modes [23, 24]. PudgyTurtle differs 

from ECC-based systems in that it is not a randomized-

encryption protocol, and does not require an external noise 

source. It differs from other stream cipher modes by focusing 

on how keystream is used, rather than on the state-update, 

re-synchronization, and initialization procedures.

Modified versions of the well-known Babbage–Golić 

and Biryukov–Shamir time-memory-data tradeoff attacks 

are proposed and tested against PudgyTurtle, and the extra 

work required to cope with multiple ‘tentative keystreams’ 

and to reject false-alarms is quantified. For toy-cipher KSGs 

with inner-states of up to 32 bits, our experiments suggest 

that the number of realtime operations required for TMDTOs 

against PudgyTurtle exceeds those predicted by the standard 

BG- and BS-tradeoffs.

Of the two TMDTO attacks against PudgyTurtle, the 

modified BG-attack did ‘better’ than the modified BS-attack 
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(i.e., T̂
BG

∕T
BG

 exceeds 1 by less than T̂
BS
∕T

BS
 does). This is 

of interest since the BS-attack is considered to be somewhat 

more complex. While both new TMDTO attacks require 

more work than their traditional counterparts, the modified 

BS-attack also includes an ‘extra’ work-factor (multiple 

tentative Hellman chains) not present in the modified BG-

attack. This scales up the number of table-searches from t2 

to t2
× 2u , where 2u is the average number of tentative Hell-

man chains per model. This translates to factors of 112.6 

(n=20; � = 12 ), 111.7 ( n = 24 ; � = 15 ), and 125.5 ( n = 28 ; 

� = 19 ), explaining at least some of the relative inefficiency 

of this attack.

Stream cipher security depends largely upon the details 

and state-size of the underlying KSG. Since PudgyTurtle 

works alongside existing ciphers, it is cipher-agnostic: we 

do not recommend any particular KSG (cipher) over any 

other. If PudgyTurtle makes TMDTO attacks harder, it then 

becomes tempting to consider reducing KSG state-sizes. 

However, we suggest that this is premature. TMDTOs 

are just one cryptanalytic attack among many, and secu-

rity against this approach does not imply security against 

all others. PudgyTurtle itself, or a cipher with which it is 

used, may still be susceptible to other (non-TMDTO) meth-

ods of cryptanalysis. Therefore, we suggest a conservative 

approach until more research into breaking PudgyTurtle 

exists: maintain the state-sizes currently specified for exist-

ing KSG’s, even when using PudgyTurtle.
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