
Vol.:(0123456789)

SN Computer Science (2020) 1:226

https://doi.org/10.1007/s42979-020-00221-z

SN Computer Science

ORIGINAL RESEARCH

PudgyTurtle: Using Keystream to Encode and Encrypt

David A. August1 · Anne C. Smith2

Received: 23 November 2019 / Accepted: 8 June 2020 / Published online: 4 July 2020

© The Author(s) 2020

Abstract

Stream cipher encryption works by modulo-2 adding plaintext bits to keystream bits, which are in turn produced by succes-

sively updating a finite-state machine initialized to a secret starting state. PudgyTurtle is a way to encode the plaintext in a

keystream-dependent manner before encryption. Since it can use keystream from any stream cipher, PudgyTurtle functions

somewhat like an encryption mode. The process begins by generating successive 4-bit groups of keystream (‘nibbles’) until

one of them matches the current plaintext nibble to within one bit. The number of keystream nibbles required, as well as the

nearness of this match, is then encoded into a variable-length codeword. Finally, this codeword is encrypted by modulo-2

addition to an equal amount of keystream. Compared to normal binary-additive stream ciphers, this process is less efficient

(i.e., more time is required to generate extra keystream nibbles, and more space is needed for the codewords than for the

plaintext). However, with this cost comes a benefit: PudgyTurtle resists time-memory tradeoff attacks better than standard

stream encryption.

Keywords Symmetric-key cryptography · Stream ciphers · Time-memory tradeoff · Birthday paradox · Error-correcting

codes · Hellman chains

Introduction

Binary-additive stream ciphers (BASC) encrypt by mod-

ulo-2 adding each plaintext bit (x
i
) to a keystream bit (k

i
),

thus producing ciphertext yi = xi ⊕ ki , where ⊕ denotes the

XOR operation. Because of the self-inverting property of

modulo-2 addition, decryption is accomplished in a similar

manner: yi ⊕ ki = (xi ⊕ ki)⊕ ki = xi ⊕ 2ki = xi.

The sequence of bits, K = k1, k2,… , is called the key-

stream. K is produced by the keystream generator (KSG)—

a finite-state machine operating on an n-bit state, S. Since

details of the KSG are assumed to be public, its starting-state

(S
0
) must include a secret key. The starting-state may also

incorporate an initialization vector (IV), which need not be

secret (e.g., it can be a publicly shared random ‘nonce’, or

can be generated by each communicating party from a coun-

ter). Unique IVs allow the same secret key to be used for

more than one message.

The KSG works by applying an update func-

tion � ∶ {0, 1}n
→ {0, 1}n and an output function

o ∶ {0, 1}n
→ {0, 1} to the current n-bit state. Thus,

k
i
= o(S

i
) = o(�(S

i−1
)) . Functions o and � are designed to

make K appear random and unpredictable, which makes it

hard to reconstruct any previous state from any sub-sequence

of keystream. PudgyTurtle uses the keystream to encode

the plaintext into a sequence of variable-length codewords

and then encrypts these codewords. This process is cipher-

agnostic, in that no constraints are placed on the KSG.

Plaintext X is first separated into 4-bit groups (‘nibbles’),

X1, X2,… , where X
i
= (x

4i−3
‖x

4i−2
‖x

4i−1
‖x

4i
) and ‖ stands

for concatenation. For each X
i
 , new keystream nibbles are

generated until one matches X
i
 to within a 1-bit tolerance.

A codeword (C
i
) is then created using the number of failed

matching attempts, plus some error-correcting information.

This codeword is encrypted with a mask, M
i
 —a (possibly

non-contiguous) sequence of keystream nibbles of the same

length as C
i
—thus producing ciphertext

Y
i
= C

i
⊕ M

i

 * David A. August

 daugust@mgh.harvard.edu

 Anne C. Smith

 asmith3142@protonmail.com

1 MGH-DACCPM / GRJ 444, 55 Fruit St., Boston,

MA 02114, USA

2 McKnight Brain Institute, University of Arizona, Tucson,

AZ 85724, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00221-z&domain=pdf

 SN Computer Science (2020) 1:226226 Page 2 of 23

SN Computer Science

Stream-Cipher Cryptanalysis

A major goal of stream-cipher cryptanalysis is to reconstruct

any KSG state used during encryption. Once discovered, the

generator can then be run forward (and, if � is reversible,

backwards) from that state to recreate the keystream and

decrypt the ciphertext.

Some stream ciphers are susceptible to direct attacks,

which exploit algebraic, key-scheduling, statistical or other

structural weaknesses particular to individual crypto-algo-

rithms [11, 21, 36, 38, 39]. If no direct attack is known,

then an exhaustive key-search may be attempted. It might

seem that, for any KSG with a sufficiently large state-size,

this so-called brute-force cryptanalysis would be infeasible.

However, this is not always true: cryptanalytic time-memory-

data tradeoffs (TMDTOs), also called collision attacks, are

probabilistic methods which take advantage of the Birthday

Paradox to speed up an exhaustive search to practical levels

(e.g., only 2n∕2 operations instead of 2n) [16, 26, 29]. These

attacks, described more fully in Sect. 5, have proven success-

ful against a variety of stream ciphers [6, 13, 48].

TMDTO attacks against stream ciphers require a sample

of known keystream, K′ , obtained by XOR’ing some known

plaintext, X′ , to the intercepted ciphertext at the correct off-

set. PudgyTurtle, however, changes the plaintext–ciphertext

relationship into something different than a simple XOR,

thus making it harder to obtain K′ from X′ . On the one hand,

this property makes PudgyTurtle less efficient than standard

binary-additive stream-ciphers: its codewords take up more

space than the original plaintext (‘pudgy’), and its encoding

procedure needs extra time to match each plaintext nibble

to the keystream (‘turtle’). On the other hand, these features

also increase the difficulty of a collision attack.

Coding and Cryptography

Coding theory has been part of modern cryptology since

the work of Shannon in the late 1940’s [50]. Hellman

extended these ideas for cryptosystem design, comment-

ing on the ‘duality’ between ciphers and error-correcting

codes (ECCs) [25]. Other cryptographers have also investi-

gated various aspects of coding. For example, Bellare and

Rogaway explored semantic security and authentication in

cryptosystems that include a ‘key-less encoding’ step (e.g.,

prepending a counter or IV, and appending a checksum to

the message) [7].

Another cryptographic application of coding is ‘rand-

omized encryption’ [47], in which one ciphertext is chosen

randomly from among a family of possibilities. An early

instantiation of this idea for asymmetric cryptosystems

was by McEliece, who proposed adding random noise after

encoding the plaintext with a binary Goppa-type ECC [40].

Here, the private key (G) is the ECC’s generator matrix and

the public key (G′) is obtained by multiplying G by permuta-

tion and scrambling matrices. Security arises from the fact

that a fast method exists for decoding and error-correction

given G, but the generalized linear decoding problem given

G
′ is NP-complete [9]. More recently, similar ideas have

appeared in the realm of quantum-resistant cryptography

(e.g., lattice-based systems relying on the difficulty of find-

ing the closest vector to one that has been perturbed by noise

[45, 46]).

With regard to stream ciphers, several approaches exist

for randomized encryption. Kara and Erguler [32, 33] pro-

posed using an ECC to encode the plaintext, which is then

encrypted with a ‘noisy keystream’ (i.e., the modulo-2 sum

of the true keystream and random binary noise). The receiver

decrypts the ciphertext into a noisy state, then recovers the

plaintext by using the ECC. Importantly, the additive noise

does not need to be reconstructed by the receiver—unlike

a cryptographic key. Another ECC-based approach is based

on the ‘learning parity with noise’ (LPN) problem, analyzed

by Fossorier [20]. For example, Imai and Mihaljević [42]

proposed an LPN-based system in which external random-

ness is not just used for additive noise, but also as a basis

for homophonic coding (i.e., each plaintext group can be

encoded in multiple ways).

PudgyTurtle is similar to these approaches in some ways:

its ciphertext is longer than its plaintext; and its encoding

changes the plaintext–ciphertext relationship from a simple

XOR into something more complex. However, PudgyTurtle

also has several important differences. First, unlike some

‘encode-then-encipher’ ideas [7], PudgyTurtle’s encod-

ing is key-dependent, not key-less. Second, PudgyTurtle

is deterministic: it is not randomized encryption and does

not require an external noise source [32, 33, 40]. Third,

PudgyTurtle operates on small (4-bit) plaintext groups: mes-

sage padding is not required, nor are complex vector and

matrix operations. Fourth, PudgyTurtle’s codewords do not

contain any raw plaintext, unlike other ECC-based systems.

Rather, information about the relative position of various

keystream nibbles is what actually gets encoded. Finally,

PudgyTurtle does not suffer from decoding failures, as may

(in rare cases) occur with some ECC-based systems [41].

Stream-Cipher Modes

PudgyTurtle is not a cipher itself, but operates alongside

existing stream ciphers. In this respect, it resembles an

‘encryption mode’. Some stream-cipher modes are intended

to add advanced features, like authenticated encryption, by

using a BASC as the crypto-primitive [1, 10, 49]. Other

stream-cipher modes are designed to resist TMDTO

attacks, such as by continuously incorporating the secret

key/IV into the KSG’s state-update function [2, 3, 43]. The

SN Computer Science (2020) 1:226 Page 3 of 23 226

SN Computer Science

‘FP(1)-mode’, used by the LIZARD cipher for instance

[24], describes how to re-synchronize the KSG state in a

particular key- and IV-dependent manner [23]. In theory,

systems like these, which can be analyzed as pseudoran-

dom functions [8], could make TMDTO attacks harder (e.g.,

by breaking the state-space into a set of mutually exclusive

‘keystream equivalence classes’, each requiring a separate

attack). In practice, security concerns may still exist, due to

weak keys, key-scheduling or other issues [15, 18, 19, 24].

Like these stream-cipher modes, PudgyTurtle also

attempts to make TMDTO attacks harder. However, rather

than altering initialization or re-synchronization procedures,

PudgyTurtle instead takes the keystream and uses it in two

different ways:

• A binary-additive (codeword ⊕ mask) process;

• A non-binary-additive (plaintext-keystream matching)

process;

PudgyTurtle can still be compatible with other stream-cipher

modes. Whether KSG initialization and re-synchronization

happens ‘simply’ (as in Trivium or A5/1) or by a more

complex protocol (as in LIZARD), the keystream produced

works equally well for PudgyTurtle.

Outline

After Sect. 2 presents some notation, Sects. 3 and 4 describe

the PudgyTurtle algorithm and its output in detail. Section 5

introduces TMDTO attacks, and Sect. 6 discusses some gen-

eral obstacles to performing such attacks against PudgyTur-

tle. Section 7 proposes two new TMDTO attacks against

PudgyTurtle, and Sect. 8 describes how to quantify their

performance. These new attacks are then implemented in

Sect. 9, using a toy cipher as the KSG. We show that both

attacks are less efficient than two well-known tradeoffs from

the literature. Finally, Sect. 10 suggests some potential limi-

tations of PudgyTurtle.

Notation

Hexadecimal values are prefixed by ’0x’ and binary values

have ‘2’ as a subscript. For example, 242 could be written

as 0xF2 or 11110010
2
.

Hamming weight h(a) is the number of 1’s in binary vec-

tor a.

Floor function ⌊x⌋ is defined as ⌊x⌋ = s , when x = s + � ,

assuming that s ∈ {0, 1, 2,…} and � ∈ [0, 1).

Single vertical bars denote the number of elements in a

set (e.g., |K| is the size of the key-space).

Throughout, X refers to plaintext, K to keystream, and Y

to ciphertext, with the following embellishments:

• Lowercase letters with subscripts (xi, ki, yi) represent

individual bits.

• Uppercase letters with subscripts denote groups of bits:

X
i
 and K

i
 are (4-bit) nibbles; Y

i
 is one or more (8-bit)

bytes.

• Uppercase letters with a prime (′) are assumed to be

known to the attacker (e.g., X′ is the ‘known plaintext’

and K′ the ‘known keystream’).

• Uppercase letters with double-subscripts denote indi-

vidual bytes within a multi-byte symbol. For example,

if Y
i
 is two bytes long, then its first and second bytes are

Y
i,1 and Y

i,2.

• Uppercase letters with parentheses denote an n-bit seg-

ment of a longer sequence, where n is the size of the

KSG-state. Depending on context, these segments may

be called ‘windows’, ‘prefixes’, or ‘fragments’. For exam-

ple, K(a) = {k
a
, k

a+1, k
a+2,… , k

a+n−1} means n bits of

keystream starting at bit a.

• K
t(i) stands for the keystream nibble that matches plain-

text nibble X
i
 to within 1 bit.

• N
X , N

K
 , and N

Y
 represent the number of symbols of plain-

text, keystream, and ciphertext, whereas L
X
 , L

K
 , and L

Y

are their actual lengths in bits;

PudgyTurtle

This section provides details of PudgyTurtle encryption and

decryption. A descriptive overview is offered, followed by

an algorithmic explanation. Table 1 can also be consulted

as a visual aid.

Overview

The first task is to encode each plaintext nibble X
i
 into a

variable-length codeword, C
i
 , written as

where

• O
i is a variable-length overflow indicator, which contains

zero or more copies of the special byte 0xFF (see details

below);

• F
i
= 0, 1, 2,… is the failure-counter, which counts the

number of un-successful attempts to match X
i
 to a key-

stream nibble. Since F
i
 is zero-indexed, F

i
= 0 means

that the one keystream nibble had to be generated in

order to match X
i
 , and so on.

• D
i is the discrepancy-code (see details below), which

describes the mismatch pattern between X
i
 and K

t(i) ,

thereby allowing single-bit error correction by the

receiver;

C
i
= O

i
‖ F

i
(modulo 32) ‖ D

i

 SN Computer Science (2020) 1:226226 Page 4 of 23

SN Computer Science

The PudgyTurtle process begins by saving the first two

keystream nibbles (K
1
‖K

2
) as mask M

1
 and setting the first

failure-counter F
1
 to 0. Then, each new keystream nibble

is compared to X
1
 , starting from K

3
 . If it differs from X

1
 by

more than one bit, then F
1
 is incremented, a new keystream

nibble is generated, and the search continues (i.e., X
1
 is then

compared to K
4
 and so on) until a match is found.

Once the keystream nibble K
t(1) that matches X

1
 is discov-

ered, the nearness of this match is captured by discrepancy-

code D1 = d(X1, K
t(1)) . The general rule for d() is

If X
i
⊕ K

t(i) is... then d(X
i
, K

t(i)) is...

0000
2

000
2
 = 0

0001
2

001
2
 = 1

0010
2

010
2
 = 2

0100
2

011
2
 = 3

1000
2

100
2
 = 4

The 8-bit codeword C
1
 is then constructed by concatenat-

ing F
1
 modulo 32 (which is 5 bits) together with D

1
 (which is

3 bits). Finally, the ciphertext is produced by encrypting the

codeword with the mask: Y
1
= C

1
⊕ M

1
 . This process then

repeats for the next plaintext nibble, X
2
 , starting with F

2
= 0

and using keystream beginning at K
t(1)+1

 . Table 1 provides

a visual example of how a short message is encoded and

encrypted via PudgyTurtle.

Over�ow Events

This match-encode-encrypt cycle has one caveat: if a failure-

counter (say F
1
) is ≥ 32, it can no longer be represented by

5 bits, and this overflow event triggers a special encoding

process: first, an 0xFF byte is pre-pended to C
1
 ; second,

mask M
1
 is expanded to include the next two available key-

stream nibbles, which would be K
35

 and K
36

 in this case. That

is, M1 ← M1,1‖M1,2 = M1,1 ‖ (K35‖K36) = K1‖K2‖K35‖K36 .

Attempts to match X
1
 then continue, starting from keystream

nibble K
37

 and F
1
 = 32. When a match is found, its codeword

will be two bytes instead of one:

In the unlikely event that no match occurs even within the next

32 keystream nibbles, this overflow process can be repeated

(i.e., both the codeword C
1
= ����‖����‖(F

1
mod 32)‖D

1

and mask M
1
= K

1
‖K

2
‖K

35
‖K

36
‖K

69
‖K

70
 would become

three bytes long).

The overflow byte 0xFF is made by concatenating the

5-bit failure-counter 31 = 11111
2
 together with the 3-bit

symbol 111
2
 . There is no theoretical reason to choose 111

2
 :

any 3-bit discrepancy-code not already in use could also

serve (i.e., either 101
2
 or 110

2
). Practically, however, using

111
2
 allows for easy specification of the overflow indicator:

if n
O
= ⌊F

i
∕32⌋ is the number of overflow events that occur

while encoding X
i
 , then

In software, ∅ is implemented as an ‘empty string’. For

example, two overflow events means O
i
= 2

16
− 1 =

0xFFFF.

Because of overflow events, each mask (M
i
), codeword

(C
i
) and ciphertext symbol (Y

i
) can be one or more bytes.

Most of the time, however, there are no overflows, so O
i
 is

the empty string and each of these symbols is just one byte

long.

Algorithmic Description

The PudgyTurtle encoding/encryption process can also be

conceptualized as an algorithm:

C1 = C1,1‖C1,2 = ����‖(F1 mod 32)‖D1

O
i
=

{

� if n
O
= 0

2
8n

O − 1 if n
O
> 0

Table 1 PudgyTurtle encryption process

Each column illustrates the encryption of one nibble of the plain-

text message “Hi” (Row 1, ASCII characters 0x48 and 0x69). Row

2 shows the keystream nibbles. Row 3 depicts the two keystream

nibbles set aside for each mask. The failure-counter (Row 4) incre-

ments from zero until a keystream nibble matches the plaintext nibble

to within a 1-bit tolerance, as quantified by the Hamming distance in

Row 5 (e.g., the first Hamming-distance, between K
3
 = 0xB = 1011

2

and X
1
 = 4 = 0100

2
 , equals 4). When this Hamming distance first

becomes ≤ 1, a match occurs, the nearness of which is captured by

the discrepancy-code (Row 6). For example, the notation “8 versus

0” above “100” means that X
2
 = 8 = 1000

2
 differs from its matching

keystream nibble K
8
 = 0 = 0000

2
 in the most-significant bit, so the

discrepancy code is 100
2
 . Row 7 shows how each codeword is built

by concatenating the 5-bit failure counter (normal font) and the 3-bit

discrepancy code (boldface). Finally, encryption is accomplished by

XOR’ing the mask (shown again in Row 8, as binary) and the code-

word, thus producing the ciphertext in Row 9

1 Message ASCII 0x48 = “H” ASCII 0x69 = “i”

Plaintext nibble 4 8 6 9

2 Keystream (hex) 5,3,B,1,4 2,3,0 D,8,5,C,D,2 A,5,7,D

3 Mask (hex) 5 3 2 3 D 8 A 5

4 Failure-counter 0,1,2 0 0,1,2,3 0,1

5 Hamming

distance

4,2,0 1 2,2,3,1 3,1

6 Discrepancy-

code

4 versus 4 8 versus 0 6 versus 2 9 versus D

000 100 011 011

7 Codeword 00010000 00000100 00011011 00001011

8 Mask (binary) 01010011 00100011 11011000 10100101

9 Ciphertext 01000011 00100111 11000011 10101110

0x43 0x27 0xC3 0xAE

SN Computer Science (2020) 1:226 Page 5 of 23 226

SN Computer Science

1. Initialize

• Let plaintext nibble index i = 1

• Let keystream nibble index j = 1

• Let the index of the keystream nibble that matched

the previous plaintext nibble t(i − 1) = t(0) = 0

• Let failure counter F
i
= F

1
= 0

2. FindMatch

• If F
i
 mod 32 = 0, then j ← j + 2 ; endif

• If h(Xi ⊕ Kj) > 1 , then

F
i
← F

i
+ 1

j ← j + 1

Go to FindMatch

 else

t(i) ← j

 endif

3. Encode

• Make the overflow indicator:

Let n
O
= ⌊F

i
∕32⌋;

If n
O
= 0 , then O

i
← ∅;

If n
O
≠ 0 , then O

i
← 2

8n
O
− 1;

• Make the discrepancy-code:

If X
i
= K

t(i) , then D
i
← 0;

If X
i
≠ K

t(i) , then D
i
← 1+ log

2
(X

i
⊕ K

t(i))

• Make the codeword:

C
i
← O

i
‖ F

i (modulo 32)‖ D
i
 , where O

i
 is either

not present or is a multiple of 8 bits, F
i
 (mod 32) is

5 bits, and D
i
 is 3 bits.

4. MakeMask

• Let M
i
= � (‘empty string’)

• For n = 0 to n
O
 , do:

– Let a = t(i − 1) + 1 + 34n

– M
i
← M

i
||(K

a
||K

a+1
)

5. Encrypt

• Y
i
← C

i
⊕ M

i

6. Update

• j ← t(i) + 1

• i ← i + 1

• F
i
← 0

• Go to FindMatch

Decryption

One difference between PudgyTurtle decryption and encryp-

tion is that because of overflow events, ciphertext symbols

Y1, Y2,… may not all be the same length. Put another way,

N
Y
 always equals N

X
 , but ciphertext length L

Y
 does not

always equal N
Y
 bytes. Thus, decryption requires a sepa-

rate ‘unmasking’ of individual bytes within each ciphertext

symbol.

The first byte of Y is unmasked by XOR’ing it with M
1
 =

(K
1
‖K

2
), thereby producing the first byte of the first code-

word. If this byte is not equal to 0xFF, then the byte is split

into its first 5 bits (failure-counter F
1
 modulo 32) and its last

3 bits (discrepancy-code D
1
). Next, F

1
 + 1 new keystream

nibbles are generated. The final one of these, K
t(1) , is the one

that matches the original plaintext nibble to within one bit.

The plaintext is then recovered by inverting the discrepancy

code, as shown below:

If D
1
 is... then X

1
 is...

000
2

K
t(1) ⊕ 0000

2

001
2

K
t(1) ⊕ 0001

2

010
2

K
t(1) ⊕ 0010

2

011
2

K
t(1) ⊕ 0100

2

100
2

K
t(1) ⊕ 1000

2

Or more generally,

If, however, unmasking the first byte of Y produces 0xFF,

then an overflow event has occurred (i.e., Y
1
> 1 byte long).

In this case, 32 keystream nibbles must be generated and dis-

carded, after which the next 2 keystream nibbles (K
35
‖K

36
)

are used to unmask the second byte of Y (i.e., Y1,2), which

is then split into F
1
 and D

1
 as described above. (In the rare

case that Y1,2 is also 0xFF, this overflow process can be

repeated.)

Y
2
 is decrypted in a similar manner, starting one nibble

beyond the current keystream position. That is, the first

byte of Y
2
 is unmasked by XOR’ing it with (K

t(1)+1
‖K

t(1)+2
),

and—depending upon whether or not the result is 0xFF—

analogous steps are followed. This byte-by-byte unmask-

ing-decoding cycle continues for each of the N
Y
 ciphertext

symbols.

Packet Systems

Some stream ciphers, like E0 for Bluetooth A5/1 for

mobile telephony, operate in packet mode: the keystream

X
i
= K

t(i) ⊕ d
−1(D

i
)

=

{

K
t(i) if D

i
= 0

K
t(i) ⊕ 2D

i
−1 if D

i
= 1, 2, 3, or 4

 SN Computer Science (2020) 1:226226 Page 6 of 23

SN Computer Science

is generated in short segments, and re-synchronized with a

new IV or counter after each such packet [23]. For example,

A5/1 produces 228 bits of keystream at a time, after which

its IV (‘frame number’) needs to be incremented. With a

little extra book-keeping, PudgyTurtle can work with such

systems. All that is required is to keep track of the number of

available keystream nibbles remaining in the current packet,

and then to re-synchronize whenever needed—whether dur-

ing mask generation, plaintext–keystream matching or an

overflow event. The only constraint is that, since PudgyTur-

tle operates on nibbles, the packet size (in bits) must be a

multiple of four.

Statistics

PudgyTurtle’s encoding procedure depends upon a ran-

dom process with an underlying geometric distribution:

each uniformly distributed keystream nibble either ‘suc-

ceeds’ in matching the current plaintext nibble or ‘fails’ to

match. One success after F failures occurs with probability

g(F, p) = (1 − p)Fp , where p = 5∕16 describes the five ways

a match can happen between two 4-bit symbols (i.e., one

exact match plus four 1-bit mismatches).

The mean of this distribution is 1∕p = (5∕16)−1 = 3.2 ,

which implies that 3.2 keystream nibbles (12.8 keystream

bits) on average will be required to match each plaintext

nibble.

Overflow events (i.e., F ≥ 32) occur with probability

Thus, one overflow event is expected for every 4∕pO ≈

644664 bits (80583 bytes).

Ciphertext Length

Because of the probabilistic nature of the plaintext/key-

stream matching process, the ciphertext length is not known

exactly until after encryption. For the plaintext, L
X
= 4N

X

bits. For the ciphertext, however,

bits, where N
O
 is the total number of overflow events. Thus,

the ciphertext includes (L
Y
∕8) − N

X
 ‘extra’ bytes due to the

need to encode, on average, NO ≈ NX ⋅ pO overflow events.

pO = 1 − Pr(F ≤ 31)

= 1 −

31
∑

j=0

(1 − p)j × p

= 6.2047813 × 10
−6

LY = 8(NX + NO) ≈ 8NX(1 + pO)

Expansion Factors

The ciphertext expansion factor (CEF) can be written

The key expansion factor (KEF) is the amount of required

keystream as a multiple of the plaintext length. For normal

stream-cipher operation, KEF = 1. For PudgyTurtle, KEF ≈

5.2. This value is obtained by adding 3.2 (the average num-

ber of keystream nibbles required to match each plaintext

nibble) to 2 (the average number of nibbles used by each

mask).

Testing

These predictions were tested using three different plaintext

sources: an English-language ASCII document1 (‘English’);

a JPEG-formatted digital photograph2 (‘Image’); and a file

entirely composed of 0x00 bytes (‘Zeros’). A 1280000-byte

sample of each plaintext was encrypted using Trivium [14]

as the PudgyTurtle KSG, with session key 0x0123456789

ABCDEF1234 and initial value 0x6666699999

aaaaa55555. Results are shown in the left half of Table 2.

As expected, CEF ≈ 2 and KEF ≈ 5.2.

PudgyTurtle ciphertext should appear random and uni-

formly distributed no matter what is the underlying statisti-

cal structure of the plaintext. This was confirmed using two-

sample Kolmogorov–Smirnov tests (right half of Table 2).

Specifically, single-byte frequencies were compared between

each pair of ciphertexts and also between each ciphertext

and a collection of 2560012 uniformly distributed random

bytes (‘Random’). The non-significant p-values (Column

7) show that the ciphertexts are indistinguishable from one

another, and also from random data. At this level of scrutiny,

PudgyTurtle does not appear to leak information about its

underlying plaintext statistics.

Time Memory Tradeo�s

Here we introduce TMDTO attacks—especially those that

target stream-ciphers, and review two in detail. Readers

already familiar with these ideas may wish to skip to Sect. 6.

CEF =
LY

LX

≈
8NX(1 + pO)

4NX

≈ 2

1 Source: Smith (2002) An Inquiry into the Nature and Causes of

the Wealth of Nations. Project Gutenberg, Urbana, Illinois, retrieved

December 15, 2018 from www.guten berg.org/ebook s/19033 .
2 Source: www.webba viati on.co.uk/manch ester /tower const ructi

on-cb184 00.jpg.

http://www.gutenberg.org/ebooks/19033
http://www.webbaviation.co.uk/manchester/towerconstruction-cb18400.jpg
http://www.webbaviation.co.uk/manchester/towerconstruction-cb18400.jpg

SN Computer Science (2020) 1:226 Page 7 of 23 226

SN Computer Science

Background

A time-memory tradeoff is a general-purpose probabilis-

tic method for solving certain problems in cryptology and

computer science, like inverting a one-way function [16].

Consider Y = E(X, key) which uses one of N possible keys to

encrypt X. If no direct way to determine E−1 is known, then

the cryptanalyst can instead attempt a brute-force solution.

In one such approach, the adversary chooses a likely string

(e.g., X′ = "Dear Sir or Madam:"), and encrypts this

string under every possible key in advance. The resulting N

pairs { key
i
, E(X�, key

i
) } are stored in a large table. Upon

intercepting the ciphertext, the actual key can then quickly

be found by searching Y for any sub-string that matches an

E(X�, key
i
) in the table. An alternative approach assumes that

the attacker knows some of the plaintext. The corresponding

portion of Y is then decrypted under every possible key until

the result matches this known plaintext.

Either way, it would seem that brute-forcing the key

requires N memory units (to store the table) or N time units

(to perform the decryptions), implying that such an attack

could be foiled by choosing a large-enough N. However, this

need not be the case: TMDTO attacks can efficiently cover

enough of the search-space that the probability of success

becomes ≫ 0 while the complexity remains ≪ N [29].

TMDTO Attacks

TMDTO attacks against stream ciphers proceed in two

phases: a precomputation phase, during which one or more

tables are constructed from a set of randomly chosen KSG-

states; and a realtime phase, during which the table(s) are

searched for fragments of known keystream. Tradeoff curves

involve several parameters [27]:

• N = 2
n is the search-space. For block ciphers, N = |K| ,

the size of the key-space. For stream ciphers, N = |S| ,

the number of possible KSG-states;

• P is the time required for the precomputation phase;

• M is the amount of memory required to store the precom-

puted table(s);

• T is the time required to complete the realtime phase;

• D is the amount of plaintext known to (or chosen by) the

attacker;

For PudgyTurtle, one more parameter is also useful:

• D
′ is the amount of realtime data. For binary-additive

stream ciphers, D
�
= D . For PudgyTurtle, however,

D
′ ≥ D.

Distributed computing can improve the efficiency of many

tradeoffs. These effects can be described with another

parameter, W, representing the number of parallel proces-

sors [27].

For block ciphers, Hellman proposed a tradeoff of

TM
2
= N

2 , using one chosen plaintext (D = 1) and a very

long precomputation phase (P = N) [26]. One reasonable

point on this curve is M = T = N
2∕3 . Oechslin’s ‘rainbow

table’ method [44] somewhat improves Hellman’s tradeoff

and reduces its need for time-consuming disc-access opera-

tions [37].

For stream ciphers, Babbage [5] and Golić [22] indepen-

dently developed the ‘BG-attack’, whose tradeoff of TM = N

(with P = M and T ≤ D) arises from the Birthday Para-

dox. Here, the point M = T = N
1∕2 appears more efficient

than Hellman’s N2∕3 . However, direct comparisons can be

misleading: one attack targets block ciphers, and the other

stream ciphers; one uses a single chosen plaintext/ciphertext

Table 2 Ciphertext statistics

PudgyTurtle-encryptions of three different 1280000-byte plaintexts: an ASCII-formatted English-language

book, a JPEG image, and a file containing only 0x00 bytes. Shown here are the ciphertext length (Col-

umn 2), ciphertext expansion factor (CEF, Column 3), and keystream expansion factor (KEF, Column 4).

As expected, CEF ≈ 2 and KEF ≈ 5.2. The right half of this table (Columns 5–7) reports two-point Kol-

mogorov–Smirnov tests comparing the byte-distribution among the different ciphertexts, and also between

each ciphertext and a file of 2560012 uniformly-distributed random bytes (‘Random’). The non-significant

p-values (Column 7) suggest that the ciphertexts do not statistically differ from one another, nor from ran-

dom bytes

Plaintext source Length (bytes) CEF KEF Kolmogorov–Smirnov tests

Comparison KS p-value

English 2560014 2.00 5.2002 Versus random 0.000923 0.26

Versus image 0.000634 0.68

Versus zeros 0.000901 0.25

Image 2560017 2.00 5.1996 Versus random 0.000558 0.82

Versus zeros 0.000485 0.92

Zeros 2560010 2.00 5.1963 Versus random 0.000441 0.96

 SN Computer Science (2020) 1:226226 Page 8 of 23

SN Computer Science

pair, and the other exploits more realtime data; one uses

multiple tables, and the other just one; and so on.

Biryukov and Shamir adapted some of Hellman’s meth-

ods to create another TMDTO attack against stream ciphers,

which accounts for D in detail [12]. The tradeoff of this ‘BS-

attack’ is TM
2
D

2
= N

2 , with P = N∕D and D2 ≤ T ≤ N .

For example, one point on this curve, assuming N ≈ 2
100 ,

is P = T = N
2∕3 = N

66 , and M = D = N
1∕3 = N

33 . The BS-

attack uses many tables, all related through a simple function

like bit permutation.

The goal of both the BG- and BS-attacks is to recover a

KSG state. However, TMDTO attacks designed to recover

the secret key/IV combination have been proposed by Hong

and Sarkar [30] and discussed by Dunkelman and Keller

[18]. Tradeoffs in these approaches take the general form of

TM
2
D

2
= N

2
V

2 , where V is the number of IV’s [27].

Another improvement in TMDTO attacks is sampling

[13], whose main idea is to limit the attack to a smaller space

of special points (e.g., KSG states that begin with a certain

number of 0’s in a row) [4]. Limiting the precomputed table

to these points speeds up the realtime phase, since a table-

search is only required when the known keystream fragment

also happens to start with this string. This method offers dif-

ferent advantages against different ciphers: the tradeoff curve

itself may change; its range of parameters may expand; and/

or practical speedups (e.g., fewer disk-access operations)

may become possible [31, 51].

The BG-Attack

Here we describe in detail the original BG-attack [5, 22].

During the precomputation phase, M unique n-bit starting

states S
i
 are chosen. Each of these is used to initialize the

KSG, after which its prefix, e(S
i
) (i.e., the first n bits of key-

stream) is computed. The { S
i
, e(S

i
) } pairs are then stored in

a M × 2 table, sorted by prefix.

During the realtime phase, it is assumed that the adver-

sary possesses D + n − 1 bits of known plaintext, X
′ .

From these data, the known keystream, K′ , is obtained by

XOR’ing X′ and the ciphertext at the appropriate position.

Then, starting at bit-offset a = 1, an n-bit sliding window

is applied to K′ to produce a known keystream fragment,

K
�(a) = {k

a
, k

a+1, k
a+2,… , k

a+n−1} . The table is searched for

any prefixes that match this fragment. If none are found, the

sliding-window is advanced by one position, and the table

is searched for K�(a + 1) —a process which may be repeated

up to D times. If a matching prefix e(S�) is found, then its

paired state, S′ , likely reflects the KSG at some point during

encryption. If keystream obtained by seeding the KSG with

S
′ correctly decrypts the relevant portion of Y into X′ , then

the attack succeeds.

The tradeoff curve TM = N suggests that the original

search-space can be covered more efficiently than exhaustive

search. For example, time and memory resources can be

balanced by choosing T = M = D =

√

N . More generally,

letting M = 2
m and T = 2

t , other tradeoffs can also be made,

subject to m + t ∼ n.

The BS-Attack

Biryukov and Shamir’s method (the so-called ‘BS-attack’)

expands Hellman’s time-memory tradeoff for block ciphers

into the realm of stream ciphers [12]. Unlike Hellman’s orig-

inal idea, however, which assumed a single block of chosen

plaintext (D = 1), the BS-attack allows attackers to take full

advantage of D bits of known plaintext.

Since D may be constrained by factors external to the

cryptosystem itself, it is taken as a predetermined ‘given’

from which the other parameters are calculated. After speci-

fying D, the cryptanalyst next chooses m and t (explained

below) which satisfy Hellman’s ‘matrix-stopping rule’:

mt
2
= N.

During the precomputation phase, t/D tables are con-

structed, each of dimension m × 2 . The first column’s entries,

called ‘start points’ (SP
i
), are m unique, randomly selected

n-bit KSG-states. The second column’s entries, called ‘end

points’ (EP
i
), are obtained by applying a function t-many

times to each corresponding start-point:

where f ∶ {0, 1}n
→ {0, 1}n is explained below. The inter-

mediate results of this composition of functions are called

a Hellman chain. To save memory, only the first and last

links of each chain need to be stored, but—if required—any

link can be regenerated from the start-point. Each row thus

‘covers’ t keys, and an m-row table covers mt keys while only

requiring m ⋅ 2n bits of storage.

The function f(S) is itself composed of two other func-

tions, e and r, where e(S) is the first n bits of keystream (the

‘prefix’) produced by the KSG from state S, and r changes

this prefix in some simple way, like permuting its bits or

XOR’ing it to a constant. Each table has a unique version

of r, so

refers to the version of f used in table z, where

z = 1, 2,… , t∕D.

During the realtime phase of the BS-attack, known key-

stream K′ is split into successive n-bit fragments, K�(a) ,

where a = 1, 2,… , D . For each fragment, the search begins

by checking whether or not rz(K
�(a)) matches an end-point

of any table. If no matches are found, then the adversary

modifies the search-target by one application of f, and now

searches the end-points for fz(rz(K
�(a))) . The attacker may

repeat this, searching through a so-called realtime Hellman

EPi = f ◦ f ◦ f … ◦ f (SPi) = f (t)(SPi)

fz(S) = rz ◦ e(S)

SN Computer Science (2020) 1:226 Page 9 of 23 226

SN Computer Science

chain by applying f up to t times. If still no match has been

discovered, then the next known-keystream fragment,

K
�(a + 1) , is processed the same way, until all D fragments

have been tried.

When a match is found, the attacker wishes to find the

KSG-state, S′ , for which K�(a) is the prefix: K�(a) = e(S�) .

The first step is to regenerate the appropriate precomputed

chain. For example, suppose that the �-th realtime applica-

tion of f matches the i-th end-point of the z-th precomputed

table:

The adversary then reconstructs the i-th precomputed chain

(by (t − �) applications of fz) to ‘meet’ the beginning of their

realtime chain f (t−�)
z

(SPi) = rz(K
�(a)) . This holds because

EPi = f (t)(SPi) = f (�)f (t−�)(SPi) = f (�)(rz(K
�(a)) . Finally, the

desired result is the precomputed-chain state immediately

preceding this one:

The cryptanalyst knows that the first n bits of keystream gen-

erated by KSG-state S′ will equal K�(a) , since the attack has

been set up so that f (t−�)(SPi) = f (S�) = r(e(S�)) = r(K�(a))

and therefore e(S�) = K
�(a) . If this new keystream correctly

decrypts the message, the attack succeeds. Otherwise, a

false-alarm has been discovered, and the attack continues.

The BS time-memory-data tradeoff can now be appre-

ciated in more detail. Taking each table-search as one

‘time-operation’, the BS-attack requires searching t/D dif-

ferent tables, for one of D known keystream fragments,

and repeating each search for t applications of f, so that

T = (t∕D) ⋅ D ⋅ t = t
2 . For t/D tables containing m rows

each, the memory requirement is M = mt∕D . Thus, from

Hellman’s matrix-stopping rule N = mt
2 , the BS-tradeoff is

It is important to note that Biryukov and Shamir’s approach

does not require multiple tables. Rather, the number of

tables (t/D) just factors into the tradeoff: using one table

means performing the attack with a relatively bigger table

and relatively shorter realtime phase, for a given D. The

toy cipher used in Sect. 9 has low enough computational

and memory requirements that a ‘one-table’ tradeoff (e.g.,

m = t = D ∼ N
1∕3) can be implemented as reasonably a

multi-table tradeoff.

f (�)
z

(rz(K
�(a)) = EPi

S� = f (t−�−1)

z
(SPi)

N
2 = (mt

2)2 = (mt)2t
2 = (MD)2T = TM

2
D

2

PudgyTurtle and Collision Attacks

This section describes some of the challenges associated

with TMDTO attacks against PudgyTurtle. As we have seen,

what the adversary has is known plaintext X′ , but what the

attacker actually needs is known keystream, K′ . This obser-

vation reveals two (sometimes unstated) assumptions behind

TMDTO attacks:

• Known plaintext equals known keystream. With binary-

additive stream ciphers, K′ can be easily obtained by

XOR’ing the intercepted ciphertext with X′.

• Known keystream is contiguous, or at least predictably

spaced [27]. TMDTO attacks involve successively apply-

ing a sliding window to K′ , thereby obtaining targets to

search for within the precomputed table(s). It is assumed

that an n-bit window produces n bits of useful data.

With PudgyTurtle, neither assumption holds. First, because

the plaintext–keystream interaction during encoding is

probabilistic, a single known plaintext–ciphertext pair is

consistent with many different keystreams. Second, because

some keystream nibbles are skipped during encryption, each

keystream fragment contains irregularly spaced gaps of data

which remain unknown to the attacker. By making it harder

to obtain K′ from X′ , the realtime phase of TMDTO attacks

against PudgyTurtle becomes more difficult.

Central to this discussion is the idea that a particular

(X, Y) pair can be consistent with many different keystreams.

To see how this is possible, recall from Table 1 that plaintext

0x48 (“H” in ASCII) produced codewords {0x10, 0x04}

and ciphertext 0x4327 under keystream 0x53B14230.

Yet, this same ciphertext could also have resulted from

different encodings of plaintext 0x48 under different key-

streams. For example, the keystream {K1, K2, �, K4, K5, �}

exactly matches each plaintext nibble on the first attempt

(i.e., no failures), making two 0x00 codewords. Therefore,

if the masks (K
1
‖K

2
) and (K

4
‖K

5
) were chosen to be the

same as their corresponding nibbles in the original cipher-

text (i.e., keystream {4,3,4,2,7,8}), then Y will also

be 0x4327:

Similarly, if a nibble within one mask happened to be one

bit off, then the same ciphertext would still result if its cor-

responding discrepancy code was also one bit off. This

might happen, for instance, if the second mask (K
4
‖K

5
)

was 0x26 instead of 0x27, and the second discrepancy

code was 001
2
 instead of 000

2
—meaning that K

6
 would be

X
2
⊕ 0001

2
= ���⊕ 0001

2
= 1001

2
= ��� instead of 0x8.

Thus, keystream {4,3,4,2,6,9} would also produce the same

Y
1
= C

1
⊕ M

1
= ����⊕ (K

1
‖K

2
) = ����⊕ ���� = ����

Y
2
= C

2
⊕ M

2
= ����⊕ (K

4
‖K

5
) = ����⊕ ���� = ����

 SN Computer Science (2020) 1:226226 Page 10 of 23

SN Computer Science

ciphertext: Y
2
 would remain 0x27, but would be calculated

as:

Many other keystreams would also produce this same

ciphertext. A few examples are given in Table 3.

Tentative Keystream

TMDTO attacks against PudgyTurtle may have to contend

with many possible keystreams, rather than just the single

‘known keystream’ required to attack a BASC. Here, we

describe how the adversary builds a set of tentative key-

streams from the intercepted ciphertext, the known plaintext,

a hypothesized encoding, and something called the ‘verified

sequence’. These tentative keystreams become the input to

our new TMDTO attacks against PudgyTurtle.

The Model. Tentative keystreams are based on different

models of how X′ is encoded. Ignoring overflow events for

now, each model, Cj
⊂ C , is a collection of codewords—

one failure-counter and discrepancy-code for each nibble of

known plaintext:

Y
2
= C

2
⊕ M

2
= ����⊕ (K

4
‖K

5
) = ����⊕ ���� = ����

Cj = {C
j

1
, C

j

2
,… , C

j

NX�
}

= {(F
j

1
‖D

j

1
), (F

j

2
‖D

j

2
),… (F

j

NX�
‖D

j

NX�
)}

where j = 1, 2,… , |C| . We emphasize that F
j

i
 and D

j

i
 are just

guesses, not necessarily the actual failure-counter (F
i
) and

discrepancy code (D
i
) that produced Y

i
 from X′

i
.

To specify a particular model, C∗ , the components of each

codeword, F∗
i
∈ {0, 1, 2,… , 31} and D∗

i
∈ {0, 1, 2, 3, 4} , can

either be chosen randomly or taken from a list—perhaps

ordered by probability of occurrence. Since discrepancy-

codes are equiprobable, the probability of any model can be

ranked according to the product of the probabilities of its

f a i l u r e - c o u n t e r s :

Pr(C∗) = g(F∗
1
, p) × g(F∗

2
, p) ×⋯ × g(F∗

NX�
, p).

As a specific example assuming that X′ is 4 nibbles long,

we use the following randomly chosen model

Thus, failure-counter F∗

1
 is 1, discrepancy code D∗

1
 is 3,

F
∗

2
= 2, D

∗

2
= 0 , F∗

3
= 0 , and so on.

Verified sequence. Given our model C∗ from above, the

next step is to build its verified sequence, V∗ . This sequence

marks which nibbles of the tentative keystream can be pre-

dicted by the model, and which ones remain unknown (i.e.,

keystream nibbles that would have been skipped-over and

discarded during encoding because they failed to match a

plaintext nibble).

Specifically, V∗

i
 = 0xF = 1111

2
 if the i-th tentative key-

stream nibble can be predicted by the model, and V∗

i
 = 0x0

= 0000
2
 otherwise. This means that each nibble of X′ adds

three 0xF nibbles to V∗ : two coinciding with the mask,

and one positioned where the keystream nibble would have

matched the plaintext nibble. The number of intervening

0-nibbles corresponds to the failure-counter. For example,

if some failure-counter in the model were 3, its correspond-

ing representation in V∗ would be ...FF000F.... Similarly, a

failure-counter of 0 would correspond to … ���… in V∗ , and

so on. Thus, the Hamming weight of the verified sequence

is h(V) = 3L
X� = 12N

X� bits.

The verified sequence for our model C∗ is shown below,

where #’s mark the verified-sequence nibbles associated

with each mask, F∗ shows the progression of each failure-

counter, and *’s mark the verified-sequence nibble associ-

ated with each plaintext–keystream match:

C
∗ = {C

∗
1
, C

∗
2
, C

∗
3
, C

∗
4
}

= {����, ����, ����, ����}

= {00001011, 00010000, 00000100, 00001001}

= {00001‖011, 00010‖000, 00000‖100, 00001‖001}

= {1‖3, 2‖0, 0‖4, 1‖1}

Table 3 Different keystreams; same ciphertext

The original keystream (top) transforms plaintext 0x48 into the

ciphertext 0x4327. However, other encodings produced by other

keystreams can also have the same effect

Plaintext Keystream Codewords Ciphertext

Actual keystream

0x48 5,3,B,1,4,2,3,0 0x10, 0x04 0x4327

Other keystreams producing the same ciphertext

0x48 4,3,4,2,7,8 0x00, 0x00 0x4327

4,3,4,2,6,9 0x00, 0x01

4,2,5,2,7,8 0x01, 0x00

4,2,5,2,6,9 0x01, 0x01

…

5,3,B,1,4,2,7,8 0x10, 0x00

5,3,B,1,4,2,6,9 0x10, 0x01

5,3,B,1,4,2,5,A 0x10, 0x02

5,3,B,1,4,2,3,C 0x10, 0x04

…

4,B,B,4,2,F,7,8 0x08, 0x08

…

SN Computer Science (2020) 1:226 Page 11 of 23 226

SN Computer Science

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Masks # # # # # # # #

F
∗ 0 1 0 1 2 0 0 1

Matches * * * *

V
∗ F F 0 F F F 0 0 F F F F F F 0 F

(‘verified’), and 4 remain unknown. Different models would

produce other tentative keystreams, a collection of which

become inputs for the realtime phase of our TMDTO attacks

against PudgyTurtle.

TMDTOs and PudgyTurtle

After clarifying some terminology, we describe two new

TMDTO attacks against PudgyTurtle (i.e., ‘modified’ ver-

sions of the BG- and BS-attacks), and also discuss how these

new attacks differ from their original counterparts.

Terminology

During the realtime phase of our attacks, a hit refers to any

instance in which an n-bit fragment of realtime data (ten-

tative keystream) matches an entry in the second column

of the precomputed table. Every hit falls into one of two

categories: high-quality and spurious. High-quality hits are

cryptographically significant events and must therefore be

investigated further via a test-decryption. Spurious hits, on

the other hand, occur by chance and may therefore simply

be ignored.

Filling in. Finally, the tentative keystream K�∗ is created

by filling in the non-zero elements of V∗ . To illustrate this

process, assume that the known plaintext X′ is "Hi" (ASCII

0x4869) with corresponding ciphertext 0xEE7D22C3.

Since the first ciphertext byte Y
1
 = 0xEE is made by

XOR’ing first codeword (F∗

1
‖D

∗

1
) with the first mask

(K�∗

1
‖K

�∗

2
), the attacker knows that (K�∗

1
‖K

�∗
2
) = Y

1
⊕ (F∗

1
‖D

∗
1
)

= 0xEE ⊕ (00001
2
‖011

2
) = 0xEE ⊕ 0x0B = 0xE5. Next,

because F∗

1
= 1 , the cryptanalyst deduces that one tenta-

tive keystream nibble (K�∗

3
) was skipped because it failed

to match X′

1
 , and that next tentative keystream nibble (K�∗

4
)

matched X′

1
 to within one bit. Its value can therefore be filled

in by inverting discrepancy code D∗

1
 = 3:

At this point, the first codeword has been used to fill in the

first 4 nibbles of tentative keystream K�∗ = E, 5, ?, 0… ,

where ? represents the ‘unknown’ nibble corresponding to

V
∗

3
= 0 . The complete tentative keystream (shown in the final

row of the diagram below) can be constructed by continuing

this pattern.

K
�∗

4
= X

�

1
⊕ d

−1(D∗

1
)

= X
�

1
⊕ 2

D
∗
1
−1

= ���⊕ 2
3−1

= 0

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Masks # # # # # # # #

F
∗ 0 1 0 1 2 0 0 1

Matches * * * *

V
∗ F F 0 F F F 0 0 F F F F F F 0 F

E 5 ...

E 5 ? 0 ...

E 5 ? 0 6 D ...

E 5 ? 0 6 D ? ? 8 ...

E 5 ? 0 6 D ? ? 8 2 6 ...

E 5 ? 0 6 D ? ? 8 2 6 E ...

E 5 ? 0 6 D ? ? 8 2 6 E C A ...

K
�∗ E 5 ? 0 6 D ? ? 8 2 6 E C A ? 8

To summarize, we have described how the adversary

builds a tentative keystream from one particular 4-codeword

model, in conjunction with a 4-nibble known plaintext and

its corresponding 4-byte ciphertext. This particular tentative

keystream contains 16 nibbles, of which 12 can be predicted

Each high-quality hit has one of two outcomes: a valid

hit leads to a correct decryption of some portion of Y into

X
′ ; a false-alarm, on the other hand, means that the test-

decryption was not correct.

 SN Computer Science (2020) 1:226226 Page 12 of 23

SN Computer Science

If any table contains one or more valid hits, the attack is

deemed a success; otherwise it’s a failure. Failures happen

either when there are no high-quality hits (i.e., all hits are

spurious) or when all high-quality hits are false-alarms.

Hamming-Weight Threshold

During the normal BG- and BS-attacks, all hits are

assumed to be high-quality; none are ignored. During our

new TMDTO attacks, however, spurious hits abound. The

reason for this that an ‘unknown’ nibble from the tentative

keystream fragment (marked as ‘?’ in the illustrations in

Sect. 6.1) could theoretically match any similarly located

nibble in the precomputed table.

Fortunately, a simple technique allows the attacker to

distinguish high-quality hits from spurious ones. A Ham-

ming-weight threshold, � ≤ n , is applied to each n-bit frag-

ment of the verified sequence. If the Hamming-weight of a

verified-sequence fragment is ≥ � (i.e., if it has fewer than

n − � ‘unknown’ bits), then any hits discovered while inves-

tigating its corresponding n bits of tentative keystream are

defined as high-quality. Using � avoids many unnecessary

test-decryptions, thereby speeding up our TMDTO attacks

considerably.

� is chosen to reduce the number of total hits down to

a more reasonable number of high-quality hits, subject to

constraints imposed by the attacker’s processing power. In

practice,

appears to generate an adequate number of high-quality

hits while also allowing reasonably fast computation. In

the numerical experiments below (Sect. 9), choosing � in

this range produced roughly 200–400 high-quality hits per

model, with successful attacks taking ∼ 1 day to 1 week on

off-the-shelf laptops with Intel® I3/I5-generation processors.

We emphasize that the exact value of this parameter is not

crucial: � could always be chosen as n/2, for instance, if the

attacker is willing to wait somewhat longer for their results.

First TMDTO Attack

Our first attack is inspired by the Babbage–Golić method,

but differs substantially by its use of multiple keystream

models containing partly-unknown data.

PARAMETER SELECTION

Given state-size N = 2
n and D bits of known plaintext,

choose table-size M = N∕D (e.g., M =

√

N is a common

choice), and Hamming-weight threshold �;

2

3
n ≤ � ≤

3

4
n

PRECOMPUTATION PHASE

Choose M unique n-bit KSG states S
i
 . Starting from each

one, produce an n-bit prefix e(S
i
) , and store the { S

i
, e(S

i
) }

pairs in a table.

Note: Depending upon the search strategy (see

Sect. 7.3.2), this table may be sorted by prefixes or left

un-ordered;

REALTIME PHASE

1. Choose a model, Cj;

2. Calculate the verified sequence, V j;

3. Fill in the tentative keystream, K′j;

4. Test K′j as follows:

(a) Set a, the offset of an n-bit sliding-window, to a = 1;

(b) Apply the sliding window to V j , producing the n-bit

verified sequence fragment V j(a);

(c) If h(V j(a)) < � , then assume that any hits will be spuri-

ous. Instead of searching the table, set a ← a + 1 and

return to 4(b);

(d) Assuming V j(a) ≥ � , apply the sliding window to the

tentative keystream to produce n-bit fragment, K�j(a);

(e) Bit-by-bit multiply K�j(a) by V j(a) . We denote this by

K�j(a)⊗ V j(a) and refer to the result as the verified ten-

tative keystream fragment. This ensures that any bits

left ‘undefined’ in software implementations are actu-

ally set to 0;

(f) Adjust each prefix in the precomputed table the same

way, thus creating M verified prefixes e(Si)⊗ V j(a);

(g) Search the table for any verified prefixes that match the

verified tentative keystream fragment. For simplicity,

we imagine a sequential (row-by-row) search;

(h) If a matching verified prefix (“high-quality hit”) is

found, then use its paired state (S′) to perform a test-

decryption:

• Loadthe KSG with S′;

• Generate enoughkeystream to decrypt Y into asmuch

of X′ aspossible. For standard stream-cipher opera-

tion, decryption is assimple as XOR’ing this newly

generated keystream with Y (starting at offset a). For

PudgyTurtle, however, somecomputational effort is

required to determine the ‘firstdecryptable’ byte of

Y, asdescribed in Sect. 7.3.1.

• If the test decryption matchesX
′,then a valid hit has

been discovered: label the attack a success andSTOP.

• If thetest decryption does not match X′,then a false-

alarm has occurred: return to Step 4(g) to continue-

SN Computer Science (2020) 1:226 Page 13 of 23 226

SN Computer Science

searching for the same verified tentative keystream

fragment,starting from next row of the table;

(i) If no high-quality hits were discovered, or if they

were all false-alarms, then try again with the next

tentative keystream fragment: set a ← a + 1 and go

to 4(b). This can be repeated up to D′ times, where

D
�
= KEF × D ≈ 5.2D.

5. If the entire tentative keystream has been searched with-

out finding any valid hits, then repeat the whole process

with a new model: set j ← j + 1 and return to Realtime

phase, Step 1;

Adjusting the State

The output of this attack consists of a putative KSG-state S′

and the bit-offset, a, of its corresponding tentative keystream

fragment, K�(a) . A test-decryption must then be performed

to determine whether keystream produced from S′ yields a

valid hit or a false-alarm. For the standard attacks against a

BASC, test decryptions are simple: generate keystream start-

ing from S′ , XOR this new keystream to the ciphertext at bit

a, and then compare the result to the known-plaintext—also

starting from a. With PudgyTurtle, however, test decryp-

tions are more complicated. Since PudgyTurtle operates on

nibbles (not bits) and ‘skips’ some of the keystream, the

cryptanalyst cannot simply decrypt starting from bit a, but

must instead determine A, the offset of the ‘first decrypt-

able’ ciphertext byte.

To simplify notation, we drop the superscript j and just

consider the model currently being analyzed. Define Z(i) as

the number of keystream nibbles required to encode/encrypt

the plaintext {X1, X2,… , X
i
} up to its ith nibble, using the

model {C1, C2,…} = {(F1‖D1), (F2‖D2),…}:

The ‘3’ accounts for the extra 0xF’s in each verified

sequence fragment (e.g., F
1
= 2 would correspond to veri-

fied sequence fragment 0xFF00F, and therefore Z(i) would

equal F
1
+ 3 = 5 , not just two). Thus, encoding/encrypting

the current plaintext nibble, X
i
 , uses the keystream fragment

and encrypting the next plaintext nibble, X
i+1

 , uses key-

stream starting from nibble K
Z(i)+1

.

Since bit a corresponds to nibble ⌊a∕4⌋ , the new index,

A, is found by calculating the smallest Z(A) such that

Z(A) ≥ ⌊a∕4⌋ . Practically, it is convenient to decrypt the

ciphertext into ‘full’ plaintext bytes only. For example, the

Z(i) =

i
∑

u=1

(3 + F
u
) = 3i +

i
∑

u=1

F
u

K
Z(i−1)+1, K

Z(i−1)+2,… , K
Z(i)

second plaintext byte (X
3
‖X

4
) is produced by decrypting the

ciphertext from byte Y
3
 . Decryption starting at Y

4
 , however,

would produce only half of this plaintext byte, which may

cause practical difficulties when comparing files. For this

reason, we only allow test-decryptions to start from odd-

numbered ciphertext bytes: if A turns out to be even, increase

it by one.

After this adjustment process, ciphertext starting from

byte Y
A
 can be decrypted into plaintext starting at nibble X

A

(i.e., plaintext byte (A + 1)∕2), using keystream

This keystream is produced by loading the KSG with S′ and

then updating the state 4(Z(A) + 1) − a times before generat-

ing any keystream.

Comparison to Traditional BG-Attack

Although this new attack broadly resembles the method of

Babbage and Golić, there are several important differences.

First, our new attack requires multiple ‘tentative keystreams’

rather than a single known keystream. Second, our attack

allows for unknown bits in each table-search, something

not necessary for the traditional BG-attack. Third, our

attack includes a new parameter (Hamming-weight thresh-

old �) to reduce spurious hits, which are not a significant

problem for the original BG-attack. Fourth, once a hit is

found, our method requires further adjusting the KSG-state

before each test-decryption, which is also not needed dur-

ing the standard BG-attack. Fifth, sorting takes longer in

our attack. Even though there is only one table, each prefix

in its second column must be bitwise multiplied by V j(a)

(‘verified’) before comparison with the current tentative

keystream fragment. This operation changes the values of,

and therefore the sorted order of, these prefixes each time.

Thus, if sorting is used, the table must be re-sorted with

each new application of the sliding window. (Alternatively,

it can be left unsorted, and searched row-by-row.) Finally,

our attack’s table-search procedure is more involved. Each

prefix in the table is unique, but each verified prefix need

not be. A binary search returns an index of a matching ele-

ment but not necessarily a particular index of a repeated

matching element. For example, suppose that KSG-state S
w

is correct, and that the table contains three different prefixes

e(S
u
) ≠ e(S

v
) ≠ e(S

w
) which become identical once they are

verified: e(Su)⊗ V j(a) = e(Sv)⊗ V j(a) = e(Sw)⊗ V j(a) = P .

A binary search for P might return e(S
u
) or e(S

v
) instead of

e(S
w
) , incorrectly leading the cryptanalyst to dismiss the hit

as a false-alarm after a failed test-decryption using states S
u

or S
v
 . The cryptanalyst must therefore check whether or not

the prefix associated with each high-quality hit is unique

and, if not, also perform test-decryptions using KSG-states

K
� = K

Z(A−1)+1, K
Z(A−1)+2,…

 SN Computer Science (2020) 1:226226 Page 14 of 23

SN Computer Science

associated with any other identical verified prefixes. (Alter-

natively, the attacker can do a simple sequential search

through the whole table for each K�(a) fragment, as men-

tioned above).

TMDTO Attack #2

Our second TMDTO-attack is inspired by the method of

Biryukov and Shamir [12, 26]. However, building Hellman

chains from an initially uncertain state produces various diffi-

culties not seen in the classical BS-attack, as discussed below.

Variant Keystream Fragments and Tentative Hellman

Chains

One way to modify the BS-attack to deal with ‘unknown

bits’ is to use many realtime Hellman chains instead of just

one. These chains are constructed from variants of each ten-

tative keystream fragment. If fragment K�(a) has u unknown

bits, then it will have 2u variants, denoted KV
0
(a) , KV

1
(a) ,

… , KV2u−1(a) . During the realtime phase of our new attack,

each variant initiates its own Hellman chain.

The i-th variant of K�(a) is constructed by replacing each

of its unknown bits with one bit from the binary expansion

of i. Letting K�(a) = {k1, k2,… , k
n
} , V(a) = {v1, v2,… , v

n
} ,

and i = {b1, b2,… , b2u} , then a simple algorithm to build

KV
i
(a) is:

1. Set counter s = 1;

2. For every bit j = 1, 2,… , n of K�(a):

• If vj = 1 , then kj is unchanged;

• If vj = 0 , then { kj ← bs and s ← s + 1};

As a concrete example assuming a 24-bit KSG state, let

K
�(a) = �������� and V(a) = �������� . Since V(a) has six

0-bits (meaning that K�(a) has 6 unknown bits), we construct

2
6 variants as shown below, with unknown bits in boldface:

V(a) 1111 1111 1111 0000 1111 0011 0xFFF0F3

K
�(a) 1010 0000 1011 1100 1101 1110 0xA0BCDE

KV
0
(a) 1010 0000 1011 0000 1101 0010 0xA0B0D2

KV
1
(a) 1010 0000 1011 0000 1101 0110 0xA0B0D6

KV
2
(a) 1010 0000 1011 0000 1101 1010 0xA0B0DA

… … … …

KV
62
(a) 1010 0000 1011 1111 1101 1010 0xA0BFDA

KV
63
(a) 1010 0000 1011 1111 1101 1110 0xA0BFDE

During the realtime phase of our attack, these variant key-

stream fragments are then used to create the initial links of 2u

tentative Hellman chains, as illustrated in Fig. 1. From each

variant, a (t + 1)-link chain is made by defining the 0-th link

of the i-th chain as H
i
[0] = r(KV

i
(a)) and each subsequent

link as Hi[�] = f (Hi[� − 1]) = f (�)(Hi[0]).

Modi�ed BS Attack

Here we describe our second TMDTO attack (a modified

version of the Biryukov–Shamir attack), which uses variant

keystream fragments and tentative Hellman chains.

PARAMETER SELECTION

Given N = 2
n (the state-space size) and D (the quantity of

known plaintext), choose m and t such that N = mt
2 , and

choose Hamming-weight threshold � ≤ n;

PRECOMPUTATION PHASE

1. Create t/D simply-related r-functions, one for each table;

2. Construct t/D different m × 2 tables. The first column

contains start-points, SP1, SP2,… , SP
m

 ; the second

contains end-points EPi = f (t)
v
(SPi) , where fv = rv◦e ,

for i = 1, 2,… , m rows, and v = 1, 2,… , (t∕D) tables.

Fig. 1 Tentative Hellman

chains. A keystream fragment

with 6 unknown bits, K�(a) , is

used to create 26 variant key-

stream fragments, KV
i
(a) , where

i = 0, 1, 2,… , 63 . From these

variants, the zero-th link of

each chain, H
i
[0] , is obtained by

applying Hellman’s r-function.

Each chain is then extended,

by t applications of Hellman’s

f-function

K (a) →



































































r f f f

KV0(a) → H0[0] → H0[1] → · · · → H0[t]

r f f f

KV1(a) −→ H1[0] −→ H1[1] −→ · · · −→ H1[t]

...
...

...

r f f f

KV63(a) −→ H63[0] −→ H63[1] −→ · · · −→ H63[t]

SN Computer Science (2020) 1:226 Page 15 of 23 226

SN Computer Science

 Note: We drop the v (table) subscript below for con-

venience, but emphasize that all steps occur for each

table;

REALTIME PHASE

1. As in the modified BG-attack, choose a model Cj , and

determine its verified sequence V j and tentative key-

stream K′j.

2. For each bit-offset a = 1, 2,… , D
� , extract an n-bit frag-

ment of both the verified sequence and the tentative key-

stream, denoted V j(a) and K�j(a) respectively. As before,

D
�
≈ 5.2D.

3. Let u = n − h(V j(a)) be the number of unknown bits in

the current tentative keystream fragment.

4. If u > n − � (i.e., too many unknown bits), then incre-

ment a and return to Realtime Step 2;

5. Assuming that u ≤ n − � , create variant tentative key-

stream fragments KV
j

i
(a) , where i = 0, 1, 2,… , 2u

− 1 ,

as described in Sect. 7.4.1.

6. Apply Hellman’s r-function to each of the 2u variant

keystream fragments H
j

i
[0] = r(KV

j

i
(a)) , thus forming a

set of initial (zero-th) links of each tentative Hellman

chain { H
j

0
[0] , H

j

1
[0] , H

j

2
[0] , … H

j

2u−1
[0]};

7. Search the end-points of the precomputed tables for each

of these 2u initial links:

• If NO match is found, then update the search-targets

to H
j

i
[1] = f (H

j

i
[0])) for i = 0, 1,… , 2u

− 1 , and search

the tables again. If no match is found, continue this

process t-many times, with the final 2u search-targets

being H
j

i
[t] = f (t)(H

j

i
[0]));

8. If a match IS found (a ‘high-quality hit’), determine

the desired KSG-state, S′ , as follows. For concrete-

ness, assume that the 42-nd endpoint (row) of the table

matched the 5-th tentative Hellman chain after � applica-

tions of f:

(a) First, regenerate the precomputed Hellman-chain until

it matches H
j

5
[0] by computing f (t−�)(SP

42
).

(b) Test the predecessor state, S� = f (t−�−1)(SP
42
) as fol-

lows:

⇒ Update S′ as described in Sect. 7.3.1 to produce a

new KSG-state and ciphertext byte-offset A for test

decryption;

⇒ Perform a test-decryption from Y
A
 using keystream gen-

erated from the updated version of S′;

H
j

5
[�] = f (�)(H

j

5
[0]) = EP

42

⇒ If this decryption matches the known-plaintext starting

at X
A
 (‘valid hit’), then the attack succeeds. If not, return

to Realtime Step 7 and continue searching.

Comparison to Traditional BS-Attack

Compared to the original BS attack, our modified attack

employs multiple realtime Hellman-chains instead of just

one. Otherwise, this modified attack differs from the stand-

ard BS-attack in mostly the same ways that the modified-BG

attack differs from its original counterpart: (1) it uses models

to generate tentative keystreams containing ‘unknown’ bits,

leading to many spurious hits, which in turn must be rejected

by the inclusion of a Hamming-weight threshold parame-

ter—none of which apply to the standard BS-attack; and

(2) the KSG-state, once discovered, must be adjusted before

attempting a test-decryption, unlike the original BS-attack.

One similarity with its original counterpart, however, is

that sorting the precomputed table(s) helps. In our modified

attack, end points (EP
i
) do not need to be ‘verified’ (i.e., bit-

wise multiplied by the verified sequence fragment), as they

do in the modified BG-attack. In essence, tentative Hellman

chains fix the problem of unknown bits. Thus, quick-sort

and binary-search techniques will speed up this attack just

as they would the original BS-attack, and more dramatically

than the modified BG-attack.

Quantifying the New TMDTO Attacks

How do our new TMDTO attacks compare to the standard

BG- and BS-tradeoffs? Since the precomputation phase of

these attacks are similar to their original counterparts, we

neglect this phase and instead focus on the realtime duration

of each attack.

T̂ stands for the number of realtime operations, where

a ‘time operation’ is defined as either one table-search or

one test-decryption. Normally, test-decryptions are ignored,

since only one is required (or perhaps just a few) [28]. With

PudgyTurtle, however, the abundance of ‘unknown’ bits

means that most test-decryptions produce false alarms,

and therefore should be counted. This parameter can be

expressed as

where

• N
searches is the number of table-searches performed per

model;

• Ndecrypts is the number of test-decryptions per model;

T̂ =

Nsearches + Ndecrypts

Pvalid

 SN Computer Science (2020) 1:226226 Page 16 of 23

SN Computer Science

• P
valid is the probability that a model yields a valid hit (i.e.,

successful test-decryption). Specifically,

 where N
valid

 is the observed number of valid hits and

N
trials

 equals the number of tables used multiplied by the

number of models tested per table.

Normally, N
valid

= 1 , since an attack stops once success is

achieved. In these experiments, however, some attacks are

allowed to run through a predetermined number trials, pos-

sibly producing > 1 valid hit.

The standard BG and BS tradeoffs have time-parameters

T
BG

= N∕M and T
BS

= N
2∕(M2

D
2) . We compare these

benchmarks to T̂
BG

 and T̂
BS

 , which represent the number of

realtime operations actually observed during the numerical

experiments below.

Implementing the TMDTO Attacks

Here, we launch two new TMDTO attacks against PudgyTur-

tle and discuss their performance in a variety of situations.

For the first several attacks, the KSG will be a 24-bit maxi-

mal-period, nonlinear feedback shift register (NLFSR) [17],

with the following specifications:

• Initial state S
0
 is 0xAAA AAA = 1010...10

2
.

• State S
t
= (s0, s1,… , s23) evolves according to:

 o(S
t
) = s

0
 is the output bit;

 b = s
0
⊕ s

1
⊕ s

8
⊕ s

9
⊕ s

15
⊕ (s

7
⋅ s

18
) is the feed-

back bit;

P
valid

= N
valid

∕N
trials

 �(S
t
) = S

t+1 = (s1, s2,… , s23, b) is the state-update

function;

We emphasize that this is not intended to be a secure KSG,

but only a ‘toy’ cipher for illustrative purposes. Its small

key-space of N = 224 = 16777216 makes for efficient com-

putations (e.g., using the standard tradeoff parameters like
√

N = 4096 or N1∕3 = 256).

For simulations requiring larger-sized KSG’s, we use

linear feedback shift registers (LFSRs) instead of nonlinear

ones. The reason for this is pragmatic: maximal-period NLF-

SRs are difficult to find, and Dubrova’s well-known source

only goes up to n = 25 [17]. Obviously, there are easier ways

to break LFSR-based ciphers than a TMDTO attack, but

again these examples are for explanatory purposes only.

Modi�ed BG Attack

Below are results of the first new TMDTO attack against

PudgyTurtle.

Experiment 1: Contrived Plaintexts

This experiment is designed to confirm the general feasi-

bility of our approach. Modified BG-attacks are performed

against two ‘contrived’ plaintexts, which have been specifi-

cally tailored to bias the results toward success by limiting

the number of unknown bits:

• The “EVERY-3” plaintext is constructed by taking every

third nibble of the actual keystream. This forces each

Table 4 Modified BG-attack

against two contrived plaintexts

Scenarios were constructed so that the tentative keystream either contained no unknown bits (EVERY-3,

upper section of table) or very few unknown bits (EVERY-3-OR-4, lower section of table). Next, attacks

were carried out assuming that one parameter was fixed at ≈
√

N bits (4096 or 4104, in boldface): either
√

N bits of known plaintext (Rows 1 and 3); or
√

N bits of verified tentative keystream (Rows 2 and 4); or
√

N bits of total tentative keystream (Rows 2 and 5). Note that for EVERY-3, there is no difference between

the second and third assumption. Each attack used a single tentative keystream model and 1000 precom-

puted tables. In these contrived scenarios, success was common (> 600/1000 tables), and successful tables

contained > 1 valid hit. Unsurprisingly, the attacker enjoyed more success when granted more realtime

data (Rows 1 & 3 vs. Rows 2, 4, & 5). False-alarms occurred in both scenarios, but became noticeably

more frequent when the known keystream contained unknown bits (rightmost column, lower vs. upper sec-

tion of table)

Known plaintext Verified tenta-

tive keystream

Total tentative

keystream

Successful tables

(out of 1000)

Valid hits

per success

False-alarms

per valid hit

EVERY-3

1 4096 12288 12288 952 3.05 0.02

2 1368 4104 4104 629 1.50 0.07

EVERY-3-OR-4

3 4096 12288 15000 974 3.70 59.38

4 1368 4104 5032 706 1.70 61.76

5 1112 3336 4096 605 1.56 63.93

SN Computer Science (2020) 1:226 Page 17 of 23 226

SN Computer Science

codeword to be 0x00 and every nibble of the verified

sequence to be 0xF;

• The “EVERY-3-OR-4” plaintext forces every code-

word to be either 0x00 (i.e., an exact match on the first

attempt) or 0x08 (i.e., one failure followed by an exact

match). This is accomplished by comparing the two key-

stream nibbles after each mask. If they differ by more

than 1 bit, the second one is taken as the plaintext nibble,

producing codeword 0x08 and adding 0xFF0F to the

verified sequence. If they are within ≤ 1 bit of each other,

then the first one is taken instead, producing codeword

0x00 and adding 0xFFF to the verified sequence. The

net result is a verified sequence with mostly 0xF’s and

some 0x0’s.

This experiment also examines the question, “how much

realtime data is there?” The usual TMDTO attack against a

BASC grants the attacker D bits of known plaintext, which

is assumed to also mean D = L
X� bits of known keystream.

Since PudgyTurtle is not a BASC, however, its L
X′ bits of

known plaintext becomes L
K′ bits of tentative keystream,

of which only h(V) are known (i.e., ‘verified’ as corre-

sponding to a 1-bit in V), such that L
X� ≤ h(V) ≤ L

K� . So,

does “ D′ bits of realtime data” mean that the adversary has

D
�
= D = L

X� bits of known plaintext, or D� = h(V) bits of

verified-sequence, or D�
= L

K� bits of tentative keystream?

Although the answer is open to interpretation, attacks are

performed under each of these assumptions.

Table 4 shows modified BG-attacks against both con-

trived plaintexts, with different values fixed at ≈
√

N bits

(for technical reasons, this may be 4096 or 4104). The value

that is fixed is

• L
X� ≈ 4096 , in Rows 1 and 3;

• h(V) ≈ 4096 , in Rows 2 and 4;

• L
K� ≈ 4096 , in Rows 2 and 5.

(Note: For EVERY-3, h(V) = L
K� , so Row 2 works for both

assumptions). Each row shows the result of a modified BG-

attack using one model and 1000 different precomputed

tables. Columns 1–3 show the relative sizes of X′ , h(V), and

K
′ , with the fixed value in boldface. Column 4 shows the

number of successes. The probability of success increases

with more realtime data, being highest for Rows 1 and 3

(i.e., when D = 4096 and D
�
= L

K� = 12, 288). Column

5, the average number of valid hits per success, illustrates

that a single table may contain multiple valid hits. False-

alarms (Column 6) occur occasionally even when the veri-

fied sequence is all 1’s (EVERY-3), but become much more

likely when the verified sequence contains even a minimal

number of unknown nibbles (EVERY-3-or-4).

For all subsequent experiments, we assume that the

attacker has D bits of known plaintext and D�
≈ 5.2D bits of

realtime data (tentative keystream)—a conservative assump-

tion most advantageous to the adversary.

Experiment 2: Hamming-Weight Threshold

Since the previous experiment used contrived plaintexts

which exactly (or nearly) matched the original keystream,

all hits were taken to be high-quality rather than spurious.

When the plaintext and model are unrestricted, however,

spurious hits become more likely. This experiment shows

how different values of Hamming-weight threshold � reduce

Table 5 The Hamming-weight threshold

The modified BG-attack was performed using a range of thresholds

(�) for distinguishing high-quality hits from spurious ones. Each

attack used the same precomputed table, the same 250 models, a

24-stage NLFSR as the KSG, and assumed that the attacker knows

4096 bits of ‘English’ plaintext. For each threshold in Column 1,

the corresponding number of total (Column 2), high-quality (Col-

umn 3, averaged over 250 models), and valid (Column 4) hits are

shown. Lower threshold values (� = 10–12) do not improve effi-

ciency much—thousands of test-decryptions are still required for

each model. Mid-range values (� = 14–16) improve efficiency by

reducing the number of high-quality hits (and test-decryptions) while

still achieving success. Higher values (� ≥ 18) reduce success—so

few high-quality hits are obtained overall that finding any valid hits

among them becomes unlikely. In practice, choosing � so as to pro-

duce several hundred high-quality hits afforded a reasonable balance

between an attack’s computational cost and its likelihood of success

� Total hits High-quality hits

(avg)

Valid hits

10 5324798 8025.7 6

12 5324899 5272.6 6

14 5325373 425.6 5

16 5325323 194.6 5

18 5324958 25.9 0

20 5325073 11.9 0

22 5325381 1.0 0

24 5325025 0.3 0

Table 6 How successful is TMDTO attack #1?

Shown here are modified BG-attacks against 4096 bit samples

of three plaintexts (English, Image, and Zeros) encrypted using

PudgyTurtle with a 24-bit NLFSR. Each attack used 1 precomputed

table, 1000 tentative keystream models, and Hamming-weight thresh-

old � = 15 . Each model produced ≈ 270 high-quality hits (Column 2),

and the success rate ranged from 0.2 to 1.6% (Column 3)

Plaintext source High-quality hits (avg) Valid hits

English 271.9 4

Image 271.8 2

Zeros 269.5 16

 SN Computer Science (2020) 1:226226 Page 18 of 23

SN Computer Science

the total number of hits to a reasonable number of ‘high-

quality’ hits.

Modified BG-attacks were performed against encrypted

English using the same precomputed table and same 250

randomly-chosen models, but a different � each time. As

shown in Table 5, many values of � can still produce suc-

cessful attacks, even with substantially fewer high-quality

than total hits (Column 3 vs. Column 2). Making � too small

slows down the attack (i.e., more high-quality hits occur than

are needed for success), but making � too big risks missing a

valid hit (e.g., when � ≥ 18, there are too few hits overall for

success). Attackers choose � pragmatically, balancing com-

putational resources against the number of high-quality hits

(Sect. 7.2). In our experiments, for example, � = 15 works

well for n = 24.

Experiment 3. How Successful is TMDTO Attack #1?

Table 6 shows the modified BG-attack carried out against

each of the three plaintexts from earlier (English, Image, and

Zeros), with one table, 1000 models, n = 24, D = 4096, and

� = 15. The success rate, P
valid

 ranged from 0.2 to 1.6%. No

successful attack produced more than 1 valid hit, but all had

≈ 270 high-quality hits (i.e., false-alarms).

How does the time required by this new attack compare to

the usual BG-tradeoff of T
BG

=

√

N = 4096? Assuming that

≈ (1 − �∕n) of the tentative keystream fragments exceed the

Hamming-weight threshold, N
searches

 may be estimated as

D
�(1 − �∕n) ≈ 5.2D(1 − 15∕24) ≈ 8192 . Ndecrypts can be

estimated as 270, the average number of high-quality hits.

Dividing by the probability of success, we estimate the num-

ber of realtime operations T̂ = (Nsearches + Ndecrypts)∕Pvalid to

be

or 528875 ≤ T̂ ≤ 4231000, which exceeds T
BG

= 4096 by

more than 100-fold.

Experiment 4. Scaling the Modi�ed BG-Attack

Experiment 3 suggests that our modified BG-attack requires

more time than predicted by the original BG-attack. Is this

result simply a fluke for n = 24, or does it apply to other

state-sizes? To address this issue, we repeated the attack

for several different values of n, using LFSRs for n > 25

as mentioned earlier. Also in this experiment, N
searches

 and

Ndecrypts were counted rather than estimated.

For KSG sizes n = 20, 24, 28, and 32, a modified BG-

attack was initiated against PudgyTurtle-encrypted Eng-

lish. Each precomputed table had 2n∕2 rows, and allowed

the attacker 2n∕2 bits of known plaintext. Hamming-weight

thresholds were �=13 (for n=20); �=15 (for n=24); �=19

(for n=28); and �=23 (for n=32).

The upper section of Table 7 shows the results. The proba-

bility of success (N
valid

∕N
trials

) ranged from 4/20000 = 0.02%

to 19/5000 = 0.38%. The number of table-searches (Column

4) scaled with amount of known plaintext (D), while the

number of decryptions (‘high-quality hits’) remained fairly

constant in the range 250–350 (Column 5), based on the

8192 + 270

0.016
≤ T̂ ≤

8192 + 270

0.002

Table 7 Two new TMDTO attacks against PudgyTurtle

Shown here are modified BG-attacks (upper section) and modified BS-attacks (lower section) against English-language plaintext encrypted with

a ‘toy’ cipher based on a nonlinear or linear feedback shift register, and PudgyTurtle. Column 1 shows the KSG state-size. Columns 2 and 3

show the number of valid hits and the number of trials required to obtain them. Columns 4 and 5 show the number of table-searches and test-

decryptions required per model (i.e., per tentative keystream). Column 6 shows the realtime duration of each attack, obtained by dividing the

number of time-operations per model (Nsearches + Ndecrypts) by the probability of a successful model (N
valid

∕N
trials

). Finally, Column 7 shows the

ratio of observed attack times to those predicted by the classical BG-tradeoff (T
BG

= N∕D) and BS-tradeoff (T
BS

= N
2∕(M2

D
2) = t

2). Note that

this ratio always exceeds 1. One experiment (final row) did not succeed within the pre-specified number of trials. For this case, N
valid

 is reported

as < 1 , and the number of time-operations as a lower-bound
a No valid hits obtained: probability of success < 1/3500

n N
valid

N
trials

N
searches

Ndecrypts T̂
BG

T̂
BG

∕T
BG

Modified BG-attack

20 19 5000 3302 321.9 953658 931.3

24 27 20000 10040 251.4 7623260 1861.1

28 4 20000 35276 252.1 177640512 10842.3

32 1 20000 121203 293.8 2429935872 37077.9

T̂
BS

T̂
BS
∕T

BS

Modified BS-attack

20 11 5000 5786870 352.8 2630555904 160556.4

24 7 5000 17562500 268.5 12544834560 191419.0

28 <1a 3500 69665100 272.7 >243828817920 >930133.1

SN Computer Science (2020) 1:226 Page 19 of 23 226

SN Computer Science

choices for � . Our main finding is that the observed number

of realtime operations always exceeded that predicted by the

standard BG-tradeoff (i.e., T̂
BG

∕T
BG

> 1 , Column 7). This

suggests that our finding is not a one-off result for n = 24,

but applies more generally to PudgyTurtle.

Modi�ed BS Attack

Similar to the methods of Experiment 4, we also per-

formed our second (‘modified BS’) TMDTO attack against

PudgyTurtle-encrypted English. The KSG and attack param-

eters were:

n KSG � D t m

20 NLFSR 12 128 128 64

24 NLFSR 15 256 256 256

28 LFSR 19 512 512 1024

The r-function used for Hellman chains was simply the

KSG-state XOR’d to the least-significant n bits of a constant,

where R
0
 = 0x5075646779547572—sixty-four bits rep-

resenting the letters “PudgyTur” in ASCII.

For convenience, each attack was carried out using only

one precomputed table at a time (i.e., t∕D = 1), so that

D = t ≈ m ≈ 2
n∕3 . However, an attack could be repeated

several times with new tables, as summarized by the N
trials

parameter. Results are shown the lower section of Table 7.

Again, as in Experiment 4, we observed that T̂
BS
∕T

BS
> 1

(Column 7).

Note that the n = 28 attack did not succeed within the pre-

specified number of trials. In this case, we reported N
valid

 as

< 1 and provided a lower-bound on T̂
BS

 (i.e., if the attack had

continued until getting a valid hit, the success probability

would be smaller and T̂
BS

 would be higher). These findings

appear robust to variations in P
valid

 : even if this probabil-

ity was ∼ tenfold higher than observed, ratios in Column 7

would still exceed 1.

Limitations of PudgyTurtle

Despite its improved resistance against TMDTO attacks,

PudgyTurtle also has some drawbacks related to short

plaintexts, side-channel attacks, and variable time and space

requirements.

Plaintext–Ciphertext Mismatch

Length differences between a very short plaintext and its

ciphertext could potentially leak one byte of keystream.

r(S) = (S ⊕ R
0
)⊗ (2n − 1)

Consider a one-nibble (4-bit) plaintext X = X
1
 . If the

ciphertext is observed to be 2 bytes instead of just one (i.e.,

Y = Y1,1 ‖ Y1,2), then the adversary will know that one over-

flow event has occurred, and that the keystream has the fol-

lowing structure:

The attacker can thus recover the first keystream byte by

computing (K1‖K2) = Y1,1⊕ 0xFF. If, in addition to know-

ing the plaintext length, the attacker also knows the value of

X
1
 , then more information can be inferred. Specifically, the

Hamming distance between X
1
 and Kj (for j > 2) must be >

1, except for K
35

 and K
36

 (which are unrestricted) and K
t(1)

(whose Hamming-distance is ≤ 1 from X
1
). This reduces

the number of possible keystreams in an exhaustive search

from 16
t(1)−2 down to 11t(1)−5

⋅ 162
⋅ 5 ≈ 0.008 ⋅ 23.46×t(1) . On

a practical note, however, even if t(1) takes its smallest pos-

sible value of 37, this still leaves 2121 possibilities.

What about slightly longer plaintexts? Consider

a 4-nibble (2-byte) plaintext which produces the 5-byte

ciphertext 0xAABBCCDDEE in Table 8. Realizing that

an overflow event has occurred, the adversary’s goal is to

determine the identity and position of one byte of keystream,

KB
a
= (K

a
‖K

a+1
).

There are four equi-probable ways (lower section of

Table 8) for five ciphertext bytes to represent a 4-codeword

message containing one overflow event. As shorthand, c
i

denotes the final byte of the codeword with the overflow

event:

In Case #1 (i.e., when F
1
≥ 32), the attacker knows that

KB
1
= ����⊕ ���� . In Case #2 (i.e., when F

2
≥ 32),

the attacker could surmise that KB
a
= ����⊕ ����

occurs at one of 32 geometrically-distributed locations in

the keystream, since C
1
 could encode any of 32 possible

K = K1, K2,… , K35, K36,… , K
t(1)

C
i
= ���� || ((F

i
mod 32)||D

i
) = ���� || c

i

Table 8 Plaintext–ciphertext mismatch

The 5-byte ciphertext (top) results from encrypting a 4-nibble plain-

text whose encoding produced one overflow event. The lower section

shows each possible location of the overflow event, where (0xFF c
i
)

means that codeword C
i
 contains the overflow

Ciphertext bytes

0xAA 0xBB 0xCC 0xDD 0xEE

Codewords

#1 (0xFF c
1
) C

2
C

3
C

4

#2 C
1

(0xFF c
2
) C

3
C

4

#3 C
1

C
2

(0xFF c
3
) C

4

#4 C
1

C
2

C
3

(0xFF c
4
)

 SN Computer Science (2020) 1:226226 Page 20 of 23

SN Computer Science

failure-counters. Similarly, for cases #3 and #4, KB
a
 could

be in any of 64 or 96 different positions, respectively. The

probability of guessing KB
a
 declines as the message gets

longer and as a moves farther away from the beginning of

the keystream.

For example, assuming that the third code-

word, C
3
= (����‖c

3
) encodes the overf low, the

probability of correctly guessing that KB
a
 equals

Y
3
⊕ ���� = ����⊕ ���� = ���� is

where, as before, g(F, p) is the geometric distribution with

F failures and p = 5/16, and a = 1 + (F
1
+ 3) + (F

2
+ 3) .

For our short message, this probability ranges from as little

as Pr(KB
69

= ����) ≈ 8 × 10
−12 (when F

1
= F

2
= 31) to as

much as Pr(KB
7
= ����) ≈ 0.0976 (when F

1
= F

2
= 0).

Importantly, this seemingly high value (0.0976) actually

represents the conditional probability Pr(KB
7
 = 0xCC, given

that [C
3
 contains the overflow] AND [one overflow occurs

in 4 encodings]). The true probability, including the a priori

chance of both conditions, is actually only

where

is the probability of a ‘no overflow’ encoding.

For the general case of a N
X
-nibble plaintext producing a

(N
X
+ 1)-byte ciphertext, the probability of guessing KB

a
 ’s

identity and location is:

We performed this calculation for various N
X
 , with the fol-

lowing results:

N
X

Pr(Guessing 1 keystream byte)

Best-case Typical-case

4 1.55×10
−6 1.00×10

−6

16 3.88×10
−7 1.16×10

−8

64 9.69×10
−8 8.18×10

−10

256 2.42×10
−8 1.74×10

−11

Pr(KBa = ����) = g(F1, p) ⋅ g(F2, p)

= p2
⋅ (1 − p)F1

⋅ (1 − p)F2

Pr(KB
7
= ����) = (0.0976)

(

1

4

)

�
3 (1 − �)

≈ 0.0000016

� =

31
∑

i=0

p (1 − p)i

��(KBa = Ys ⊕ ����) =

(

1

NX

)

�
NX−1(1 − �)

s−1
∏

i=1

g(Fi, p)

=
�NX−1(1 − �)ps−1

NX

s−1
∏

i=1

(1 − p)Fi

N
X

Pr(Guessing 1 keystream byte)

Best-case Typical-case

1024 5.88×10
−10 2.04×10

−13

 The middle column is an unlikely ‘best-case’ scenario in

which every failure-counter happens to be 0; the rightmost

column represents the ‘typical’ scenario, obtained by 1000

simulations of randomly-chosen, geometrically-distributed

failure-counters. As can be seen, the probability diminishes

as messages get longer and when failure-counters are chosen

realistically.

To summarize, we have quantified the probability that

an attacker could guess a single keystream byte given the

knowledge that a N
X
-nibble plaintext has been encrypted

into a (N
X
+ 1)-byte ciphertext. In practice, though, this par-

ticular information (i.e., 8 bits of a long keystream) may be

of little use in breaking any stream-ciphers with adequate

state-size currently in widespread use.

Side-Channel Attacks

If implemented straightforwardly, PudgyTurtle encryp-

tion exhibits data-dependent execution times, which could

expose it to a timing-based side-channel attack [34]. By

comparing timing differences during the encryption of each

plaintext nibble, it might be possible to determine F
i
 , the

failure counter that encodes plaintext nibble X
i
 . Knowing

F
i
 , the codeword C

i
 only has 5 possibilities instead of 32 × 5

= 160. In this case, the maximum number of models to test

during a collision attack (i.e., |C| = 5
N

�

X) might become small

enough to fully enumerate. Even so, practical difficulties

are still significant: a 16-byte (32-nibble) plaintext would

produce |C| > 2
64 possibilities.

Standard countermeasures against timing attacks include

constant-time execution, blinding, and chunking. Constant-

time execution is difficult to achieve in practice, difficult to

maintain (i.e., unpredictable changes may occur with CPU

firmware updates), and difficult to implement without a per-

formance penalty. Blinding incorporates a random element

into encryption so that the execution-time becomes uncor-

related with the plaintext or key, but also adds complexity

to the algorithm. Chunking (also called bucketing) breaks a

large, variable-length computation into fixed-length pieces

which are then returned at predetermined points in the exe-

cution cycle [35].

Chunking may be the most appropriate way to harden

PudgyTurtle against timing attacks. One idea, for exam-

ple, would be to always generate the same-sized ‘chunk’ of

keystream for each plaintext nibble, thus making execution

time independent of the failure-counter. Each encryption

cycle would then proceed as follows, assuming X
i
 is being

SN Computer Science (2020) 1:226 Page 21 of 23 226

SN Computer Science

encrypted with keystream starting at K
a
 generated from

KSG-state S
4a

 :

1. Generate 34 keystream nibbles Ka+j for j = 0, 1, 2,… , 33 ,

saving each nibble and its associated KSG-state;

2. Let (K
a
‖K

a+1
) be the mask;

3. Calculate h(Xi, Ka+j) for each 2 ≤ j ≤ 33;

4. Calculate d(Xi, Ka+j) for each 2 ≤ j ≤ 33;

5. Pick the first j ≥ 2 (call it j = u) for which the Ham-

ming-distance in Step 3 is ≤ 1;

6. Encode the match between X
i
 and K

a+u
 . If no match was

found (overflow event), then use 0xFF as the codeword;

7. Encrypt the codeword by XOR’ing it with the mask;

8. Let a ← u + 1 ; let i ← i + 1 ; and set the KSG-state to

saved state S
4(u+1)

9. Go to Step 1

Timing attacks are exquisitely dependent on the specific

hardware and software used to implement the cryptosys-

tem. Carrying out such an attack is beyond the scope of

this paper, and results would in any case be limited to one

particular set of implementation choices. We suggest this as

an important topic for future research.

The ‘chunking’ approach described here would keep KEF

and CEF the same, but would take longer to encrypt each

message. Specifically, let t
g
 be the time needed to generate

one keystream nibble; t
h
 the time required to calculate the

Hamming-distance between two 4-bit numbers; and t
d
 the

time it takes to calculate a discrepancy code. On average,

PudgyTurtle needs PT = 5.2tg + 3.2th + td time to encrypt

each plaintext nibble. With chunking, each encryption cycle

would need 34 keystream nibbles, 32 Hamming-distance cal-

culations, and 32 discrepancy code calculations, requiring

time PTchunk = 34tg + 32th + 32td.

Keystream generation takes longer than calculating

Hamming weights or discrepancy-codes, since the latter

two operations could be accomplished by small-sized table

lookup. Thus, we assume that t
h
= t

d
= x and t

g
= �x , where

� > 1 . From this, it follows that

Although chunking introduces an execution-time penalty,

it actually works better as the gap widens between t
g
 and

t
h
 (or t

d
). For example, PudgyTurtle with chunking would

run about 8.4 times slower when � = 2 ; but only 7 times

slower when � = 10 ; and just 6.6 times slower when � = 50

—approaching the limiting value of PT
chunk

 = 6.54 ×PT .

The exact value for � , of course, depends on hardware and

software implementation details.

PT
chunk

PT
=

34�x + 32x + 32x

5.2�x + 3.2x + x

=
34� + 64

5.2� + 4.2

Variability

Overflow events make it impossible to know the exact

ciphertext length until after encryption. For situations

involving fixed-length message fields, PudgyTurtle’s vari-

able output-size may be problematic. One solution would be

to allow space within a fixed-length string for either overflow

events or padding. For example, if L bits of plaintext produce

2L + b bits of PudgyTurtle ciphertext on average, users could

agree to use a fixed data-block size of, perhaps, 2L + 2b . In

the extremely rare case that this L-bit message required more

than 2b overflow bits, it would have to be rejected and re-

encrypted with a different key; otherwise, any of the 2b bits

not used to encode overflows would become padding (either

a predetermined pattern or random bits).

Not only is the ciphertext length variable, but so is the

total time needed for encryption. For many encryption appli-

cations (e.g., email, file storage), this may not be problem-

atic. For high-throughput, low-latency applications, however,

small fluctuations in the duration of the ‘crypto’ component

could potentially degrade overall system performance.

Conclusions

PudgyTurtle is a way to implement keystream-dependent,

variable-length encoding of plaintext before stream-encryp-

tion. In some ways, it resembles an encryption mode for

stream ciphers, in that its goal is to work along with existing

systems. PudgyTurtle is less efficient than normal stream-

cipher operation: it produces about twice as much ciphertext

and requires about five times as much keystream. However,

it is also more robust against TMDTO attacks.

The cryptographic literature contains other approaches

aimed at making TMDTO attacks against stream ciphers

harder, such as using error-correcting codes [32, 33, 40, 42]

and certain encryption modes [23, 24]. PudgyTurtle differs

from ECC-based systems in that it is not a randomized-

encryption protocol, and does not require an external noise

source. It differs from other stream cipher modes by focusing

on how keystream is used, rather than on the state-update,

re-synchronization, and initialization procedures.

Modified versions of the well-known Babbage–Golić

and Biryukov–Shamir time-memory-data tradeoff attacks

are proposed and tested against PudgyTurtle, and the extra

work required to cope with multiple ‘tentative keystreams’

and to reject false-alarms is quantified. For toy-cipher KSGs

with inner-states of up to 32 bits, our experiments suggest

that the number of realtime operations required for TMDTOs

against PudgyTurtle exceeds those predicted by the standard

BG- and BS-tradeoffs.

Of the two TMDTO attacks against PudgyTurtle, the

modified BG-attack did ‘better’ than the modified BS-attack

 SN Computer Science (2020) 1:226226 Page 22 of 23

SN Computer Science

(i.e., T̂
BG

∕T
BG

 exceeds 1 by less than T̂
BS
∕T

BS
 does). This is

of interest since the BS-attack is considered to be somewhat

more complex. While both new TMDTO attacks require

more work than their traditional counterparts, the modified

BS-attack also includes an ‘extra’ work-factor (multiple

tentative Hellman chains) not present in the modified BG-

attack. This scales up the number of table-searches from t2

to t2
× 2u , where 2u is the average number of tentative Hell-

man chains per model. This translates to factors of 112.6

(n=20; � = 12), 111.7 (n = 24 ; � = 15), and 125.5 (n = 28 ;

� = 19), explaining at least some of the relative inefficiency

of this attack.

Stream cipher security depends largely upon the details

and state-size of the underlying KSG. Since PudgyTurtle

works alongside existing ciphers, it is cipher-agnostic: we

do not recommend any particular KSG (cipher) over any

other. If PudgyTurtle makes TMDTO attacks harder, it then

becomes tempting to consider reducing KSG state-sizes.

However, we suggest that this is premature. TMDTOs

are just one cryptanalytic attack among many, and secu-

rity against this approach does not imply security against

all others. PudgyTurtle itself, or a cipher with which it is

used, may still be susceptible to other (non-TMDTO) meth-

ods of cryptanalysis. Therefore, we suggest a conservative

approach until more research into breaking PudgyTurtle

exists: maintain the state-sizes currently specified for exist-

ing KSG’s, even when using PudgyTurtle.

Acknowledgements The authors acknowledge Albert Mao, MD, PhD

for valuable comments regarding side-channel attacks, semantic secu-

rity, and efficiency issues, and Peter Smith, Emeritus Professor, Keele

University, UK for insights regarding output statistics of PudgyTurtle.

Funding No funding was received for this project

Compliance with Ethical Standards

 Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Agren M, Hell M, Johansson T, Meier W. Grain-128a: a new ver-

sion of Grain-128 with optional authentication. Int J Wire Mob

Comput. 2011;5(1):48–59.

 2. Amin Ghafari V, Hu H. Fruit-80: a secure ultra-lightweight stream

cipher for constrained environments. Entropy. 2018;20(3):180.

 3. Armknecht F, Mikhalev V. On lightweight stream ciphers with

shorter internal states. In: Fast software encryption—22nd inter-

national workshop, FSE 2015, Istanbul, Turkey, March 8–11,

2015, Revised selected papers; 2015. pp. 451–470

 4. Avoine G, Junod P, Oechslin P. Characterization and improvement

of time-memory trade-off based on perfect tables. ACM Trans Inf

Syst Secur. 2008;11(4):1–22.

 5. Babbage S. Improved “exhaustive search” attacks on stream

ciphers. In: European convention on security and detection, 1995,

Institution of Engineering and Technology; 1995. p. 161–166

 6. Barkan E, Biham E, Keller N. Instant ciphertext-only crypta-

nalysis of GSM encrypted communication. J Cryptol.

2008;21(3):392–429.

 7. Bellare M, Rogaway P. Encode-then-encipher encryption: how to

exploit nonces or redundancy in plaintexts for efficient cryptogra-

phy. In: Okamoto T (ed) Advances in cryptology—ASIACRYPT

2000. Lecture Notes in Computer Science, vol 1976, Springer,

London, UK; 2000. p. 317–30

 8. Berbain C, Gilbert H. On the security of IV dependent stream

ciphers. In: Biryukov A, editor. Fast software encryption. Berlin:

Springer; 2007. p. 254–73.

 9. Berlekamp E, McEliece R, Van Tilborg HC. On the inherent

intractability of certain coding problems. IEEE Trans Inf Theory.

1978;24(3):384–6.

 10. Bernstein DJ. Cycle counts for authenticated encryption. In:

Workshop record of SASC 2007: the state of the art of stream

ciphers; 2007. http://cr.yp.to/paper s.html#aescy cles. Accessed 25

Apr 2020.

 11. Biham E, Dunkelman O. Differential cryptanalysis in stream

ciphers. Cryptology ePrint Archive, Report 2007/218, 2007. https

://eprin t.iacr.org/2007/218

 12. Biryukov A, Shamir A. Cryptanalytic time/memory/data tradeoffs

for stream ciphers. In: Okamoto T, editor. Advances in cryptol-

ogy—ASIACRYPT 2000. Berlin: Springer; 2000. p. 1–13.

 13. Biryukov A, Shamir A, Wagner D. Real time cryptanalysis of

A5/1 on a PC. In: Goos G, Hartmanis J, van Leeuwen J, Schneier

B, editors. Fast software encryption. Berlin: Springer; 2001. p.

1–18.

 14. Cannière CD, Preneel BT. In: Billet O, Robshaw M, editors. New

stream cipher designs, vol. 4986. Lecture notes in computer sci-

ence. Berlin: Springer; 2008. p. 244–66.

 15. Dey S, Roy T, Sarkar S. Some results on fruit. Des Codes Cryp-

togr. 2019;87:349–64.

 16. Dinur I. An algorithmic framework for the generalized birthday

problem. Des Codes Cryptogr. 2019;87(8):1897–926.

 17. Dubrova E. A list of maximum period NLFSRs. IACR cryptol-

ogy ePrint archive. Report 2012/166; 2012. https ://eprin t.iacr.

org/2012/166. Accessed 25 Apr 2020.

 18. Dunkelman O, Keller N. Treatment of the initial value in time-

memory-data tradeoff attacks on stream ciphers. Inf Process Lett.

2008;107(5):133–7.

 19. Esgin MF, Kara O. Practical cryptanalysis of full sprout with TMD

tradeoff attacks. In: Dunkelman O, Keliher L (eds) Selected areas

in cryptography—SAC 2015—22nd international conference,

Sackville, NB, Canada, August 12–14, 2015, Revised selected

papers, Springer, Lecture notes in computer science, vol. 9566;

2015. p. 67–85

http://creativecommons.org/licenses/by/4.0/
http://cr.yp.to/papers.html#aescycles
https://eprint.iacr.org/2007/218
https://eprint.iacr.org/2007/218
https://eprint.iacr.org/2012/166
https://eprint.iacr.org/2012/166

SN Computer Science (2020) 1:226 Page 23 of 23 226

SN Computer Science

 20. Fossorier M, Mihaljević M, Imai H, Cui Y, Matsuura K. An algo-

rithm for solving the LPN problem and its application to security

evaluation of the HB protocols for RFID authentication. In: Barua

R, Lange T, editors. Progress in cryptology—INDOCRYPT 2006.

Lecture notes in computer science, vol. 4329. Berlin: Springer;

2006. p. 48–62.

 21. Gendrullis T, Novotný M, Rupp A. A real-world attack break-

ing A5/1 within hours. In: Oswald E, Rohatgi P, editors. Crypto-

graphic hardware and embedded systems—CHES 2008. Berlin:

Springer; 2008. p. 266–82.

 22. Golić JD. Cryptanalysis of alleged A5 stream cipher. In: Fumy

W, editor. Advances in cryptology—EUROCRYPT ’97. Berlin:

Springer; 1997. p. 239–55.

 23. Hamann M, Krause M. On stream ciphers with provable beyond-

the-birthday-bound security against time-memory-data tradeoff

attacks. Cryptogr Commun. 2018;10(5):959–1012.

 24. Hamann M, Krause M, Meier W. LIZARD—a lightweight stream

cipher for power-constrained devices. IACR Trans Sym Cryptol.

2017;1:45–79.

 25. Hellman M. An extension of the Shannon theory approach to

cryptography. IEEE Trans Inf Theory. 1977;23(3):289–94.

 26. Hellman M. A cryptanalytic time-memory trade-off. IEEE Trans

Inf Theor. 1980;26(4):401–6.

 27. Heys HM. Distributed time-memory tradeoff attacks on ciphers.

In: Susilo W, Yang G, editors. Information security and privacy.

Cham: Springer; 2018. p. 135–53.

 28. Hong J. The cost of false alarms in Hellman and rainbow tradeoffs.

Des Codes Cryptogr. 2010;57:293–327.

 29. Hong J, Moon S. A comparison of cryptanalytic tradeoff algo-

rithms. J Cryptol. 2013;26(4):559–637.

 30. Hong J, Sarkar P. New applications of time memory data trade-

offs. In: Roy B (ed) Advances in cryptology—ASIACRYPT 2005.

Lecture notes in computer science, vol 3788, Springer, Berlin,

Heidelberg; 2005. p. 353–72.

 31. Hong J, Jeong KC, Kwon EY, Lee IS, Ma D. Variants of the dis-

tinguished point method for cryptanalytic time memory trade-offs.

In: Chen L, Mu Y, Susilo W (eds) Information security practice

and experience ISPEC 2008. Lecture notes in computer science,

vol. 4991, Springer, Berlin; 2008. p. 131–45.

 32. Kara O, Erguler I. A new approach to keystream based crypto-

systems. In: The state of the art of stream ciphers: SASC 2008.

Workshop record; 2008. p. 205–21.

 33. Kara O, Erguler I, Anarim E. In: Proceedings of extended

abstracts, international conference on applied and computational

mathematics ICACM-2012. Ankara, Turkey: METU; 2012. p.

1–5.

 34. Kocher PC. Timing attacks on implementations of Diffie–Hell-

man, RSA, DSS, and other systems. In: Koblitz N (ed) Advances

in cryptology—CRYPTO 96. Lecture notes in computer science,

vol. 1109, Springer, London, UK; 1996. p. 104–13.

 35. Köpf B, Dürmuth M. A provably secure and efficient counter-

measure against timing attacks. In: 22nd IEEE computer security

foundations symposium, CSF’09; 2009. p. 324–35

 36. Lallemand V, Naya-Plasencia M. Cryptanalysis of full Sprout. In:

Gennaro R, Robshaw M (eds) Advances in cryptology–CRYPTO

2015, Part 1. Lecture notes in computer science, vol. 9215.

Springer, Berlin; 2015. p. 663–82.

 37. Lee GW, Hong J. Comparison of perfect table cryptanalytic trade-

off algorithms. Des Codes Cryptogr. 2012;80:473–523.

 38. Mahalanobis A, Shah J. An improved guess-and-determine attack

on the A5/1 stream cipher. Comput Inf Sci. 2014;7:115–24.

 39. Mantin I, Shamir A. A practical attack on broadcast RC4. In: Mat-

sui M, editor. Fast software encryption. Berlin: Springer; 2002. p.

152–64.

 40. McEliece RJ. A public-key cryptosystem based on algebraic cod-

ing theory. DSN progress report, Jet Propulsion Laboratory, Pasa-

dena, CA; 1978. p. 114–6.

 41. Mihaljevic MJ, Oggier FE, Imai H. Homophonic coding design

for communication systems employing the encoding-encryption

paradigm. 2010; CoRR. arXiv :1012.5895

 42. Mihaljević M, Imai H. An approach for stream ciphers design

based on joint computing over random and secret data. Comput-

ing. 2009;85:153–68.

 43. Mikhalev V, Armknecht F, Muller C. On ciphers that con-

tinually access the non-volatile key. IACR Trans Sym Cryptol.

2017;2016:52–79.

 44. Oechslin P. Making a faster cryptanalytic time-memory trade-off.

In: Boneh D, editor. Advances in cryptology—CRYPTO 2003.

Berlin: Springer; 2003. p. 617–30.

 45. Peikert C. Lattice cryptography for the internet. In: Mosca M, edi-

tor. Post-quantum cryptography: PQCrypto 2014. Lecture notes in

computer science, vol. 8772. Cham: Springer; 2014. p. 197–219.

 46. Peikert C. A decade of lattice cryptography. Found Trends® Theor

Comput Sci. 2016;10(4):283–424. https ://doi.org/10.1561/04000

00074 .

 47. Rivest RL, Sherman AT. Randomized encryption techniques. In:

Chaum D, Rivest RL, Sherman AT (eds) Advances in cryptology:

proceedings of crypto ’82. Springer, Boston; 1983. p. 145–63.

 48. Saarinen MJO. A time-memory tradeoff attack against LILI-128.

In: Daemen J, Rijmen V, editors. Fast software encryption. Berlin:

Springer; 2002. p. 231–6.

 49. Sarkar P. Modes of operations for encryption and authentication

using stream ciphers supporting an initialisation vector. Cryp-

tology ePrint archive. Report 2011/299; 2011. https ://eprin t.iacr.

org/2011/299. Accessed 25 Apr 2020.

 50. Shannon C. Communication theory of secrecy systems. Bell Syst

Tech J. 1949;28(4):656–715.

 51. Standaert FX, Rouvroy G, Quisquater JJ, Legat JD. A time-mem-

ory tradeoff using distinguished points: new analysis and FPGA

results. Revised papers from the 4th international workshop on

cryptographic hardware and embedded systems, CHES ’02.

Springer, Berlin; 2002. p. 593–609.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1012.5895
https://doi.org/10.1561/0400000074
https://doi.org/10.1561/0400000074
https://eprint.iacr.org/2011/299
https://eprint.iacr.org/2011/299

	PudgyTurtle: Using Keystream to Encode and Encrypt
	Abstract
	Introduction
	Stream-Cipher Cryptanalysis
	Coding and Cryptography
	Stream-Cipher Modes
	Outline

	Notation
	PudgyTurtle
	Overview
	Overflow Events
	Algorithmic Description
	Decryption
	Packet Systems

	Statistics
	Ciphertext Length
	Expansion Factors
	Testing

	Time Memory Tradeoffs
	Background
	TMDTO Attacks
	The BG-Attack
	The BS-Attack

	PudgyTurtle and Collision Attacks
	Tentative Keystream

	TMDTOs and PudgyTurtle
	Terminology
	Hamming-Weight Threshold
	First TMDTO Attack
	Adjusting the State
	Comparison to Traditional BG-Attack

	TMDTO Attack #2
	Variant Keystream Fragments and Tentative Hellman Chains
	Modified BS Attack
	Comparison to Traditional BS-Attack

	Quantifying the New TMDTO Attacks
	Implementing the TMDTO Attacks
	Modified BG Attack
	Experiment 1: Contrived Plaintexts
	Experiment 2: Hamming-Weight Threshold
	Experiment 3. How Successful is TMDTO Attack #1?
	Experiment 4. Scaling the Modified BG-Attack

	Modified BS Attack

	Limitations of PudgyTurtle
	Plaintext–Ciphertext Mismatch
	Side-Channel Attacks
	Variability

	Conclusions
	Acknowledgements
	References

