
PUFKY: A Fully Functional PUF-Based
Cryptographic Key Generator

Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede

KU Leuven Dept. Electrical Engineering-ESAT/SCD-COSIC and IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{roel.maes,anthony.vanherrewege,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. We present PUFKY: a practical and modular design for a
cryptographic key generator based on a Physically Unclonable Func-
tion (PUF). A fully functional reference implementation is developed
and successfully evaluated on a substantial set of FPGA devices. It uses
a highly optimized ring oscillator PUF (ROPUF) design, producing re-
sponses with up to 99% entropy. A very high key reliability is guaran-
teed by a syndrome construction secure sketch using an efficient and
extremely low-overhead BCH decoder. This first complete implementa-
tion of a PUF-based key generator, including a PUF, a BCH decoder and
a cryptographic entropy accumulator, utilizes merely 17% (1162 slices) of
the available resources on a low-end FPGA, of which 82% are occupied by
the ROPUF and only 18% by the key generation logic. PUFKY is able to
produce a cryptographically secure 128-bit key with a failure rate < 10−9

in 5.62 ms. The design’s modularity allows for rapid and scalable adapta-
tions for other PUF implementations or for alternative key requirements.
The presented PUFKY core is immediately deployable in an embedded
system, e.g. by connecting it to an embedded microcontroller through a
convenient bus interface.

Keywords: Physically Unclonable Functions (PUFs), Cryptographic
Key Generation, Fuzzy Extractors.

1 Introduction

An indispensable premise for the majority of cryptographic implementations is
the ability to securely generate, store and retrieve keys. The required effort to
meet these conditions is often underestimated in the algorithmic description of
cryptographic primitives. The minimal common requirements for a secure key
generation and storage are i) a source of true randomness that ensures unpre-
dictable and unique fresh keys, and ii) a protected memory which reliably stores
the key’s information while shielding it completely from unauthorized parties.
From an implementation perspective, both requisites are non-trivial to achieve.
The need for unpredictable randomness is typically filled by applying a seeded
pseudo-random bit generator (PRNG). However, the fact that such generators
are difficult to implement properly was just recently made clear again by the ob-
servation [13] that a large collection of “random” public RSA keys contains many

E. Prouff and P. Schaumont (Eds.): CHES 2012, LNCS 7428, pp. 302–319, 2012.
© International Association for Cryptologic Research 2012

PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator 303

pairs which share a prime factor, which is immediately exploitable. Implement-
ing a protected memory is also a considerable design challenge, often leading to
increased implementation overhead and restricted application possibilities, to en-
force the physical security of the stored key. Countless examples can be provided
of broken cryptosystems due to poorly designed or implemented key storages, or
bad handling of keys. Moreover, even high-level physical protection mechanisms
are often not sufficient to prevent well-equipped and motivated adversaries from
discovering stored secrets [24, 25].

PUF-based key generators try to tackle both requirements at once by harvest-
ing static, device-unique randomness and processing it into a cryptographic key.
This avoids the need for both a PRNG, since the randomness is already intrin-
sically present in the device, and the need for a protected non-volatile memory,
since the used randomness is static over the lifetime of the device and can be
measured again and again to regenerate the same key from otherwise illegible
random features. Since PUF responses are generally noisy and of low-entropy,
a PUF-based key generator faces two main challenges: increasing the reliability
to a practically acceptable level and compressing sufficient entropy in a fixed
length key. Fuzzy extractors [7] perform exactly these two functions and can be
immediately applied for this purpose, as suggested in a number of earlier PUF
key generator proposals. In [10], Guajardo et al. propose to use an SRAM PUF
for generating keys, using a fuzzy extractor configuration based on linear block
codes. This idea was extended and optimized by Bösch et al. [4] who propose
a concatenated block code configuration, and Maes et al. [14] who propose to
use a soft-decision decoder. Yu et al. [28] propose a configuration based on ring
oscillator PUFs and apply an alternative error-correction method.

Contribution. Our main contribution is a highly practical PUF-based crypto-
graphic key generator design (PUFKY), and an efficient yet fully functional
FPGA reference implementation thereof. The proposed design comprises a num-
ber of major contributions based on new insights: i) we propose a novel variant
of a ring oscillator PUF based on very efficient Lehmer-Gray order encoding;
ii) we abandon the requirement of information-theoretical security in favor of
a much more practical yet still cryptographically strong key generation; iii) we
counter the widespread belief that code-based error-correction, BCH decoding in
particular, is too complex for efficient PUF-based key generation, by designing a
highly resource-optimized BCH decoder; and iv) we present a global optimization
strategy for PUF-based key generators based on well-defined design constraints.

Structure. In Section 2 we provide necessary background information on the
individual elements of the proposed key generator. Section 3 describes the de-
sign stage, putting all these elements together in the PUFKY architecture and
Section 4 provides concrete results on an optimized reference implementation of
the proposed PUF and the full PUFKY design. In Section 5, we discuss some
interesting details of our design and hint at possible future improvements and
applications. Finally, we conclude in Section 6.

304 R. Maes, A. Van Herrewege, and I. Verbauwhede

2 Background

2.1 Notation

We briefly introduce the notational conventions used throughout this work. A
random variable is denoted by a capital letter X and a particular outcome thereof
by a lower case letter x. A vector of length n is written as Xn = (X1, . . . , Xn) and
HW(Xn) is the Hamming weight of Xn. A matrix is represented by a bold faced
symbol A. H(X) is the Shannon entropy of the random variable X and H∞(X) is
its min-entropy. For a random binary vector Xn ∈ {0, 1}n, we respectively define
R(Xn) ≡ H(Xn)

n and R∞(Xn) ≡ H∞(Xn)
n . By Bn,p(t) we denote the binomial

cumulative distribution function with parameters n and p evaluated in t, and
B−1

n,p(q) is its inverse. By C(n, k, t) we denote a binary block code of length n,
dimension k and minimal distance 2t + 1 which is hence able to correct up to
t bit errors. When C(n, k, t) is linear it is defined by a generator and a parity-
check matrix, respectively denoted by Gk×n and Hn−k×n, satisfying the property
GHT = 0.

2.2 Physically Unclonable Functions (PUFs)

PUFs are hardware primitives which produce unpredictable and instantiation-
dependent outcomes. A silicon PUF is implemented on a silicon chip and uses the
intrinsic device randomness caused by chip manufacturing process variations to
generate a device-unique response. Due to their physical nature, PUF responses
are generally not perfectly reproducible (noisy) and not perfectly random. If
we consider the response of a particular PUF instance as a binary vector Xn,
the unreliability is expressed by the expected bit error rate between two evalua-
tions xn and x′n of the same response: Pr(xi �= x′

i). The entropy density R(Xn)
of a response expresses its relative amount of randomness. We will refer to a
PUF with a maximal bit error rate pe and an entropy density of at least ρ as a
(pe, ρ)-PUF.

A Ring Oscillator PUF (ROPUF) is a silicon PUF which generates a re-
sponse based on the frequencies of on-chip digital ring oscillators. Since the exact
frequency of a such oscillators is noticeably affected by process variations, an ac-
curate measurement thereof will contain unpredictable and device-unique infor-
mation. The first concept of a ROPUF was proposed by Gassend et al. [9], based
on a single configurable oscillator. Concerns about predictability and robustness
led to the proposal of an improved ROPUF structure by Suh and Devadas [23],
which uses a number of fixed oscillators and considers the relative frequencies of
oscillator pairs instead of their absolute values. Yin and Qu [27] further explored
this technique by considering the frequency ordering of larger groups of oscilla-
tors which is able to produce longer bit responses. Maiti et al. [15] performed an
extensive characterization of ROPUFs on a large FPGA population, justifying
their qualities as silicon PUFs.

PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator 305

2.3 Secure Sketching
The notion of a secure sketch was proposed by Dodis et al. [7] and provides a
method to reliably reconstruct the outcome of a noisy variable in such a way that
the entropy of the outcome remains high. A number of possible constructions
based on error-correcting codes was also proposed in [7]. In this work, we will
focus on the syndrome construction for binary vectors.

We describe the operation of a syndrome construction secure sketch which
uses a binary linear block code C(n, k, t) with parity-check matrix H. The sketch
procedure takes as input an outcome of Xn → xn and produces a sketch hn−k =
xnHT . The recovery procedure takes as input a different (possibly noisy) outcome
of Xn → x′n(= xn ⊕ en with en a bit error vector) and the previously generated
sketch hn−k, and calculates the syndrome sn−k = x′nHT ⊕ hn−k. Because of the
linearity of the code, it is easy to show that sn−k ≡ enHT . If HW(en) ≤ t then
en can be decoded from sn−k, which is equivalent to a decoding operation for
C(n, k, t), and xn can be recovered as xn = x′n ⊕ en.

The sketch hn−k needs to be stored in between sketching and recovering. The
key point is that knowledge of hn−k does not fully disclose the entropy of Xn, but
at most n−k bits thereof. This means that hn−k can be stored and communicated
publicly and there will still be at least H(Xn)− (n−k) bits of entropy left in Xn.
In the setting of cryptographic key generation, the term helper data is used to
refer to such public information which is produced by the initial key extraction
and used by subsequent key regenerations.

The design parameters of the syndrome construction are mainly determined
by the selection of an appropriate linear block code C(n, k, t). In order to yield a
meaningful secure sketch, C(n, k, t) needs to meet some constraints determined
by the available (pe, ρ)-PUF and by the required remaining entropy m and re-
liability 1 − pfail of the output of the secure sketch. These constraints are listed
in the first column of Table 1. The practicality constraint restricts the possible
codes to ones for which a practical decoding algorithm exists. The rate and cor-
rection constraints further bound the possible code parameters as a function of
the available input (pe, ρ) and the required output (m, pfail). They respectively
express the requirement of not disclosing the full entropy of the PUF through
the helper data, and the minimally needed bit error correction capacity in order
to meet the required reliability. Bösch et al. [4] demonstrated that code concate-
nation offers considerable advantages when used in secure sketch constructions.
Notably the use of a simple repetition code as an inner code significantly relaxes
the design constraints. The parameter constraints for a syndrome construction
based on the concatenation of a repetition code C1(n1, 1, t1 = n1−1

2) as an inner
code and a second linear block code C2(n2, k2, t2) as an outer code, are given in
the second column of Table 1.

2.4 BCH Decoding
BCH codes are particularly performant cyclical linear block codes for which ef-
ficient error-decoding algorithms exist. A binary BCH code CBCH(nBCH , kBCH , tBCH)

306 R. Maes, A. Van Herrewege, and I. Verbauwhede

Table 1. Parameter constraints for the syndrome construction of secure sketches, de-
pending on the type of code construction used

C(n, k, t) C2(n2, k2, t2) ◦ C1(n1, 1, t1 = n1−1
2)

Practicality C(n, k, t) is C2(n2, k2, t2) is
efficiently decodable efficiently decodable

Rate k
n

> 1 − ρ k2
n1n2

> 1 − ρ

Correction
t ≥ B−1

n,pe

(
(1 − pfail)

1
r

)
, t2 ≥ B−1

n2,1−p′
e

(
(1 − pfail)

1
r

)
,

with r = � m
k−n(1−ρ) � with p′

e = 1 − Bn1,pe(t1)
r = � m

k2−n1n2(1−ρ) �

is defined for nBCH = 2u−1, but BCH codes of any code length can be constructed
by also considering shortened versions: CBCH(nBCH − v, kBCH − v, tBCH).

Decoding a BCH syndrome into the most-likely bit error vector is typically
performed in three steps. First, so called syndrome evaluations zi are calculated
by evaluating the syndrome sn−k as a polynomial for α, . . . , α2tBCH , with α a
generator for F2u . The next step is using these zi to generate an error location
polynomial Λ. This is generally accomplished with the Berlekamp-Massey (BM)
algorithm. First published by Berlekamp [2] and later optimized by Massey [16],
this algorithm requires the inversion of an element in F2u in each of its 2tBCH

iterations. In order not to have to do this costly calculation, many authors have
come up with modified versions of the algorithm, e.g. [20–22]. However, these are
all time-memory tradeoffs of the original inversionless BM algorithm by Burton
[5], which we prefer due to its lower storage requirements. Finally, by calculating
the roots of Λ, one can find the error vector en. This is done with the Chien
search algorithm [6] by evaluating Λ for α, . . . , αtBCH . If Λ evaluates to zero for
αi then the corresponding error bit enBCH −i = 1.

2.5 Cryptographic Key Generation

To ensure their unpredictability, cryptographic keys should be generated from
a random source. Recommendations for appropriate sources and best practice
extraction methods can be found, e.g. in [1, 8, 12], and are used heavily in prac-
tical implementations. In addition to these best practice methods, strong ex-
tractors [18] have been proposed as unconditionally secure extractors of uniform
randomness. However they generally induce a large entropy loss, i.e. the output
length is much smaller than the entropy of the input, which is undesirable since
high-entropy randomness is scarce in most implementations. To generate reli-
able keys from noisy non-uniform sources like PUFs, Dodis et al. [7] introduced
the concept of a fuzzy extractor. This is basically a concatenation of a secure
sketch, as described in Sect. 2.3, with a strong extractor and is able to generate
information-theoretically secure keys. To obtain this very high security level, one

PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator 307

still has to make a strong assumption about the min-entropy of the randomness
source, which is often impossible. Moreover, due to the use of a strong extractor,
large entropy losses need to be taken into account here, which often makes the
overall key generation very impractical1.

Another approach is considered in key generation based on PRNGs seeded
from an entropic source, as described in [1, 8, 12]. Such generators obtain their
initial internal state by accumulating entropy from a, usually low-quality, entropic
source using an entropy accumulation function. In [1, Sect. 10.4], constructions
for entropy accumulators based on a generic cryptographic hash function or a
block cipher are provided. Kelsey et al. [12] also strongly recommend a cryp-
tographic hash function for this purpose. Following this motivation, we opt for
a hash function to accumulate entropy in our design. The amount of data to
be accumulated to reach a sufficient entropy level, depends on the (estimated)
entropy rate of the considered source. For PRNGs which produce large quanti-
ties of output data, the source entropy estimates are usually very conservative.
For PUFs, entropy comes at a high implementation cost and being too conser-
vative leads to an excessively large overhead. For this reason we are forced to
consider relatively tight estimates on the remaining entropy in a PUF response
after secure sketching. On the other hand, the output length of a PUF-based key
generator is very limited (a single key) compared to PRNGs. In any case, the
total amount of entropy which needs to be accumulated should at least match
the length of the generated key.

3 Design

3.1 PUFKY Architecture

The top-level architecture of our PUFKY PUF-based key generator is shown
in Fig. 1. As a PUF, we use an ROPUF which produces high-entropy outputs
based on the frequency ordering of a selection of ring oscillators, as described
in Section 3.2. To account for the bit errors present in the PUF response, we
use a secure sketch construction based on the concatenation of two linear block
codes, a repetition code CREP(nREP , 1, nREP −1

2) with nREP odd and a BCH code
CBCH(nBCH , kBCH , tBCH). The design of the syndrome generation and error decoder
blocks used in the secure sketching is described in Section 3.3. To accumulate
the remaining entropy after secure sketching, we apply the recently proposed
light-weight cryptographic hash function SPONGENT [3].

3.2 ROPUF Design

Our ROPUF design is inspired by the design from Yin and Qu [27] which generates
a response based on the frequency ordering of a set of oscillators. A measure of the
frequency of an oscillator is obtained by counting the number of oscillations in a
1 In earlier work on PUF-based key generation with fuzzy extractors, e.g. [4, 10, 14],

the additional entropy loss by the strong extractor is ignored and the resulting keys
can not be considered information-theoretically secure.

308 R. Maes, A. Van Herrewege, and I. Verbauwhede

Helper data R/W

ROPUF

REP
Syndrome

Generation

BCH
Syndrome

Generation

CREP
Error

Correction

CBCH
Error

Correction

Repetition code secure sketch BCH code secure sketch

BCH helper data in/out

Entropy
Accumulator
(Cryptographic

Hash)

REP helper data in/out

T
REPH T

BCHH

Key out

Controller
Control

RAM
Helper Data

Application
Interface:

Fig. 1. PUFKY: PUF-based cryptographic key generator architecture

fixed time interval. To amortize the overhead of the frequency counters, oscillators
are ordered in b batches of a oscillators sharing a counter. In total, our ROPUF
design contains b × a oscillators of which sets of b can be measured in parallel. The
measurement time is determined as a fixed number of cycles of an independent on-
chip ring oscillator and is fixed at 87 µs. After some post-processing, an �-bit re-
sponse is generated based on the relative ordering of b simultaneously measured
frequencies. A total of a × �-bit responses can be produced by the ROPUF in this
manner. Note that, to ensure the independence of different responses, each oscilla-
tor is only used for a single response generation. The architecture of our ROPUF
design is shown in Fig. 2.

... ... ++

... ... ++

... ... ++

...
...

ROM
Normalisation

Terms

Lehmer-
Gray

Encoder

Entropy
Compression

Normalize

1F

2F

bF

bF Y

a

b X

Fig. 2. ROPUF architecture

Encoding the ordering of b frequency measurements F b = (F1, . . . , Fb) in an
�-bit response X� = (X1, . . . , X�), turns out to be the main design challenge
for this type of ROPUF. As discussed in Section 2.3, the quality of the PUF
responses, expressed by (pe, ρ), will be decisive for the design constraints of the
secure sketch, and by consequence for the key generator as a whole. The details of

PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator 309

the post-processing will largely determine the final values for (pe, ρ). We propose
a three-step encoding for F b → X�:

1. Frequency Normalization: remove structural bias from the measurements.
2. Order Encoding: encode the normalized frequency ordering to a stable bit

vector in such a way that all ordering entropy is preserved.
3. Entropy Compression: compress the order encoding to maximize the entropy

density without significantly increasing the bit error probability.

Frequency Normalization. Only a portion of a measured frequency Fi will be ran-
dom, and only a portion of that randomness will be caused by the effects of pro-
cess variations on the considered oscillator. The analysis from [15] demonstrates
that Fi is subject to both device-dependent and oscillator-dependent structural
bias. Device-dependent bias does not affect the ordering of oscillators on a single
device, so we will not consider it further. Oscillator-dependent structural bias
on the other hand is of concern to us since it has a potentially severe impact
on the randomness of the frequency ordering. From a probabilistic viewpoint, it
is reasonable to assume the frequencies Fi to be independent, but due to the
oscillator-dependent structural bias we can not consider them to be identically
distributed since each Fi has a different expected value μFi . The ordering of Fi

will be largely determined by the deterministic ordering of μFi and not by the
effect of random process variations on Fi. Fortunately, we are able to obtain an
accurate estimate μ̃Fi of μFi by averaging Fi over many measurements on many
devices. Subtracting this estimate from the measured frequency gives us a nor-
malized frequency F ′

i = Fi − μ̃Fi . Assuming μ̃Fi ≈ μFi , the resulting normalized
frequencies F ′

i will be independent and identically distributed (i.i.d.). Calculat-
ing μ̃Fi needs to be performed only once for a single design after the oscillator
implementations are fixed, preferably over an initial test batch of ROPUF in-
stances. When these normalization terms are known with high accuracy, they
are included in the design, e.g. using a ROM.

Order Encoding. Sorting a vector F ′b of normalized frequencies, e.g. in ascend-
ing order, amounts to rearranging its elements in one of b! possible ways. The
goal of the order encoding step is to produce an �′-bit vector Y �′ which uniquely
encodes the ascending order of F ′b. Since the elements of F ′b are i.i.d., each
of the b! possible orderings is equally likely to occur [26], leading to H(Y �′) =
log2 b! =

∑b
i=2 log2 i. An optimal order encoding has a high entropy density but

a minimal sensitivity to noise on the F ′
i values. We propose a Lehmer encoding

of the frequency ordering, followed by a Gray encoding of the Lehmer coeffi-
cients. A Lehmer code is a unique numerical representation of an ordering which
is moreover efficient to obtain since it does not require explicit value sorting. It
represents the sorted ordering of F ′b as a coefficient vector Lb−1 = (L1, . . . , Lb−1)
with Li ∈ {0, 1, . . . , i}. It is clear that Lb−1 can take 2 × 3 × . . . × b = b! possible
values which is exactly the number of possible orderings. The Lehmer coefficients
are calculated from F ′b as Lj =

∑j
i=1 gt(F ′

j+1, F ′
i), with gt(x, y) = 1 if x > y and

310 R. Maes, A. Van Herrewege, and I. Verbauwhede

0 otherwise. The Lehmer encoding has the nice property that a minimal change
in the sorted ordering caused by two neighboring values swapping places only
changes a single Lehmer coefficient by ±1. Using a binary Gray encoding for the
Lehmer coefficients, this translates to only a single bit difference as preferred.
The length of the binary representation becomes �′ =

∑b
i=2	log2 i
 yielding

R
(

Y �′
)

=
∑

b

i=2
log2 i∑b

i=2
�log2 i� which is close to optimal.

Entropy Compression. R
(

Y �′
)

is already quite high, but can be increased further
by compressing it to X� with � ≤ �′. Note that Y �′ is not quite uniform over
{0, 1}�′ since some bits of Y �′ are biased and/or dependent. This results from
the fact that most of the Lehmer coefficients, although uniform by themselves,
can take a range of values which is not an integer power of two, leading to a
suboptimal binary encoding. We propose a simple compression by selectively
XOR-ing bits from Y �′ which suffer the most from bias and/or dependencies,
leading to an overall increase of the entropy density. Note that XOR-compression
potentially also increases the bit error probability, but at most by a factor �′

� .

3.3 Syndrome Generation and Error Decoding for CREP and CBCH

Repetition Code CREP. The syndrome generation of xnREP consists of pairwise
XOR-ing x1 with each remaining bit of xnREP , or hi = x1⊕xi+1. Error decoding is
based on a Hamming weight check of the syndrome snREP −1, which immediately
yields the value for the first error bit e1. The remaining error bits are again
obtained by a pairwise XOR of e1 with each of the syndrome bits, but this
step is discarded in the syndrome construction. In our design, both syndrome
generation and error decoding of a repetition code are fully combinatorial.

BCH Code CBCH . Since BCH codes are cyclical codes, their syndrome genera-
tion is a finite field division by the code’s generator polynomial. This is efficiently
implemented in hardware as an LFSR evaluation of length (nBCH − kBCH).

The error decoding step of a BCH code is more complex and requires the
largest design effort of all elements in our secure sketch. Most BCH decoders
are designed with a focus on throughput and use systolic array designs, e.g. [19,
20, 22]. Aiming for a size-optimized implementation, we propose a serialized,
minimalistic coprocessor design with a 10-bit application-specific instruction
set and limited conditional execution support. Although highly optimized to-
wards BCH decoding, the architecture is generic in the sense that it can decode
any BCH code, including shortened versions, requiring only a slight change of
firmware and memory size. The datapath consists of two blocks: an address and
a data block. To optimize array indexing, all addressing is done indirectly using
a five element address RAM, which is efficiently updated by a dedicated address
ALU. The output of the address RAM is directly connected to the data RAM.

PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator 311

Data
RAM

Address
RAM

ROM
Instruction

Decoder/FSM

data

addr

F2u ALU

Z ALU

⊗ ⊕ D

±

x

Fig. 3. BCH decoder architecture

The data block consists of data RAM and an ALU which is used mainly for
multiply-accumulate operations over F2u . To minimize the size, this ALU con-
tains only a single register. All other necessary operands come directly from the
data RAM. A high-level overview of the coprocessor architecture is shown in
Fig. 3.

BCH error decoding is done in the three steps elaborated in Section 2.4. A
listing of each used algorithm and their approximate runtimes can be found in
Appendix A. The performance of the algorithm execution is heavily optimized
using branch removal and loop unrolling. The coprocessor’s instruction set can
be found in Appendix B.

4 Implementation

We now present the implementation results of our PUFKY design as described
in Section 3. The implementation was synthesized, configured and tested on a
Xilinx® Spartan®-6 FPGA (XC6SLX45) which is a low-end FPGA in 45 nm
technology, specifically targeted for embedded system solutions.

4.1 PUF Implementation and Characterization
We first test our ROPUF implementation separately to obtain its quality param-
eters (pe, ρ). This characterization also produces the μ̃Fi normalization terms
required in the final key generator implementation as detailed in Section 3.2.

312 R. Maes, A. Van Herrewege, and I. Verbauwhede

We configured and tested exactly the same PUF implementation on 10 identical
FPGAs, using an ROPUF design with b = 16 batches of a = 64 oscillators each.

The frequency measurements are outputted directly and we perform all post-
processing described in Section 3.2 offline, using Matlab2. To characterize
the noise, the frequency of every loop is measured 25 times. For the moment
we don’t consider entropy compression, so the PUF response X� has length
� = �′ =

∑b
i=2	log2 i
 = 49 bits with an assumed entropy of H(X�) = H(Y �′) =

log2 b! = 44.25 bits, yielding an entropy density of ρ = 90.31%. In Fig. 4(a),
the inter- and intra-distance histogram plots of these responses are presented.
The average inter-distance between responses on different devices is about 23.7
in 49 bits or about 48.4%. The small deviation from the ideal of 50% is repre-
sentative for the responses only having 90% entropy. At room temperature, the
average intra-distance between measurements of the same response on a single
device is just below 1 in 49 bits or merely 2.0%. ROPUFs are known to become
more unstable under temperature changes. To estimate this effect, we performed
a rough temperature test using a thermoelectric element to heat the FPGA’s
die temperature to about 80◦C and cool it to about 10◦C. We measured the
intra-distances with respect to a room temperature reference. We also studied
the effect of the XOR-compression on the ROPUF’s response robustness, by
compressing the response lengths to � = 42 (ρ becomes 97.95%) and � = 40
(ρ becomes 98.78%). Fig. 4(b) shows the effect of both temperature and XOR-
compression on the average bit error probability. Heating the FPGA die has
the most severe impact on the stability of the ROPUF’s responses. As expected,
XOR-compression also slightly increases the bit error probability, approximately
by a factor �′

� . Taking into account a 2% safety margin on the observed bit error
rates, our ROPUF implementation yields a (pe = 12%, ρ = 90.31%)-PUF for
� = 49, or a (13%, 97.95%)-PUF for � = 42, or a (14%, 98.78%)-PUF for � = 40.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

differing bits out of 49

fr
eq

ue
nc

y

Intra−distance histogram

Inter−distance histogram

Fitted intra−distance
binomial distribution

Fitted inter−distance
binomial distribution

(a) Inter- and intra-distance histogram
plots at room temperature, for � = 49.

Cooled Room Temp Heated
0

0.02

0.04

0.06

0.08

0.1

0.12

Temperature Conditions

A
ve

ra
ge

 b
it

 e
rr

or
 p

ro
ba

bi
lit

y

� = 49 (ρ = 90.31%)

� = 42 (ρ = 97.95%)

� = 40 (ρ = 98.78%)

(b) Scaling of pe under heating/cooling and
entropy compression to � = 42 and � = 40.

Fig. 4. Characterization of our ROPUF implementation

2 In the final PUFKY implementation, all post-processing is done on the device.

PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator 313

4.2 Full Key Generator Implementation

Now we can start optimizing the full PUFKY design according to the constraints
as expressed in Section 2.3. The main cost variable for implementation size is the
number of required oscillators (a × b), and for performance the number of errors
the BCH decoder needs to correct (tBCH). Since we target embedded systems,
we aim for an as small as possible implementation at a practically acceptable
performance. The optimization parameters depend on our ROPUF, expressed
by the triplet (�, pe, ρ) for which concrete values are provided at the end of
Section 4.1, and on the requirements for the generated key, expressed by (m, pfail).
For our reference implementation, we aim for a key length m = 128 with failure
rate pfail ≤ 10−9. After a thorough exploration of the design space with these
parameters, we converge on the following PUFKY reference implementation:

– We select the (pe = 13%, ρ = 97.95%)-ROPUF variant with � = 42, imple-
menting b = 16 batches of a = 53 oscillators each.

– A secure sketch applying a concatenation of CREP(7, 1, 3) and CBCH(318, 174, 17).
The repetition block generates 36 bits of helper data for every 42-bit PUF
response and outputs 6 bits to the BCH block. The BCH block generates
144 bits of helper data once and feeds 318 bits to the entropy accumulator.

– The ROPUF generates in total a×� = 2226 bits containing a×�×ρ = 2180.4
bits of entropy. The total helper data length is 53 × 36 + 144 = 2052. The
remaining entropy after secure sketching is at least 2180.4 − 2052 = 128.4
bits which are accumulated in an m = 128-bit key by a SPONGENT-128
hash function implementation.

The total size of our PUFKY reference implementation for the considered FPGA
platform is 1162 slices, of which 82% is taken up by the ROPUF block. Table 2(a)
lists the size of each submodule used in the design. The total time spend to
extract the 128-bit key is approximately 5.62 ms (at 54 MHz). Table 2(b) lists
the number of cycles spend in each step of the key extraction.

Table 2. Area consumption and runtime of our reference PUFKY implementation on
a Xilinx Spartan-6 FPGA. Due to slice compression and glue logic the sum of module
sizes is not equal to total size. The PUF runtime is independent of clock speed.

(a) Area consumption

Module Size [slices]

ROPUF 952
REP decoder 37
BCH syndrome calc. 72
BCH decoder 112
SPONGENT-128 22
helper data RAM 38

Total 1162

(b) Runtimes

Step of extraction Time [cycles]

PUF output 4.59 ms
REP decoding 0
BCH syndrome calc. 511
BCH decoding 50320
SPONGENT hashing 3990
control overhead 489

Total @ 54 MHz 5.62 ms

314 R. Maes, A. Van Herrewege, and I. Verbauwhede

5 Discussion

5.1 Some Notes on Security

Our reference PUFKY implementation uses a best-practice entropy accumula-
tion function based on a cryptographically secure hash to generate a key from an
amount of entropic data, instead of an information-theoretically secure fuzzy ex-
tractor. The large majority of currently existing key generators based on PRNGs
also use the best-practice cryptographic approach. We note that, due to the mod-
ularity of the PUFKY design, it is possible to obtain an information-theoretically
secure extraction with minor replacements: i) one needs to consider min-entropy
instead of Shannon entropy in all design constraints, ii) one needs to replace
the entropy accumulation function by a strong extractor, and iii) one needs to
collect more (min-)entropy than the key length to account for the additional
losses induced by the strong extractor. Note that all three changes do come at a
rather large implementation overhead, which is the cost one pays for obtaining
information-theoretical security.

From a physical security perspective, PUFs and PUF-based key generators
can be assumed, like any implementation of a cryptographic primitive, to be
vulnerable to side-channel attacks when no appropriate countermeasures are
taken, see e.g. [11, 17]. Since our PUFKY reference implementation is a fully
functional PUF-based key generator, it is the ideal test subject for side-channel
analysis to identify and protect against possible side-channel leakages in a next
version. Such analysis is a logical future work which we are considering. In this
light, we do want to mention the inherent side-channel resistance of the error
decoding blocks in syndrome-construction secure sketches. This results from the
fact that no data processed by these blocks contains any information about the
PUF output nor about the extracted key, but only about the public syndrome
and the error on the PUF output.

5.2 Application Possibilities

The key generated by our PUFKY key generator can basically be used in any
conceivable key-based security application. In its current form, the reference im-
plementation produces cryptographically strong 128-bit keys with a failure rate
< 10−9, but similar implementations for other key parameters (or alternative
PUF designs) can be produced rapidly based on our modular PUFKY archi-
tecture. Using a PUF-based key offers a number of advantages over traditional
key generation, the most noteworthy being: i) one does not need protected non-
volatile memory to permanently store the key since it can be regenerated at any
time, and ii) the key is intrinsically bound to a particular platform instantia-
tion which is very useful, e.g. in anticounterfeiting or HW/SW binding appli-
cations. We note that both advantages are of particular interest in the context
of an FPGA-based embedded system. To demonstrate the ease of integrating a
PUFKY implementation in an embedded design, we developed a bus wrapper

PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator 315

and a software driver for connecting it to a Xilinx® MicroBlaze® embedded pro-
cessor. The PUFKY interface then becomes as simple as calling the driver’s
getKey() function from one’s embedded software application.

6 Conclusion

Developing a PUF-based cryptographic key generator is a process involving many
parameters, constraints and trade-offs. In this work, we identified and formalized
the generic design constraints and integrated them in a practical key generator
design. We propose a complete implementation of this design based on a ring-
oscillator PUF, a specialized error-correcting BCH decoder and a cryptographic
entropy accumulator. Our ring-oscillator PUF produces high-entropy responses
(up to 99%) based on actual physical randomness. The proposed BCH decoder
design is very efficient and scalable, yet occuppies only a minimal amount of re-
sources. As our implementation results demonstrate, the induced overhead of this
BCH decoder in a PUF based key generator is certainly justifiable. Finally, the
choice for a cryptographic entropy accumulator, motivated by their wide-spread
use in PRNG based key generators, offers a considerable efficiency gain compared
to the much more stringent design constraints for information-theoretically se-
cure key extraction. Due to its completeness and efficieny, our PUFKY reference
implementation is the first PUF-based key generator to be immediately deploy-
able in an embedded system.

Acknowledgements. This work was supported in part by the Research Council
KU Leuven: GOA TENSE (GOA/11/007),by the IAP Programme P6/26 BCRYPT
of the Belgian State (Belgian Science Policy) and by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II. In ad-
dition, this work was supported by the Flemish Government, FWO G.0550.12N
and by the European Commission through the ICT programme under contract
FP7-ICT-2011-284833 PUFFIN and FP7-ICT-2007-238811 UNIQUE. Roel Maes
is funded by a research grant (073369) of the Institute for the Promotion of Inno-
vation through Science and Technology in Flanders (IWT-Vlaanderen).

References

[1] Barker, E., Kelsey, J.: Recommendation for Random Number Generation Using
Deterministic Random Bit Generators. NIST Special Publication 800-90A (Jan-
uary 2012),
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

[2] Berlekamp, E.: On Decoding Binary Bose-Chadhuri-Hocquenghem Codes. IEEE
Transactions on Information Theory 11(4), 577–579 (1965)

[3] Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

316 R. Maes, A. Van Herrewege, and I. Verbauwhede

[4] Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient Helper
Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

[5] Burton, H.: Inversionless Decoding of Binary BCH codes. IEEE Transactions on
Information Theory 17(4), 464–466 (1971)

[6] Chien, R.: Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes.
IEEE Transactions on Information Theory 10(4), 357–363 (1964)

[7] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Comput-
ing 38(1), 97–139 (2008)

[8] Eastlake, D., Schiller, J., Crocker, S.: Randomness Requirements for Security. RFC
4086 (Best Current Practice) (June 2005),
http://www.ietf.org/rfc/rfc4086.txt

[9] Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon Physical Random Func-
tions. In: ACM Conference on Computer and Communications Security, pp. 148–
160. ACM Press (2002)

[10] Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

[11] Karakoyunlu, D., Sunar, B.: Differential Template Attacks on PUF Enabled Cryp-
tographic Devices. In: 2010 IEEE International Workshop on Information Foren-
sics and Security (WIFS), pp. 1–6 (December 2010)

[12] Kelsey, J., Schneier, B., Ferguson, N.: Yarrow-160: Notes on the Design and Anal-
ysis of the Yarrow Cryptographic Pseudorandom Number Generator. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 13–33. Springer, Hei-
delberg (2000)

[13] Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, Whit is right. Cryptology ePrint Archive, Report 2012/064 (2012),
http://eprint.iacr.org/

[14] Maes, R., Tuyls, P., Verbauwhede, I.: Low-Overhead Implementation of a Soft
Decision Helper Data Algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)

[15] Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A Large Scale Characterization
of RO-PUF. In: IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 94–99 (June 2010)

[16] Massey, J.: Shift-Register Synthesis and BCH Decoding. IEEE Transactions on
Information Theory 15(1), 122–127 (1969)

[17] Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Side-Channel Analysis of PUFs and
Fuzzy Extractors. In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse,
A., Beres, Y. (eds.) TRUST 2011. LNCS, vol. 6740, pp. 33–47. Springer, Heidelberg
(2011)

[18] Nisan, N., Zuckerman, D.: Randomness is Linear in Space. Journal of Computer
and System Sciences 52, 43–52 (1996)

[19] Park, J.I., Lee, H., Lee, S.: An Area-Efficient Truncated Inversionless Berlekamp-
Massey Architecture for Reed-Solomon Decoders. In: IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pp. 2693–2696 (May 2011)

[20] Park, J.I., Lee, K., Choi, C.S., Lee, H.: High-Speed Low-Complexity Reed-Solomon
Decoder using Pipelined Berlekamp-Massey Algorithm. In: International SoC De-
sign Conference (ISOCC), pp. 452–455 (November 2009)

[21] Reed, I., Shih, M.: VLSI Design of Inverse-Free Berlekamp-Massey Algorithm.
IEEE Proceedings on Computers and Digital Techniques 138(5), 295–298 (1991)

http://www.ietf.org/rfc/rfc4086.txt
http://eprint.iacr.org/

PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator 317

[22] Sarwate, D., Shanbhag, N.: High-Speed Architectures for Reed-Solomon Decoders.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(5), 641–655
(2001)

[23] Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Authentication
and Secret Key Generation. In: Design Automation Conference (DAC), pp. 9–14.
ACM Press (2007)

[24] Tarnovsky, C.: Deconstructing a ‘Secure’ Processor. In: Black Hat Federal 2010
(2010)

[25] Torrance, R., James, D.: The State-of-the-Art in IC Reverse Engineering. In:
Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 363–381. Springer,
Heidelberg (2009)

[26] Wong, K., Chen, S.: The Entropy of Ordered Sequences and Order Statistics. IEEE
Transactions on Information Theory 36(2), 276–284 (1990)

[27] Yin, C.E.D., Qu, G.: LISA: Maximizing RO PUF’s Secret Extraction. In: IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), pp.
100–105 (June 2010)

[28] Yu, M.-D(M.), M’Raihi, D., Sowell, R., Devadas, S.: Lightweight and Secure PUF
Key Storage Using Limits of Machine Learning. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 358–373. Springer, Heidelberg (2011)

A BCH Decoding Algorithms

Listed below are the three algorithms that we use for BCH decoding. More infor-
mation on these algorithms and how they are used can be found in Section 2.4.
We denote an array A of b elements, with each element in N as A[b] ∈ N. Array
indices start at 0, unless specifically mentioned otherwise. Both Algorithm 1 and
2 amount to polynomial evaluation, however, in the former, heavy optimization
is possible since we know that every coefficient must be either 0 or 1. Algorithm 3
is the same as the one presented in [5], with a few modifications to better fit the
architecture of our coprocessor.

318 R. Maes, A. Van Herrewege, and I. Verbauwhede

Algorithm 1: Syndrome calculation
Input: sn−k[n − k] ∈ F2
Output: z[2t] ∈ F2u

Data: curArg, evalArg ∈ F2u

i, j ∈ N

curArg ← α
for i ← 0 to 2t − 1 do

z[i] ← 0
evalArg ← 1
for j ← 0 to n − k − 1 do

if sn−k[j] = 1 then
z[i] ← z[i] ⊕ evalArg

evalArg ← evalArg ⊗ curArg
curArg ← curArg ⊗ α

Algorithm 2: Chien search
Input: Λ[t + 1] ∈ F2u

Output: errorLoc[n] ∈ F2
Data: curAlpha, curEval ∈ F2u

i, j ∈ N

for i ← n − 1 to 0 do
curEval ← Λ[0]
curAlpha ← α
for j ← 1 to t do

Λ[j] ← Λ[j] ⊗ curAlpha
curEval ← curEval ⊕ Λ[j]
curAlpha ← curAlpha ⊗ α

if curEval = 0 then
errorLoc[i] ← 1

else
errorLoc[i] ← 0

Algorithm 3: Inversionless Berlekamp-Massey
Input: z[2t] ∈ F2u

Output: Λ[t + 1] ∈ F2u

Data: b[t + 2], δ, γ ∈ F2u ; flag ∈ F2; k ∈ Z; i, j ∈ N

b[−1] ← 0
b[0] ← 1
Λ[0] ← 1
for i ← 1 to t do

b[i] ← 0
Λ[i] ← 0

γ ← 1
k ← 0
for i ← 0 to 2t − 1 do

δ ← 0
for j ← 0 to min(i, t) do

δ ← δ ⊕ (z[i − j] ⊗ Λ[j])
flag ← (δ
= 0) & (k ≥ 0)
if flag = 1 then

for j ← t to 0 do
b[j] ← Λ[j]
Λ[j] ← (Λ[j] ⊗ γ) ⊕ (b[j − 1] ⊗ δ)

γ ← δ
k ← −k − 1

else
for j ← t to 0 do

b[j] ← b[j − 1]
Λ[j] ← (Λ[j] ⊗ γ) ⊕ (b[j − 1] ⊗ δ)

k ← k + 1

Table 3 lists formulas for the ideal and actual runtime of each algorithm. We
define the ideal algorithm runtime as the total number of (not unrolled) loop it-
erations. Note that runtime is mainly determined by tBCH in all three algorithms.

PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator 319

Our obtained runtimes of the syndrome and error-location calculation are par-
ticularly efficient requiring only 3–5 cycles per loop iteration with well chosen
parameters for CBCH .

Table 3. The ideal and actual runtimes for the BCH decoding algorithms. The formulas
for actual runtime are highest order approximations.

Algorithm Runtime [cycles]
Ideal Actual (approx.)

Syndrome calculation 2tBCH · (nBCH − kBCH) 40tBCH · � nBCH −kBCH
u

�
Berlekamp-Massey 3.5 · (t2

BCH + tBCH) 36t2
BCH

Error loc. calculation nBCH · tBCH 3.6nBCH · tBCH

B BCH Decoder Instruction Set

Table 4 gives an overview of the instructions implemented on the BCH decod-
ing coprocessor, their result and the number of cycles needed to execute each
instruction.

Table 4. Instruction set of the BCH decoding coprocessor

Opcode Result Cycles

jump PC ← value 2
cmp_jump PC ← value if (comp = true) 3
stop PC ← PC 1

comp condi ← (comp = true) 2
set_cond condi ← value 1

load_reg reg ← data[addri] 1
load_fixed_reg reg ← value 2

load_fixed_addr addri ← value 2
mod_addr addri ← f(addri) 1
copy_addr addri ← addrj 1

store_reg data[addri] ← reg 1
store_fixed data[addri] ← value 2

rotr data[addri] ← data[addri] � 1 1
shiftl_clr data[addri] ← data[addri] � 1 1
shiftl_set data[addri] ← (data[addri] � 1) | 1 1

gf2_add_mult data[addri] ← data[addri] ⊗ data[addrj] 1
reg ← reg ⊕ (data[addri] ⊗ data[addrj])

	PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator
	Introduction
	Background
	Notation
	Physically Unclonable Functions (PUFs)
	Secure Sketching
	BCH Decoding
	Cryptographic Key Generation

	Design
	PUFKY Architecture
	ROPUF Design
	Syndrome Generation and Error Decoding for CREP and CBCH

	Implementation
	PUF Implementation and Characterization
	Full Key Generator Implementation

	Discussion
	Some Notes on Security
	Application Possibilities

	Conclusion
	References

