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Horizontal gene transfer (HGT) plays an important role in bacterial evolution. It is well

accepted that DNA is pulled/pushed into recipient cells by conserved membrane-

associated DNA transport systems, which allow the entry of only single-stranded DNA

(ssDNA). However, recent studies have uncovered a new type of natural bacterial

transformation in which double-stranded DNA (dsDNA) is taken up into the cytoplasm,

thus complementing the existing methods of DNA transfer among bacteria. Regulated

by the stationary-phase regulators RpoS and cAMP receptor protein (CRP), Escherichia

coli establishes competence for natural transformation with dsDNA, which occurs in

agar plates. To pass across the outer membrane, a putative channel, which may

compete for the substrate with the porin OmpA, may mediate the transfer of exogenous

dsDNA into the cell. To pass across the inner membrane, dsDNA may be bound

to the periplasmic protein YdcS, which delivers it into the inner membrane channel

formed by YdcV. The discovery of cell-to-cell contact-dependent plasmid transformation

implies the presence of additional mechanism(s) of transformation. This review will

summarize the current knowledge about mechanisms of HGT with an emphasis on

recent progresses regarding non-canonical mechanisms of natural transformation. Fully

understanding the mechanisms of HGT will provide a foundation for monitoring and

controlling multidrug resistance.

Keywords: antibiotic resistance gene, multidrug resistance, DNA transfer, natural transformation, conjugation,

Escherichia coli

INTRODUCTION

Horizontal gene transfer (HGT) drives the evolution of bacteria. Transfer of antibiotic resistance
genes (ARGs) plays an important role in the development of multidrug resistance (MDR) in
bacteria (Forsberg et al., 2012). There are three “classical” methods of DNA transfer in nature:
bacterial conjugation, natural transformation, and transduction (von Wintersdorff et al., 2016).
Via HGT, exogenous DNA can be transferred from one bacterium to another even if they are only
distantly related (Chen et al., 2005; Burton and Dubnau, 2010). With the accumulation of genes
involved in different resistance mechanisms from the exogenous DNA, bacteria are able to acquire
MDR rapidly. For example,Acinetobacter and Enterobacter strains carrying the NDM-1 plasmid or
mcr-1 plasmid, which contain a group of resistance genes, can tolerate even last-resort antibiotics
(Yong et al., 2009; Wang and Sun, 2015; Liu et al., 2016; Shen et al., 2016; Zheng et al., 2017).
Understanding the mechanisms of DNA transfer in bacteria would provide new strategies to help
address the ongoing challenge of multi-drug-resistant bacteria in the future.
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Natural bacterial transformation and conjugation have been
found in bacteria and archaea. Two different membrane protein
complexes consisting of conserved proteins are responsible
for pulling in and pushing out DNA during natural bacterial
transformation and conjugation, respectively (Chen andDubnau,
2004; Claverys et al., 2009; Burton and Dubnau, 2010; Johnston
et al., 2014; Cabezon et al., 2015; Ilangovan et al., 2015, 2017).
These DNA transport systems deliver single-stranded DNA
(ssDNA) either from the donor cell (for conjugation) or into
the recipient cell (for transformation) (Chen and Dubnau, 2004;
Claverys et al., 2009; Burton and Dubnau, 2010; Johnston
et al., 2014; Cabezon et al., 2015; Ilangovan et al., 2015, 2017).
Recent studies have revealed two new types of DNA transfer
in Escherichia coli. One of these methods has been shown to
be independent of the conserved proteins for the transport of
ssDNA during natural transformation or bacterial conjugation.
Instead, double-stranded DNA (dsDNA) is taken up into the
cytoplasm and internalized by E. coli cells on solid agar plates
(Sun et al., 2006, 2009, 2013; Sun, 2011, 2016; Zhang et al.,
2012). The other method of DNA transfer is dependent on cell-
to-cell contact and DNA transfer occurs within a colony on
agar plates (Maeda et al., 2004, 2006; Etchuuya et al., 2011;
Sobue et al., 2011; Kurono et al., 2012; Matsuda et al., 2012;
Matsumoto et al., 2016). DNA transfer via this method is sensitive
to DNase I, indicating that DNA that is transported into the
recipient cell is naked (rather than protein-protected). Although
DNA transfer occurs on agar plates via both of the above two
transformation methods, no evidence shows similarities between
DNA transfer mechanisms of the two methods. In the former
transformation method, DNA transfer occurs in the absence
of donor cells. Whereas, in the latter transformation method,
donor cells are required for DNA transfer in the colony. During
bacterial conjugation, physical contact between the donor and the
recipient cells is required. Nonetheless, the cell-to-cell contact-
dependent plasmid transformation is different from conjugation
in that DNA transfer is not mediated by mobile elements (Maeda
et al., 2004; Kurono et al., 2012; Matsuda et al., 2012). In
this review, we will first discuss the mechanisms of classical
natural bacterial transformation and conjugation. Then, the non-
canonical DNA transfer on agar plates will be described in detail,
with an emphasis on how DNA is pulled into cells.

PULL DNA IN DURING NATURAL
TRANSFORMATION

Natural transformation was discovered in Streptococcus
pneumoniae in 1928 (Griffith, 1928). Induced by a
heptadecapeptide pheromone, naturally transformable bacteria
show a special physiological state termed “competence”, during
which they are capable of pulling in exogenous DNA (Berka
et al., 2002; Ogura et al., 2002). The mechanism of DNA
transfer during natural transformation is well conserved among
Gram-positive (G+) (e.g., Bacillus subtilis and S. pneumoniae)
and Gram-negative (G−) bacterial species (e.g., Neisseria
gonorrhoeae, Haemophilus influenzae, and Vibrio cholerae), as
well as archaea (Chen and Dubnau, 2004; Claverys et al., 2009;

Burton and Dubnau, 2010; Johnston et al., 2014; Cabezon et al.,
2015; Ilangovan et al., 2015, 2017; Veening and Blokesch, 2017).
Although conditions for competence induction vary widely
among bacterial species (Aas et al., 2002; Berka et al., 2002;
Claverys et al., 2006; Veening and Blokesch, 2017), proteins
involved in DNA uptake are highly conserved even among
distantly related bacteria (Johnston et al., 2014), except for
Helicobacter pylori, which uses a conjugation-like system for
DNA uptake during natural transformation (Smeets and Kusters,
2002). Here, the conserved DNA uptake system in bacteria is
described.

G− bacteria have an outer membrane (OM), whereas G+

bacteria have not. During natural transformation, G− bacteria
need to pull DNA across both the OM and the inner membrane
(IM), whereas G+ bacteria need to overcome the barrier of the
peptidoglycan layer, which is much thicker and denser, and needs
to be weakened before translocation of DNA across the IM. In
this process, dsDNA is pulled across the OM in G− bacteria and
ssDNA is pulled across the IM in both G+ and G− bacteria.
The general mechanism underlying DNA transfer during natural
transformation is summarized in Figure 1.

Crossing the OM
For G− bacteria, a sophisticated protein complex is assembled
in the OM, where the complex binds exogenous DNA and
drags it into the periplasm (Figure 1). The assembly and

FIGURE 1 | Classical DNA uptake during natural transformation. Exogenous

DNA is pulled into the cytoplasm by the extension and retraction of pseudopili,

as a consequence of the assembly and disassembly of pseudopilin multimers

(PilA). This is followed by the transfer of dsDNA across the OM protein

PilQ/HofQ (for G− bacteria only). The DNA receptor (ComEA) mediates the

transfer of one strand of DNA across the IM channel formed by ComEC with

the assistance of the ATPase ComFA, accompanied by degradation of the

other strand of DNA. The incoming ssDNA is protected by DprA which

conveys it to RecA for homologous recombination in the cytoplasm.
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disassembly of a type IV pilus causes a fiber-like pseudopilus to
be extruded out of and hauled back into the pore-forming OM
proteins (Chen and Dubnau, 2004). The pore that accommodates
exogenous DNA is 6–6.5 nm in diameter, and is formed by
PilQ, a secretin that is 15 nm wide and 34 nm long with five
rings and an extraordinary stable “cone” and “cup” structures
(Chen and Dubnau, 2004). The pore cavity is large enough to
accommodate dsDNA (∼2.4 nm) (Collins et al., 2001; Assalkhou
et al., 2007; Burkhardt et al., 2011). Accompanied by the extension
and retraction of type IV pili, DNA is transported across the
OM through the pore (Laurenceau et al., 2013; Salzer et al.,
2014, 2016; Leong et al., 2017). Between the OM and IM
(the periplasm), the incoming DNA is bound by the substrate-
binding protein ComEA, which prevents DNA from slipping
by means of a “Brownian Ratcheting” mechanism (Inamine
and Dubnau, 1995; Provvedi and Dubnau, 1999; Berge et al.,
2002; Takeno et al., 2012; Seitz et al., 2014; Salzer et al.,
2016).

Crossing the IM
Bound by ComEA in the periplasm, exogenous DNA is
translocated across the IM via a pore formed by ComEC, also
named Rec2 in some G− bacteria (e.g., H. influenzae), a widely
conserved IM protein for translocation of DNA across the IM
(Barouki and Smith, 1985; Berge et al., 2002; Draskovic and
Dubnau, 2005; Sinha et al., 2012; Baker et al., 2016; Salzer
et al., 2016). It has been proposed that ComEC acts as both
a translocase and nuclease during DNA translocation (Chen
and Dubnau, 2004; Claverys et al., 2009; Burton and Dubnau,
2010; Johnston et al., 2014; Veening and Blokesch, 2017). In
this process, one strand of the dsDNA is translocated into the
cytoplasm, simultaneously the degradation of the other strand
occurs (Barouki and Smith, 1985; Berge et al., 2002; Baker et al.,
2016). In silico analysis of ComEC indicates that the β-lactamase-
like domain at the C-terminus may function as a nuclease and
Domain of Unknown function 4131 at the N-terminus has a DNA
binding domain (Baker et al., 2016). It is possible that the dsDNA
that is bound to the N-terminus of ComEC is divided into two
strands of ssDNA and one of them is degraded by the nuclease at
the C-terminus.

The channel for DNA translocation is assumed to be formed
by two ComEC monomers with seven transmembrane segments
(Draskovic and Dubnau, 2005). Given that over-expression of
ComEC is toxic to the cell, the structure of ComEC remains
unresolved (Draskovic and Dubnau, 2005). The driving force
for translocation of ssDNA across the IM may be provided by
an ATPase (ComFA), which is also widely conserved in bacteria
(Londono-Vallejo and Dubnau, 1994; Takeno et al., 2011; Chilton
et al., 2017; Diallo et al., 2017). After translocation of ssDNA,
DprA, and RecA bind ssDNA and catalyze the formation of
joint DNA molecules for homologous recombination (Mortier-
Barriere et al., 2007; Dwivedi et al., 2013; Yadav et al., 2013, 2014;
Duffin and Barber, 2016; Diallo et al., 2017; Hovland et al., 2017;
Le et al., 2017). In this way, the incoming foreign ssDNA displaces
one strand of the chromosomal dsDNA (Mortier-Barriere et al.,
2007), followed by being converted to homogeneous dsDNA
through DNA replication.

THE TRANSFER OF DNA DURING
BACTERIAL CONJUGATION

Bacterial conjugation was first discovered in E. coli (Lederberg
and Tatum, 1946). Relying on cell-to-cell contact, DNA can be
pushed out of a donor cell and transported into a recipient cell
during bacterial conjugation. A group of modular mobile genetic
elements, known as integrative and conjugative elements (ICEs)
or conjugative transposons (Franke and Clewell, 1981), has
been found in many bacterial genomes (Wozniak and Waldor,
2010; Bi et al., 2012; Cury et al., 2017). ICEs can transfer
from one bacterium to another, facilitating the spread of ARGs
in environment (Wozniak and Waldor, 2010; Bi et al., 2012;
Cury et al., 2017). The transfer of conjugative DNA across the
membrane of the donor bacterium relies on a large membrane-
associated protein complex, that belongs to the type IV secretion
system (T4SS) (Goessweiner-Mohr et al., 2013; Cabezon et al.,
2015; Ilangovan et al., 2015; Figure 2). Components of the T4SS
for conjugation are encoded by genes of either self-replicable
conjugative plasmids or ICEs in the chromosomal DNA of the
donor bacterium (Cabezon et al., 2015; Ilangovan et al., 2015;
Johnson and Grossman, 2015). The mechanism of DNA transfer
is summarized in Figure 2.

Protein-coated conjugative ssDNA is transported across the
IM, periplasm and OM through a membrane channel formed by
a group of proteins encoded by the conjugative DNA molecule
(Goessweiner-Mohr et al., 2013; Cabezon et al., 2015; Ilangovan
et al., 2015). Inside the channel, the conjugative pilus (formed
by pilins) is responsible for pushing ssDNA out of membrane.
The mechanism of DNA transfer via conjugation has been best
exemplified by the Vir system. To export DNA out of the donor
cell, a conjugative plasmid encodes a complicated membrane
protein complex. During conjugation, a plasmid- or ICE-encoded
relaxase creates a nick in one strand of the conjugative DNA
at the oriT site, followed by ssDNA translocation across the
channel formed by components of the T4SS and replication of
the remaining strand, either independently from or in concert
with conjugation (Ilangovan et al., 2017). During translocation
across cell membranes, three ATPases (VirD4, VirB4, and
VirB11) provide the energy for DNA transport (Chen et al.,
2005; Cabezon et al., 2015; Ilangovan et al., 2015). In natural
transformation and conjugation, different types of pili participate
in the movement of DNA. Competence pili or pseudopili
mediate the transfer of dsDNA across the membrane during
natural transformation, whereas conjugative pili mediates the
transfer of ssDNA across the membrane during conjugation
(Cabezon et al., 2015; Ilangovan et al., 2015). In both cases, the
assembly/disassembly of pili drives the movement of transferring
DNA. It remains unclear how conjugative DNA is further
transported in the recipient cell.

THE UPTAKE OF dsDNA IN E. coli

E. coli has long been thought not to be naturally transformable.
In this century, the natural transformation of E. coli has been
observed initially on nutrient-deficient agar plates and later
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FIGURE 2 | DNA transfer during bacterial conjugation. Conjugative DNA is

processed into ssDNA by a relaxase (R) in the cytoplasm of the donor

bacterium. To further transport ssDNA, a group of membrane and periplasmic

proteins are assembled together to form a large complex, which can be

subdivided into four distinct parts: (1) the pilus is formed by the assembly of

pilins (VirB2) with adhesins (VirB5) at the distal end; (2) the OM component,

which consists of VirB7, VirB9, and the C-terminus of VirB10; (3) the

periplasmic component which consists of VirB8, VirB10, and VirB6; and (4)

the IM component, formed of VirB3, VirB6, VirB8, and VirB10. Additionally,

three hexameric ATPases (VirB4, VirB11, and VirD4) are attached to the IM to

provide energy during DNA transfer.

on nutrient-rich agar plates (Tsen et al., 2002; Sun et al.,
2006). Although natural plasmid transformation of E. coli shows
single-hit kinetics, implying that dsDNA may enter the cell
(Sun et al., 2009), there are basic differences between natural
and chemical transformation. First, natural transformation is
promoted by an increased concentration of agar, whereas
chemical transformation relies on high concentrations of divalent
ions (i.e., Ca2+, Mg2+, or Mn2+) (Sun et al., 2009). However,
the stimulating effect of agar on transformation is not due
to an increase in Ca2+, Mg2+, or Mn2+ concentration (Sun
et al., 2009). It remains unclear whether osmotic pressure
and/or any other biological/physical factor(s) contribute to the
increase of transformation on plates with a high concentration
of agar. Second, an OM protein, OmpA, plays opposite roles
in natural and chemical transformation of E. coli: it promotes
chemical transformation but suppresses natural transformation
(Sun et al., 2013). Third, exponentially growing E. coli cells are
often employed for preparing chemically competent cells with
the highest efficiency, and chemical transformation occurs in a
liquid, whereas the natural transformation of stationary-phase

FIGURE 3 | A new route for dsDNA transfer in Escherichia coli. Via an

unidentified channel, exogenous DNA transfers across the OM. The

pore-forming protein OmpA can compete for DNA with the unidentified

channel. To pass across the IM, the incoming DNA binds the

substrate-binding protein YdcS and is translocated from the periplasm to the

cytoplasm via an IM channel formed by YdcV. It remains unclear whether a

plasmid enters E. coli as intact circular or linear dsDNA.

E. coli cells is regulated by the transcriptional regulator RpoS and
the cyclic AMP (cAMP) – cAMP receptor protein (CRP), and
these cells can acquire exogenous DNA exclusively on agar plates
(Zhang et al., 2012; Guo et al., 2015). The functions of RpoS or
the cAMP-CRP complex in the chemical transformation of E. coli
have not been found.

Natural transformation of E. coli also differs from that of
other naturally transformable bacteria in that the conserved DNA
uptake machinery is not required for the uptake of exogenous
dsDNA in E. coli (Sun et al., 2009). Some components of the
conserved DNA uptake machinery are believed to function in
using DNA as a nutrient in E. coli (Finkel and Kolter, 2001;
Palchevskiy and Finkel, 2006). Nevertheless, attempts to confirm
these observations in three independent laboratories have not
succeeded (Sun, 2011; Johnston et al., 2014). DNA, which has
been thought to serve as the sole carbon source could not account
for cell growth, implying that other nutrient sources should be
present in the culture (Sun, 2011; Johnston et al., 2014). It is
possible that degraded DNA in the minimal culture serves as
a source of building blocks for the synthesis of new DNA in
bacteria. During the natural transformation of E. coli, new ABC
transporter proteins have been shown to participate in DNA
transfer (Sun et al., 2009; Sun, 2016). These transporters are
different from the known classical DNA uptake proteins that
mediate natural bacterial transformation. The mechanism of this
new type of DNA transfer is proposed in Figure 3.

Crossing the OM
Escherichia coli has a complete set of genes that potentially encode
components of the classical DNA uptake machinery. These genes
are homologous to the conserved DNA uptake genes in other
naturally transformable bacteria. Comparative genomic analysis
predicts that, in E. coli, putative DNAuptake genes hofQ and gspD
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may encode proteins forming a channel for transporting DNA
across the OM, and ppdD may encode pilins for the assembly of
the competence pili or pseudopili which pull exogenous DNA
in (Finkel and Kolter, 2001; Claverys and Martin, 2003; Sun
et al., 2009). However, inactivation of hofQ, gspD, or ppdD
does not affect natural transformation with dsDNA, suggesting
that the conserved DNA uptake machinery for translocation
of ssDNA does not mediate dsDNA transfer across the OM
in E. coli (Sun et al., 2009). To identify the OM pore used
for DNA transport during natural transformation of E. coli,
the pore-forming protein OmpA was evaluated, considering
that OmpA performs functions in bacteriophage infection and
bacterial conjugation. Inactivation of ompA increases natural
transformation by 7- to 60-fold while decreasing chemical
transformation by ∼10-fold, suggesting that OmpA blocks DNA
transfer during natural transformation but promotes DNA
transfer in artificial transformation (Sun et al., 2013). OmpA
is unlikely to form an open gate under natural conditions, but
can be switched to the open state with the molecular force of
electrostatic interaction (i.e., salt-bridge), that drives structural
transition of a protein under different conditions (Hong et al.,
2006). The closed and open states of the gate are dependent on
the formation of salt bridges of Arg138-Glu52 and Lys82-Glu128,
respectively (Hong et al., 2006). During natural transformation
of E. coli, DNA may pass across an unidentified channel that
competes with OmpA for transforming DNA. The putative
channel may be consisted of OM components (i.e., OM protein
and pili/psedopili) of a DNA transport system and pulls DNA
into the cell on the LB-agar plate. In the default “gate-closed”
state, OmpA traps the transforming DNA, making it unable
to reach the right channel for completing transformation. By
contrast, during chemical transformation or electroporation, a
high concentration of Ca2+ or an electric current helps open the
gate, allowing DNA to pass across the channel formed by OmpA
(Sun et al., 2013).

Crossing the IM
Based on a membrane topology study, the conserved IM protein
called ComEC is predicted to mediate the translocation of ssDNA
during classical natural transformation (Chen and Dubnau,
2004; Claverys et al., 2009; Johnston et al., 2014). However,
inactivation of the ComEC homolog YcaI in E. coli does not affect
natural plasmid transformation of E. coli, suggesting that DNA is
translocated into the cytoplasm via a different route (Sun et al.,
2009). The single-hit kinetics in natural plasmid transformation
of E. coli suggest that the establishment of a plasmid in
the cytoplasm is mediated not by the annealing of partially
overlapping opposite ssDNA derived from two independent
plasmid monomers, but by a new route, i.e., the transfer of
dsDNA across the IM of bacteria (Sun et al., 2009). Screening
of RpoS-targeted transformation-related genes has identified
ydcS and ydcV, which are located in the same ABC-transporter
operon (Sun, 2016). Inactivation of ydcS and ydcV reduces
natural transformation 6.7- and 9.5-fold, respectively (Sun, 2016).
Chemical transformation is also reduced by Inactivation of ydcS,
whereas the chemical transformation in a ydcV mutant is not
reduced as compared to its wild-type counterpart (Sun, 2016).

According to the Transporter Classification Database (TCDB1),
ydcS and ydcV are predicted to encode proteins for binding a
substrate in the periplasm and for translocation of the substrate
across IM (Saier et al., 2014). YdcS has been shown as a
PHB synthase in the periplasm (Dai and Reusch, 2008). The
mutant lacking ydcT (a putative ATPase encoding gene) in
the same operon as ydcS and ydcV, is naturally transformed
with slightly but obviously reduced frequency (less than 50%)
(Sun, 2016), indicating that this gene is also involved in natural
plasmid transformation of E. coli. Nonetheless, with respect to
significantly reduced transformation frequency in the ydcV and
the ydcSmutants, ydcT seems to have only a minor effect on DNA
transport. It is likely that additional energy source is required for
efficient transport of dsDNA across the IM.

CELL-TO-CELL TRANSFER OF
NON-CONJUGATIVE PLASMIDS

Cell-to-cell contact is often required for bacterial conjugation.
Of note, plasmid transformation of E. coli in colonies proceeds
on the surface of agar plates and cell-to-cell contact is required
for the transfer of plasmids that do not carry conjugative
functions (Maeda et al., 2004, 2006). Cell-to-cell contact-
dependent plasmid transformation occurs not only within the
same genus but also across genera (Wang et al., 2007). In
some naturally transformable G− bacteria (e.g., H. influenzae
and N. gonorrhoeae), a short DNA sequence (named DUS)
can increase DNA uptake (Claverys and Martin, 2003; Wang
and Sun, 2015; Zheng et al., 2017). During cell-to-cell contact-
dependent plasmid transformation of E. coli, an 88 bp DNA
sequence promotes DNA transfer (Sobue et al., 2011). Screening
of the Keio collection (Baba et al., 2006), a comprehensive library
of E. coli knock-out mutants defective in non-essential genes,
has identified rodZ, whose product regulates the rod-shape of
the cell, as an essential gene for cell-to-cell contact-dependent
transformation (Kurono et al., 2012). Because the homologs
of DNA uptake genes (e.g., ycaI) have not been revealed to
be essential genes, conventional DNA uptake machinery is not
likely to be involved in cell-to-cell contact-dependent plasmid
transformation of E. coli. Recently, cell-to-cell contact-dependent
transformation is discovered in B. subtilis (Zhang et al., 2018).
However, inactivation of the competence regulator ComK,
that controls the expression of conserved DNA uptake genes,
abolishes cell-to-cell DNA transfer (Zhang et al., 2018), indicating
that mechanisms of the cell-to-cell DNA transfer in E. coli and
B. subtilis are basically different.

CONCLUDING REMARKS

Classical mechanisms of HGT (i.e., natural transformation and
conjugation) share common features in that ssDNA is pushed out

1http://www.tcdb.org
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or pulled into the cell with the assistance of membrane-associated
protein complexes. Recent studies have uncovered new types of
DNA transfer, which are independent of the classical DNA uptake
or conjugation machineries, suggesting that other therapeutic
targets should be considered in the fight against ARGs. The
conserved proteins involved in transporting or protecting DNA
may serve as targets for limiting the transfer of ARGs and in
turn for reducing MDR in bacteria (Goessweiner-Mohr et al.,
2013). On the other hand, the discovery of non-classical HGT
mechanisms suggests that controlling the spread of ARGs is more
complicated than previously thought.
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