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Abstract. We construct a lifting from Siegel cusp forms of degree
r to Siegel cusps form of degree r + 2n. For r = n = 1, our
result is a partial solution of a conjecture made by Miyawaki in
1992. In particular, we can calculate the standard L-function of a
cusp form of degree 3 and weight 12, which is in accordance with
Miyawaki’s conjecture. We will give a conjecture on the Petersson
inner product of the lifting in terms of certain L-values.

Introduction

Let f(τ ) ∈ S2k(SL2(Z)) be a normalized Hecke eigenform. In [18],
we have constructed a lifting to a Siegel cusp form of even degree. Let
F (Z) be a lifting of f(τ ). In this paper, we shall consider the pullback
of F (Z) to a block diagonal subset.

Let us recall the theory of pullback of an Eisenstein series to a block
diagonal subset (cf. [3], [16]). Let Mk(Spn(Z)) (resp. Sk(Spn(Z))) be
the space of Siegel modular forms (resp. Siegel cusp forms) of degree
n and weight k. Assume that g(Z) ∈ S2l(Spr(Z)) is a Hecke eigenform

whose standard L-function is L(s, g, st). For m ≥ r, let E
(m+r)
2l (Z)

be the Siegel Eisenstein series of degree m + r and weight 2l. Assume,

for simplicity, E
(m+r)
2l (Z) is absolutely convergent. Put gc(Z) = g(−Z̄).

Note that gc(Z) is the cusp form obtained by taking complex conjugates
of Fourier coefficients. Then∫

Spr(�)\�r

E
(m+r)
2l

((
Z 0
0 W

))
gc(W )(det ImW )2l−r−1dW
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is equal to the Klingen Eisenstein series E(m)(g; Z) ∈ M2l(Spm(Z)), up
to multiplication by some L-values and elementary factors. In this the-
ory, the unwinding method of the Eisenstein series played an important
role.

Now let h(τ ) ∈ S+
k+(1/2)(Γ0(4)) be a Hecke eigenform in the Kohnen

plus subspace S+
k+(1/2)(Γ0(4)) corresponding to the normalized Hecke

eigenform f(τ ). Put L(s, f) =
∑∞

N=1 a(N)N−s.
Let n be a non-negative integer such that n + r ≡ k mod 2. In [18],

we have constructed a Hecke eigenform F (Z) ∈ Sk+n+r(Sp2n+2r(Z))
whose standard L-function is equal to

ζ(s)
2n+2r∏
i=1

L(s + k + n + r − i, f).

Note that F (Z) is determined by h(τ ). We shall call F (Z) a Duke-
Imamoglu lift of f(τ ) (or h(τ )) to degree 2n + 2r. Assume that 2l =
k + n + r and g ∈ Sk+n+r(Spr(Z)).

Now we consider the function Fh,g(Z) defined by the integral

Fh,g(Z) =

∫
Spr(�)\�r

F

((
Z 0
0 W

))
gc(W )(det ImW )k+n−1dW,

for Z ∈ h2n+r. Note that Fh,g is always cusp form, as F (Z) is a cusp
form. Then our main theorem is as follows.

Theorem 1.1. Assume that Fh,g(Z) is not identically zero. Then the
cusp form Fh,g(Z) is a Hecke eigenform whose standard L-function is
equal to

L(s,Fh,g, st) = L(s, g, st)

2n∏
i=1

L(s + k + n − i, f).

As the usual unwinding method does not work for the cusp form
F (Z), we will make use of local representation theory instead.

It is an interesting problem to determine when Fh,g �= 0. We will
give a conjecture for the Petersson inner product 〈Fh,g ,Fh,g〉. Let
L(s, st(g) � f) be the “tensor product” L-function of L(s, g, st) and
L(s, f). Let Λ(s, st(g) � f) be the product of L(s, st(g) � f) and its
gamma factor. We also define Λ̃(s, f, Ad) (resp. ξ̃(s)) as the product
of the adjoint L-function L(s, f, Ad) (resp. Riemann zeta function)
and some gamma function, which is slightly modified from the usual
gamma factor. Then our conjecture is as follows.
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Conjecture 5.1. Assume that n < k. Then there exists an integer
α = α(r, n, k) depending only on r, n, and k such that

Λ(k + n, st(g) � f)

n∏
i=1

Λ̃(2i − 1, f, Ad)ξ̃(2i) = 2α 〈f, f〉
〈h, h〉

〈Fh,g,Fh,g〉
〈g, g〉 .

In particular, Fh,g is non-zero if and only if Λ(k + n, st(g) � f) �= 0.

This paper is organized as follows. In §1, we formulate our main
theorem. In §2, we discuss the relation to Miyawaki’s conjecture [27].
In §3, we develop some local representation theory. Using this repre-
sentation theoretic argument, we prove our main theorem in §4. In
§5, we formulate the conjecture and discuss some examples. We shall
show that, if the conjecture is true, then the roles of g and Fh,g can
be interchanged. Note that this phenomenon does not have an ana-
logue for the Eisenstein case for n > 0, since the Klingen Eisenstein
series E(r+2n)(g, Z) is not an cusp form unless n = 0. The exceptional
case n = 0 is discussed in §6. We shall show that an analogue of the
conjecture for the Eisenstein case holds in that case.

In §7, we recall the result of Nebe and Venkov [30]. They determined
Hecke eigenvectors in the space of theta functions associated to 24
Niemeier lattices. Using our theory, we can determine standard L-
functions of 20 eigenvectors. In Appendix, we attach some computer
calculation for an evidence for Conjecture 5.1.

Notation

If R is a ring, the symplectic group Spm(R) is defined by

Spm(R) =

{
g ∈ GL2m(R) g

(
0m −1m

1m 0m

)
tg =

(
0m −1m

1m 0m

)}
.

We denote the Siegel upper-half plane of degree m by hm. For 2k = 12,
16, 18, 20, 22, or 26, the normalized Hecke eigenform of weight 2k is
denoted by φ2k(τ ). Note that φ12(τ ) = Δ(τ ). The space of Siegel mod-
ular forms with degree m and weight k is denoted by Mk(Spm(Z)) or by

M
(m)
k . The subspace of cusp forms of M

(m)
k is denoted by Sk(Spm(Z)) or

by S
(m)
k . For g ∈ Mk(Spr(Z)), we put gc(Z) = g(−Z̄). The Petersson

inner product is denoted by 〈 , 〉. When f , g, or h are Hecke eigen-
form, Q(f), Q(h, g) etc. are the field generated by Hecke eigenvalues.
The (multi)set {β1, β

−1
1 , β2, β

−1
2 , . . . , βn, β

−1
n } is sometimes denoted by

{β±1
1 , β±1

2 , . . . , β±1
n }.
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1. Statement of the main theorem

As in Introduction, let

f(τ ) =

∞∑
N=1

a(N)qN ∈ S2k(SL2(Z))

and

L(s, f) =
∏

p

(1 − a(p)p−s + p2k−1−2s)−1

=
∏

p

[
(1 − αpp

k−s−(1/2))(1 − α−1
p pk−s−(1/2))

]−1

be a normalized Hecke eigenform and its L-function. In the Kohnen
plus subspace S+

k+(1/2)(Γ0(4)), there exists a Hecke eigenform

h(τ ) =
∑
N>0

(−1)kN≡0,1(4)

c(N)qN

corresponding to f(τ ) by the Shimura correspondence. As is well-
known, h(τ ) is unique up to a scalar. Let r and n be non-negative
integers such that n + r ≡ k mod 2. By [18], there exists a Hecke
eigenform F (Z) ∈ Sk+n+r(Sp2n+2r(Z)), whose standard L-function is
equal to

ζ(s)
2n+2r∏
i=1

L(s + k + n + r − i, f).

Moreover, if B is a positive definite half-integral symmetric matrix of
size 2r + 2n such that (−1)r+n det(2B) is a fundamental discriminant,
then the B-th Fourier coefficient of F is equal to c(det(2B)). Note that
F (Z) is determined by h(τ ).

Let g(Z) ∈ Sk+n+r(Spr(Z)) be a Hecke eigenform, whose standard
L-function is

L(s, g, st) =
∏

p

[
(1 − p−s)

r∏
i=1

(1 − βip
−s)(1 − β−1

i p−s)

]−1

.

We shall call {β±1
1 , . . . β±1

r } the Satake parameter in this paper. We
put

Fh,g(Z) =

∫
Spr(�)\�r

F

((
Z 0
0 W

))
gc(W )(det ImW )k+n−1dW,

Then we have Fh,g ∈ Sk+n+r(Sp2n+r(Z)). Now our main theorem is as
follows.
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Theorem 1.1. Assume that Fh,g(Z) is not identically zero. Then the
cusp form Fh,g(Z) is a Hecke eigenform whose standard L-function is
equal to

L(s,Fh,g, st) = L(s, g, st)
2n∏
i=1

L(s + k + n − i, f).

Remark 1.1. When r = 1, the L-function L(s, g, st) is an Euler product
of degree 3, and should not be confused with L(s, g). To avoid possible
confusion, we denote L(s, g,Ad) rather than L(s, g, st) for r = 1. Note
also that the meaning of the Satake parameter for f ∈ S2k(Sp1(Z)) is
different from the usual one. In our convention, the Satake parameter
of f is {α±2

p }.
Remark 1.2. We can interpret our theorem in terms of the Arthur con-
jecture. As in [18], we denote the hypothetical Langlands group by L.
Let τ be the cuspidal automorphic representation of GL2(C) generated
by f , and ρτ : L → SL2(C) the associated homomorphism.

Let ρg : L × SL2(C) → SO2r+1(C) = LSpr be the Arthur parameter
for the cuspidal automorphic representation generated by g(Z). Then
the Arthur parameter for Fh,g should be given by the composition

L× SL2(C) → SO4n(C) × SO2r+1(C) ↪→ SO4n+2r+1(C) = LSp2n+r.

Here the first homomorphism is given by (ρτ � Sym2n−1) × ρg. (cf.
[18]).

2. Miyawaki’s conjecture

It is known that dim� S12(Sp3(Z)) = 1. Let Φ
(3)
12 (Z) ∈ S12(Sp3(Z)) be

a non-zero cusp form. Miyawaki [27] calculated some Hecke eigenvalues

of the cusp form Φ
(3)
12 (Z). Based on the numerical calculation, he made

the following conjectures.

Conjecture 2.1 (Miyawaki). The standard L-function of Φ
(3)
12 (Z) is

given by

L(s, Φ
(3)
12 , st) = L(s, Δ, Ad)L(s + 10, φ20)L(s + 9, φ20).

More generally,

Conjecture 2.2 (Miyawaki). Given normalized Hecke eigenforms f ∈
S2k−4(SL2(Z)) and g ∈ Sk(SL2(Z)), there should be a Hecke eigenform
Ff,g ∈ Sk(Sp3(Z)) whose standard L-function is equal to

L(s, g,Ad)L(s + k − 2, f)L(s + k − 3, f).
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In fact, Miyawaki formulated Conjecture 2.2 in terms of linear maps

S2k−4(SL2(Z)) ⊗ Sk(SL2(Z)) → Sk(Sp3(Z)).

It seems there is no such a canonical map, but our construction defines
a canonical map

S+
k−(3/2)(Γ0(4)) ⊗ Sk(SL2(Z)) → Sk(Sp3(Z))

induced by the bilinear map h × g 
→ Fh,g. Note that Kohnen [20]
defined a canonical linear map

S+
k+(1/2)(Γ0(4)) → Sk(Sp2n+2r(Z))

h 
→ F

which coincides with the Duke-Imamoglu lifting when h is a Hecke
eigenform. If Fh,g is non-zero for each Hecke eigenform h and g, then
Theorem 1.1 solves the Conjecture 2.2.

The author would like to propose to call G the Miyawaki lift of
g(Z) ∈ Sk+r+n(Spr(Z)) with respect to the Duke-Imamoglu lift F (Z) ∈
Sk+r+n(Sp2r+2n(Z)) of f(τ ), if G = cFh,g for some c �= 0.

In §7, we will show that Φ
(3)
12 is in fact the Miyawaki lifting of Δ with

respect to the Duke-Imamoglu lift of φ20 to degree 4. In particular,
Conjecture 2.1 is true.

Remark 2.1. In [27], Miyawaki also considered the spin L-functions,
which we do not consider here. He also considered the spin and stan-

dard L-functions of Φ
(3)
14 ∈ S14(Sp3(Z)) and its generalization. He con-

jectured that the standard L-function of the cusp form Φ
(3)
14 (Z) is equal

to
L(s, Δ, Ad)L(s + 13, φ26)L(s + 12, φ26).

It seems that one needs an analogue of the lifting [18] such that the
infinite part of the automorphic representation generated by the lifting
is a cohomological induction from non-compact unitary group, to solve
this conjecture. In fact, the Arthur conjecture suggests that there
exists an irreducible discrete automorphic representation π of Sp4(A�)
satisfying the following (i) and (ii);

(i) The standard L-function of π is ζ(s)
∏14

i=11 L(s + i, φ26).
(ii) The infinite component of π is a cohomological induction from the

non-compact unitary group U(3, 1).

The infinite component of π is a non-tempered unitary representa-
tion with minimal K-type (14, 14, 14,−12). Taking a convolution with

Δ(τ ), one would get Φ
(3)
14 (Z). It is very likely that π is generated by

certain residue of the Eisenstein series associated to parabolic subgroup
P2,2 with Levi factor GL2 × Sp2.
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3. Unramified principal series of p-adic groups

In this section, we shall prove some results on unramified principal
series of symplectic groups over a p-adic field.

In this section, F denotes a non-archimedean local field of character-
istic 0. The symbols � and q denote a prime element and the order of
the residue field of F , respectively. An algebraic group and its group
of F -rational points are denoted by the same symbol.

When G is a locally compact group, δG is the modulus character
of G. If (ρ, Vρ) and (ρ′, Vρ′) are smooth representation of a totally
disconnected locally compact group G, then BG(ρ, ρ′) is the space of
bilinear form B on Vρ × Vρ′ such that B(ρ(g)v, ρ′(g)v′) = B(v, v′) for
any v ∈ Vρ, v′ ∈ Vρ′ , and g ∈ G. Note that if ρ′ is admissible, then
BG(ρ, ρ′) � HomG(ρ, ρ̃′).

When ρ is a smooth representation of a closed subgroup H of a to-
tally disconnected locally compact group G, we denote the normalized
induced representation (resp. normalized compactly induced represen-
tation) by IndG

Hρ (resp. c-IndG
Hρ).

Fix integers m and r such that m ≥ r ≥ 0. We put G1 = Spr,
G2 = Spm, and H = Spm+r. We denote the Siegel parabolic subgroup
of H by PH . G1 × G2 can be embedded into H by

(
A1 B1

C1 D1

)
×
(

A2 B2

C2 D2

)

→

⎛
⎜⎜⎝

A1 0
0 A2

B1 0
0 B2

C1 0
0 C2

D1 0
0 D2

⎞
⎟⎟⎠ .

We think of G1 × G2 as a subgroup of H.
For i = 0, 1, . . . , r, put

ηi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1r−i 0 0
1i 0 0 0
0 0 0 1m−i

0 0 −1i 0
0 0 0 0
0 0 0 0
0 0 0 0

1i 0 1i 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 1r−i 0 0
1i 0 −1i 0
0 0 0 1m−i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here the size of the blocks are i, r − i, i, m− i, i, r − i, i, and m − i.
The following lemma is well-known (cf. [4], [16]).

Lemma 3.1. The set {η0, η1, . . . , ηr} forms a set of representatives for
the double cosets PH\H/(G1 × G2). �
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For i = 0, 1, . . . , r, put Qi = (η−1
i PHηi)∩ (G1×G2). Then, by direct

calculation, we have

Qi =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

α 0
∗ A

β ∗
∗ ∗

γ 0
0 0

δ ∗
0 D

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

α 0
∗ A′

−β ∗
∗ ∗

−γ 0
0 0

δ ∗
0 D′

⎞
⎟⎟⎠ ∈ G1 × G2

(
α β
γ δ

)
∈ Spi, A = tD−1 ∈ GLr−i, A′ = tD′−1 ∈ GLm−i,

⎫⎪⎪⎬
⎪⎪⎭ .

We define the parabolic subgroups P
(1)
i ⊂ G1 and P

(2)
i ⊂ G2 by

P
(1)
i =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

α 0
∗ A

β ∗
∗ ∗

γ 0
0 0

δ ∗
0 D

⎞
⎟⎟⎠ ∈ G1

(
α β
γ δ

)
∈ Spi, A = tD−1 ∈ GLr−i,

⎫⎪⎪⎬
⎪⎪⎭ ,

P
(2)
i =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

α 0
∗ A′

β ∗
∗ ∗

γ 0
0 0

δ ∗
0 D′

⎞
⎟⎟⎠ ∈ G2

(
α β
γ δ

)
∈ Spi, A′ = tD′−1 ∈ GLm−i,

⎫⎪⎪⎬
⎪⎪⎭ .

Lemma 3.2. Let ι be the automorphism of Spi given by

(
α β
γ δ

)

→(

α −β
−γ δ

)
. For any irreducible admissible representation π of Spi,

we have π ι̊ � π̃.

Proof. A proof of this lemma can be found in [28], Chapter 4-II.

Lemma 3.3. Let G be a unimodular totally disconnected locally com-
pact group, and ρ and ρ′ irreducible admissible representations of G. If
BG×G(c-IndG×G

ΔG 1, ρ � ρ′) �= 0, then ρ′ � ρ̃. Here, ΔG is the diagonal
subgroup of G ×G.

Proof. This lemma seems well-known, but for the sake of completeness,
we give a proof. Note that c-IndG×G

ΔG 1 � C∞
0 (G) by restriction to the

second factor. For each compact open subgroup K of G, we put

eK = Volume(K)−1 × ( characteristic function of K).

We define an injection

ϕ : BG×G(C∞
0 (G), ρ1 � ρ2) → BG(ρ, ρ′)



PULLBACK OF THE LIFTING 9

as follows. Given U ∈ BG×G(C∞
0 (G), ρ � ρ′), w ∈ ρ, and w′ ∈ ρ′, we

put

ϕ(U)(w, w′) = U(eK , w � w′)

for sufficiently small open compact subgroup K. It is easy to check
that this definition does not depend on the choice of K and that ϕ is
an injective map. Hence the lemma.

Let π1 (resp. π2) be an irreducible unramified principal series repre-
sentation of G1 (resp. G2). Then there exist unramified quasi-characters
λ1, λ2, . . . , λr (resp. λ′

1, λ′
2, . . . , λ′

m ) such that π1 (resp. π2) is the
unique unramified constituent of the induced representation

IndG1
BG1

λ1 � λ2 � · · · � λr

(resp. IndG2
BG2

λ′
1 � λ′

2 � · · · � λ′
m).

Here, BG1 (resp. BG2) is a Borel subgroup of G1 (resp. G2). Put βi =
λi(�) (i = 1, 2, . . . , r) and β ′

j = λ′
j(�) (j = 1, 2, . . . , m). By definition,

the set of the Satake parameters of π1 and π2 are {β±1
1 , β±1

2 , · · · , β±1
r }

and {β ′±1
1 , β ′±1

2 , · · · , β ′±1
m }, respectively.

Note that the standard Levi subgroup of PH is isomorphic to GLm+r.
A one-dimensional representation of GLm+r is of the form ω˚det for
some quasi-character ω : F× → C×. The induced representation
IndH

PH
(ω˚det) is called a degenerate principal series.

Proposition 3.1. Let ω : F× → C× be an unramified quasi-character.
Put α = ω(�). If

BG1×G2 (IndH
PH

(ω−1
˚det)|G1×G2 , π1 � π2) �= {0},

then as a multiset, {β ′±1
1 , β ′±1

2 , . . . , β ′±1
m } is equal to

{β1
±1, β2

±1, . . . , βr
±1}

∪ {(α±1q(m−r−1)/2, α±1q(m−r−3)/2, . . . , α±1q−(m−r−1)/2}.
Proof. We proceed as in Rallis [32] Chapter II. Let Xi (i = 0, . . . , r)
be the subspace of IndH

PH
(ω−1

˚det) that consists of the elements whose
supports are contained in

r⋃
j=i

PH ηi(G1 ×G2).

We put Xr+1 = {0}. Then

{0} = Xr+1 ⊂ Xr ⊂ · · · ⊂ X1 ⊂ X0 = IndH
PH

(ω−1
˚det)



10 TAMOTSU IKEDA

are G1 × G2 invariant subspaces, and

Xi/Xi+1 � c-IndG1×G2
Qi

ωiδ
−1/2
Qi

.

Here δPH
(resp. δQi) is the modulus character of PH (resp. Qi), and ωi

is the character of Qi defined by

ωi(t) = (ω−1
˚det)(ηitη

−1
i )δ

1/2
PH

(ηitη
−1
i ).

It is easy to see

ωi(t) = ω−1(det A det A′)| det A det A′|(m+r+1)/2,

δ
1/2
Qi

(t) = | det A|(r+i+1)/2| det A′|(m+i+1)/2

for

t =

⎛
⎜⎜⎝

α 0
∗ A

β ∗
∗ ∗

γ 0
0 0

δ ∗
0 D

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

α 0
∗ A′

−β ∗
∗ ∗

−γ 0
0 0

δ ∗
0 D′

⎞
⎟⎟⎠ ∈ Qi.

The Jacquet modules rG1

P
(1)
i

π1 and rG2

P
(2)
i

π2 are representations of Spi×
GLr−i and Spi ×GLm−i, respectively. By Lemma 3.2 and Lemma 3.3,
the Jacquet modules rG1

P
(1)
i

π1 and rG2

P
(2)
i

π2 have irreducible subquotients

of the form

ρ(1) � (ω˚det)| det |−(m−i)/2

and
ρ(2) � (ω˚det)| det |−(r−i)/2,

respectively, such that ρ(1) � ρ(2) for some i (0 ≤ i ≤ r).
Let {β ′′±1

1 , β ′′±1
2 , . . . , β ′′±1

i } be the set of Satake parameters of ρ(1) �
ρ(2). Then the set of Satake parameters of π1 is

{β ′′±1
1 , β ′′±1

2 , . . . , β ′′±1
i }

∪ {(αq(m−r+1)/2)±1, (αq(m−r+3)/2)±1, . . . , (αq(m+r−2i−1)/2)±1}.
On the other hand, the set of Satake parameters of π2 is

{β ′′±1
1 , β ′′±1

2 , . . . , β ′′±1
i }

∪ {(αq(r−m+1)/2)±1, (αq(r−m+3)/2)±1, . . . , (αq(m+r−2i−1)/2)±1}
={β ′′±1

1 , β ′′±1
2 , . . . , β ′′±1

i }
∪ {(αq(m−r+1)/2)±1, (αq(m−r+3)/2)±1, . . . , (αq(m+r−2i−1)/2)±1}
∪ {α±1q(m−r−1)/2, α±1q(m−r−3)/2, . . . , α±1q−(m−r−1)/2}.

Hence the proposition.
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4. Proof of Theorem 1.1

Now we go back to the situation of §2. As in the last section, G1 =
Spr, G2 = Spm, and H = Spm+r. Let ωp : Q×

p → C× be the unramified
character determined by ωp(p) = αp,

The p-component of the irreducible cuspidal automorphic represen-
tation of H(A) generated by F (Z) is the degenerate principal series

Ind
H(�p)

PH(�p)
(ωp˚det),

since the Satake parameter is

{(αpp
−(m+r+1)/2)±1, (αpp

−(m+r−1)/2)±1, . . . , (αpp
(m+r+1)/2)±1}.

Let H(Gi(Af)) (i = 1, 2) be the Hecke algebra for the finite adele group
Gi(Af). Then H(G1(Af))·g (resp. H(G2(Af))·Fh,g) is the finite part of
the cuspidal automorphic representation of G1(A) (resp. G2(A)) gen-
erated by g (resp. Fh,g). H(G1(Af))·g is an irreducible representation
of G1(Af). Let π1 be the p-component of H(G1(Af)) ·g. Then π1 is
an unramified principal series with Satake parameter {β±1

p,1 , . . . , β±1
p,r}.

On the other hand, since Fh,g(Z) is a cusp form, the representation
H(G2(Af))·Fh,g of G2(Af) is unitary and of finite length. Let π2 be the
p-component of some irreducible direct summand of H(G2(Af)) ·Fh,g.
Then π2 is also an unramified principal series. Observe that∫

Sp2n+r(�)\�2n+r

∫
Spr(�)\�r

F

((
Z 0
0 W

))
gc(W )Fh,g(Z)

× (det ImZ)k−n−1(det ImW )k+n−1dWdZ

=〈Fh,g,Fh,g〉 �= 0.

It follows that

BG1(�p)×G2(�p)(Ind
H(�p)

PH(�p)
(ω−1

˚det)|G1(�p)×G2(�p), π̃1 � π2) �= {0}.
By Proposition 3.1, any irreducible component of H(G2(Af))·Fh,g has
Satake parameter

{β±1
p,1, . . . , β±1

p,r , (αpp
n−(1/2))±1, . . . , (αpp

−n+(1/2))±1}.
In particular, H(G2(Af))·Fh,g is isotypic. Since it is generated by the
class 1 vector Fh,g, it is irreducible. It follows that Fh,g is a Hecke
eigenform and its standard L-function is equal to

L(s,Fh,g, st) = L(s, g, st)
2n∏
i=1

L(s + k + n − i, f).
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5. A conjecture on the Petersson inner product

It is an interesting problem to determine when Fh,g �≡ 0. Here we
are going to give a conjecture on the Petersson inner product of Fh,g.

Let L(s, st(g) � f) be the L-function defined by

L(s, st(g) � f) =
∏

p

det(14r+2 − Ap ⊗Bp · p−s)−1,

where

L(s, f) =
∏

p

det(12 − Ap · p−s)−1, Ap ∈ GL2(C),

L(s, g, st) =
∏

p

det(12r+1 − Bp · p−s)−1, Bp ∈ GL2r+1(C).

The gamma factor of L(s, st(g) � f) is given by

L∞(s, st(g) � f) = Γ� (s)
r∏

i=1

Γ� (s + n − k + i)Γ� (s + n + k + i − 1).

Here, Γ� (s) = 2(2π)−sΓ(s).
We put Λ(s, st(g) � f) = L∞(s, st(g) � f)L(s, st(g) � f). Then the

functional equation should be

Λ(2k − s, st(g) � f) = (−1)k+rΛ(s, st(g) � f)

We also need the adjoint L-function L(s, f, Ad) of f . We put

ξ(s) = Γ�(s)ζ(s),

Λ(s, f, Ad) = Γ�(s + 1)Γ� (s + 2k − 1)L(s, f, Ad).

Here, Γ�(s) = π−s/2Γ(s/2). Then the following functional equations
hold.

ξ(1 − s) = ξ(s),

Λ(1 − s, f, Ad) = Λ(s, f, Ad).

We modify ξ(s) and Λ(s, f, Ad) as follows.

ξ̃(s) = Γ�(s + 1)ξ(s) = Γ� (s)ζ(s),

Λ̃(s, f, Ad) = Γ�(s)Λ(s, f, Ad) = Γ� (s)Γ� (s + 2k − 1)L(s, f, Ad).

If i is a positive integer, ξ̃(2i) = |B2i|/2i ∈ Q×. It is well-known that

Λ̃(2i − 1, f, Ad)/〈f, f〉 ∈ Q(f)× for 1 ≤ i < k.
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Conjecture 5.1. Assume that n < k. Then there exists an integer
α = α(r, n, k) depending only on r, n, and k such that

Λ(k + n, st(g) � f)
n∏

i=1

Λ̃(2i − 1, f, Ad)ξ̃(2i) = 2α 〈f, f〉
〈h, h〉

〈Fh,g,Fh,g〉
〈g, g〉 .

In particular, Fh,g is non-zero if and only if Λ(k + n, st(g) � f) �= 0.

In the case r = n = 1, the left hand side does not vanish. Therefore
our conjecture implies Miyawaki’s conjecture 2.2.

When Fh,g �= 0, one can rewrite the right hand side in a more sym-
metric way. Namely, choose any non-zero G ∈ C · Fh,g. Then

〈Fh,g,Fh,g〉 =
|〈F |�r×�r+2n , gc × G〉|2

〈G,G〉
Here 〈F |�r×�r+2n , gc×G〉 is a Petersson inner product on (Spr(Z)\hr)×
(Spr+2n(Z)\hr+2n). Therefore the conjecture takes the form

Λ(k + n, st(g) � f)
n∏

i=1

Λ̃(2i − 1, f, Ad)ξ̃(2i)(C)

= 2α 〈f, f〉
〈h, h〉

|〈F |�r×�r+2n , gc × G〉|2
〈g, g〉〈G,G〉 .

Remark 5.1. By some computer calculation (cf. Appendix), it seems
the values of α = α(r, n, k) are

α(0, n, k) =2kn + 2n − k − 1,(a)

α(r, 0, k) =r2 + 2kr + r − k − 1,(b)

α(r, n, k) =r2 + 2kr + 2kn + 2rn + 2n + r − k − 2(c)

for r, n > 0. As for the case n = 0, we will give some evidence for (C)
in the next section.

Remark 5.2. Note that s = k+n is a critical point for Λ(s, st(g)�f) in
the sense of Deligne [9]. In particular, the left hand side of (C) should
be finite. Deligne’s conjecture [9] implies the ratio RHS/LHS should
belong to the field Q(f, g) under the assumption n < k. (cf. Yoshida
[36]). When r = 0, see Choie and Kohnen [7], Lanphier [26].

Example 5.1. When r = n = 0, we have F (Z) = c(1). In this case,
our conjecture is a special case of the result of Kohnen-Zagier [23]

Λ(k, f) = 21−k 〈f, f〉
〈h, h〉|c(1)|2.

It follows that our conjecture holds for n = r = 0 with α(0, 0, k) = 1−k.
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Example 5.2. When r = 0, n = 1, our conjecture is compatible with
the Petersson inner product formula for the Saito-Kurokawa lift

Λ(k + 1, f) = 3 · 2−k+3 〈F, F 〉
〈h, h〉

proved by Kohnen [21] and Kohnen and Skoruppa [22]. See also Krieg
[24], Oda [31], and Furusawa [15]. This is equivalent with

Λ(k + 1, f)Λ̃(1, f, Ad)ξ̃(2) = 2k+1 〈f, f〉
〈h, h〉〈F, F 〉,

since Λ̃(1, f, Ad) = 22k〈f, f〉. It follows that our conjecture holds for
(r, n) = (0, 1) with α(0, 1, k) = k + 1.

So far, we have assumed n ≥ 0. We now consider the case n < 0.
We shall show that if Conjecture 5.1 is true, the roles of g and G can
be interchanged.

Proposition 5.1. Assume that Conjecture 5.1 is true and Fh,g �= 0.
Then Fh,G ∈ C · g for any G ∈ C · Fh,g. Here, Fh,G is the Miyawaki
lifting of G ∈ Sk+r+n(Spr+2n(Z)) to Sk+r+n(Spr(Z)) with respect to
F ∈ Sk+r+n(Sp2r+2n(Z)).

Proof. Choose an orthonormal basis {gi}i∈I of Sk+r+n(Spr(Z)) which
consists of Hecke eigenforms. We may assume g ∈ {gi}i∈I . The pull-
back F |�r×�r+2n can be expressed as

F |�r×�r+2n =
∑
i∈I

gc
i × Gi, Gi = Fh,gi.

It is enough to show that 〈Gi, Gj〉 = 0 for i �= j. By Thoerem 1.1, we
may assume gi and gj have the same Hecke eigenvalues.

Let V be the subspace of Sk+r+n(Spr(Z)) generated by all Hecke
eigenforms with the same Hecke eigenvalues as g. We define V ′ ⊂
Sk+r+n(Spr+2n(Z)) similarly. Then our assumption implies the map
g 
→ Fh,g is an isometry from V onto an subspace of V ′ up to scalar
multiplication. It follows that Gi and Gj are orthogonal for i �= j.

Proposition 5.2.[
Λ(s + k − n, st(G) � f)

n∏
i=1

Λ̃(s − 2i + 1, f, Ad)−1ξ̃(s − 2i + 2)−1

]
s=0

= Λ(k + n, st(g) � f)

n∏
i=1

Λ̃(2i − 1, f, Ad)ξ̃(2i).
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Proof. By Theorem 1.1, Λ(s + k − n, st(G) � f) is the product of

2n∏
i=1

Λ(s + 2k − i, f × f)

and

Λ(s + k − n, st(g) � f) = (−1)k+rΛ(−s + k + n, st(g) � f).

Since Λ(s + 2k − 1, f × f) = Λ(s, f, Ad)ξ(s), we have

2n∏
i=1

Λ(s + 2k − i, f × f)
n∏

i=1

Λ̃(s − 2i + 1, f, Ad)−1ξ̃(s − 2i + 2)−1

=
n∏

i=1

Γ�(s − 2i + 1)−1Γ�(s − 2i + 3)−1

×
n∏

i=1

Λ(−s + 2i − 1, f, Ad)ξ(−s + 2i).

Now using Γ�(s + 1)Γ�(−s + 1) = sin(πs/2), we have
n∏

i=1

Γ�(−2i + 1)−1Γ�(−2i + 3)−1 = (−1)n

n∏
i=1

Γ�(2i − 1)Γ�(2i + 1).

Hence the proposition.

Remark 5.3. The polynomial which shows up in the right hand side of
Remark 5.1 (c) is not invariant under (r, n) 
→ (r + 2n,−n).

6. some evidence for the case n = 0

In this section, we discuss the case when n = 0. In this case we
conjecture α(r, 0, k) = r2 + 2rk + r − k − 1.

By Kohnen-Zagier [23],

|c(|D|)|2 〈f, f〉
〈h, h〉 = 2k−1|D|−1/2Λ(k, f, χD),(KZ)

for any fundamental discriminant D such that (−1)kD > 0. Here,

Λ(s, f, χD) = |D|sΓ� (s)L(s, f, χD).

It follows that if c(|D|) �= 0, our conjecture is equivalent to the
following:

Λ(k, st(g) � f) = 2r2+r+2rk−2 Λ(k, f, χD)√|D| |c(|D|)|2
〈Fh,g,Fh,g〉

〈g, g〉 .(C′)
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When f = E2k is the Eisenstein series, the equation (C) does not make
sense, but (C′) makes sense. As L(s, E2k) = ζ(2)ζ(s−2k+1), we think
of L(s, st(g) � E2k) as L(s, g, st)L(s − 2k + 1, g, st), while the gamma
factor is the same as L∞(s, st(g)�f). Let h(τ ) be the Cohen Eisenstein

series Hk+(1/2) ∈ M+
k+(1/2)(Γ0(4)) and F = E(2r)

k+r = 2−rAr,k · E
(2r)
k+r the

normalized Eisenstein series, where

Ar,k = ζ(1 − k − r)

r∏
i=1

ζ(1 − 2k − 2r + 2i).

introduced in [18]. F = E(2r)
k+r can be thought of as the Duke-Imamoglu

lift of H(τ ).

Proposition 6.1. If f = E2k, h = Hk+(1/2), and F = E(2r)
k+r , then the

equation (C′) holds.

Proof. This is essentially a result of Böcherer [3]. When f = E2k,
h = Hk+(1/2), we have

c(|D|) = L(1 − k, χD) = (−1)k(k−1)/2|D|k−(1/2)2(2π)−kΓ(k)L(k, χD),

and so
Λ(k, f, χD)√|D|c(|D|)2

= (−1)k(k−1)/2.

By the functional equation (cf. [3]) of L(s, g, st), we have

L(1 − k, g, st)

= (−1)k(k−1)/22(2π)r−2rk−kΓ(k)
r∏

i=1

Γ(2k + i − 1)

Γ(i)
· L(k, g, st).

Therefore, we have to prove

〈Fh,g ,Fh,g〉
〈g, g〉 =2−2r2+2r−6rk−2k+4π−r2+r−4rk−2k

× Γ(k)2

r∏
i=1

Γ(2k + i− 1)2 · L(k, g, st)2.

On the other hand, by the result of Böcherer [3], we have Fh,g = Br · g,
where

Br =(−1)r(k+r)/22(−r2+r−2rk+2)/2π(r2+r)/2 Γr(k + r−1
2

)

Γr(k + r)

× ζ(k + r)−1
r∏

i=1

ζ(2k + 2r − 2i)−1L(k, g, st) · Ar,k.

Here Γr(s) =
∏r

i=1 Γ(s − ((i − 1)/2)).
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By the functional equation of the Riemann zeta function and the

definition of E(2r)
k+r , we have

〈Fh,g,Fh,g〉
〈g, g〉 =2−3r2+3r−6rk−2k+4π−r2+r−4rk−2k Γr(k + r−1

2
)2

Γr(k + r)2

× Γ(k + r)2

r∏
i=1

Γ(2k + 2r − 2i)2L(k, g, st)2.

Now, the next lemma proves Proposition 6.1.

Lemma 6.1.

Γr(s + r−1
2

)

Γr(s + r)
= 2(r2−r)/2 Γ(s)

Γ(s + r)

r∏
i=1

Γ(2s + i− 1)

Γ(2s + 2r − 2i)
.

Proof. Put

Ar(s) = 2(r−r2)/2 Γr(s + r−1
2

)Γ(s + r)

Γr(s + r)Γ(s)

r∏
i=1

Γ(2s + 2r − 2i)

Γ(2s + i − 1)
.

Then obviously A1(s) = 1.

Ar+1(s)

Ar(s)
=2−r Γ(s + r

2
+ 1

2
)Γ(s + r

2
)

Γ(s + r + 1)Γ(s + r + 1
2
)

Γ(s + r + 1)

Γ(s + r)

Γ(2s + 2r)

Γ(2s + r)

=2−r
Γ(s + r

2
+ 1

2
)Γ(s + r

2
)

Γ(s + r + 1
2
)Γ(s + r)

Γ(2s + 2r)

Γ(2s + r)

By the duplication formula for the gamma function, we have

Γ(s +
r

2
+

1

2
)Γ(s +

r

2
) =

√
π21−r−2sΓ(2s + r),

Γ(s + r +
1

2
)Γ(s + r) =

√
π21−2r−2sΓ(2s + 2r).

Hence Ar+1(s) = Ar(s).

We restate Proposition 6.1 in the following form.

Proposition 6.2. Assume that k+r ≡ 2 mod 2 and g ∈ Sk+r(Spr(Z)).
Then

〈E(2r)
k+r |�r×�r , g

c × g〉
〈g, g〉 = 2−(r2−r+2kr−2)/2|Ar,k|−1Λ̃(k, g, st).

Here Λ̃(s, g, st) = Γ� (s)
∏r

i=1 Γ� (s + k + r − i)L(s, g, st).
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7. Theta functions associated with Niemeier lattices

In this section, we write M
(n)
k = Mk(Spn(Z)) and S

(n)
k = Sk(Spn(Z)),

for simplicity.
We recall the results of [30]. A Niemeier lattice is a positive definite

even unimodular lattice of degree 24. The number of isomorphism
classes of Niemeier lattices is 24. Let Li (1 ≤ i ≤ 24) be Niemeier
lattices, not isomorphic to each other.

Let V be the vector space with basis {[Li] | 1 ≤ i ≤ 24}, where [Li]
is the isomorphism class of Li.

The theta function of degree n associated with Li is denoted by

Θ
(n)
Li

(Z) ∈ M
(n)
12 . By extending linearly, we obtain a linear map

Θ(n) : V −→ M
(n)
12∑

i

ci[Li] 
→
∑

i

ciΘ
(n)
Li

(Z).

Let Vn = Ker(Θ(n)). Then Θ(12) is injective (cf. [13], [5]). If n′+n′′ = n,

then the restriction of Θ
(n)
Li

(Z) to hn′ × hn′′ is given by

Θ
(n)
Li

((
Z ′ 0
0 Z ′′

))
= Θ

(n′)
Li

(Z ′)Θ(n′′)
Li

(Z ′′).

As an element of V , we put ei = [Li]. Following Nebe and Venkov, we
define the Hermitian inner product ( , ) on V by

(ei, ej) =

{
(#Aut(Li)), i = j,

0, i �= j,

and a multiplication on V by

ei ◦ ej =

{
(#Aut(Li))ei, i = j

0, i �= j.

Nebe and Venkov defined Hecke operators Kp,i, (1 ≤ i ≤ 12) and T (p)
acting on V and calculated Hecke eigenvectors d1, d2, . . . , d24.

We put

di =
∑

j

cijej,

ei =
∑

j

bijdj.

A table of coefficients cij (i, j = 1, 2, . . . , 24) can be found in [29].
Note that cij, bij ∈ Q. As both {e1, e2, . . . , e24} and {d1, d2, . . . , d24}
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are orthogonal basis of V , we have

bij = (ei, ei) cji (dj, dj)
−1 = (#Aut(Li)) (dj , dj)

−1 cji.

Nebe and Venkov showed that the degree ni of di is as follows:

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

0 1 2 3 4 4 5 5 6 6 6 7

n13 n14 n15 n16 n17 n18 n19 n20 n21 n22 n23 n24

8 7 8 7 8 8 – 9 – 10 11 12

For the definition of the degree, see [30]. Note that they have shown
that ni = min{n |Θ(n)(di) �= 0} in this case (See [30], Lemma 2.5). As
for n19 and n21, they have shown that 7 ≤ n19 ≤ 9, 8 ≤ n21 ≤ 10, but
we do not use d19 or d21.

Note that the Petersson inner product 〈Θ(ni)(di), Θ
(ni)(dj)〉 vanishes

for i �= j, since the Hecke eigenvalues are different. We put Fi =

Θ(ni)(di) ∈ S
(ni)
12 . Note that F c

i = Fi for i = 1, 2, . . . , 24.

Lemma 7.1. Let di, dj , and dk be Hecke eigenvectors of V . Then we
have

〈Θ(ni+nj )(dk)|�ni
×�nj

, Fi × Fj〉 =
〈Fi, Fi〉 〈Fj , Fj〉
(di, di) (dj, dj)

(dk, di ◦ dj).

In particular, (dk, di ◦ dj) �= 0 if and only if the left hand side is not
zero.

Proof. The left hand side is equal to

24∑
m=1

ckm〈Θ(ni+nj )
Lm

|�ni
×�nj

, Θ(ni)(di) ×Θ(nj )(dj)〉

=

24∑
m=1

ckm〈Θ(ni)
Lm

, Θ(ni)(di)〉 〈Θ(nj )
Lm

, Θ(nj)(dj)〉

=
24∑

m=1

ckm〈
24∑
l=1

bmlΘ
(ni)(dl), Θ

(ni)(di)〉〈
24∑
l=1

bmlΘ
(nj)(dl), Θ

(nj )(dj)〉

=〈Fi, Fi〉 〈Fj , Fj〉
24∑

m=1

ckmbmibmj

=
〈Fi, Fi〉 〈Fj, Fj〉
(di, di) (dj , dj)

24∑
m=1

(#Aut(Lm))2ckmcimcjm.
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On the other hand,

(dk, di ◦ dj) =(dk,

(
24∑

m=1

cimem

)
◦
(

24∑
l=1

cjlem

)
)

=(dk,
24∑

m=1

(#Aut(Lm)) cimcjmem)

=
24∑

m=1

(#Aut(Lm)) cimcjm(dk, em)

=

24∑
m=1

(#Aut(Lm))2 cimcjmckm.

Hence the lemma.

Nebe and Venkov [30] claimed that F11 ∈ S
(6)
12 , F13 ∈ S

(8)
12 , and

F24 ∈ S
(12)
12 are the Duke-Imamoglu lift of φ18 ∈ S

(1)
18 , φ16 ∈ S

(1)
16 , and

Δ ∈ S
(1)
12 , respectively. In fact this is easily verified by comparing the

eigenvalue of T (2) (See [29]). Nebe and Venkov [30] have shown that
(d24, di ◦ dj) �= 0 for

(i, j) = (2, 23), (3, 22), (4, 20), (5, 17), (6, 18), (7, 14), (8, 16).

Proposition 3.1 implies that Fj is the Miyawaki lift of Fi with respect

to F24 ∈ S
(12)
12 . Similarly, using the structure constants found in [29],

one can prove that F8 ∈ S
(5)
12 and F6 ∈ S

(4)
12 are Miyawaki lift of F2 ∈

S
(1)
12 and F3 ∈ S

(2)
12 , respectively. One can also prove that F12 ∈ S

(7)
12 ,

F9 ∈ S
(6)
12 , and F7 ∈ S

(5)
12 are the Miyawaki lift of F2 ∈ S

(1)
12 , F3 ∈ S

(2)
12 ,

and F4 ∈ S
(3)
12 with respect to F13 ∈ S

(8)
12 , respectively. We summarize

these as Table A and Table B.

8. Appendix

We briefly explain how to calculate both sides of (C) by computers.
For the calculation of various L-values, we have used a very useful
program due to Dokchitser [10]. The Petersson norm 〈f, f〉 can be
easily computed by Λ̃(1, f, Ad) = 22k〈f, f〉. Similarly, 〈h, h〉 can be
computed by Kohnen-Zagier formula (KZ). The Petersson norm of g
or G can be computed by Proposition 6.2 and Lemma 7.1. Finally,
〈F |�r×�r+2n , g×G〉 is computed by Lemma 7.1. Note that the structure
constants (dk, di ◦ dj) are already computed by Nebe [29].
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We discuss the case f = φ20 ∈ S
(1)
20 , g = Δ ∈ S

(1)
12 , and G ∈ S

(3)
12 . We

put

d′1 =d1/1027637932586061520960267,

d′2 = − d2/8104867379578640543040,

d′4 =d4/846305351287603200,

d′5 = − d5/212694241858560.

We give a table of coefficients of d2, d4, and d5 below (See Nebe [29]).

The coefficients of d1 can be found in [29] or [8], p. 413. Then E
(2r)
12 =

Θ(2r)(d′1), F ′
2 = Θ(1)(d′2) = Δ ∈ S

(1)
12 , and F ′

4 = Θ(3)(d′4) ∈ S
(3)
12 is the

Miyawaki’s cusp form [27]. Put h = q − 56q4 +360q5 − 13680q8 + · · · ∈
S+

21/2(Γ(4)). Then F ′
5 = Θ(4)(d′5) ∈ S

(4)
12 is the Duke-Imamoglu lift of

h(τ ) to degree 4.

d2 d4 d5

Leech 21625795628236800 −1992646656000 214592716800

A24
1 21618140012108640000 −462916726272000 22783711104000

A12
2 104595874904801280000 385220419584000 −56204746752000

A8
3 −7569380452233600000 865252948560000 22644338640000

A6
4 −66640754260236828672 −625041225768960 21173267275776

A4
5D4 −37660962656647249920 −318497556529152 2319747268608

D6
4 −861991027602705000 −7289830548000 4817683332000

A4
6 −8962553548174786560 25632591249408 −23357975494656

A2
7D2

5 −3844278424500433920 89124325640064 6074130446208

A3
8 −400803255218995200 20932199608320 −1962418360320

A2
9D6 −226886348300451840 20394416373760 168373460992

D4
6 −40713248535359400 3659642586600 716314247880

A11D7E6 −22871209751470080 4366739579904 500824507392

E4
6 −1056891465710080 201789491904 52888473792

A2
12 −2655635220725760 675250266112 11615002624

D3
8 −554584334604300 180878892480 32784927120

A15D9 −141086166819840 69909993856 8326316416

D10E2
7 −20420264058480 14273509536 4257598752

A17E7 −17203085475840 12024741888 2130518016

D2
12 −426847644405 515734934 139737422

A24 −30884364288 51875840 11128832

D16E8 −2482214625 6542775 2974851

E3
8 −584290850 1540110 927894

D24 −367740 2621 1601

We need the following computer calculations.

(d′2,d′2) =231 · 310 · 54 · 7 · 112 · 13 · 17 · 19 · 23 · 283−1 · 617−1 · 3617−1 · 43867−1,

(d′4,d′4) =216 · 3−1 · 55 · 7 · 11 · 13 · 283 · 617 · 691−1 · 3617−1,

(d′1, d′4 ◦ d′4) =
261 · 316 · 512 · 75 · 113 · 133 · 17 · 19 · 23

131 · 593 · 6913 · 36172 · 43867
,

(d′5, d′2 ◦ d′4) = − 254 · 312 · 510 · 72 · 113 · 132 · 17 · 19 · 23 · 691−1 · 3617−2 · 43867−1.
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〈Δ, Δ〉 =0.000001035362056804320922347816812225164593224907 · · ·
〈φ20, φ20〉 =0.000008265541531659703164230062760258225715343908 · · ·

〈Δ, Δ〉
〈h, h〉 =0.098872279065281741186752369945336382997115288715 · · ·

Λ̃(9,Δ, Ad) =0.139584317666868979132086560789461824236408711579 · · ·
�219 · 32 · 5−1 · 7−1〈Δ, Δ〉,

Λ(18, φ20)Λ(19, φ20) =223 · 34 · 72 · 17 · 283−1 · 617−1〈φ20, φ20〉,
Λ(11, Ad(Δ) � φ20) =0.000000033447080614408498864020192110373963031495 · · ·

�224 · 32 · 52〈Δ, Δ〉2〈φ20, φ20〉〈h, h〉−1.

We can now calculate the Petersson norm 〈F ′
4, F

′
4〉. By Proposition

6.2 and Lemma 7.1, we have

〈F ′
4, F

′
4〉 =2−29 (d′4, d

′
4)

2

(d′1, d
′
4 ◦ d′4)

|A3,9|−1Λ̃(9, Δ, Ad)Λ(18, φ20)Λ(19, φ20)

�2−6 · 3−5〈φ20, φ20〉〈Δ,Δ〉.
Here, A3,9 = ζ(−11)ζ(−21)ζ(−19)ζ(−17). By Lemma 7.1, we have

〈F ′
5|�1×�3 , F

′
2 × F ′

4〉2
〈F ′

2, F
′
2〉〈F ′

4, F
′
4〉

= 〈F ′
2, F

′
2〉〈F ′

4, F
′
4〉
(

(d′5, d
′
2 ◦ d′4)

(d′2, d
′
2) (d′4, d

′
4)

)2

� 28 · 3 · 52〈Δ, Δ〉2〈φ20, φ20〉.
On the other hand, we have

Λ(11, st(g) � f)Λ̃(1, f, Ad)ξ̃(2) � 242 · 3 · 52〈Δ, Δ〉3〈φ20, φ20〉2〈h, h〉−1

Hence the equation (C) holds approximately in this case with α = 34.
Other examples are shown in Table C.

We give another example n = k = 6, r = 0, g = 1, f = Δ, and
F = G = F24. Then by computer calculation,

Λ(12, st(g) � f)

6∏
i=1

Λ̃(2i − 1, f, Ad)ξ̃(2i) � 273〈Δ, Δ〉6Λ(12,Δ)

33 · 52 · 72 · 11 · 13 · 23
.

On the other hand, using Böcherer’s result [3], one can show

〈f, f〉
〈h, h〉〈F, F 〉 =

〈Δ, Δ〉6Λ(12,Δ)

25 · 33 · 52 · 72 · 11 · 13 · 23
.

Therefore it seems (C) holds in this case as well. Notice that the
assumption k > n is not satisfied in this case and that Λ(12,Δ) is not
a critical value in the sense of Deligne [9].
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• Tabe A: Standard L-functions

L(s, F3, st) =ζ(s)
∏

10≤i≤11

L(s + i, φ22),

L(s, F4, st) =L(s,Δ, Ad)
∏

9≤i≤10

L(s + i, φ20),

L(s, F5, st) =ζ(s)
∏

8≤i≤11

L(s + i, φ20),

L(s, F6, st) =ζ(s)
∏

10≤i≤11

L(s + i, φ22)
∏

8≤i≤9

L(s + i, φ18),

L(s, F7, st) =L(s,Δ, Ad)
∏

9≤i≤10

L(s + i, φ20)
∏

7≤i≤8

L(s + i, φ16),

L(s, F8, st) =L(s,Δ, Ad)
∏

7≤i≤10

L(s + i, φ18),

L(s, F9, st) =ζ(s)
∏

10≤i≤11

L(s + i, φ22)
∏

6≤i≤9

L(s + i, φ16),

L(s, F11, st) =ζ(s)
∏

6≤i≤11

L(s + i, φ18),

L(s, F12, st) =L(s,Δ, Ad)
∏

5≤i≤10

L(s + i, φ16),

L(s, F14, st) =L(s,Δ, Ad)
∏

9≤i≤10

L(s + i, φ20)
∏

7≤i≤8

L(s + i, φ16)
∏

5≤i≤6

L(s + i, Δ),

L(s, F16, st) =L(s,Δ, Ad)
∏

7≤i≤10

L(s + i, φ18)
∏

5≤i≤6

L(s + i, Δ),

L(s, F13, st) =ζ(s)
∏

4≤i≤11

L(s + i, φ16),

L(s, F17, st) =ζ(s)
∏

8≤i≤11

L(s + i, φ20)
∏

4≤i≤7

L(s + i, Δ),

L(s, F18, st) =ζ(s)
∏

10≤i≤11

L(s + i, φ22)
∏

8≤i≤9

L(s + i, φ18)
∏

4≤i≤7

L(s + i, Δ),

L(s, F20, st) =L(s,Δ, Ad)
∏

9≤i≤10

L(s + i, φ20)
∏

3≤i≤8

L(s + i, Δ),

L(s, F22, st) =ζ(s)
∏

10≤i≤11

L(s + i, φ22)
∏

2≤i≤9

L(s + i, Δ),

L(s, F23, st) =L(s,Δ, Ad)
10∏

i=1

L(s + i, Δ),

L(s, F24, st) =ζ(s)
11∏

i=0

L(s + i, Δ).
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• Table B: Liftings

type form degree g f F r n k

Duke-Imamoglu F3 2 φ22

Miyawaki F4 3 Δ φ20 F5 1 1 10

Duke-Imamoglu F5 4 φ20

Miyawaki F6 4 F3 φ18 F11 2 1 9

Miyawaki F7 5 F4 φ16 F13 3 1 8

Miyawaki F8 5 Δ φ18 F11 1 2 9

Miyawaki F9 6 F3 φ16 F13 2 2 8

Duke-Imamoglu F11 6 φ18

Miyawaki F12 7 Δ φ16 F13 1 3 8

Miyawaki F14 7 F7 Δ F24 5 1 6

Miyawaki F16 7 F8 Δ F24 5 1 6

Duke-Imamoglu F13 8 φ16

Miyawaki F17 8 F5 Δ F24 4 2 6

Miyawaki F18 8 F6 Δ F24 4 2 6

Miyawaki F20 9 F4 Δ F24 3 3 6

Miyawaki F22 10 F3 Δ F24 2 4 6

Miyawaki F23 11 Δ Δ F24 1 5 6

Duke-Imamoglu F24 12 Δ

• Table C: The autor has checked that the equation (C) holds up to at
least 30 decimals in the following cases:

G g f F r n k α

Δ Δ φ22 F3 1 0 11 12

F3 F3 φ20 F5 2 0 10 35

F4 F4 φ18 F11 3 0 9 56

F5 F5 φ16 F13 4 0 8 75

F6 F6 φ16 F13 4 0 8 75

F9 F9 Δ F24 6 0 6 107

F11 F11 Δ F24 6 0 6 107

F3 1 φ22 F3 0 1 11 12

F4 Δ φ20 F5 1 1 10 34

F6 F3 φ18 F11 2 1 9 55

F7 F4 φ16 F13 3 1 8 74

F14 F7 Δ F24 5 1 6 106

F16 F8 Δ F24 5 1 6 106

F5 1 φ20 F5 0 2 10 33

F8 Δ φ18 F11 1 2 9 53

F9 F3 φ16 F13 2 2 8 72

F17 F5 Δ F24 4 2 6 104

F18 F6 Δ F24 4 2 6 104

F11 1 φ18 F11 0 3 9 50

F12 Δ φ16 F13 1 3 8 68

F20 F4 Δ F24 3 3 6 100

F13 1 φ16 F13 0 4 8 63

F22 F3 Δ F24 2 4 6 94

F23 Δ Δ F24 1 5 6 86
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