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Pulmonary Metagenomic Sequencing Suggests Missed 
Infections in Immunocompromised Children
Matt S. Zinter,1,  Christopher C. Dvorak,2 Madeline Y. Mayday,1 Kensho  Iwanaga,3 Ngoc P. Ly,3 Meghan E. McGarry,3 Gwynne D. Church,3 Lauren E. Faricy,4 

Courtney M. Rowan,5 Janet R. Hume,6 Marie E. Steiner,6,7  Emily D. Crawford,8,9 Charles Langelier,10 Katrina  Kalantar,9 Eric D. Chow,9 Steve  Miller,11 

Kristen Shimano,2 Alexis Melton,2 Gregory A. Yanik,12 Anil Sapru,1,13 and Joseph L. DeRisi8,9 

Divisions of  1Critical Care, 2Allergy, Immunology, and Blood & Marrow Transplantation, and 3Pulmonology, Department of Pediatrics, Benioff Children’s Hospital, University of California, San 

Francisco School of Medicine; 4Division of Pulmonology, Department of Pediatrics, University of Vermont School of Medicine, Burlington; 5Division of Critical Care, Department of Pediatrics, Riley 

Hospital for Children, Indiana University School of Medicine, Indianapolis; Divisions of  6Critical Care and 7Hematology/Oncology, Department of Pediatrics, Masonic Children’s Hospital, University 

of Minnesota School of Medicine, Minneapolis; 8Chan Zuckerberg Biohub, and 9Department of Biochemistry & Biophysics, 10Division of Infectious Diseases, Department of Internal Medicine, 

and 11Department of Laboratory Medicine, University of California–San Francisco School of Medicine; 12Division of Oncology, Department of Pediatrics, Motts Children’s Hospital, University of 

Michigan School of Medicine, Ann Arbor; and 13Division of Critical Care, Department of Pediatrics, Mattel Children’s Hospital, University of California–Los Angeles, Geffen School of Medicine

Background. Despite improved diagnostics, pulmonary pathogens in immunocompromised children frequently evade detec-
tion, leading to significant mortality. Therefore, we aimed to develop a highly sensitive metagenomic next-generation sequencing 
(mNGS) assay capable of evaluating the pulmonary microbiome and identifying diverse pathogens in the lungs of immunocompro-
mised children.

Methods. We collected 41 lower respiratory specimens from 34 immunocompromised children undergoing evaluation for 
pulmonary disease at 3 children’s hospitals from 2014–2016. Samples underwent mechanical homogenization, parallel RNA/DNA 
extraction, and metagenomic sequencing. Sequencing reads were aligned to the National Center for Biotechnology Information 
nucleotide reference database to determine taxonomic identities. Statistical outliers were determined based on abundance within 
each sample and relative to other samples in the cohort.

Results. We identified a rich cross-domain pulmonary microbiome that contained bacteria, fungi, RNA viruses, and DNA 
viruses in each patient. Potentially pathogenic bacteria were ubiquitous among samples but could be distinguished as possible causes 
of disease by parsing for outlier organisms. Samples with bacterial outliers had significantly depressed alpha-diversity (median, 0.61; 
interquartile range [IQR], 0.33–0.72 vs median, 0.96; IQR, 0.94–0.96; P < .001). Potential pathogens were detected in half of samples 
previously negative by clinical diagnostics, demonstrating increased sensitivity for missed pulmonary pathogens (P < .001).

Conclusions. An optimized mNGS assay for pulmonary microbes demonstrates significant inoculation of the lower airways of 
immunocompromised children with diverse bacteria, fungi, and viruses. Potential pathogens can be identified based on absolute 
and relative abundance. Ongoing investigation is needed to determine the pathogenic significance of outlier microbes in the lungs of 
immunocompromised children with pulmonary disease.

Keywords. intensive care units, pediatric; immunocompromised host; metagenomics; respiratory tract infections; microbiota.

Last year in the United States, approximately 15 000 children 

were diagnosed with cancer, 2000 underwent solid organ trans-

plantation, and 2500 underwent hematopoietic cell transplan-

tation (HCT) for an increasingly broad set of life-threatening 

diseases [1–3]. Despite improved safety of antineoplastic and 

transplantation-based therapies, the risk of infectious complica-

tions such as pneumonia remains high [4, 5]. Due to the inhib-

itory effect of antimicrobial pretreatment on culture growth, 

impaired serologic immunity, and the limited preselected 

targets of multiplex assays, current microbiologic diagnostics 

frequently fail to identify pathogenic organisms [6]. The signif-

icant mortality associated with undiagnosed pulmonary infec-

tions is evident in postmortem case series of pediatric HCT 

patients, in whom previously undetected pulmonary pathogens 

have been identified in 30%–50% [7].

Unlike assays that target the 16S and/or 28S/ITS ribosomal 

RNA amplicons, unbiased metagenomic next-generation 

sequencing (mNGS) can detect bacteria, viruses, and fungi and 

has shown promising results for diagnosing neurologic and 

ocular infections [8–10]. However, the identification of fila-

mentous molds such as Aspergillus spp. remains difficult due to 

thick extracellular matrices and the relatively small inoculum 

required to induce disease [11–14]. Unfortunately, off-the-shelf 

assays for respiratory biospecimens have proven inadequate to 

survey the variety of organisms present in thick and mucoid 

respiratory secretions. As such, unlike the better-characterized 
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microbiomes of the human gastrointestinal tract and naso-

pharynx, data describing the composition of the pulmonary 

microbiome are sparse and insufficient to reliably discriminate 

between health and disease [15].

Therefore, we conducted a pilot study aimed to develop a 

highly sensitive mNGS assay capable of detecting myriad pul-

monary bacterial, fungal, and viral pathogens and to test that 

assay on a retrospective cohort of immunocompromised chil-

dren who underwent lower respiratory tract sampling as evalu-

ation for suspected pulmonary infection. We hypothesized that 

an optimized mNGS assay could improve characterization of 

the pulmonary microbiome and identify potential pulmonary 

pathogens in this high-risk population.

METHODS

Development of Optimized mNGS Assay

We created mock-positive bronchoalveolar lavages (BALs) by 

spiking Aspergillus niger broth into aliquots of BAL containing 

known Haemophilus influenzae/Human Adenovirus B coinfec-

tion (Supplementary Material 1). An Aspergillus species was 

chosen as an optimization benchmark given its thick polysac-

charide cell wall and extreme clinical importance of invasive 

mold in this patient population [16].

Sample Preparation

We tested nucleic acid extraction conditions by combining 200 μL 

of mock-positive BAL with either 600 μL DirectZol, 600 μL lysis 

buffer, or 200 μL DNA/RNA Shield (Zymo), followed by mechan-

ical homogenization with either 0.1 mm or 0.5 mm glass bashing 

beads (Omni) for 2, 5, or 8 cycles of 25 seconds, bashing at 30 Hz 

with 60 seconds rest on ice between each cycle (TissuerLyser II, 

Qiagen). Samples homogenized in DNA/RNA shield also under-

went enzymatic mycolysis with either 0.15 mg or 0.38 mg protein-

ase K at 23°C for 30 or 60 minutes (Zymo) or with 0.4 mg, 1.2 mg, 

4 mg, or 8 mg Yatalase (Takara Bio Inc.) at 23°C or 37°C for 60 

or 90 minutes. Subsequently, all samples underwent 10 minutes 

of centrifugation at 4°C, and the supernatant was used for paral-

lel DNA/RNA extraction (Zymo ZR-Duet DNA/RNA MiniPrep 

Kit). Aspergillus niger nucleic acid yield was measured using an 

orthogonal digital droplet polymerase chain reaction (PCR) 

assay with pan-Aspergillus primers (Supplementary Material 2) 

[17]. RNA and DNA sequencing libraries were prepared in par-

allel (New England Biolabs NEBNext Ultra-II Library Prep) and 

underwent 125 nucleotide paired-end sequencing on an Illumina 

HiSeq 4000 instrument (Supplementary Material 3).

Bioinformatics Pipeline

Resultant.fastq files were processed using a previously described 

pipeline that consisted of several open-source components [8, 9]. 

Briefly, reads underwent iterative removal of host (Hg38/PanTro), 

low-quality, low-complexity (Lempel–Ziv–Welch [LZW] compres-

sion ratio >0.45), and redundant sequences using STAR, Bowtie2, 

PriceSeqFilter, and CD-HIT-DUP [18–21]. The remaining 

sequences were aligned to the National Center for Biotechnology 

Information (NCBI) nonredundant nucleotide database using 

GSNAPL for assignment of taxonomic IDs [22]. Microbes were 

described as potentially pathogenic or typically nonpathogenic 

based on a priori literature review (Supplementary Material 4).

Controls

To assess microbial contaminants in our reagents and labora-

tory environment, we sequenced 8 control samples containing 

spiked-in HeLa RNA (Supplementary Material 5).

Analysis

The prevalence of each microbe in each respiratory sample was 

described using 2 criteria: abundance relative to other microbes in 

the same sample, wherein we normalized sequencing reads per mil-

lion total sequencing reads (rpm), and (2) abundance relative to the 

same microbe in other samples in the cohort, wherein we normal-

ized sequencing reads as the number of standard deviations above or 

below the mean log
10

-transformed rpm for the total cohort (Z-score). 

Given the anticipated wide array of respiratory bacteria and the pau-

city of knowledge regarding the significance of low-level viruses and 

fungi, we aimed to maximize specificity for bacterial pathogens and 

to maximize sensitivity for viral and fungal pathogens [15, 23, 24]. 

Therefore, we defined microbial outliers as those with Z-score ≥2 and 

≥10 rpm (bacteria) or ≥1 rpm (viruses/fungi). The Simpson diversity 

index was used to associate the loss of bacterial diversity with the pres-

ence of outlier microbes (Supplementary Material 6) [25].

Validation

Respiratory samples with outlier pathogens that were not iden-

tified on clinical testing were sent to reference laboratories for 

orthogonal confirmatory testing (Supplementary Material 7).

Patients

To test the optimized mNGS assay, we prospectively screened 

and approached immunocompromised patients age ≤25 years 

undergoing clinically indicated lower respiratory sampling 

between September 2014 and April 2016 at the University of 

California San Francisco Benioff Children’s Hospital, Indiana 

University Riley Hospital for Children, and the University of 

Minnesota Masonic Children’s Hospital. Patients were enrolled 

with consent. After respiratory samples were collected for clin-

ical purposes, excess volume was separated, placed on dry ice 

within 10 minutes of the original procedure, and banked at 

−70°C until processing (Supplementary Material 8). This study 

was approved by each site’s institutional review board.

RESULTS

Development of Optimized mNGS Assay

Iterative optimizations demonstrated that mechanical homog-

enization of BAL using 0.5-mm glass bashing beads for 5 cycles 
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in DNA/RNA shield without mycolytic enzymes yielded the 

highest quantity of A. niger nucleic acid (Supplementary Material 

9, Supplementary Figure  1a–1d). This extraction protocol per-

formed similarly when applied to clinical isolates of A. fumigatus 

(Supplementary Figure 1e). When sequencing RNA to a depth of 

25 million reads per 200 μL BAL, this protocol improved the lower 

limit of detection (LLOD) of A. niger by approximately 100-fold 

(59.60 colony-forming units [CFU] preoptimization; 95% confi-

dence interval [CI], 37.70–95.36 vs 0.42 CFU postoptimization; 

95% CI, 0.12–1.40; paired T test P < .001; Supplementary Figure 2). 

However, sequencing simultaneously extracted DNA to the same 

depth yielded a 10-fold inferior A. niger LLOD (6.13 CFU; 95% CI, 

4.16–9.04; paired T test P < .001; Figure 1). The optimization did 

not change the detection of H. influenzae or Human Adenovirus B 

(T test P = .343 and P = .420, respectively).

Application of mNGS Assay

Using the optimized protocol described above, we conducted 

mNGS on 41 clinical samples obtained from 34 patients 

(Table  1). Sequencing results are summarized below, with 

sequencing quality reported in Supplementary Tables  1 and 

2, raw sequencing files available in NCBI dbGaP (https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_

id=phs001684.v1.p1), and detailed patient results in Appendix 

1. Negative controls demonstrated minimal environmental con-

tamination (<1 rpm of pathogenic bacteria and no pathogenic 

fungi or viruses Supplementary Table 3).

Bacteria

The vast majority of taxa derived from bacterial alignments 

were present at low abundance and in quantities similar across 

all samples in the cohort. Specifically, 81.7% of bacterial gen-

era were identified at <10 rpm and within 2 standard deviations 

of the cohort mean (Z-score  <  2; Figure  2A). These included 

potentially pathogenic bacterial genera such as Escherichia, 

Klebsiella, Pseudomonas, Staphylococcus, Stenotrophomonas, and 

Streptococcus, which were identified in nearly all samples at lev-

els well above those detected in the negative controls (38, 39, 40, 

38, 41, and 40 of 41 samples, respectively). Conversely, only 0.4% 

of detected bacterial genera met outlier criteria. These outliers 

included 10 potentially pathogenic bacteria identified in 13/41 

patient samples (Corynebacterium, Enterobacter, Enterococcus, 

Escherichia, Haemophilus, Klebsiella, Mycoplasma, Pseudomonas, 

Staphylococcus, and Streptococcus). Samples with outlier bacte-

rial pathogens had significantly depressed alpha-diversity of the 

bacterial microbiome (median, 0.61; interquartile range [IQR], 

0.33–0.72 vs 0.96; IQR, 0.94–0.96; P < .001; Figure 3).

Fungi

Relative to bacterial alignments, fungal alignments were sig-

nificantly less prevalent in the cohort. Further, 92.1% of fun-

gal genera were quantified below 1 rpm (Figure 2B). Evidence 

supporting these alignments is limited by the rarity of the 

reads themselves. Only 3.4% of fungal genera met outlier cri-

teria; these included potentially pathogenic fungi identified 

in 7/41 patient samples (Alternaria, Aspergillus, Candida, 
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Figure 1. Aspergillus niger lower limit of detection by optimized next-generation sequencing. At the lower limit of detection (LLOD) of RNA sequencing (RNAseq), the 

optimized assay was able to detect as few as 0.42 Aspergillus niger colony-forming units (CFU; 95% confidence interval [CI], 0.12–1.40), whereas at the LLOD of DNAseq, 

the optimized assay was able to detect as few as 6.13 A. niger CFU (95% CI, 4.16–9.04; paired T test P < .001). Red data represent RNAseq and blue data represent DNAseq. 

Dotted lines represent the 95% CIs for each linear regression. (Insert) Parallel detection of A. niger RNA using digital droplet polymerase chain reaction assay. As nucleic 

acid bioavailability may vary across Aspergillus species, these results may not be directly extrapolated to other Aspergillus species and other medically relevant molds. 

Abbreviations: BAL, bronchoalveolar lavage; CFU, colony-forming unit; ddPCR, droplet digital polymerase chain reaction; seq, sequencing.
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Cladosporium, Cryptococcus, Fusarium, and Pneumocystis). 

While Aspergillus RNA levels were detectable in 14/41 patient 

samples, only 1 was positive for invasive pulmonary aspergillo-

sis (IPA) by both culture and galactomannan assay (Figure 2B, 

labeled). Although the remaining 13 were all culture negative, 

12/13 had received fungicidal or fungistatic anti-Aspergillus 

pharmacotherapy within 48 hours of sample collection, sug-

gesting that empiric antifungal pharmacotherapy significantly 

confounds the association between Aspergillus RNA and growth 

in culture. Aspergillus RNA levels did not correlate with growth 

in culture (T test P = .148) but demonstrated weak association 

with BAL galactomannan (P < .001; Supplementary Figure 3).

Viruses

In contrast with bacteria and fungi, a significantly larger por-

tion of RNA alignments to viral genera were present at high 

abundance, and 30.5% met outlier criteria (Figure 2C and 2D). 

Communicable respiratory viruses with abundant alignments 

were identified in approximately one third of all patient sam-

ples (13/41) and included Adenoviruses A and C, Bocavirus, 

Coronaviruses 229E and OC43, Influenzaviruses A and C, 

Parainfluenzavirus 3, and Rhinoviruses A and C. Although 4 

Rhinoviruses met outlier criteria, an additional 3 Rhinoviruses 

were abundant but had Z-scores between +0.92 and +1.78. 

Additionally, 2 patients had viral coinfections (Parainfluenza-3 

and Influenza-C; Adenovirus-C and Rhinovirus-A). Although 

there were no cases of clinically suspected herpesvirus pneumo-

nitis, Epstein-Barr virus, Cytomegalovirus, HHV-6, and HHV-7 

were identified in low abundance in 9/41 samples. Viral gen-

era of uncertain or unlikely pathogenicity were also identified 

in 21/41 samples and included Papillomaviruses, WU and KI 

Polyomaviruses, and Torquetenoviruses (2, 5, and 18 samples, 

respectively).

Comparison to Clinical Testing

Clinical testing identified causative pathogens in 41.4% of sam-

ples (n = 17; Figure 4). Of these, 11 were concordantly identified 

as outliers by mNGS, and 3 of these 11 contained outlier quan-

tities of RNA aligning to a second previously undetected poten-

tial copathogen (Bocavirus, Corynebacterium, and Influenza-C). 

An additional 3 were identified by mNGS but were not classi-

fied as outliers (2 cases of Aspergillus diagnosed by galactoman-

nan and 1 case of Rhinovirus-A), and another 3 had a different 

outlier pathogen identified by mNGS (Coronavirus 229E twice 

and Coronavirus OC43 once). Clinical testing did not identify 

any pathogens in 58.5% of samples (n = 24). Here, mNGS was 

able to identify statistically outlying potential pathogens in 

11/24 cases, including a variety of bacteria (ie, P.  aeruginosa, 

E. cloacae, M. pneumoniae), fungi (ie, C. glabrata), and viruses 

(ie, Rhinovirus-A).

Orthogonal Validation

Statistical approaches to separate commensals from pathogens 

are inherently imperfect; therefore, we undertook orthogonal 

validation as an independent means to verify these results. 

Organisms detected by mNGS but not clinical testing were 

validated with commercially available Clinical Laboratory 

Improvement Amendments (CLIA)-approved assays performed 

Table 1. Characteristics of Enrolled Patients

Demographics (n = 34 patients) Descriptor

Age (median years, IQR)a 11.2 (IQR, 4.3–16.2)

Sex

 Female 16 (47%)

 Male 18 (53%)

Race

 White 26 (76%)

 Black  1 (3%)

 Asian  1 (3%)

 Hawaiian/Pacific Islander  1 (3%)

 Other  1 (3%)

 Unknown  4 (12%)

Ethnicity

 Hispanic/Latino  9 (26%)

 Not Hispanic/Latino 24 (74%)

Primary medical condition

 Allogeneic HCTb 20 (59%)

 Autologous HCT  3 (9%)

 Acute leukemia (without HCT)  2 (6%)

 Primary immunodeficiency (without HCT)  4 (12%)

 Severe aplastic anemia (without HCT)  2 (6%)

 Solid tumor (without HCT)  1 (3%)

 Solid organ transplantation  2 (6%)

Clinical course (n = 41 episodes)

 Lower respiratory sample type

  BAL 33 (80%)

  Mini-BAL  4 (10%)

  ETT aspirate  4 (10%)

 Therapies (median number of therapies, IQR)

  Antibacterials  4 (1–5)

  Antivirals  1 (0–2)

  Antifungals  1 (0–2)

  Immunomodulation  2 (0–2)

 Patients with identified pathogen

  Any pathogen 13 (32%)

  Bacteria only  5 (12%)

  Fungi only  1 (2%)

  Viruses only  4 (10%)

  Multiple pathogens  3 (7%)

 Outcomes

  Required pediatric intensive care unit admission 21 (51%)

  Required >24 hours mechanical ventilation 17 (41%)

  Hospital deathc 10 (29%)

Abbreviations: BAL, bronchoalveolar lavage; ETT, endotracheal tube; HCT, hematopoietic 

cell transplantation; IQR, interquartile range.

aAge at first specimen collection. 

bIndications for allogeneic HCT were acute leukemia (12/20), primary immunodeficiency 

(3/17), severe aplastic anemia (2/17), myeloproliferative/myelodysplastic disorder (2/17), 

and osteopetrosis (1/17). 

cHospital death n = 10/34 (29%).
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on aliquots of the original unprocessed sample (Supplementary 

Material 7). All validation tests were concordant with mNGS 

with 1 exception: 28S/ITS amplicon DNA sequencing failed to 

identify C. glabrata in sample 37. For this sample, we confirmed 

the presence of this organism with 3 separate species-specific 

reverse-transcription primer sets followed by Sanger sequenc-

ing. These data demonstrate that mNGS has significantly 

greater sensitivity for detecting potential pulmonary pathogens 

than current clinical diagnostics (McNemar’s P < .001).

DISCUSSION

In this study, we developed and optimized an mNGS assay 

with adequate sensitivity to identify bacteria, fungi, and both 

RNA and DNA viruses within the lower respiratory tract of 

immunocompromised children. In doing so, we identified a 

rich molecular portrait of the pulmonary microbiome in this 

vulnerable population. Further, by comparing the quantity of 

microbial nucleic acid to that of other microbes within a sample 

and to other samples within the cohort, we were able to identify 

outlying potential pathogens in approximately half of clinically 

negative samples.

Due to inherent challenges in sampling the lower respiratory 

tract, the pulmonary microbiome was not one of the original 

sites studied in the 2008 Human Microbiome Project, and 

its exploration has lagged decades behind similar analyses of 

human intestinal, cutaneous, and nasopharyngeal microbiomes 

[26]. In addition, studies of the pulmonary microbiome in chil-

dren necessarily lack healthy matched controls due to the inher-

ent risks of anesthesia and bronchoscopy [27]. In this study, 

we found that many potentially pathogenic bacteria such as 

Pseudomonas and Streptococcus are ubiquitous, and hence their 

abundance needs to be contextualized by cohort-specific norms. 

For example, 100% of samples had detectable Pseudomonas 

RNA, but only sample 29 had Pseudomonas RNA detected more 

than 2 standard deviations above the cohort mean. Normalizing 
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Figure  2. Microbial alignments detected in the lungs of immunocompromised children. Red dots represent potentially pathogenic microbes that are both abundant 

(≥10 rpm for bacteria or ≥1 rpm for fungi or viruses) and identified at levels greater than most other samples in the cohort (Z-score ≥2). Hollow red dots indicating Bocavirus 

and Pneumocystis are used to indicate organisms observed only once in this cohort. Blue dots represent all other potentially pathogenic microbes; light blue dots represent 

typically nonpathogenic microbes. Subplots show (A) all bacteria, (B) fungi, (C) RNA viruses, and (D) DNA viruses identified across all samples in the cohort. For the purpose 

of the Z-score calculation, the value of log
10

-transformed reads for undetected microbes was assumed to equal –2, just below the lower limit of detection for our sequencing 

depth (log
10

[0.01rpm] = –2). Abbreviation: seq, sequencing.
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population-dependent measurements is common in pediatrics 

and appears well suited to describe aspects of the pulmonary 

microbiome [28–30].

To date, the majority of metagenomic sequencing assays have 

targeted amplicons within the 16S or 28S rRNA subunits, allow-

ing detection of pulmonary bacteria or fungi, but not both, and 

not viruses [31]. Recently, unbiased mNGS assays have allowed 

detection of both bacterial and viral nucleic acid but have 

lacked ideal sensitivity for detecting filamentous mold [11, 12]. 

Although the European Aspergillus PCR Initiative has described 

ideal methodology for extracting fungal nucleic acid from blood, 

the optimal extraction conditions for respiratory specimens 

remain less well defined [32, 33]. This study confirms the need 

for aggressive mechanical homogenization in stabilizing media 

in order to detect molds such as Aspergillus while simultaneously 

preserving the detection of bacteria and viruses [34–36]. As the 

majority of commercial sequencing assays measure DNA, this 

study adds to the literature by demonstrating that RNA sequenc-

ing is >10 times more sensitive for the detection of such fastidious 

organisms, which we speculate may be due to high copy numbers 

of particular RNA templates present in active organisms [37].

Using optimized mechanical homogenization, Aspergillus 

RNA was detected in 34.1% of samples and no negative con-

trols, suggesting that the lungs of immunocompromised chil-

dren are frequently exposed to low levels of potentially viable 

Aspergillus organisms. These data are novel in the pediatric 

population and are congruous with surveillance data from 

neutropenic and nonneutropenic adults [38, 39]. However, 

as only 10% of samples originated from patients with sus-

pected IPA, patient-specific factors such as antifungal pre-

treatment, immune reconstitution, alloreactive inflammation, 

and impaired mucociliary clearance remain crucial in deter-

mining which child might develop IPA [16]. While this study 

was not powered to assess performance characteristics of this 

assay for IPA, pan-fungal and Aspergillus-specific PCR have 

demonstrated 76%–79% sensitivity and 93%–95% specificity 

for probable/proven IPA [14, 40–47]. Combining nucleic acid 

tests with galactomannan can hasten diagnosis and improve 

Figure 4. Comparison of clinical laboratory results vs metagenomic next-generation sequencing (mNGS) results. Clinical laboratory results were determined by review of 

medical charts. n = 17 patients had samples with a pathogen detected clinically, as determined by interpretation of clinical microbiologic testing by the treating physician. Of 

these, n = 11 had concordant pathogens of outlier quantities on mNGS (Adenovirus/Rhinovirus, Aspergillus fumigatus, Enterobacter cloacae, Escherichia coli, Haemophilus 

influenzae, Haemophilus influenzae/Parainfluenza virus, Mycoplasma pneumoniae [n = 2], Pneumocystis jirovecii/Rhinovirus-A, Rhinovirus-C, and Staphylococcus aureus); n = 

3 had concordant pathogens identified on mNGS but not in outlier quantities (Aspergillus [n = 2] and Rhinovirus-A); and n = 3 had an alternative pathogen identified on mNGS 

(Human coronavirus 229E [n = 2] and Human coronavirus OC43). n = 24 patients had samples without a pathogen detected clinically. Of these, n = 11 had a potential pathogen 

present in outlier quantities on mNGS (Candida glabrata, Cytomegalovirus, Cryptococcus [n = 2], Enterobacter cloacae, Human herpesvirus-6, Mycoplasma pneumoniae, 

Rhinovirus-A, Pseudomonas aeruginosa/Influenza-A, Staphylococcus epidermidis, and Streptococcus pneumoniae) and n = 13 did not. Abbreviation: mNGS, metagenomic 

next-generation sequencing.

** P < .001
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Figure 3. Respiratory samples with outlier pathogens have depressed bacterial 

alpha-diversity. Diversity of the bacterial microbiome was significantly decreased in 

samples with potentially pathogenic bacteria present at ≥10 rpm of the pulmonary 

bacterial microbiome and Z-score ≥2 (median, 0.61; interquartile range [IQR], 0.33–

0.72; n = 13 vs median, 0.96; IQR, 0.94–0.96; n = 28; P < .001). Simpson diversity 

index cutoffs of ≥0.8 or ≥0.9 showed 90.3% (95% confidence interval, 77.6–96.2) 

and 100% negative predictive value for the presence of an outlier bacterial patho-

gen, suggesting that the identification of bacterial dysbiosis may be a useful screen 

for recognizing possible bacterial infections.
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clinical outcomes in some populations [48–51]; further, incor-

poration of immune function may also improve discrimination 

of colonization and invasive mycosis [52–56]. Importantly, for 

all nucleic acid–based tests, measurable Aspergillus yield varies 

among species and according to life stage, cell wall character-

istics, and hydrophobicity [57]. Therefore, any future clinical 

mNGS assay will need to be benchmarked against numerous 

Aspergillus species as well as other medically relevant fungi in 

order to have the broadest utility.

Consistent with emerging data in pediatrics, we also detected 

herpesviruses such as CMV and HHV-6 in low abundance among 

many children in the cohort [58, 59]. Interestingly, a number of 

typically nonpathogenic viruses such as Torquetenovirus and 

KI Polyomavirus were present in more than half of the cohort. 

While data supporting the direct pathogenicity of these viruses 

are lacking, they may indicate immune dysfunction and pre-

dict numerous post-transplant infectious and alloimmune 

complications [60–62]. Future studies aimed at characterizing 

longitudinal changes in the pulmonary virome of immunocom-

promised children are warranted.

By characterizing the distribution of pulmonary microbes 

within the cohort, we identified statistically outlying potential 

pathogens in half of clinically negative samples. Most newly 

detected cultivable organisms were isolated from patients 

who had been pretreated with antimicrobials, highlighting 

the importance of culture-independent techniques [15]. In 

addition, several newly detected viruses were not included in 

clinical multiplex PCR assays (Human coronavirus, Human 

Bocavirus, Influenzavirus-C) [63]. While this study suggests 

that many idiopathic pulmonary complications may be associ-

ated with infections, one quarter of samples were concordantly 

negative for pathogens on clinical and mNGS testing, empha-

sizing the ongoing significance of noninfectious pulmonary 

complications in this population. Future clinical validation of 

mNGS may demonstrate utility in safely excluding infections 

and allowing amplified immunomodulation in patients with 

predominantly inflammatory pulmonary syndromes [64].

Our study has several strengths. First, we optimized the 

extraction of Aspergillus spp. RNA while preserving detection 

of bacterial and viral nucleic acid. Second, we proposed a logi-

cal analytical framework that ranks organism abundance both 

within a sample and relative to other samples. Third, outlier 

pathogens identified by mNGS that were not detected clinically 

were subsequently validated by orthogonal assays. Fourth, we 

provide, to our knowledge, the first evaluation of the pulmo-

nary microbiome in immunocompromised children.

Our study has several limitations. First, while the Z-score 

was useful in deemphasizing commonly abundant organisms 

(ie, S. pneumoniae), it may have overvalued uncommon organ-

isms with less abundant transcripts (ie, CMV); additional larger 

studies will naturally strengthen the utility of Z-score analyses. 

Second, because the relationship between microbe quantity and 

sequencing reads varies across organisms based on nucleic acid 

accessibility and the availability of annotated reference genomes, 

future clinical application of an mNGS assay will require vali-

dation on numerous clinically relevant species. Third, samples 

with abundant nucleic acid from human epithelial cells, leuko-

cytes, viruses, and other sources may have reduced detection of 

sparse or fastidious microbes. Finally, as with all mNGS assays, 

the identification of microbial nucleic acid does not directly 

confirm the presence of viable, live organisms; does not directly 

implicate that microbe as a contributor to pulmonary disease; 

and does not exclude less abundant organisms as potential con-

tributors to pulmonary disease. Future studies are needed to 

determine whether prospective use of mNGS in a clinically rel-

evant time frame might affect patient management and improve 

outcomes. In order to optimize patient outcomes, we advocate 

for ongoing multidisciplinary collaboration among clinicians, 

laboratory scientists, and bioinformaticians.

CONCLUSIONS

In summary, we present an optimized mNGS assay that revealed 

a rich bacterial, fungal, and viral pulmonary microbiome in 

immunocompromised children and identified potential patho-

gens in half of clinically negative samples. As such, advanced 

organism detection offers the potential for early implementa-

tion of targeted therapy and the possibility for improved clini-

cal outcomes in immunocompromised children. We invite the 

scientific and clinical community to participate in an ongoing 

multicenter collaborative clinical trial aimed at further refining 

this emerging technology [65].
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