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ABSTRACT In computed tomography, automated detection of pulmonary nodules with a broad spectrum

of appearance is still a challenge, especially, in the detection of small nodules. An automated detection

system usually contains two major steps: candidate detection and false positive (FP) reduction. We propose

a novel strategy for fast candidate detection from volumetric chest CT scans, which can minimize false

negatives (FNs) and false positives (FPs). The core of the strategy is a nodule-size-adaptive deep model that

can detect nodules of various types, locations, and sizes from 3D images. After candidate detection, each

result is located with a bounding cube, which can provide rough size information of the detected objects.

Furthermore, we propose a simple yet effective CNNs-based classifier for FP reduction, which benefits

from the candidate detection. The performance of the proposed nodule detection was evaluated on both

independent and publicly available datasets. Our detection could reach high sensitivity with few FPs and

it was comparable with the state-of-the-art systems and manual screenings. The study demonstrated that

excellent candidate detection plays an important role in the nodule detection and can simplify the design

of the FP reduction. The proposed candidate detection is an independent module, so it can be incorporated

with any other FP reduction methods. Besides, it can be used as a potential solution for other similar clinical

applications.

INDEX TERMS Computed tomography, pulmonary nodule, object detection, deep-learning, convolutional

neural networks.

I. INTRODUCTION

Spiral computed tomography (CT) is one of the most widely

used diagnostic tools for detecting pulmonary lesions [1].

With respect to the lesions, nodule screening is an impor-

tant task in hospitals, because the nodule may indicate

The associate editor coordinating the review of this manuscript and
approving it for publication was Yudong Zhang.

lung cancer, which is a cause of high mortality in human

beings [2]. Nodule screenings entail a high workload for radi-

ologists: they must find nodules of various sizes, shapes and

locations across a large number of CT images generated from

thin-sliced reconstructions. It is relatively easy for radiolo-

gists to locate big nodules, but some small ones, especially the

ground-glasses and the solids surrounded by other tissues, are

difficult to find even by experienced radiologists. The heavy
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workload and human subjectivity can lead to omission of

nodules [3].

Reliable computer-aided detection (CAD) systems present

a solution to alleviate the workload of radiologists and

in helping them reduce the number of omitted nodules.

However, it is an enormous challenge to design clinically

applicable systems, because nodules have various features

and different position distributions in the lung regions as

illustrated in figure 1. In the past decades, many systems

have been developed, which can be roughly classified into

two categories: traditional systems [4]–[9] and deep-learning

based systems [10]–[20]. Traditional systems were usually

designed for specific scenarios based on handcrafted descrip-

tors and image processing techniques. They are unable to

cope with a broad spectrum of cases and thus their clinical

applications are limited.

FIGURE 1. Examples of pulmonary nodules (see the red dashed ellipses)
with various sizes, locations and types.

Deep-learning based systems benefit from the develop-

ment of deep learning techniques for computer vision and

pattern recognition [21]–[32]. A basic technique behind

these applications is the so-called convolutional neural net-

work (CNN), which can automatically learn high-level fea-

tures from many training images. A nodule detection system

usually contains two major stages: candidate detection and

false positive (FP) reduction. Some existing studies focused

on FP reduction using 2D CNNs [13] or 3D CNNs [12].

There is no doubt that candidate detection also plays an

important role in a complete system, because it determines

the maximum sensitivity of the nodule detection. Predeces-

sors in this field have developed 3D semantic segmenta-

tion [15], [18] and 3D objection detection [16]–[17] [20]

for the candidate detection and achieved promising results.

However, it is still a challenge to detect small nodules,

e.g., nodules of size smaller than 5 mm. A potential solution

for small nodule detection is voxel-wise detection which has

been used for detection of cerebral microbleed (CMB) in

brain MRI images [46] and segmentation of organs-at-risks

in head and neck CT images [47]. Unfortunately, voxel-by-

voxel detection may demand more computing power, which

may not be suitable for our target clinical applications where

processing speed is also important.

In this paper, we propose a new CAD system for nodule

detection in chest CT images. In our system, we designed

a novel CNN-based nodule-size-adaptive model for fast and

accurate candidate detection. The proposed model is con-

structed from three unified neural networks which are sharing

the convolutional features to reduce the detection time,

namely, a feature extraction network (FEN), a region proposal

network (RPN) and a region classification network (RCN).

We use FEN to extract a convolutional feature pyramid from

a 3D image that is fed into the model. In the RPN, we assign

a series of boxes on the 3D image based on the shared feature

pyramid and we predict the suspicious lesions (ROIs) from

the boxes. To deal with nodules of different sizes and shapes,

we set boxes with different scales and aspect ratios. By apply-

ing the third network RCN, we reduce most FPs from the

ROIs through a binary classifier which is also based on the

shared feature pyramid and we keep the remaining ROIs as

candidates. Finally, we apply the well-known inception-v4

neural network [31] to the candidates for further suppression

of FPs.

Our major contributions can be summarized as: (1) we

designed and trained a deep CNN-based model which can be

used for fast detection of pulmonary nodules. The detection

can cover nodules of various appearances, locations and sizes

ranging from 3 mm to 70 mm (in clinical practice, nodule-

like lesions of size larger than 30 mm are usually called

masses). Evaluations demonstrated that our detection can

achieve high sensitivity with a low FP ratio. (2) We proposed

a simple yet effective strategy tominimize the number of false

positives (FPs) and false negatives (FNs) in the candidate

detection. The detection was performed slice by slice, from

the first slice to the last in a scan and for the slice that was

being detected, more contextual information was incorpo-

rated through the concatenation of its adjacent slices. (3) The

effectiveness of our candidate detection greatly reduces the

design complexity of FP reduction. From the candidates,

we trained two inception-v4 models of different receptive

fields for FP reduction.

II. MATERIALS

A. TIANCHI AI DATASET

Pulmonary nodule detection is one of TIANCHI AI chal-

lenges. In the challenge, a total of 1000 scans [33] were

provided. The maximum slice thickness of all scans was

limited to 2 mm. The nodule size distribution was as follows:

5–10 mm nodules comprised 50% and 10–30 mm nodules

comprised the other 50%. More details of the dataset can be

found at the website of the challenge [33].

In our study, all 1000 scans were used as the training

datasets. To create the database for training the candidate

detection model, we extracted 3D images from the annota-

tions. Each image had three channels which were built by

concatenating three adjacent axial slices. Compared to a sin-

gle slice, three slices have richer features for distinguishing

between nodules and other tissues. Figure 2 shows a special

and representative case. In the single slice, it is difficult to

discriminate the small nodule (see the red rectangle) from the

vessel (see the yellow rectangle). But in the 3D image, the

differences become more obvious, e.g., the nodule has less

change in shape than the vessel. To focus the detection on the

lung regions, the pixel values of each image were converted
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FIGURE 2. An example of 3D image for training. In the single-slice image,
it is difficult to distinguish between small nodules (the red rectangle
encloses a small nodule) and vessels (the yellow rectangle shows an
example of a vessel). In the 3D image, the nodule and the vessel become
more distinguishable.

from the CT numbers (Hounsfield Units, HU) using the L/W

setting −700 HU/1000 HU. This L/W setting can highlight

the lung regions while removing most of the anatomical

information of the body regions, see the 3D image as shown

in Figure 2. Furthermore, we cropped the image based on a

coarse lung segmentation to reduce most redundant and use-

less regions, e.g., the air regions of the CT image. Details of

the segmentation are introduced in part D of Sec. III. To aug-

ment the total number of training samples, we extracted

multiple 3D images from a certain nodule. For example, if a

nodule covered five slices, we extracted five 3D images (one

image per slice). A ground-truth bounding box (gt-bbox) is

required for each nodule during training. Therefore, we gen-

erated the gt-bbox of a certain nodule according to the loca-

tion and the size of the nodule: using the location as the center

of the gt-bbox and using the diameter (in voxel-coordinates)

as the length and width of the gt-bbox.

Normally, more slices should be used to build a 3D image,

but our experiments demonstrated that the use of three slices

was the right choice because: (1) Theoretically, three slices

have enough information to distinguish most nodules from

other tissues. A small nodule covers at most three or four

slices in the volume data, and a large nodule should be

discriminated from even just one slice. (2) Our model was

developed from an existing model that was used for object

detection on natural RGB images. Thus, the use of three

slices made it possible to train our model from the pre-trained

weights. This is the so-called transfer-learning [34]–[37].

(3) If more slices were used, it requires more samples to

train a good model because more redundant information are

included.

B. LUNA-16 DATASET

LUNA-16 [38] is another well-known open challenge in pul-

monary detection. There are two tracks in the challenge: nod-

ule detection (NDET) and false positive reduction (FPRED).

Using rawCT scans, the goal of NDET is to identify locations

of possible nodules and assign a probability for being a

nodule to each location. The pipeline typically consists of

candidate detection and FP reduction. Given a set of candidate

locations, the goal of FPRED is to assign a probability for

being a nodule to each candidate location.

The organizers of the challenge provided a total

of 888 scans which were divided into ten subsets. All

scans were selected from the Lung Image Database Consor-

tium (LIDC-IDRI) [39]. The selection criteria were: (1) the

slice thickness is less than or equal to 2.5 mm and (2) the

nodule size is larger than or equal to 3 mm and accepted by

at least three out of four radiologists. Based on the criteria,

a total of 1186 nodules were selected. Non-nodules and the

remaining nodules were referred to as irrelevant findings and

were ignored during the evaluation.

In our study, all ten subsets were only used for evaluation.

More details of the dataset can be found at the website of the

challenge [38] and the online LIDC-IDRI database [39].

C. INDEPENDENT DATASET

In addition to the publicly available data, we collected

2470 chest scans from the cooperative hospital to augment

the training samples (2440 scans) and for further valida-

tion (30 scans). The devices included SOMATOM Perspec-

tive, Sensation 16 from the Siemens company and Optima

CT540 from the General Electric company. Scan protocols

contained (120kV, 140 mAs) and (130 kV, 100 mAs). Images

with size of 512×512 were reconstructed using filtered back

projection (FBP) of lung kernel. The slice thickness included

1.25 mm and 1.5 mm. The average age of the included male

and female patients was 49.6 years old.

For the training scans, annotating all 2440 scans is labor-

intensive and time consuming. To reduce the total label-

ing time, we first used the TIANCHI AI datasets to train

the model. Then, we applied the pre-trained model on the

2440 scans with a low scoring threshold value T1 = 0.1 that

was used to generate candidates (the definition of T1 is shown

in Fig. 3(c)). Finally, two subspecialized radiologists (radiol-

ogists A and B, both have over ten years of experiences) of

chest image were invited to make annotations based on the

candidates. For a certain lesion (nodule or mass) of diameter

less than 70 mm in the candidates, each slice of the nodule

was annotated with a 2D bounding box and each box was

assigned with a number that indicates the type of the nodule:

number 1 for the ground-glass, number 2 for the part-solid

and number 3 for the solid. The ImageJ [40] was used as

the annotation tool. For the annotated nodules, we invited a

senior radiologist of chest image to make a double check.

Finally, a total of 9577 nodules were obtained: about 80%

of the cases were small nodules of size smaller than 6 mm.

About 16% of the cases had size ranging from 6mm to 30mm

and 4% of the cases were larger than 30 mm. The nodule type

distribution was as follows: ground-glass, part-solid and solid

nodules comprised about 23%, 5.5% and 71.5%, respectively.

For the 30 validation scans, radiologists A and B were

invited to find nodules from these scans in a blind fashion.

Once all findings were obtained, radiologist A found nodules

again from all scans without accessing to the first set of

findings. So, in total there were three sets of independent

findings to the validation scans: (1) the first set of find-

ings from radiologist A, which were double-checked by a
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FIGURE 3. The architecture of the proposed CAD system which contains two major stages: (a) candidate detection and (b) FP reduction.
For the candidate detection, a deep object detection model as shown in (c) was developed to located each candidate with bounding
boxes. For the FP reduction, a CNN-based classifier built with two inception-v4 models as shown in (d) was designed to predict a
candidate whether it is a nodule or a non-nodule.

senior radiologist. We used these findings as the ground-

truth for comparison purpose. A total number of 90 nodules

were found which included 23 ground-glasses, 11 part-solids

and 56 solids, respectively. About 90% of the nodules were

smaller than 6 mm. The other 10% cases had size ranging

from 6mm to 30 mm. (2) The secondary set of findings from

radiologist A, which was used for intraobserver validation.

(3) The set of findings from radiologist B, which was used

for interobserver validation.

III. METHODS

Figure 3 shows the architecture of the proposed CAD system.

Like most existing systems, two major stages are incorpo-

rated: candidate detection as shown in Fig. 3(a) and FP reduc-

tion as shown in Fig. 3(b). Details of the proposed system are

described in the next sections.

A. FASTER-RCNN

To achieve the goal of candidate detection, we designed a

deep object detection model. We were inspired by the Faster-

RCNN [24] which is an object detection model for natural

images. The authors of Faster-RCNN first designed three

networks, the FEN, RPN andRCN, andmerged them together

by sharing the convolutional features that extracted by the

FEN from the input image.

In the RPN, the authors slide a 3 × 3 spatial window

over the convolutional feature map output by the last shared

convolutional layer and map each sliding window to a lower-

dimensional feature (512-d for the VGG16 [32]). The feature

is then fed into two sibling fully connected layers, a box-

classification layer and a box-regression layer. The classifi-

cation layer simultaneously predicts multiple boxes that are

centered at the sliding-window location and associated with

different scales and aspect ratios. For each box, the classifi-

cation layer outputs two scores that estimate the probability

of object (ROI) or not object. Meanwhile, the regression layer

predicts four coefficients of each ROI which are used to move

and scale the ROI to enclose the object more accurately.

After all ROIs are obtained and adjusted, their richer

features are extracted from the last shared convolutional

layer of the feature pyramid according to their locations and

sizes using ROI-pooling [23]. Then, the extracted features

are fed into RCN for another classification and regression,

respectively. The function of the regression is similar to the

counterpart in the RPN. The major difference lies in the

classification. In RCN, the classification layer is a multi-

category classifier which predicts multiple scores of each

ROI. For example, it was implemented as a 21-category

(20 classes plus the background) classifier on the PASCAL

VOC dataset [45].

Faster-RCNN processes an image very quickly by sharing

features between the RPN and RCN and it achieves promis-

ing results by taking full advantage of the deep features’

strong semantic information. However, it has a drawback

which is poor performance in detecting small objects. The

root causes of this disadvantage can be described as: (1) the

stride between boxes is too big. In the feature pyramid,

the spatial resolution of features is decreased layer by layer
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as the depth increases. Two neighboring pixels in the fea-

ture map output by the last shared convolutional layer in

VGG16 have sixteen pixels’ stride after being mapped back

to the original image. Therefore, the small objects located at

the gaps between boxes may be neglected. (2) There is a lack

of semantic information for classification of small objects.

Much of the semantic information of the small objects has

been lost in the last layer after the sub-sampling operations

inside the feature pyramid. (3) A so-called ‘‘mis-alignment’’

issue as discussed in [25]. In the ROI-pooling layer, the loca-

tion and size of an ROI is rescaled to the spatial space of

the last layer and the results (floating numbers) are directly

quantized to integers to extract features. The quantization will

reduce precision, which is amplified when mapped back to

the spatial space of the original image. For example, if the

width of an ROI is 88 pixels, the corresponding width is

5 pixels in the last layer of VGG16 (88 ÷ 16 = 5.5, which

is quantized to 5). The missed precision of 0.5 signifies 8

(0.5 × 16 = 8) pixels’ mis-alignment in the original image.

The above discussion demonstrates that it is a poor solu-

tion to directly apply the Faster-RCNN for nodule detection,

because nodules are very small compared to most objects

in natural images. A potential solution is the feature pyra-

mid network (FPN) [27] which has better performance than

Faster-RCNN in the detection of small objects by address-

ing the first issue. However, the secondary and the third

issue remain in the FPN. Besides, the FPN is too complex

and time-consuming for nodule detection, since it uses the

ResNets [30] as the backbone of the convolutional network

and it constructs a top-down architecture with lateral connec-

tions. Therefore, we designed a new model that should effec-

tively avoid the three issues mentioned above. The proposed

model is simple to implement and train based on the Faster-

RCNN framework. Additionally, only a small computational

overhead is introduced, which makes the model fast enough

for clinical applications.

B. MODEL FOR CANDIDATE DETECTION

The architecture of the proposed model is schematized

in Fig. 3(c). Similar to the Faster-RCNN, the model consists

of three sub-networks as well: the FEN, RPN and RCN.

In the FEN, we still use the VGG16 to extract a feature

pyramid from the 3D image which is fed into the network.

To accelerate the detection, the channels of the output feature

of the three convolutional layers, Conv3, Conv4 and Conv5

are reduced to 128.

In the RPN, we assign boxes based on Conv3, Conv4 and

Conv5, respectively. Each layer has two settings of the base

size: 16 × 16 and 24 × 24 on Conv3 for small nodules, 32 ×

32 and 48 × 48 on Conv4 for medium nodules, and 64 ×

64 and 96 × 96 on Conv5 for large lesions such as cancer

and cysts. Aside from the base size, three aspect ratios, 0.6,

1.0 and 1.65, are set for each base size for the consideration

of lesion shapes. Our experiments show that these settings

should cover lesions ranging in size from 3 mm to 70 mm.

Because nodule sizes vary widely, it is reasonable to assign

boxes on multiple layers rather than on only a single layer.

A single layer may present a lack of semantic information for

nodules of certain sizes. Using multiple layers should avoid

this phenomenon.

Finally, in the RCN, a high-level feature map with 512

channels is constructed for each ROI through the concatena-

tion of four feature maps, which are extracted from Conv2,

Conv3, Conv4 and Conv5, respectively, using ‘‘ROI-align’’

method [25]. The feature map of an ROI is then fed into the

Cls layer to classify the ROI as a candidate or a non-candidate.

The high-level feature map for each ROI, constructed by

concatenating features from shallower and deeper layers, has

richer semantic information for classification of both small

and large nodules than that provided from only a single layer.

The effectiveness of using multiple layers for object detection

in natural images has been demonstrated in some variants of

the Faster-RCNN, e.g., the FPN [27] and the HyperNet [29].

However, the high-level information in the FPN and the

HyperNet was obtained through the fusion and concatenation

of different layers in the feature pyramid, respectively, which

involves up-sampling and sub-sampling operations to make

the shallower and the deeper layers have the same spatial

resolutions for the fusion and the concatenation. Sampling

operations can lead to missing information and an alias-

ing effect. Thus, additional convolutional operations were

applied to extract more semantic features and reduce the

aliasing effect, which requires greater computational time.

Moreover, the ‘‘mis-alignment’’ issue becomes severe in the

nodule detection. For example, if the pixel size of a CT image

is 0.68 mm, an 8-pixel ‘‘mis-alignment’’ means 5.44 mm of

‘‘mis-alignment’’. Obviously, this will degrade the detection

of nodules, especially for the small nodules. Thus, we use the

‘‘ROI-align’’ method, rather than the ROI-pooling, to extract

the features for each ROI to reduce the ‘‘mis-alignment’’

issue. The effectiveness of this method was demonstrated

in the Mask-RCNN [25] which was developed for instance

segmentation.

C. TRAINING THE DETECTION MODEL

The aim of the RPN is to find the ROIs from all boxes. When

training, we assigned a binary class label to each box. A box

was set as a positive sample if it had an Intersection over

Union (IoU) higher than an empirical value of 0.7 with any

ground-truth box. And a box was selected as a negative sam-

ple if its IoU with all ground-truth boxes was lower than an

empirical value of 0.4. Other boxes that were neither positive

nor negative were ignored during the training. Because an

image only contains few nodules, there is a great disparity

in the proportion of positives and negatives. To alleviate

the data imbalance issue, the total samples per image were

constrained to 256 during the training (extra negatives are

randomly ignored).

The target of the RCN is to reduce most FPs from the ROIs.

Similar to the RPN training, we assigned a binary class label

to each ROI. If an ROI had an IoU higher than an empirical
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value of 0.7 with any ground-truth box, it was set as a positive

sample. An ROI was set as a negative sample if its IoU with

all ground-truth boxes was lower than an empirical value

of 0.6. Other boxes that were neither positive nor negative

were ignored during the training. Besides, we jittered the

ground-truth boxes and appended them to the ROIs as the

positive samples.

Both RPN and RCN, if trained independently, will mod-

ify their convolutional layers in different ways. There-

fore, the authors of Faster-RCNN developed three training

schemes for sharing convolutional layers: Alternating train-

ing, approximate joint training and non-approximate joint

training. In our implementation, we adopted the approximate

joint training (end-to-end training) for simplicity. We imple-

mented our framework on Google Tensorflow R© and used

the momentum optimizer to minimize the total loss of both

RPN and RCN on a NVIDIA GTX 1080 GPU, with a total

of 200k iterations and with a learning rate of 0.01 which was

decreased by 9.9% per every 50k iterations. The loss func-

tion for the classification and regression layers is identical

to the Faster-RCNN [24] framework. The input image was

up-sampled such that its shorter side has 512 pixels, which

can enlarge nodules and thus benefit the detection.

D. CANDIDATE DETECTION ON VOLUMETRIC DATA

The trained model is only used for detection of a 3D image.

In practice, candidate detection should be performed on a

CT volume data that is loaded from all the DICOM files of

a scan. To achieve the goal, we detect candidates from the

volume data slice by slice, from the first axial slice to the last

of the scan. For each slice under detection, we first build a

3D image by concatenating the slice and the slices adjacent

to its two sides. Then, we crop a sub-image from the 3D image

and convert the CT numbers of the sub-image into gray values

with an L/W setting of −700 HU/1000 HU. Finally, the sub-

image is fed into the pre-trained model to produce candidates.

The sub-image is cropped based on a coarse lung region

segmentation of the slice to make the detection focus on the

lung regions. The procedure for the segmentation is shown

in Fig. 4. The original image is first smoothed by using a

5 × 5 gaussian blur operator, followed by binarization with

a threshold value of −300 HU. Connected components are

then computed from the binary image through a labeling

operation. The components, which are connected to the image

boundary, are removed and the remaining ones are the lung

regions. Finally, a bounding box (see the red rectangle in

Fig. 4) of all remaining regions is computed as the area for

cropping the sub-image. We can see that the segmentation is

very simple. This is an advantage compared to most existing

CAD systems which require an accurate lung segmentation.

In many cases, accurate lung segmentation is very complex

and not robust due to the appearance of lesions.

Slice-by-slice detection is adopted to reduce the FNs in the

candidate detection. Using this scheme, a nodule may have

more than one opportunity to be detected since it may cover

several slices in the volumetric data.

FIGURE 4. Major steps in the lung region segmentation. The original
image is first smoothed by using a 5 × 5 gaussian blur operator, followed
by binarization with a −300 HU threshold. Connected components are
then computed from the binary image by using a labeling algorithm. The
components connected to the image boundary are removed and the
remaining ones are the lung regions. Finally, the bounding box (see the
red rectangle) of all lung regions is adopted as the crop area for the
sub-image.

After detection of all slices is completed, we can obtain

a set of 2D boxes, each of which has six properties: x1, y1,

x2, y2, z and prob, where (x1, y1) and (x2, y2), the up-left and

bottom-right points of a box, indicate the location of a candi-

date in the axial slice (xy coordinates), z is the slice location,

and prob is a score which indicates the possibility that the

box encloses a nodule. A box is classified as a candidate if its

score prob is larger than a user-defined threshold T1 as shown

in Fig.3 (c).

E. MERGING 2D BOXES

The target is to locate each 3D candidate from the 2D boxes.

A candidate may have more than one 2D box. Thus, a cluster-

ing method was designed to find the boxes that belong to each

candidate. Figure 5 shows the pseudo code for the clustering.

We assign an ID to each 2D box and cluster the boxes with

the same ID together. In a cluster Bk that has more than one

box, each box bi at least has another box bj such that they are

satisfied with the relation as,
∣

∣cp (bi) − cp
(

bj
)∣

∣ ≤ T i 6= j, (1)

where cp (�) denotes the central point of a box and |�| means

the Euclidean distance. T is a user-defined threshold and

we set it to 3 mm (which should detect a nodule of 3 mm

minimum size) in our implementation.

After all boxes are clustered, we compute the xy loca-

tion of a 3D candidate by averaging the corner points of

all boxes clustered to this candidate, as formulated in equa-

tions (2) to (5),

x ′
1 =

∑N
i=1 x

i
1

N
, (2)

x ′
2 =

∑N
i=1 x

i
2

N
, (3)

y′1 =

∑N
i=1 y

i
1

N
, (4)

y′2 =

∑N
i=1 y

i
2

N
, (5)
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FIGURE 5. The pseudo code for clustering the 2D boxes. Each box is first
assigned with an ID. Then, the boxes with the same ID are clustered
together.

where N is the number of 2D boxes of the candidate. We get

the z location of the 3D candidate by computing the minimum

and maximum slice locations from its boxes, as formulated in

equations (6) to (7),

z′1 = min({zi} i = 1, 2, . . . ,N ), (6)

z′2 = max({zi} i = 1, 2, . . . ,N ), (7)

where (x ′
1, y

′
1, z

′
1) and (x ′

2, y
′
2, z

′
2) make up the two diagonal

points of a bounding cube which encloses the 3D candidate.

F. FALSE POSITIVE REDUCTION

For each candidate, we extracted two 3D patches of size

K × K × 7 and 2K × 2K × 7, respectively, from the central

point of the bounding cube, where 7 is the channels (seven

adjacent axial slices) and K is the larger value of the height

and width of the axial-plane of the cube. The voxel value of

each patch is converted from the CT number with the L/W

setting -600 HU/1000 HU.

To classify candidates into nodules and non-nodules,

we trained two inception-v4 neural networks (denoted as

FPR-1 and FPR-2 in Fig. 3(d)) independently on Google

Tensorflow R© using the patches of size K × K × 7 and

2K×2K × 7, respectively. In our implementation, we con-

strained the input size of the two networks to 64 × 64 (the

channels are same with the patches) which means each patch

must be resized before being fed into the networks. Under this

restriction, the patch size of a small nodule will be amplified,

which highlights the features of the nodule andmakes it easier

for prediction.

After two scores for each candidate are obtained separately

from the two inception-v4 models, a final score is computed

by fusing the two scores, as formulated in equation (8).

Pfusion = γ × P1 + (1 − γ ) × P2, (8)

where P1 and P2 are the predicted scores from FPR-1 and

FPR-2, respectively. γ is the coefficient of the value between

(0, 1] that is used to control the weights of the two scores

in the fusion and the value was empirically set to 0.5 in our

experiments. A candidate is classified as a nodule if its final

score Pfusion is larger than a user-defined threshold T2 as

shown in Fig. 3(d).

Normally, other classifiers can be used for the false pos-

itive reduction, e.g., the deep residual network [30], which

is one of the state-of-the-art CNNs-based networks for image

recognition. In our study, we chose the inception-v4 networks

because inception-v4 can achieve better performance than

the residual networks while retaining its computational effi-

ciency, which has been demonstrated in the reference [31].

As discussed in reference [12], the size of the patches,

called the receptive field, play a crucial role in the FP reduc-

tion. If the size of the receptive field is too small, only limited

contextual information is exploited for training the models

and then the discrimination capacity would be deficient in

coping with large variations in detection targets. On the other

hand, if the receptive field is too large, more redundant

information may be included making it hard to train good

models, especially when the number of training samples is

quite limited. In practice, it is very hard to determine the

optimal receptive field, so the authors of [12] designed three

neural networks for different receptive fields to handle this

issue, while the authors of [13] usedmulti-view convolutional

networks (nine networks in their implementation). In our

system, we only use two networks and the advantage is that

the receptive fields for the networks are adaptive to the size

of the nodules since the patches are cropped according to the

bounding cubes.

To train the two models, we collected positive and negative

samples from the candidates. A candidate was cropped as

a positive sample if its location was inside the radius of a

ground-truth nodule, otherwise it was cropped as a negative

one. To address the data-imbalance issue, we augmented the

positives by rotating each patch to 0, 90, 180 and 270 degrees.

We trained the models on a NVIDIA GTX 1080 GPU using

the momentum optimizer with a decay of 0.9 to reduce the

focal loss [28] in 50k iterations. We used a learning rate

of 0.01, decayed per every 10k iterations using an exponential

rate of 0.1.

IV. EXPERIMENTS

A. EVALUATION ON THE LUNA-16 DATASET

In the LUNA-16 challenge, results were evaluated bymeasur-

ing sensitivity and average FPs per scan. A detected candidate

was counted as a true positive if its location was inside the

radius of a ground-truth nodule. The Free-Response Receiver

Operating Characteristic (FROC) curve [41] was adopted to

analysis the overall performance of a CAD system. Based on

the FROC curve, a competition performance metric (CPM)
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FIGURE 6. FROC curves of the proposed candidate detection on the
LUNA-16 datasets. The proposed system achieved a maximum sensitivity
of 96.8% at about 60 FPs per scan.

score of each system was calculated for comparison as the

average sensitivity at seven predefined FPs rates: 1/8, 1/4, 1/2,

1, 2, 4 and 8 FPs per scan. We also used FROC and CPM to

evaluate the proposed system and compared it to the state-of-

the-art systems that were submitted to the challenge.

Figure 6 shows the curve of the proposed candidate detec-

tion. We can see that the system achieved a maximum sensi-

tivity of 96.8% at about 60 FPs per scan.With only 15 FPs per

scan, the system still approached a sensitivity of about 90%.

In clinical practice, a suitable threshold value of T1 should

be chosen to achieve lowest rates of FPs per scan at maximum

sensitivity. Larger value of T1 can lead to fewer FPs but at

the cost of lower sensitivity. Our experiments demonstrated

that the best result was achieved for the LUNA-16 datasets

when T1 was set to about 0.4. However, a smaller value is

suggested in clinical applications to ensure high sensitivity.

For the LUNA-16 datasets, the average FPs per scan is only

about 60 when T1 is set to 0.1, which is still a low level

compared to most existing systems. For all experiments in

this study, T1 was set to 0.1.

For the candidate detection, it is hard to make a compre-

hensive comparison with state-of-the-art systems, because

most published works focused on false positive reduction.

Therefore, we compared our results to five existing systems

that were used in the challenge to produce candidates for

the FPRED track. All five systems were implemented using

traditional methods. Table 1 summarizes the comparison of

our candidate detection to the five systems and their potential

combinations (in the table, black circles indicate combined

methods, e.g., in the row Combination 4, the five black

circles mean the combined results from all five systems).

The results for the five systems and their combinations are

from table 1 of [18]. Table 1 shows that, for any individual

system, the highest sensitivity was achieved by the proposed

system. When the results of multiple existing systems were

combined, the sensitivity was remarkably improved and the

highest reached 98.3% which is higher than the proposed

system. However, the average number of candidates per scan

TABLE 1. Candidate detection of different systems on the luna-16
datasets.

was substantially increased as well. For example, when the

five systems were combined (see the row Combination 4

in Table 1), the average number of candidates per scan was

850.2 which is about 14 times our result. Another drawback

of the combination of multiple systems is that it requires more

computational time because of the multiple detections per

scan.

For the FP reduction, we compared our system to nine

state-of-the-art systems, which achieved top-9 results in the

NDET track [38]. All systems were developed using deep-

learning techniques. However, no details could be obtained

since these systems had no published papers yet and only

limited descriptions. Table 2 shows the results. The aver-

age score (CPM) of the proposed system is lower than the

zhongliu_xie system which reached the fifth place in the

competition. Inspection of the table shows that if FP rates are

smaller than 1 FP per scan, our results are much worse than

the highest sensitivity achieved by the top-9 systems (see the

results shown in bold). When FP rates are larger than 0.5 FPs

per scan, the gaps become much smaller and the maximum

gap is only 0.028 between our system and the JianPeiCAD

at the rate of 1 FP per scan. It is hard to conduct deep

discussions on the algorithms used in these systems, since

fewer details can be obtained. A major difference between

the proposed system and these existing systems is the data

source. The models in the proposed system were trained from

the TIANCHIAI datasets and the independent datasets, while

the models of the existing systems were trained from the

LUNA16 datasets using 10-fold cross-validation.

In clinical practice, the threshold value of T2 also has a sig-

nificant impact on the performance of the proposed system.

Larger value of T2 can generate fewer FPs per scan, but it also

can cause lower sensitivity. An empirical value of 0.8 was

adopted in our study which met a compromise of sensitivity

and FPs rate according to the suggestion of our cooperative

doctors.

B. EVALUATION ON AN INDEPENDENT DATASET

In the LUNA-16 challenge, only 1186 nodules were provided

for both training and validation, which were selected from
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TABLE 2. The results of the false positive reduction of the proposed system and other systems on the luna-16 datasets.

FIGURE 7. The results of the 30 validation scans. The proposed system is
superior to both CAD-1 and CAD-2 in the detection of nodules. All
systems are inferior to manual screenings.

the LIDC-IDRI database based on the criteria as introduced

in part B of Sec. II. Besides, Non-nodules and remain-

ing nodules were referred to as irrelevant findings and

were ignored during the evaluation. In clinical applications,

the scenarios may bemuchmore complex. Thus, we collected

30 scans from the cooperative hospital for further evalu-

ation. We compared our system to two commercial CAD

systems, CAD-1 [43] and CAD-2 [44], which have been

widely accepted by doctors in many top hospitals in China as

a tool for nodule screening. Both commercial systems were

developed in recent years using deep learning techniques.

The details are not available because of confidentiality rules.

In addition, we compared our system to human observers:

intraobserver and interobserver.

Figure 7 shows the statistical results. All results were

counted according to the ground-truth (the first set of findings

of radiologist A as introduced in part C of Sec. II). Coinci-

dentally, both CAD-1 and CAD-2 screened out 47 nodules

from a total of 90 nodules, respectively. The sensitivity is

only about 52.2%. CAD-1 generates only 8 FPs while CAD-2

produced 38 FPs. The proposed system found 68 nodules

and 9 FPs. The sensitivity (about 75.6%) is much higher

than both CAD-1 and CAD-2. The number of FPs is close

to CAD-1. By analyzing the FNs, we found that most of

the FNs produced in all systems were the small nodules of

size smaller than 5 mm. The proposed system outperforms

both CAD-1 and CAD-2 in the detection of small nodules,

which is the major reason that the proposed system has higher

sensitivity. From the results of intraobserver and interob-

server, it can be concluded that FNs and FPs are unavoidable

from even manual screenings (in clinical practice, there is no

golden-standard between human observers for identification

of nodules). However, all automatic detections are inferior

to the manual screenings. By contrast, the sensitivity 75.6%

of the proposed system is more comparable to the intraob-

server and interobserver (87.8% and 78.9%, respectively).

One should note that the radiologists found nodules inten-

tionally from the 30 validation scans in one session for our

study. Therefore, it is possible that they were more careful

and consistent in their findings than in a normal clinical job.

V. DISCUSSION

In this study, a CAD system was developed for fast and accu-

rate detection of pulmonary nodules in CT images. In contrast

to most existing works that focus on false positive reduc-

tion, we concentrate on the candidate detection in our study.

A deep object detection model was designed and trained from

3D images. The major advantages of the proposed model can

be summarized as:

(1) The proposed model can simultaneously detect nod-

ules and masses with a broad spectrum of appearance,

regardless of their types, sizes and locations. Espe-

cially, it has superior performance in the detection

of small nodules most often seen in the clinic that

are difficult to find even by experienced radiologists,

e.g., juxta-vascular nodules of type ground glass.

(2) The proposedmodel can simplify the design of the false

positive reduction. In our candidate detection, each

candidate is indicated with a bounding cube which not

only provides location information but also offers the

rough size information. The size information is very

useful for design of the false positive reduction, since

the effects of positive reduction heavily reply on the

receptive-fields.
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FIGURE 8. Examples of true positives (the left sets), false negatives (the
middle sets) and false positives (the right sets).

(3) The proposed candidate detection is an independent

module, so it can be incorporated with any other false

positive reduction methods. It also can be used to

implement automatic tools that generate candidates for

training false positive reduction. Besides, it can be

adopted as a potential solution for other similar clinical

application.

(4) The proposed candidate detection is very fast. For a

slice of size 512×512, the detection time is only about

30 milliseconds when running the system on a Geforce

GTX 1080 GPU.

After candidate detection, we combined two inception-v4

networks of different receptive fields as a classifier for FP

reduction. As demonstrated in Sec. IV, the classifier can effec-

tively reduce most FPs while keeping a relatively high sensi-

tivity. However, due to the specificity of scans, it is impossible

to find all nodules without any FPs. Figure 8 shows some

examples of true positives, false negatives and false positives.

These examples show that the proposed system should detect

nodules of varied appearance (see the left sets in Fig. 8). Yet,

it may fail to find some nodules (see the red arrows in the

middle sets in Fig. 8). In addition, some nodule-like tissues

(see the right sets in Fig. 8) may be recognized as nodules.

In our experiments, we found that most false negatives were

screened out in the candidate detection but missed in the FP

reduction. Collecting more samples for training the classifier

should alleviate this issue. Another potential solution is to use

more complex FP reduction methods, e.g., the 3D CNNs used

in [12] and [16].

Nodule detection is the first task in our study. In the future,

we will focus on estimation of the nodule’s size [42], type

(ground-glass, part solid, solid, benign and malignant, etc.)

and location (18 pulmonary segments). These properties of a

nodule should provide useful information for a doctor to help

in establishing more accurate treatment plans.

VI. CONCLUSION

We presented a CAD system for nodule detection in

CT images and demonstrated the importance of candidate

detection in the system. Candidate detection with high sensi-

tivity and low ratios of FPs effectively reduced the complexity

of the design for FP reduction. We achieved promising results

using two convolutional neural networks as classifiers for

the FP reduction. Our experiments show that the proposed

system is an effective lung cancer screening tool in clinical

applications.
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