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Abstract

Currently, there is a trend of increasing incidence in pulmonary non-tuberculous mycobacterial infections (PNTM) together with
a decrease in tuberculosis (TB) incidence, particularly in developed countries. The prevalence of PNTM in underdeveloped and
developing countries remains unclear as there is still a lack of detection methods that could clearly diagnose PNTM applicable in
these low-resource settings. Since non-tuberculous mycobacteria (NTM) are environmental pathogens, the vicinity favouring
host-pathogen interactions is known as important predisposing factor for PNTM. The ongoing changes in world population, as
well as socio-political and economic factors, are linked to the rise in the incidence of PNTM. Development is an important factor
for the improvement of population well-being, but it has also been linked, in general, to detrimental environmental consequences,
including the rise of emergent (usually neglected) infectious diseases, such as PNTM. The rise of neglected PNTM infections
requires the expansion of the current efforts on the development of diagnostics, therapies and vaccines for mycobacterial diseases,
which at present, are mainly focused on TB. This review discuss the current situation of PNTM and its predisposing factors, as
well as the efforts and challenges for their control.

Keywords Pulmonary non-tuberculous mycobacterial . Host factors . Virulence factors . Environmental factors . Diagnosis .

Treatment . Vaccine

Introduction

Multiple bacterial agents are associated with pulmonary infec-
tions [1]; among them, non-tuberculous mycobacteria (NTM)
have a rising incidence [2]. NTM are also known as
mycobacteria other than tuberculosis, atypical mycobacteria
or environmental mycobacteria [3]. NTM are labelled as en-
vironmental mycobacteria because they are widely distributed
in the environment, such as in soil, marshland, streams, rivers,

estuaries, dust, domestic and wild animals and food [4]. NTM
are opportunistic pathogens which rarely cause disease in hu-
man unless host defence is impaired [5]. They are associated
with disseminated and local infections in lungs, pleura, skin,
eye, central nervous system, soft tissue, genitourinary system
and lymph nodes, among others [6–16] (Table 1).

Pulmonary infection is the most common disease caused by
NTM (PNTM) and it has substantially increased worldwide
[28]. Based on the data published by Hoefsloot et al., (2013)
from 30 countries across six continents, M. avium complex
(MAC) (consisting of M. avium and M. intracellulare) is the
most prevalent NTM found in respiratory samples, followed by
M. gordonae andM. xenopi [29].Among the six continents, the
relative contribution of MAC per continent was highest in
Australia (71.1%), followed by Asia (53.8%), North America
(52.0%), South Africa (50.5%), Europe (36.9%) and South
America (31.3%) [29]. In Europe, M. gordonae is most preva-
lent in Germany, whileM. xenopi is prevalent in Hungary [29].
Rapidly growingMycobacterium (RGM) such asM. fortuitum

andM. abscessus are the major species associated with pulmo-
nary disease in Asia, particularly in Taiwan, South Korea, Saudi
Arabia, India, Singapore and Malaysia [29–33] (Table 1).
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PNTM is a recognized disease in the developed world as
the incidence rate of PNTM is higher than TB in countries
such as Japan [34], USA [35] and Australia [36]. Indeed, the
inverse trend of the incidence rates of NTM and TB was
observed in 75% of 16 geographic areas across four continents
[37]. The average annual prevalence of PNTM in the USA
ranges from 1.4 to 13.9/100,000 and can reach up to 44/
100,000 in Hawaii, with an estimated increment of 2.5–8%
annually [38]. In the USA, from year 1999 to 2014, even
though the total deaths due to TB are higher compared to
PNTM, the number of TB deaths has decreased periodically,
while the number of PNTM deaths has increased [39].

The rise of PNTM may be partially associated to the ad-
vancement of detection methods of mycobacteria, but its an-
nual augmentation is multifactorial, contributed by the patho-
gen, host, host-pathogen interactions and the still insufficient
management of the disease [40]. The current world dynamic
landscape, characterized by a growing population, develop-
ment associated changes with environmental impact, increase
of life expectancy and an increasing pool of immunosup-
pressed individuals associated with chronic communicable
and non-communicable diseases and their interactions, among
other factors, configure a context where the increase of PNTM
is expected in the foreseeable future [38, 41, 42]. To bridge the
gaps in prevention, diagnosis and treatment of PNTM, the
National Institute of Allergy and Infectious Diseases
(NIAID) and the NTM Research Consortium (NTMRC)
established by North American clinicians have organized
workshops to gather the experts in discussions for better un-
derstanding of the pathogen diversity, host-pathogen interac-
tions and the development of efficient control strategies [43,
44].

This review is divided into two main sections: (1) The
disease, which includes the most important factors related to
the host, the pathogens and their interactions and (2) the con-
trol of the disease, comprising (a) prophylaxis—measures to
prevent the disease and (b) management of disease—
measures focused in the diagnosis and therapy.

The disease (PNTM)

In this section will be discussed the most important factors
involved in PNTM: (1) the host, (2) the pathogens and (3)
the host-pathogen interactions (Table 2).

Host

The risk of PNTM development increases due to multiple
host-related-factors, such as structural lung defects
[327–329], genetic factors [74] and immunodeficiencies
[162, 330], among others; all of them are discussed in more
detail in the following subsections (Table 2).

Structural lung defects

PNTM are frequently associated with diverse structural lung
defects, mainly with chronic obstructive pulmonary disease
(COPD) and bronchiectasis, which are linked to different pa-
thologies (Table 2).

Chronic obstructive pulmonary disease Chronic obstructive
pulmonary disease (COPD) is a disorder characterized by air-
flow limitation and persistent respiratory symptoms, which
have been mainly associated with chronic bronchitis, emphy-
sema and chronic obstructive asthma [45, 46]. The association
of PNTM and COPD has been reported. It is considered that
COPD predispose to PNTM and the infection with NTM can
worsen the evolution of COPD and increase the mortality
[47–51, 329]. The use of inhaled corticosteroids in COPD
and other chronic pulmonary diseases is considered a risk
factor for the development of PNTM [52] (Table 2).

Bronchiectasis Bronchiectasis is a syndrome characterized by
chronic cough and viscous sputum production, bronchial di-
latation and thickening of the bronchial wall, which can be
idiopathic or associated with diverse aetiologies and comor-
bidities such as TB infection, cystic fibrosis (CF), allergic
bronchopulmonary aspergillosis (ABPA) and impaired
mucociliary clearance, among others [53–56]. Independently
of the aetiology, the presence of bronchiectasis predisposes to
PNTM [53–56] (Table 2).

(a) Post-TB infection

Retrospective data on patients admitted for bronchiectasis
in a large single centre in China for a period of 17 years
showed that pulmonary TB was the major predisposing factor
(30%), mainly in patients between 30 and 39 and 60–69 years
old [57]. Previous history of TB infection is one of the stron-
gest risk factors associated to PNTM [58]. It is estimated that
10 million new cases of TB occurred in 2017 and about one-
quarter of the world population has latent TB [59]. In Korea,
both TB and PNTM burden have increased, which leads to the
speculation that previous history of TB cause structural lung
damage and increase the vulnerability to PNTM [60]
(Table 2).

(b) Cystic fibrosis

Cystic fibrosis (CF) is an autosomal recessive disease,
caused bymutations of the cystic fibrosis transmembrane con-
ductance regulator (CFTR) gene predominantly found in
Caucasian populations, is characterized by CFTR dysfunction
[61]. The CF patients have decreased secretion of chloride and
bicarbonate across the CFTR channel and increased absorp-
tion of sodium through the epithelial sodium channel,

Eur J Clin Microbiol Infect Dis (2020) 39:799–826 801



Table 2 Factors associated with PNTM

Related to Factor Comments

Host a) Structural lung defects • COPD [45–52]
• Bronchiectasis [53–56]

• Post TB infection [57–60]
• Cystic fibrosis [61–66]
• ABPA [67–73]
• Impaired mucociliary clearance [74–77]

b) Genetic defects • Genetic defects in genes related with immune response, CFTR, cilia, and
connective tissue [74, 78–83]

c) Immunodeficiencies Primary immunodeficiency
• Gene mutations [84–109]

Secondary immunodeficiencies
• HIV [110–119]
• Autoimmune diseases [120]
• Cancer [121–123]
• Immunosuppressive drugs [124–129]
• Surgery [130–133]
o Transplantation [134–138]
• Age over 60 years old/Immunosenescence [139–151]
• Malnutrition [152–161]
• Vitamin and trace elements deficiencies [162–175]
• Addictions: smoking, alcoholism, and drug abuse [176–203]
• Lady/Lord Windermere syndrome [204–208]

NTM a) Virulence factors • Genomic and proteomic analyses identified virulence genes and proteins
in NTM similar to Mtb [209–212]

• Cell wall components related to virulence, immunogenicity,
immunomodulation and drug sensitivity [213–222]

b) Biofilm • Resistance to physiochemical stress, antimicrobials and immune defence
mechanisms [20–26, 223–229]

Transmission

a) Water • Global warming increase water evaporation and aerosolization of NTM on
water surface [230–238]

• Insufficient treatment of water to avoid NTM colonization [239–241]
• Showering, hot bath, sauna and swimming pools increase exposure to

PNTM infection [242–244]

b) Soil and dust particles • High exposure to aerosolized dust/soil in construction, industrial / domestic /
recreational activities associated with improper use of personal protective
equipment [230, 245–250]

c) Other sources • Natural disasters, armed conflicts, terrorist attacks and migrations related to
poor health conditions [233, 245, 251, 252]

• Spread of disease due to ease of transportation [234–236]

Control of PNTM A. Prophylaxis

a) NTM (Blocking the transmission) • Avoid aerosolization [41, 253, 254]
• Use of personal protective equipment [255]

b) Host (Vaccines) • Need to increase research on vaccine development for PNTM [43]
• Experimental and clinical results of mycobacterial vaccines support further

development in this area [256–278]

B. Management of the disease

a) Diagnosis • Mainly focussed on TB, and little development for NTM [43, 279–290]

b) Treatment • Need to develop new effective drugs for NTM [43, 44]

Immunotherapy
• Potential use of monoclonal antibodies specific of NTM antigens and/or
human IgG or IgA formulations and therapeutic vaccines [256–278, 291–314]

c) Drug discovery • Multiple challenges in discovery and development of new antibiotics for
NTM [315–326]

Eur J Clin Microbiol Infect Dis (2020) 39:799–826802



resulting in increased mucus viscosity, compromised
mucociliary clearance and airway obstruction, among other
defects [62], predisposing to PNTM (mainly MAC and
M. abscessus) [63, 64].

As CF patients have high prevalence (20%) of NTM infec-
tions, the CF Foundation has recommended an annual screen-
ing of NTM in these patients [65] and the need to take pre-
cautionary measures to limit the transmission of NTM in CF
clinics [66] (Table 2).

(c) Allergic bronchopulmonary aspergillosis

Allergic bronchopulmonary aspergillosis (ABPA) is a hy-
persensitivity reaction to the presence of Aspergillus

fumigatus associated with asthma and CF [67–69]. Patients
with ABPA are at risk of developing PNTM [70, 71] and the
infection with MAC and M. kansasii is associated with a
higher risk of developing chronic pulmonary aspergillosis
(CPA) [72], with poor prognosis related to the use of systemic
corticosteroid treatment [72]. The probability to develop bron-
chiectasis decreases if patients with ABPA receive proper
treatment [73] (Table 2).

(d) Impaired mucociliary clearance

The mucociliary clearance impairment, with low ciliary
beat frequency, low nitric oxide production and impaired
toll-like-receptors function, as seen in CF and primary ciliary
dyskinesia patients is a critical determinant in PNTM infection
[75]. Defect in several genes has been associated with primary
ciliary dyskinesia, e.g. DNAH5, DNAI1, DNAI2, DNAL1,
CCDC114, TXNDC3, DNAAF1, DNAAF2, DNAAF3,

CCDC103, HEATR2, LRRC6, CCDC39 and CCDC40 [74].
A study by Matsuyama et al. (2018) showed that in respi-

ratory cells infected with NTM, immune signalling leads to
downregulation of ciliary genes, upregulation of the inflam-
matory cytokine IL-32 and cholesterol biosynthesis [76]. A
recent study showed that mutations at MST1R gene were as-
sociated with decreased airway ciliary function and
interferon-γ (IFN-γ) production [77] (Table 2).

Genetic defects

Multiple genetic alterations have been associated with the sus-
ceptibility to PTMN. For example, in the case of structural
lung defects, specific gene defects [mentioned in “Cystic fi-
brosis” and “Impaired mucociliary clearance” subsections]
have been described [74]. Specific gene defects associated
with immunodeficiencies will be described in the
next subsection. Defects on CHP2 gene have been associated
to PNTM due to MAC [78]. Genetic defects in genes related
with immune response, CFTR, cilia, and connective tissue
have been found with increased frequency in PNTM patients

compared with their unaffected family members and control
subjects. Many of the patients had simultaneous defects in
various genes, comprising of different categories [79].
Evidence of genetic linkage on chromosome 6q12-q16 with
PNTM and the identification of TTK as a candidate gene for
PNTM have been found in PNTM patients [80]. Also,
haplotypic association with PNTM has been reported [81].
Some studies showed association of different HLA antigens
and susceptibility to PNTM. In this regard, HLA-A33, HLA-
DR6 and the haplotype A33-B44-DR6 were found with
higher frequency in PNTM, and the presence of HLA-A26
has been associated with a bad clinical evolution [82, 83].
The studies related with the genetic defects associated with
PNTM support the notion that PNTM is a complex, multifac-
torial disease with the simultaneous presence of several con-
comitant genetic alterations [79] (Table 2).

Immunodeficiencies

Immunodeficiencies, primary and secondary, are associated
with the increase of susceptibility to infectious diseases [84].
It has been documented the increase of NTM infections in
immunosuppressed individuals [85, 86]. In the following sub-
sections, examples of association of primary and secondary
immunodeficiencies and PNTM will be discussed (Table 2).

Primary immunodeficiency Primary defects of the immune
system also known as inborn errors of immunity comprise
more than 350 hereditary entities associated to single gene
mutations, and their classification has been recently updated
by the Primary Immunodeficiency Diseases Committee, un-
der the International Union of Immunological Societies [84].

In the category “Combined immunodeficiencies with asso-
ciated or syndromic features”, patients affected with
“Anhidrotic ectodermal dysplasia with immunodeficiency
(EDA-ID)”, in its both variants, EDA-ID due to NEMO or
EDA-ID due to IKBA, produced by genetic defects in
IKBKG or IKBA NFKBIA, respectively, have increased sus-
ceptibility to NTM [87–89].

Two diseases included in the category “Congenital defects
of phagocyte number or function”, X-linked chronic granulo-
matous disease and GATA2 deficiency (MonoMac syn-
drome), with defects inCYBB andGATA2 genes, respectively,
has been reported with increased susceptibility to NTM [84,
90–93].

The diseases from the group known as “Mendelian
Susceptibility to Mycobacterial Disease (MSMD)”, included
in the category “Defects in intrinsic and innate immunity”,
mainly associated with gene defects related with the function
of the IL-12/IFN-γ pathway (IL12RB1, IL12B, IFNGR1,
IFNGR2, STAT1, CYBB, IRF8, TYK2, ISG15, RORC and
JAK1), are characterized for increased susceptibility to NTM
[84, 88, 94–97].

Eur J Clin Microbiol Infect Dis (2020) 39:799–826 803



Patients affected by “Adult-onset immunodeficiency with
susceptibility to mycobacteria”, belong to the category
“Phenocopies of inborn errors of immunity”, produce auto-
antibodies against IFN-γ and have increased susceptibility to
NTM [84, 98–108].

Also, increased susceptibility to PNTM has been associat-
ed to C4 complement deficiency [109].

Secondary immunodeficiency Many different pathological
conditions compromise the function of the immune system pre-
disposing to infections, including PNTM. In this subsection will
be discussed a group of heterogeneous situations [human im-
munodeficiency virus (HIV) infection, autoimmune diseases,
cancer, Immunosuppressive drugs, surgery, age, malnutrition,
vitamin and trace elements deficiencies, addictions and Lady
Windermere syndrome] where the presence of malfunction of
the immune system increase the susceptibility to PNTM
(Table 2).

(a) Human immunodeficiency virus

One of the most demonstrative examples of the impact of
immunosuppression on the susceptibility to PNTM is the dev-
astating effect of MAC infection in acquired immunodeficien-
cy syndrome (AIDS) patients [110–115].

Severely immunocompromised patients, such as those with
HIV infection, with low CD4+ lymphocyte counts are at high
risk of PNTM infection even with the introduction of anti-
retroviral therapy (ART) [110, 116]. The infection might not
be limited to PNTM, but it may progress into disseminated
disease (dNTM) caused by MAC [110, 117]. The mycobacte-
rial infections have caused high morbidity and mortality among
HIV-positive individuals [110, 117]. In 1996, the introduction
of ART in 1996, together with antibiotic prophylaxis, such as
azithromycin or clarithromycin, has successfully reduced the
development of disseminatedMAC among HIV patients [118].

Even at this ART era, the management of dNTM in HIV
patients is difficult as in one study, and 79% of the patients had
the immune-reconstitution syndrome, which introduce impor-
tant therapeutic dilemmas [119].

(b) Autoimmune diseases

In patients with systemic autoimmune rheumatic diseases,
PNTM could develop and exacerbate [120].

(c) Cancer

Cancer patients are prone to develop PNTM, which could
be favoured by the intrinsic immune suppressive effect of
cancer and by inherent additional factors such as malnutrition,
immunosuppressive treatment, radiation, stress and surgery
[121, 122]. Among cancer patients, PNTM infection is most

common in lung cancer and MAC is the most common caus-
ative agent [123].

(d) Immunosuppressive drugs

Immunosuppressive drugs used to treat cancer [124], auto-
immune diseases [125], and following transplantation [126],
increase the risk of opportunistic infections [127].

The use of immunosuppressive drugs and TNF-α blockers
to treat rheumatoid arthritis increases the risk of NTM infec-
tions, mostly byM. avium, followed by RGM, particularly in
the lungs [128, 129].

In the case of patients under immunosuppressive treatment,
other factors such as the underlying pathology and surgery,
among other concomitant factors, potentiate the immune
dysfunction.

(e) Surgery

Any major surgical procedure means a great trauma for the
patient with many immunosuppressive associated factors during
the pre-operative (pre-operative anxiety), intra-operative (tissue
damage, disruption of natural protective barriers, blood loss,
transfusion, hypothermia, pain, analgesia, anaesthesia and
stress), and post-operative (activation of the hypothalamic-
pituitary-adrenal axis, endogenous opioids, prostaglandins, cyto-
kines and their agonists) periods [130–133]. The specific role of
surgery per se, in the predisposition of PNTM, is difficult to
evaluate, but is a factor that need to be considered in general,
particularly in individuals belonging to risk groups of PNTM.

Transplantation Solid organ transplant (SOT) is a special sur-
gical case, because the immunosuppressive effect of surgery
and the lifelong immunosuppressive therapy are combined.

The risk of PNTM is high among SOT recipients, especial-
ly in lung transplant patients, which have the highest risk of
lung infection compared to other organ transplant recipients
[134, 135]. The risk of PNTM in haematopoietic cell trans-
plants has also been reported [136–138].

(f) Age

The current world population is estimated to be 7.6 billion
[139]. One of the most important characteristics of the current
demographic evolution worldwide is the increase of individ-
uals over 60 years of age [140]. The increase in life expectan-
cy is accompanied by multiple challenges for health systems
due to the inherent ageing-associated physiological/structural
changes and the concomitant increase in associated diseases.

Immunosenescence is one of the processes associated with
ageing which is characterized by an increase in predisposition
to infection, cancer and autoimmunity and a decrease in re-
sponse to vaccination [141, 142].
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Age is an important risk factor which predisposes to
PNTM. Adults older than 60 years old are more prone to
PNTM, and their prognosis is commonly unfavourable, which
is often complicated by the presence of structural lung defects
such as bronchiectasis and COPD [40, 143–150].

This situation may burden health care costs as it is estimat-
ed that nearly 1.5 billion people are expected to be over
65 years old by 2050 [151].

(g) Malnutrition

The immune response is affected by the effects related with
the undernutrition, low body mass index (BMI), obesity and
dietary deficits. Despite the immunological imbalances pres-
ent in obesity, characterized by inflammation, increase suscep-
tibility to infections and compromise response to vaccination,
a clear connection between obesity and PNTM have not been
reported, so the discussion will be focussed on undernutrition
and dietary deficits [152–157].

In children living in low resource areas such as
Mozambique, the prevalence of NTM in pulmonary samples
of presumptive TB cases can reach 26.3%, and the most com-
mon clinical feature observed was malnutrition [158].

LowBMIwas associated with PNTM andwas a predictor of
dissemination [159]. PNTM has also been associated with low
visceral fat and low nutrient intake [160]. Low BMI and cho-
lesterol levels were predictors of bad prognosis in another study
[161].

(h) Vitamin and trace elements deficiencies

Vitamin and trace elements are of paramount importance
for the normal function of the immune system. Primary and
secondary malnutrition have a high impact in the availability
of micronutrients with increase susceptibility to infectious dis-
eases. Primary malnutrition is frequently associated to poverty
and extreme poverty, wars, natural disasters, migrations, mal-
nutrition following beauty patterns, etc. Secondary malnutri-
tion is associated with diseases such as cancer and parasitism,
among others [163, 164].

Vitamin D Deficiency of vitamin D has been observed in ad-
olescent idiopathic scoliosis (AIS) as it affects the regulation
of bone mineral density, postural control and fibrosis [165].
Pectus excavatum, a skeletal feature of rickets, is related to
hypovitaminosis D, as this vitamin is essential for mainte-
nance of healthy bones [166]. The development of lungs is
also affected by the vitamin D level and deficiency of this
vitamin may lead to deficits in lung function and volume
[167]. In bronchiectasis patients, 50% have vitamin D defi-
ciency and are frequently colonized with bacteria [168].
Generally, the level of vitamin D decreases with increasing
age and decreased exposure to sunlight [169]. All the factors

previously mentioned have been linked with PNTM; howev-
er, studies related with the link between vitamin D and PNTM
are relatively scarce. Association of severe vitamin D deficien-
cy and PNTM has been reported [162]. However, in another
study, Fujita et al. (2018) showed association of vitamin D
with bone mineral density and antimicrobial peptide levels
(hCAP18/LL-37), without a direct link between the serum
vitamin D level and PNTM [170].

In PNTM patients due to M. malmoense, association of
susceptibility with vitamin D receptor gene polymorphisms
was found [171].

Vitamins A and E A study by Oh et al. (2019) on serum vitamin
levels in PNTM patients showed that they had significant lower
vitamin A and vitamin E levels than healthy individuals, without
significant changes in vitamin D levels [172]. It has been report-
ed that in TB patients, vitamin A promotes autophagy to reduce
bacterial burden in macrophages [173] and vitamin E-selenium
increases antioxidant effects to reduce oxidative stress [174],
suggesting that low level of these vitaminsmay inhibit the ability
of host immune system to fight mycobacterial infections.

Trace elements deficiencies Decreased levels of selenium and
zinc were found in PNTM [175].

(i) Addictions

Addictions such as smoking, alcoholism and drug abuse
have a high impact in the normal function of the immune
system predisposing to infectious diseases [176]. The link
between addictions and PNTM has been reported [177–181].

Smoking It was estimated that over 1/7 of world population
(1.1 billion) were smokers in 2016 [182]. Looking at re-
gional smoking prevalence, most Africans and Americans
smoke at adolescence [182]. Many people still underesti-
mate the relative risk of smoking [183], and young people
perceive smoking as a normal and acceptable behaviour,
supported by misconceptions as having stress-relieving ef-
fects and social bonding (peer-influence) [184]. Even pa-
tients who are diagnosed with COPD do not quit smoking
as smoking cessation is difficult due to their lifelong
smoking habit [185].

The damages caused by smoking vary significantly de-
pending on the personal smoking practices (frequency of
smoking, fraction of smoking, starting age, etc.) and the char-
acteristics of the smoked product (cigarette, tobacco, pipe,
chemical concentration, size of the compounds, charged par-
ticles formed, etc.) [186].

Cigarette smoke is a mixture of chemical compounds that
are free in the gas phase and attached to aerosol particles. It has
been estimated that cigarette smoke has 7357 chemical com-
pounds [187], some of them are very toxic and others with great
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potential to be respiratory irritants, e.g. 1,3-butadiene, acrolein,
acetaldehyde, cyanide, arsenic, cresols, N-nitrosamines and
polycyclic aromatic hydrocarbons (PAHs), among others [188].

The antecedent of smoking in patients with PNTM has
been reported [32, 86, 189, 190]. Smoking impairs the im-
mune defences at the respiratory level by different mecha-
nisms such as inhibition of bacterial killing due to bacterial
phagocytosis defects, modulating CFTR dependent lipid-rafts
and autophagy impairment, among others [191–196]. The pre-
disposing role of smoking in PNTM could be mediated by
direct effect on the immune response and indirectly, by its
association with pathologies that increase the risk of PNTM
such as COPD [196, 197].

Alcohol abuse According to WHO, alcohol consumption was
related to about 3 million deaths and 132.6 million disabilities
in 2016 [198]. Even though several countries have adopted
alcohol control policies as suggested by WHO since 1999,
including restriction of alcohol marketing, the weak imple-
mentation of prevention programmes has not achieved signif-
icant impact on human health [199].

Alcohol is another causative agent for airway inflammation
and injury as observed in COPD, and prolonged alcohol con-
sumption leads to increased risk of mortality in these patients
[200]. The multiple deleterious effects of alcohol in the func-
tion of the different arms of the immune system have been
documented [179, 180, 201], including disruption of the im-
mune defence mechanisms at the airways [202].

Alcohol abuse has been associated with the risk of PNTM
in HIV infected and non-infected individuals [190, 193].

Drug abuse Drug abuse induces important deficits in the im-
mune system, which impacts the susceptibility to infectious
diseases [176, 181].

A study on HIV patients with NTM diseases showed that
their risk of infections was associated with both alcohol and
drug abuse. Depending on the drugs used, the results showed
that more SGMwere isolated from intravenous and inhalation
cocaine users, while RGMwere isolated from inhalation crack
users [203].

(j) Lady Windermere syndrome

Generally, tall, lean, old Caucasian ladies with MAC lung
disease, with an isolated lingular or middle lobe bronchiectasis
pattern, are known as LWS. The syndrome is associated with a
voluntary suppression of the normal cough reflex due to po-
liteness, which impairs the clearness of airway secretions
[330]. Patients affected with this syndrome also tend to have
scoliosis, pectus excavatum or mitral valve prolapse even
without any apparent immune defects [204, 205].

A study by Chan et al. (2010), showed that NTM infections
are more frequent in females even without any overt immune

defects [206]. However, despite of the first perception that this
syndrome was not related with immune compromise, defects
in MST1R gene, associated with compromised airway ciliary
function and reduction on IFN-γ production in response to
NTM, have been found in patients with LWS as well as alter-
ations in immune related genes [77].

“Lord” Windermere syndrome Although the alterations asso-
ciated with LWS have been associated with female gender,
similar characteristics to the LWS have been described in
men [207, 208].

Pathogens (NTM)

There are more than 180 NTM species that are classified into 4
groups based on growth rate and pigment production, known
as Runyon classification. The first 3 groups are slow growers
(SGM) which require more than 14 days to growth: (I)
photochromogens, which develop pigments in or after being
exposed to light, (II) scotochromogens, which become
pigmented in light/dark conditions and (III) non-
photochromogens, which do not form pigment. The group
(IV) RGM require only 2 to 5 days to growth [331]. Some
phenotypic [17, 18, 27] and genomic [19] characteristics of
the most important NTM associated to PNTM are listed in
Table 1.

Recently, based on the results of phylogenomic analysis
and identified molecular signatures [Conserved Signature
Indels (CSIs) and Conserved Signature Proteins (CSPs)],
Gupta et al. (2018) described the division of mycobacterial
species in one emended genus: “Mycobacterium”; and four
novel genera: Mycolicibacterium , Mycolicibacter,

Mycolicibacillus and Mycobacteroides, which have five
clades: “Tuberculosis-Simiae”, “Fortuitum-Vaccae”,
“Terrae”, “Triviale”, “Abscessus-Chelonae”, respectively.
NTM belong to these five clades [17] (Table 1).

“Tuberculosis-Simiae” clade This is the only clade that in-
cludes NTM andMTBC species. Some NTM, from this clade,
has been reported as pathogenic Mycobacterium species in-
cluding MAC, M. gordonae, M. kansasii, M. xenopi, M.

simiae, M. szulgai and M. interjectum causing PNTM [17].

“Fortuitum-Vaccae” clade This clade includes M. fortuitum

and has been described as causing PNTM [17].

“Terrae” and “Triviale” clades Some members of “Terrae”
and “Triviale” clades have been described as opportunistic
pathogens [17].

“Abscessus-Chelonae” clade This clade has six members and
has been described as pathogenic to humans. PNTM has been
described caused by M. abscessus and M. chelonae [17].
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Development in molecular methods, especially DNA se-
quencing and polymerase chain reaction (PCR) tests, has en-
abled NTM species-species differentiation and strain typing
[332]. Most NTM are considered as non-pathogenic microor-
ganisms which are harmless and unlikely to cause disease but
become opportunistic pathogens especially in immunocom-
promised hosts [333]. On the other hand, those within the
Mycobacterium tuberculosis complex (MTBC) are regarded
as pathogenic microorganisms which cause a specific disease,
TB [334].

Virulence factors

Genomic profiling of 41 NTM species showed that MTBC
and NTM do share similar virulence factors, e.g. (1) cell sur-
face hypervariable PE/PPE proteins that are important in the
evasion of the host immune response, except for PE5, which is
only found in NTM; (2) ESX or type VII secretion system
(T7SS) for PE/PPE proteins transportation, where ESX-3 is
conserved in both groups and ESX-1 which was thought to be
specific for Mtb, is also expressed in M. gordonae, M.

riyadhense andM. szulgai; (3) Mce proteins that are involved
in host-cell invasion, namely, Mce1, Mce2, Mce3 and Mce4
which are present in Mtb, are also found in many NTM, with
Mce5, Mce6, Mce7, Mec8 and Mce9 only present in NTM;
(4) Sec export systems, SecA1 and SecA2, that are important
to exportMtb lipoproteins are conserved in all species; and (5)
Tat export system for Mtb virulence is also conserved in all
species [209]. The genes involved in biosynthesis of mycolic
acids in NTM are similar to those for Mtb, although genes for
dimycocerate esters (DIM) biosynthesis are only found in
SGM, particularly in the pathogenic mycobacteria, i.e.
MTBC, M. leprae, M. kansasii, M. marinum, M. ulcerans

and M. haemophilum [209].
In terms of immunogenic proteins, previously detected in

Mtb, with some role in virulence, a study on 4 NTM species
showed that CFP-10 was detected inM. malmesburii sp. nov.;
GroES was detected in M. komanii sp. nov. , M.

nonchromogenicum and M. fortuitum ATCC 6841; and
DnaK and GroEL were detected in all the 4 NTM [210].
Also, CFP-10 and ESAT-6 of Mtb are detected among
M. kansasii, M. szulgai, M. marinum and M. riyadhense

[211]. The presence of shared antigens between Mtb and
NTM has given new insights to consider NTM as potentially
pathogenic and could be associated with false positive results
with the current interferon gamma release assays (IGRAs) in
use [212].

Cell wall components of mycobacteria, including NTM,
are important elements related to virulence, immunogenicity,
immunomodulation and drug sensitivity [213–216] which
have a high impact on the development of diagnostics, thera-
pies and vaccines.

Impor tan t ce l l wal l components of NTM are
glycopeptidolipids (GPLs) and lipooligosaccharides (LOSs)
[213–215]. GPLs, which are absent in Mtb [213] can be
species-specific (ssGPLs) or non-specific (nsGPLs) [214].
The addition of an oligosaccharide to nsGPLs confers further
immunogenicity producing the ssGPLs, which determine 31
serotypes among MAC members [214]. GPLs are associated
with immunopathological responses during infection [214].
The serotypes of MAC are associated with pathological char-
acteristics as in the case of serotype 4 which is linked to dis-
seminated infection in AIDS patients [214, 217]. LOSs are
also present in M. canettii and some MTBC, but absent in
Mtb, such as H37Rv [215, 218]. LOSs are strongly immuno-
genic and associated with immunomodulation and virulence
[218–222].

Biofilm

It is well documented that NTM such as M. avium [24], M.

marinum, M. kansasii [26], M. smegmatis [223], M. abscessus

[20], M. fortuitum and M. chelonae [22] can form biofilms
which are important for resisting physicochemical stress, an-
timicrobials and immune defence mechanisms, favouring
their persistence [224].

Besides mycolic acids, the mycobacterial cell wall has ex-
tractable lipids such as GPLs [20, 22, 24, 223], LOSs [26], and
trehalose dimycolate (TDM) [20] together with extracellular
DNA (eDNA) [21, 23, 25] which contribute to the biofilm
development. Biofilm development is also partly influenced
by the presence of nutrients [225–227] (Table 1).

As mycobacteria lack of pili and fimbriae, GPLs play an
essential role in attachment on surfaces for biofilm formation
and sliding motility for biofilm spreading [228]. Also, the
presence or absence of GPLs determine the morphology and
virulence of M. avium and M. abscessus, i.e. less virulent,
non-cord-forming smooth variants has increased GPLs pro-
duction, and more virulent, cord-forming rough variants lack
GPLs [20, 24, 229].

Transmission

Transmission of NTM is similar to TB via aerosolization, but
the source of transmission is from the environment, not human
or animal, suggesting that PNTM is not contagious [332]. The
propensity to PNTM increase due to exposure to environmen-
tal factors related to water and soil [230]. Although transmis-
sion of NTM from human-to-human is not common, in 2010,
a first case of M. kansasii isolated from a couple in East
London, an area with high TB burden, was reported [231].
The isolates were genetically identical, and the authors were
unable to prove a shared domestic exposure [231]. Whole
genome sequencing (WGS) has revealed the possibilities of
human-to-human transmission, but most probably in an
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indirect manner via fomite contamination or inhalation of
NTM in airborne water droplets [232]. Contamination of the
environment after natural disasters and human mobility might
be associated with PNTM transmission [233–236] (Table 2).

(a) Water

NTM are more likely to survive at surface waters than in
ground waters [230]. Thus, the risk of PNTM could be poten-
tially associated with the percentage of surface water, temper-
ature, humidity, rain precipitation and potential of evaporation
and transpiration, whereby aerolization, favoured by the my-
cobacterial hydrophobicity and inhalation of water droplets
contribute to PNTM [230]. The hydrophobicity promotes bac-
terial adherence at surfaces and pellicle biofilm formation at
the liquid-air interface [224].

A study by Wei et al. 2016 showed that developed and
developing countries contributed 53–61% and 39–47%, respec-
tively, to climate changes based on the emissions of carbon
dioxide, methane and nitrous oxide [237]. Human activities
have changed the atmosphere composition causing accumula-
tion of greenhouse gases leading to global warming [237]. The
increase of global air temperature indirectly leads to the increase
of evaporation and transpiration that convert surface water,
from natural (e.g. sea and river) or artificial (e.g. swimming
pools and ponds) sources into atmospheric water vapour [230].

MAC has been reported as an important causative agent for
hypersensitivity pneumonitis at hot tub or spa and associated
with “hot tub lung”, a diffuse granulomatous lung disease [238].

(b) Soil and dust particles

Activities (hobbies or job-related) associated with long-
term contact with soil such as farming, and lawn and land-
scaping services are more likely to be exposed to NTM infec-
tion. Recovery of MAC strains is highly prevalent in the res-
idential soil samples in Japan and the bacteria transmission is
associated to duration of soil exposure for more than 2 h per
week [245]. Soil properties play an important role in promot-
ing growth and persistence of NTM in nature. The soil of
countries with high-risk of infection have higher copper and
sodium levels, but lower manganese levels compared to low-
risk countries [230].

Trapped, dusty environments promote the aerolization of
NTM and cause the development of silicosis and chronic
bronchitis in South African gold miners, which may predis-
pose to PNTM, particularly caused by M. kansasii and MAC
[58]. The exposure of indoor home dust could be a source of
PNTM, as M. avium ssp. hominissuis is highly found in dust
from vacuum cleaner bags in Germany [246].

The presence of NTM such as M. intracellulare, M.

abscessus, M. szulgai, M. fortuitum, M. avium, M. kansasii,

M. simiae, M. gordonae, M. terrae complex, M. chelonae and

M. malmoense has been reported in sand [30]. Dust and sand
from deserts, due to storms, can travel long distances even
between continents and represent a vehicle for the dispersion
of microorganisms, including NTM [247–249]. Also, myco-
bacterial DNA have been found in cosmic dust [250].

(c) Other sources

Dialyses centres, heater-cooler units, kitchen sinks, house-
hold refrigerator taps, home ice machines, tap water filters,
retail sold fish, frozen fish, piped surfaces, soil fertilized with
chicken droppings, dust from vacuum cleaners, air conditioner
and cigarettes have been reported as sources for NTM coloni-
zation [335].

Some NTM (MAC) can evade the degradation within free-
living Acanthamoeba polyphaga, A. castellanii and their
exocysts. Nearly 88% of amoeba (Acanthamoeba,

Vermamoeba, Echinamoeba, and Protacanthamoeba) from
drinking water contains M. chelonae [335].

NTM can be transmitted via oral route due to the gastro-
esophageal reflux [335].

Another important source of transmission are the disasters.
Stress, disruption of health care systems, bad hygienic-
sanitary conditions, food deprivation and large migratory
waves, among others, are the scenarios caused by disasters,
whether natural (earthquakes, tsunamis, etc.) or man-made
(wars, extreme poverty, ethnic/religious/political conflicts,
etc.), which create favourable conditions for the transmission
of microorganisms, turning the host susceptible, making them
vulnerable to the development of multiple diseases.

War is considered a public health problem [245]. Armed
conflicts are classified as one of the biggest disasters that a
population can suffer, affecting health directly by the effects of
weapons and indirectly breaking the structures of health sys-
tems, their supply chains and interrupting health programs as
vaccination and paediatric care, among others. These factors
together with the destruction of water supply networks, the
houses and population overcrowding, among other factors,
cause the emergence of epidemics, re-emergence of common
vaccine-preventable-infectious diseases in children and dis-
eases associated with severe malnutrition. When this scenario
is impregnated with violence and insecurity, it pushes popula-
tions to move, with all the terrible consequences that are
added. All these factors create optimal conditions for the pro-
liferation of infectious diseases [251, 252].

Armed conflicts are recognized as important factors for the
spread of Mtb [252]. The dissemination of NTM and the in-
crease of the incidence of PNTM in war affected populations
cannot be excluded, as the presence of the necessary condi-
tions for this to happens is present, but the evaluation of this in
the difficult conditions created by war is difficult, in fact, the
possibility exists that patients in these populations (initially
diagnosed as TB/MDR-TB) could be affected by PTNM.
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During some natural disasters, NTM transmission may in-
crease due to several factors. The mixture of the ocean and the
fresh waters, together with the mixture of the soil with the
water, could produce aerosols that contain NTM, favouring
the inhalation. In addition, the free-living amoebas move from
their natural niches, providing a “protected” environment for
intracellular multiplication of NTM and virulence, which can
potentially cause PNTM [233].

Human mobility is another source of transmission. The
development of widespread transportation and communi-
cation has increased population mobility, which contribute
to disease outbreaks and the spread of infections [234].
Nishiuchi et al. (2017) hypothesized that globalization of
human activities, mobility and trade may increase the glob-
al transmission of MAC via fomites [235]. It is suggested
that person-to-person spread is unlikely and the ability of
NTM to resist desiccation and detergents might promote
their survival during transportation [236] (Table 2).

Host-NTM interaction

The fragile boundary between health and disease could be
broken by many associated factors, mainly related with
the host and the pathogen, but the resultant of the inter-
actions between them plays the most important role.
PNTM is the undesirable resultant of these interactions.
The interaction is dynamic and the relative “strength” of
“weakness” of each player will depend on continuously
evolving factors in each side, given at any moment a
“balance”, which will determine the presence or not of
the disease. The challenge of disease control lies in the
measures that should be implemented to block the NTM
transmission and to shift the balance towards the host
resistance aimed to prevent the disease, or the recovery
once it appears.

Control of PNTM

In this section, prophylactic measures and the management of
the disease will be discussed.

Prophylaxis

The prevention of infectious diseases is one of the most im-
portant objectives of the health systems, which are mainly
achieved through (1) pathogen-related prophylactic measures
(blocking the transmission), and (2) host-related prophylactic
measures (vaccines) (Table 2).

(a) Pathogen-related prophylactic measures: blocking the
transmission

In the case of PNTM, some measures could be implement-
ed to decrease the transmission mainly through water and soil.

Despite better public health measures, i.e. improvement in
water supply via centralized water supply systems, which help
to minimize most pathogenic water-borne bacteria, unfortu-
nately, it has promoted NTM colonization [239]. In central-
ized water supply systems, water travels long distances, which
eventually leads to degradation of the disinfectants, i.e. de-
crease in chlorine concentrations due to heat inactivation
[239]. Also, a study showed that despite addition of ozonation
and filtration treatments, NTM can still persist in water sys-
tems [240]. NTM can be recovered in water with free and total
chlorine levels of 2.5 and 2.8 mg/l, respectively, suggesting
that chlorination is unable to efficiently kill mycobacteria
[241]. One of the main reasons that mycobacteria can survive
in this harsh environment is their ability to form a protective
shield, biofilm [229]. In potable water, slow growing MAC
form a highly culturable biofilm compared to RGM, suggest-
ing that the former has better adaptation to growth in low-
nutrient environments [229]. Also,M. avium is able to survive
and grow in free-living amoeba, particularly Acanthamoeba

lenticulata as parasites or endosymbionts, and the encystment
protectM. avium from the disinfection processes [336]. Water
treatment has always been focused on eliminating water-borne
gastrointestinal bacteria such as Campylobacter, Salmonella,
Shigella and Escherichia coli but not in the elimination of
mycobacteria [337]. Considering the ability of mycobacteria
to survive in these harsh environments even after treatment, a
more appropriate water treatment plan is needed as the conse-
quences of NTM infection should not be overlooked. A study
by Inkinen et al. (2016) suggested that cooper pipelines might
be effective in preventing NTM colonization compared to
polyethylene pipelines [338].

Many studies have showed that inhalation of aerosols gen-
erated from shower-heads, therapy pools, hot-tubs and swim-
ming pools may promote PNTM [242–244]. A study reported
by Feazel et al. (2009) showed that among the 16 microorgan-
ism genera present in shower-heads, mycobacterial biofilms
had the highest prevalence, mainly composed byM. gordonae

and M. avium, which were more than 100-fold than in their
background water composition [339].

Preventive measures such as cleaning shower-heads by
soaking in vinegar or water, replacing shower-heads periodi-
cally, removing shower-heads completely, taking baths in-
stead of showers, and avoiding steam rooms and hot tubs have
been recommended to the public [340]. In general, the recom-
mended preventive advices are not incorporated in our daily
routine and most people still prefer showers compared to
baths, partly due to convenience. Also, in line with water
conservation drives and to achieve a more eco-friendly envi-
ronment, a quick shower is definitely better than a bath as an
average shower of 10 min uses 10 to 25 gal of water, while a
bath needs at least 70 gal [341].
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Inhalation of water during swimming also exposes the re-
spiratory system to NTM. A study by Prevots et al. (2014)
showed that swimming in indoor pools is associated with
PNTM, which may be attributed to the formation of bacterial
biofilms in closed environments which facilitates higher ex-
posure to aerolized biofilms [41]. The lack of ventilation in
closed areas facilitate inhalation of water aerosols. Also, the
use of pressure washers during cleaning has indirectly in-
creased water aerosolization and this exposure increases the
risk of occupational hazard [253]. Thus, to prevent this envi-
ronmental colonization, it has been suggested that such closed
environments be kept dry and have proper ventilation [254].

It is recommended that workers with occupational risk
should wear personal protective equipment such as masks
and gloves while doing soil-related works. The World
Health Organization (WHO) recommended the use of re-
spiratory protective equipment in airborne contaminated
working environments, but frequently, the workers remove
the masks after wearing it for long periods of time in hot
and cramped environments [255]. The use of respiratory
protective equipment should be recommended also for do-
mestic or recreational activities associated to soil and dust
exposure.

(b) Host-related prophylactic measures: “arming” the host
by vaccination

Prophylaxis by vaccination is one of the most potent health
measures to control infectious diseases, which allow the pre-
vention of the disease, even when the measures for pathogen
control are not fully effective.

Currently, there is no vaccine recommended for PNTM.
Bacillus Calmette-Guerin (BCG), the only vaccine currently
available for TB, has shown protective effects in
extrapulmonary NTM infections, but there is no report for
PNTM [43]. A review by Zimmermann et al. (2018) based
on ten studies involving 12 million participants showed that
BCG vaccination is protective against NTM lymphadenitis
caused by MAC and Buruli ulcer caused by M. ulcerans

[342]. However, the cross-reactivity between these
Mycobacterium may lead to low efficacy of BCG vaccine,
especially in high NTM exposure areas [343].

There are several mouse models which demonstrated
the protective effects of subunit vaccines against PNTM
infections. A study by Fattorini et al. (2002) using in-
tranasal immunization of mice with M. avium GroES
recombinant protein, co-administered with CpG
oligodeoxynucleotides, was protective against intranasal
M. avium challenge [256].

A plasmid DNA encoding M. abscessus phospholipase C
formulated with copolymer 704, and administered intramus-
cularly in mice protected against aerosolised challenge with
M. abscessus [257]. Immunization of mice with genetic

constructions containing theM. abscessusMgtC gene induced
protection against challenge with M. abscessus and the pro-
duction of specific antibodies in mice [258].

A dewaxed whole-cell vaccine ofM. ulcerans devoid of its
mycolactones (cytotoxic macrolide exotoxin) and waxy cell
walls, protected against M. ulcerans infection and prevented
Buruli ulcer development in mice [259]. Priming with recom-
binant BCG expressing the Ag85A antigen of M. ulcerans,

followed by a booster with recombinant M. smegmatis ex-
pressing Ag85A of M. ulcerans induced murine CD4+ T cell
responses which reduced tissue damage and bacterial loads
[260]. However, recombinant surface proteins MUL_2232
and MUL_3720 of M. ulcerans induced strong TH1 immune
response but without protective effect [261].

An NTM vaccine commercially used in veterinary,
Guda i r®, con ta in ing the inac t iva ted M. av ium

paratuberculosis strain 316F, is effective in decreasing the
prevalence of the infection and reducing the bacteria faecal
shedding in sheep [262].

The antigenic similarity and immune cross-reactivity be-
tween mycobacteria have been exploited in the development
of vaccines and immunotherapy of TB [17–19, 27, 203–211,
331–334]. Proteoliposomes [263] and lipid-based prepara-
tions of the cell envelope, obtained from M. smegmatis

[264], were protective against Mtb intratracheal challenge in
mice, and induced cross-reactive humoral immune responses
against Mtb antigens [87, 265, 266].

DAR-901, a heat-inactivated whole-cell M. obuense

SRL172 strain, has been recommended as a vaccine booster
for TB in adults primed with BCG as it is safe and is able to
induce both cellular and humoral immune responses [267]. A
murine model further demonstrated that DAR-901 conferred
protection against Mtb [268].

M. habana TMC5135, a species synonymous to
M. simiae serotype I, isolated from Cuba, showed pro-
tective effects against Mtb using animal models as live
vaccine [269].

M.manresensis, a new species under theM. fortuitum com-
plex, which is commonly found in drinking water, was heat-
killed and used as oral vaccine to stop the progression of
active TB and as adjuvant for TB treatment in a mouse model
[270]. It has been developed into a galenic preparation food
supplement known as Nyaditum resae® and used in clinical
trials, which seemed to be effective in reducing the risk of
developing active TB [271, 272].

Immunotherapy with killedM. vaccae has been used in the
treatment of patients with TB, multidrug resistant TB, HIV-
TB and leprosy with significant effects [273, 274].

M. indicus pranii as a booster to BCG via the aerosol route
showed protective effect in a mice model of TB, inducing pro-
inflammatory cytokines like IFN-γ, IL-12 and IL-17, and in-
creased frequency of multifunctional T-cells [275]. In vitro
studies showed that M. indicus pranii modulates pro-

Eur J Clin Microbiol Infect Dis (2020) 39:799–826810



inflammatory responses via the TLR-4 pathway, activate the
innate immunity [276] and induced autophagy in TB infected
macrophages [277]. Clinical trials as adjunct therapy showed
that it is safe with no significant side effects and able to clear
the pathogens in TB relapse patients [278].

Overall, these encouraging results on NTM based vaccine
candidates for the prevention of experimental NTM infec-
tions, its use as veterinary vaccines and their evaluation for
the prevention and therapy of TB support the possibility to
develop vaccines for the prevention of PNTM as well as im-
munotherapeutic tools to help in the management of these
infections.

Management of the disease

When prophylactic measures fail, the disease appears in sus-
ceptible individuals; beyond this point, its control is only pos-
sible with a fast and appropriate diagnosis and therapy.

(a) Diagnosis

The American Thoracic Society (ATS) and the
Infectious Diseases Society of America (IDSA) recom-
mend that in case of suspicion of PNTM, chest radio-
graphic studies, three or more sputum microbiological
analysis and clinical exclusion of other disorders are
needed to confirm a diagnosis of PNTM should be indi-
cated [332]. Such criteria are needed because NTM exists
naturally in the environment, and isolation of NTM from
non-sterile respiratory specimens does not confirm that
the organism is the causative agent for lung disease
[344]. High-TB burden countries are normally those of
the low to middle income countries (LMIC), where re-
sources for microbiological culture using the traditional
diagnostic TB gold standard either on solid Löwenstein–
Jensen medium or liquid culture [Mycobacteria Growth
Indicator Tube (MGIT)], are limited. Thus, sputum smear
microscopy is the most important test used for TB diag-
nosis [345]. With the current rise of PNTM infections, the
non-specific microscopic testing, which detects all acid-
fast bacilli, cannot differentiate between PNTM or TB
infection. The application of chest X-ray screening to
predict the presence of TB or PNTM remains subjective.
As recommended by ATS/IDSA, PNTM can be diag-
nosed based on nodular or cavitary opacities on chest
radiography [332]. Gommans et al. (2015) studied 83
PNTM patients showing that cavities were observed most
frequently, while consolidations were a predictor for risk
of mortality [346]. A radiographic study on 108 TB and
25 PNTM patients showed that the presence of honey-
comb appearance (characteristic appearance of variably
sized cysts in a background of densely scarred lung tis-
sue) is significant in PNTM patients; consolidation,

miliary nodules, cavities, atelectasis, fibrothorax and me-
diastinal widening are more common in TB patients; and
pleural effusion, pleural lesions, and reticulonodular infil-
tration are observed in both TB and PNTM patients
[347]. Therefore, the confirmation of PNTM in LMIC
remains a diagnostic challenge for microbiologists and
clinicians.

Many studies have been focused on the development of
diagnostics for active, latent and drug-resistant TB [279].
Genotypic characterization tests such as Xpert MTB/RIF,
loop-mediated amplification tests, and line-probe assays
(LPA) which are more sensitive, easier and faster compared
to phenotypic microbiological characterization for Mtb have
been endorsed by WHO [279]. According to ATS/IDSA, be-
sides Runyon classification, genotypic identification of NTM
can be done using acridium ester-labelled DNA probes
targeting 16S rRNA, DNA sequencing of 16S rDNA, and
PCR restriction endonuclease activity targeting hsp65 [332].
Also, WHO has recommended one nucleic acid amplification
test (NAAT), NTM+MDR-TB Detection Kit 2 (Nipro Co.,
Japan) using LPA [280]. Other NAATs commercially avail-
able to detect NTM and drug resistance are included in Table 2
[281–290]. Detecting drug resistance in the early phase of
diagnosis can help determine better treatment options for pa-
tients with the possibility to eradicate the infection in shorter
time (Table 3).

The current available diagnostic tests using single gene-
target sequencing are unable to differentiate all the NTM spe-
cies, and higher subspecies discrimination require multiple
genes sequencing [344]. Species characterization is important
because different species have different pathogenicity and drug
susceptibility patterns [348]. The type of NTM isolated from
the lungs determines the risk or likelihood of lung disease.
Hence, the probability of lung disease is high if M. kansasii is
detected; intermediate if MAC, M. abscessus complex, M.

chelonae, M. malmoense, M. szulgai andM. xenopi are detect-
ed; low if M. simiae, M. fortuitum, and M. terrae are detected
and very low if M. gordonae is detected [236, 348]. A retro-
spective study on PNTM patients’ survival rate and type of
mycobacterium infection showed that the median survival rate
due toM. xenopi infection is the shortest (7 months), followed
byM. malmoense (10 months),M. kansasii (39 months), MAC
(41 months) and RGM (78 months), suggesting thatM. xenopi

is highly virulent [346].
Advancement in high-throughput technologies has

revolutionised the detection of infection causing organisms.
Comparison of detection of NTM using PCR and matrix-
assisted laser desorption ionization-time of flight mass spec-
trometry (MALDI-TOFMS) showed that the later have higher
accuracy (97.4%) with faster and cost-effective performance
[349]. The development of WGS has enabled identification of
diverse bacteria up to the strain level [350]. For example,
M. abscessus is the most drug resistant species with a wide
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variety of drug resistance profiles, which render treatment
challenging [350]. The application of WGS helps to detect
these variants for proper management of the patients [350]
and it is also able to detect the potential mode of transmission
either from individuals or environment [232].

(b) Treatment

PNTM is a chronic disease which requires a long treatment
(18 to 24 months) with multiple antibiotics, which is associ-
ated with serious side effects and frequent resumption of

Table 3 NAATs available for the detection of NTM

NAAT kits MTBC NTM (identified by
numbers in legend)

Drug resistance Accuracy

NTM+MDRTB Detection Kit 2
(Nipro Co., Japan)

Yes 6, 25, 26, For MTBC:
- RIF (rpoB gene)
- INH (katG and inhA

genes)

• Commonly used to detect MDR-TB [280]

GenoType Mycobacterium
Common Mycobacteria (CM)
(Hain Lifescience, Germany)

Yes 2, 6, 9, 13, 20, 23, 25,
26, 28, 30, 34, 36,
40, 46.

No • GenoType CM/AS was 96% (211/219) concordance
with 16S rDNA sequencing. GenoType CM alone
identified 88% (192/219) isolates [281]

• GenoType CM/AS was 99.3% sensitive and 98.3%
specific for rapid differentiation of MTBC and NTM
[282]

• GenoType CM/AS successfully identified 75 NTM
isolates except for one due to unavailability of specific
probe for the target [283]

•Genotype CM correctly identified 74/76 strains (97.4%)
except for M. intracellulare serovar 7 and M. kansasii

sequevar VI [284]
• Genotype AS correctly identified 26/28 (92.9%) except

for two M. celatum II strains [284]

GenoType Mycobacterium
Additional Species (AS)

(Hain Lifescience, Germany)

No 3, 8, 15, 16, 19, 21, 22,
24, 26, 27, 32, 35,
37, 38, 39, 40, 44

Real-Q NTM-ID kit
(BioSewoom Inc., South Korea)

No 1, 6, 9, 13, 20, 25, 26,
31.

No • Identified NTM: 97% (223/230) concordance with
multi-gene sequence-based typing [285]

INNO-LiPA MYCOBACTERIA
(Innogenetics, Belgium)

Yes 6, 7, 8, 11, 14, 16, 20,
21, 25, 26, 28, 30,
36, 38, 39, 46.

No • 100% sensitive and specific for genus-specific probes
[286]

• 100% sensitive and 94.4% specific for species-specific
probes—probes for M. fortuitum complex, MAIS and

M. intracellulare type 2 cross-react with other
mycobacteria [286]

GenoType NTM-DR
(Hain Lifescience, Germany)

No 2, 6, 9, 12, 25 For NTM:
- macrolides [rrl and

erm (41) genes]
- aminoglycosides

(rrs gene)

• Identified NTM: 98% (100/102) concordance with
Sanger sequencing and 94.1% (96/102) concordance
with phenotypic susceptibility testing for drug
resistance [287]

DR. TBDR/NTM IVD kit
(DR. Chip Corporation, Taiwan)

Yes 1, 3, 6, 9, 13, 20, 25,
26, 27, 28, 29, 36,
37, 40, 46.

For MTBC:
- RIF (rpoB gene)

• Identified Mtb: 89.5% (17/19) [288]
• Correctly identified M. abscessus, M. fortuitum, M.

gordonae, and M. kansasii isolates, but misidentified
two M. chelonae and one MAC isolates [288]

• Failed to differentiate between M. abscessus (sensu
stricto),M. massiliense, and M. bolletii [288]

CapitalBio Mycobacteria
Real-Time PCR Detection Kit
(CapitalBio Corporation,
China)

Yes 5, 6, 10, 13, 18, 20, 25,
26, 30, 33, 35, 36,
39, 41, 42, 46

No • Identified MTBC: 100% (358/358)
• Identified NTM: 98.4% (126/128) [289]

REBA Myco ID
(YD Diagnostics, South Korea)

Yes 1, 4, 6, 8, 9, 14, 17, 20,
25, 26, 31, 33, 36,
40, 43, 45

No • Identified MTBC: 100% (358/358)
• Identified NTM: 98.4% (126/128) [290]

(Mycobacterial species) 1. abscessus, 2. abscessus complex, 3. asciaticum, 4. aubagnense, 5. aurum, 6. avium, 7. avium-intracellulare-
scrofulaceum-(MAIS), 8. celatum, 9. chelonae, 10. chelonae/abscessus, 11. chelonae-complex, 12. chimaera, 13. fortuitum, 14. fortuitum complex,
15. gastri, 16. genavense, 17. genavense/simiae, 18. gilvum, 19. goodie, 20. gordonae, 21. haemophilum, 22. heckeshornense, 23. interjectum, 24.
intermedium, 25. intracellulare, 26. kansasii, 27. lentiflavum, 28. malmoense, 29. marinum, 30. marinum/ulcerans, 31. massilience, 32. mucogenicum,
33. nonchromogenicum, 34. peregrinum, 35. phlei, 36. scrofulaceum, 37. shimoidei, 38. simiae, 39. smegmatis, 40. szulgai, 41. szulgai/malmoense, 42.
terrae, 43. terrae/nonchromogenicum, 44. ulcerans, 45. ulcerans/marinum, 46. xenopi
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treatment due to relapses [44]. Based on the Patient-Centered
Research Priorities suggested by NTMRC, experts should be
consulted for prescription of antibiotics and drugs to imple-
ment the more suitable treatment [44]. The effectiveness of the
treatment is assessed based on the patient’s quality of life [66].
Other adjunctive treatments such as airway clearance, exercise
and probiotics which seems to ameliorate patients’ outcomes
require more clinical testing [44].

Differentiation of PNTM and TB is important because the
first-line antibiotics used to treat TB are less effective against
NTM [351]. A study of 12 SGM and 12 RGM with 15 anti-
microbial drugs showed that 24, 16 and 8 strains were resistant
to isoniazid (INH), rifampicin (RIF) and streptomycin (STR),
respectively [351]. The authors concluded that STR, amikacin
(AMK), the fluoroquinolones (FQs), and the tetracyclines
(TET) are the most effective antimicrobial agents against the
24 strains [351]. A study of 95 NTM strains with ten drugs
showed that ethambutol (EMB) is the most useful agent
against NTM, but its resistance rate among the tested strains
was around 42% [352]. The emergence of multidrug resistant
NTM (which can be resistant to five or more antimicrobial
drugs) has also complicated the treatment [353]. Thus, accord-
ing to the British Thoracic Society guidelines, different drugs
or combination of drugs should be used to treat different spe-
cies [236]. For example, treatment of MAC lung disease with
RIF, EMB and macrolides [clarithromycin (CLR) or
azithromycin (AZM)]; treatment of M. kansasii lung disease
with RIF, EMB and macrolides; treatment of M. xenopi lung
disease with RIF, EMB, macrolides and FQs/INH; and treat-
ment M. abscessus lung disease with AMK, tigecycline
(TGC), imipenem (IPM) and macrolide is recommended
[236].

However, one of the most complex situations in the treat-
ment of NTM is represented by the infections with
M. abscessus complex, which comprise M. abscessus ssp.
abscessus, M. abscessus ssp. massiliense and M. abscessus

ssp. bolleti [354] due to the high degree of antibiotic resistance
and the poor outcome of the treatment [355]. Special thera-
peutic problems are associated with the resistance to
macrolides linked to the presence of the macrolide inducible
erm(41) gene, which is active in M. abscessus ssp. abscessus
and M. abscessus ssp. bolletii and inactive in M. abscessus

ssp. massiliense, which have a high impact in the response to
the treatment [356]. Using Mtb treatment as reference, it is
considered that in patients with M. abscessus ssp. abscessus
infections, the results of the treatments are worse than in the
case of multidrug resistant TB (MDR-TB), and equivalent to
the outcome of the treatment of extensively drug resistant TB
(XDR-TB); in the case of M. abscessus ssp. massiliense, the
results are close to that obtained in MDR-TB [355].
M. abscessus ssp. bolletii is considered to have similar pat-
terns of resistance to macrolides than M. abscessus ssp.
abscessus [357].

Considering the different profile of antibiotic resistance
and evolution of the different M. abscessus complex mem-
bers, it is of great importance the strain identification to im-
plement the more suitable therapeutic strategy [358]. “The
antibiotic nightmare” [357] represented byM. abscessus com-
plex infections, which has been also implicated in transmis-
sion associated to surgical procedures [359, 360], has stimu-
lated the search for new therapeutic alternatives, such as the
use of phage therapy, which opens a window of hope not only
for M. abscessus complex but for treatment of mycobacterial
diseases in general [361].

Besides the existing drugs, several approaches have been
conducted using novel drugs/compounds, modified drugs,
medicinal plant extracts, animal venom-derived antimicrobial
products and synergistic and combination effects with other
antimicrobials to combat the antibiotic resistant NTM with
promising results [362]. However, the translation of these
studies from in vitro to in vivo remains challenging. The drug
delivery mechanism via the inhalation route has been studied
to ensure that a high concentration of antibiotics can be deliv-
ered directly to the lung without cytotoxic effects to the host
[362]. Screening libraries have been used to identify potential
antimicrobial compounds for NTM [362].

The ability of NTM to form biofilms has enabled them to
survive under environmental stress and confers protection
against antibiotics causing bacterial colonization and onset
of disease and invasion [228, 333]. A study by Ortíz-Pérez
et al. (2011) on biofilm-producing RGM treated with antibi-
otics showed that biofilms are resistant to AMK, CLR and
ciprofloxacin (CIP) [363]. Among these three antibiotics,
CIP is the most active drug affecting the thickness of the
biofilms and its combination with anti-biofilm agents such
as N-acetylcysteine (NAC) and Tween 80 have resulted in
higher bacterial death [364].

Besides the identification of the bacteria itself to confirm
the presence of the disease, detection of the risk factors would
be beneficial to reduce exacerbation of the disease [365].
Adults presenting with NTM infections should be initially
screened for HIV, systemic illness and medication history
which may lead to immunosuppression. If no risk factors are
identified, individuals with pulmonary disease should undergo
chest imaging, pulmonary function test and vitamin D level
test to detect any structural lung abnormalities. If the disease is
not due to pulmonary defects, then subsequent tests are need-
ed to detect primary immunodeficiency and CF. If no risks are
identified, tests to detect autoimmunity or pro-inflammatory
cytokines should be taken into account to explore the presence
of autoimmune diseases [365].

Patients who are diagnosed with PNTM need to be studied
for the presence of underlying TB infection because the pre-
scription of treatment only for PNTM could have risk to de-
velop MDR-TB [366]. In addition, for elderly patients infect-
ed with PNTM who need to be treated with macrolides,
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rifamycin and FQs, comorbidities and associated concomitant
therapies should be determined since these drugs may interact
with those that interact with P-450 and disturb the metabolism
of drugs [367].

Hong et al. (2015) suggested that serum carbohydrate an-
tigen (CA) 19-9 can be a useful marker to monitor the thera-
peutic responses in PNTM as it is higher in PNTM than in TB,
and its concentration is reduced after successful PNTM treat-
ment but not in TB [368].

One aspect that should be considered in the treatment of
PNTM is the use of immunotherapy, which could represent an
important co-adjuvant of the drug treatment; in this regard, the
use of M. vaccae together with antibiotic treatment was not
associated with improved response in pulmonary MAC infec-
tions [291]; however, the indirect and direct evidences of the
potential of vaccination in PTNM support further evaluation
of this aspect. Encouraging results have been reportedwith the

use of IFN-γ and IFN-α in the immunotherapy of PNTM
[292, 293].

The growing consensus about the protective role of anti-
bodies in mycobacterial infections [294–298] suggests the po-
tential use of antibody formulations for the treatment of
PNTM. Previous studies have demonstrated the role of hu-
moral immune responses in the defence against mycobacteria
in humans [299–301].

Monoclonal antibodies against Mtb antigens have demon-
strated protective effect upon Mtb challenge after the admin-
istration by mucosal or parenteral routes to mice [302–305].

The combination of the administration of mucosal IgA
monoclonal antibodies with IFN-γ demonstrated therapeutic
effect in mice challenged with Mtb [302]. Commercial human
gamma-globulin formulations have demonstrated prophylac-
tic and therapeutic effect in challenge models with Mtb and
BCG [306, 307].

Table 4 Main factors that affect the NTM drug development

Challenges Comments Ref

Hydrophobicity and
innate resistance

• Hydrophobic, lipid-rich double membrane cell envelope (major permeability barrier)
• Non-polar cell surface (prevents adherence or binding of antibiotics charged positive

or negative)
• Reversible colony morphology switch (variability in drug resistance)
• Efflux pumps (prevent intracellular accumulation of drugs

[315–317, 319]

• Polymorphism in the target gene (natural resistance to drugs—i.e. preventing drug binding)
• Modification of the target binding site (bacterial gene expression upon drug exposure)
• Enzymes (metabolizes drugs to a less active form)

Acquired drug resistance • Genomic mutations (mutations in the target or other related genes to confer high-level
resistance after long-course treatment)

• Lateral gene transfer of drug resistance genes (less frequent but possible)

[315, 321, 323]

Lack of bactericidal activity • Current drugs-base regimens are bacteriostatic or weakly bactericidal at high concentration:
o High metabolic rate and slow division of bacteria

[315, 325]

Poor correlation between
in vitro MIC determination
and clinical outcomes

• Mycobacteria growth conditions for MIC are very different from NTM pulmonary disease:
o MIC
- Exponential growth
- Suspension in aerated nutrient-rich broth

o Lung
- Different type of complex and dynamic lesions
- Stress appearance
- Drug tolerance or “phenotypic drug resistance”
- Growth in airways mucus and as biofilms
- Effect of local microenvironments on drug penetration

[315, 318]

Intracellular growth and
residence in phagocytic
cells

• NTM can grow, survive and persist extra and intracellularly:
o Escape macrophage apoptosis mechanism (possibility to spread and infect other cells)
o Restriction of intra-phagosomal acidification
o Decrease apoptosis and block autophagy flux

[315, 316, 319,
322]

• Found within phagocytic cells and in granulomas in infected organs (lung and spleen)

Caseum, mucus and
biofilm growth

• Capability of maintaining long-term viability:
o Mycobacteria change to a non-replicative state under nutrient starvation or oxygen depri-

vation)
• Drug resistance:

o Antibiotics do not actively destroy cell components
• High drug-tolerance under non-replicative conditions:

o Molecular mechanisms—“phenotypic drug resistance”
• High production of mucus in NTM pulmonary disease (bacteria evasion of the immune

system and affected drug susceptibility)

[315, 316, 324,
326]
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Human IgA formulations obtained from colostrum admin-
istered by the mucosal route produced protective effects in a
model of progressive TB in mice [306].

Considering these antecedents, the use of monoclonal an-
tibodies specific of NTM antigens or human IgG or IgA for-
mulations by the systemic or mucosal route in PNTM patients
could be a new approach in combination with antibiotic treat-
ment, or a valid alternative in cases of treatment failure
[308–314].

(c) Drug discovery

Efforts to develop new drugs for the treatment of NTM
infections are continuously being made. The search for new
NTM drugs is focussed on reducing the long treatment time
which is accompanied by the toxicity of the drugs.

Patients with NTM infections urgently need more safe
and effective treatments, preferably orally administered and
capable of covering a broad spectrum of microorganisms.
Different strategies have been proposed to address the
drug discovery lines, i.e. de novo drug discovery and
repurposing/repositioning of existing antibiotics. However,
there are multiple challenges that affect the discovery and
development of new antibiotics for NTM [315–326]
(Table 4).

These factors have been recently summarized from differ-
ent points of view. Wu et al. (2018) described them from a
bacteriology and disease pathology standpoint [315], while
Falkinham (2018) grouped the factors in accordance with
the innate genetic defects and physiologic traits of NTM as
well as the difficulties in measuring anti-NTM antibiotic ac-
tivity in the laboratory [316]. In general, these challenges fa-
cilitate the survival of mycobacteria under different
environments.

Conclusion

PNTM infection is multifactorial, related to the host, the mi-
croorganisms involved, the environment, the socio-economic
aspects and human behaviour. Emphasis should be put on
recommendations related to human activities, aimed to reduce
the risk of exposure to NTM, which are being neglected. The
priority to the development of new diagnostics, treatments and
vaccines for TB should be expanded to PNTM, as sensitive
and specific diagnostic tests, vaccines and immunotherapies
for these infections are still lacking.
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