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Pulmonary vascular mechanical consequences of ischemic heart fail-
ure and implications for right ventricular function. Am J Physiol Heart
Circ Physiol 316: H1167-H1177, 2019. First published February 15,
2019; doi:10.1152/ajpheart.00319.2018.—Left heart failure (LHF) is
the most common cause of pulmonary hypertension, which confers an
increase in morbidity and mortality in this context. Pulmonary vas-
cular resistance has prognostic value in LHF, but otherwise the
mechanical consequences of LHF for the pulmonary vasculature and
right ventricle (RV) remain unknown. We sought to investigate
mechanical mechanisms of pulmonary vascular and RV dysfunction
in a rodent model of LHF to address the knowledge gaps in under-
standing disease pathophysiology. LHF was created using a left
anterior descending artery ligation to cause myocardial infarction
(MI) in mice. Sham animals underwent thoracotomy alone. Echocar-
diography demonstrated increased left ventricle (LV) volumes and
decreased ejection fraction at 4 wk post-MI that did not normalize by
12 wk post-MI. Elevation of LV diastolic pressure and RV systolic
pressure at 12 wk post-MI demonstrated pulmonary hypertension
(PH) due to LHF. There was increased pulmonary arterial elastance
and pulmonary vascular resistance associated with perivascular fibro-
sis without other remodeling. There was also RV contractile dysfunc-
tion with a 35% decrease in RV end-systolic elastance and 66%
decrease in ventricular-vascular coupling. In this model of PH due to
LHF with reduced ejection fraction, pulmonary fibrosis contributes to
increased RV afterload, and loss of RV contractility contributes to RV
dysfunction. These are key pathologic features of human PH second-
ary to LHF. In the future, novel therapeutic strategies aimed at
preventing pulmonary vascular mechanical changes and RV dysfunc-
tion in the context of LHF can be tested using this model.

NEW & NOTEWORTHY In this study, we investigate the mechan-
ical consequences of left heart failure with reduced ejection fraction
for the pulmonary vasculature and right ventricle. Using comprehen-
sive functional analyses of the cardiopulmonary system in vivo and ex
vivo, we demonstrate that pulmonary fibrosis contributes to increased
RV afterload and loss of RV contractility contributes to RV dysfunc-
tion. Thus this model recapitulates key pathologic features of human
pulmonary hypertension-left heart failure and offers a robust platform
for future investigations.
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INTRODUCTION

Left heart failure (LHF) impacts nearly 5.9 million adults
and contributes to 1 out of every 9 deaths in the United States
(51). The prevalence of pulmonary hypertension (PH) in LHF
is as high as 60—-80% (18, 42). PH due to left heart failure
(PH-LHF) is the most common cause of PH and is associated
with a high morbidity and mortality (24, 25, 28). Due to a lack
of a well-characterized animal models and the limitations of
human subject research, investigations into disease pathophys-
iology and progression have been limited and much of current
understanding of the mechanisms of this disease remains spec-
ulative (28, 46, 63). Current clinical understanding is that
PH-LHF begins as a passive process due to elevated left atrium
filling pressures that increase pressures throughout the pulmo-
nary vasculature. In its early stage, this pulmonary venous
hypertension is termed isolated postcapillary PH (Ipc-PH) and
is diagnosed by elevated mean pulmonary arterial pressure
(mPAP) and pulmonary capillary wedge pressure with normal
pulmonary vascular resistance (PVR) and diastolic pressure gra-
dient. In contrast, combined post- and precapillary PH (Cpc-PH)
is diagnosed when PVR or diastolic pressure gradient is in-
creased in this setting and confers an additional increase in
mortality (17, 50). Cpc-PH represents a spectrum of disease
severity including a reactive state, which is reversible and
responsive to vasodilators and thought to be primarily driven
by pulmonary vasoconstriction, and a fixed state that is irre-
versible, unresponsive to pharmacological interventions, and
thought to be characterized primarily by small vessel narrow-
ing and wall thickening (14, 28, 75). Cpc-PH prevalence is
between 12 and 20% in patients with LHF (17, 24). Both
elevated pulmonary arterial pressure (PAP) and increased PVR
are associated with decreased survival in LHF (17, 24). Despite
this high clinical significance, there are no current therapies
that target PH-LHF other than optimization of LHF and some
limited adaptation of therapies for pulmonary arterial hyper-
tension (PAH) (24, 25, 28).
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PVR has prognostic value in PH-LHF (17, 24) but is typi-
cally calculated from PAP and left atrial pressure at a single
flow rate (i.e., cardiac output), which provides a limited as-
sessment of pulmonary vascular function (52). Mechanically,
the pulmonary vasculature can be considered to provide resis-
tance to steady flow as well as impedance to pulsatile flow.
While the resistance depends on the flow rate, albeit nonlin-
early, the impedance depends on flow rate as well as frequency
(i.e., heart rate). Thus a comprehensive assessment of pulmo-
nary vascular function should include multipoint pressure-flow
relationships and impedance to flow at a range of frequencies
(9, 23, 52). No studies have characterized mechanical pulmo-
nary vascular function in these ways in PH-LHF (11). Simi-
larly, few assessments of pulmonary vascular structure have
been performed in this disease. Autopsies on patients with
PH-LHF have shown evidence of medial hypertrophy and
fibrosis in pulmonary arteries (12, 29), corroborated by large
animal studies of pulmonary venous hypertension (40, 59, 66).
Small animal studies have shown pulmonary fibrosis and
endothelial dysfunction (2, 8, 33, 37, 56). These pulmonary
vascular structure changes associate with increases in PAP or
PVR, but the resulting structure-function correlations are lim-
ited because key aspects of function have not been measured.

Ultimately, changes in pulmonary vascular structure and
function in PH-LHF increase RV afterload and result in im-
paired RV mechanical function, which itself is a powerful
predictor of survival in LHF (10, 13, 18, 35, 60). Robust
assessment of RV mechanical function including ventricular-
vascular interactions requires right ventricular (RV) catheter-
ization with pressure-volume loop analysis at varying preloads
(71). Especially since RV mechanical function depends on LV
mechanical function via intraventricular interactions (26),
quantifying the mechanical progression of pulmonary vascular
and RV dysfunction in PH-LHF is critical to understanding
disease pathophysiology and developing novel therapies to pre-
vent cardiopulmonary deterioration in response to LHF pro-
gression.

Here we sought to investigate the mechanical mechanisms of
pulmonary vascular and RV dysfunction in a rodent model of
PH-LHF. We further compare our pathophysiological findings
to published data from PH-LHF patients to verify the ability of
our rodent model to recapitulate critical aspects of the human
disease.

METHODS

Mpyocardial infraction model. All animal procedures were approved
by the University of Wisconsin-Madison Institutional Animal Care
and Use Committee. Adult C57/Bl6 male mice (6—8 wk of age,
18-26 g) were randomly divided into two groups for myocardial
infarction (MI) or sham surgery as previously described (39). Briefly,
mice were initially anaesthetized with 5% isoflurane and maintained
with 1-2% isoflurane throughout the procedure. A left thoracotomy
was performed, and the left coronary artery was ligated at the point where
it emerges past the tip of the left atrium. Sham animals underwent
thoracotomy alone. Immediate operative survival was 70% in the MI
group and 100% in the sham group, consistent with previous reports
(39, 54). One group of MI (n = 6) and sham (n = 9) mice underwent
serial echocardiography, performed at 4, 8, and 12 wk postsurgery,
followed by terminal hemodynamic assessment via either right heart
catheterization. A second group of MI (n = 6) and sham (n = 5) mice
underwent isolated lung perfusion to assess the pulmonary vasculature
biomechanics at 12 wk postsurgery. Experiments were conducted in
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an unbiased approached with adherence to the recently published PH
preclinical research guidelines (4, 62). Power calculations were com-
pleted to determine appropriate group sizes; animals were randomized
to either MI or sham groups; experimental conditions were standard-
ized to every degree possible, meaning end points of comprehensive
hemodynamics (as descried below) were used and analysis was
blinded when possible (i.e., for histological analysis and isolated
lung perfusion analysis).

Echocardiography. Transthoracic echocardiography was con-
ducted to assess left ventricular (LV) morphology and function in
vivo. As previously described, mice were anesthetized with 5%
isoflurane and then maintained with 1-2% isoflurane and room air
throughout the procedure; body temperature was maintained at 37°C
using a heated platform (16, 21). Echocardiographic parameters were
measured over at least three consecutive cardiac cycles and averaged.

In vivo RV and pulmonary vascular hemodynamics. Surgical prep-
aration, hemodynamic measurements, and analysis were based on
established protocols (20, 21, 65, 70). Anesthesia was induced with an
intraperitoneal injection of urethane solution (1 mg/g body weight) to
maintain heart rate. Mice were then intubated and placed on a
ventilator (Harvard Apparatus, Holliston, MA). As previously de-
scribed, the thoracic cavity was entered, and the heart was exposed by
removal of anterior rib cage (21, 65, 70). This open chest technique
was used because the stiffness of the catheter used for RV pressure
and volume measurements precludes a closed chest approach with
catheter insertion through the jugular vein. LV pressure was measured
with a pressure catheter (Millar, Houston, TX) inserted from the
common carotid artery and advanced through the aortic valve into the
LV. Heart rate and systemic pressure were recorded and observed
throughout the procedure. RV pressure-volume loops were obtained
as previously described using a 1.2-Fr admittance catheter inserted
through the apex of the heart into the RV. After instrumentation was
established and baseline pressure-volume measurements were ob-
tained, the inferior vena cava was isolated and briefly occluded to
obtain alterations in venous return for determination of end-systolic
and end-diastolic pressure relations. One MI mouse expired shortly
following placement of the catheter into the RV such that only
pressure measurements could be obtained. A second MI mouse
expired during inferior vena cava occlusions, and only baseline
pressure-volume loops were obtained for that animal. Commercial
software (Notocord; Croissy Sur Seine, France) recorded RV pressure
and volume waveforms simultaneously, and data were analyzed using
a minimum of 10 consecutive cardiac cycles. Cardiac output (CO) was
normalized by body weight to calculate the cardiac index (20, 21, 36,
65, 70).

Pulmonary vascular mechanical function was quantified using total
pulmonary vascular resistance (TPVR), PVR, and transpulmonary
gradient (TPG). TPVR was calculated as mPAP divided by CO, where
mPAP was assumed to be equal to right ventricular end-systolic
pressure (RVSP) (7, 65). PVR was determined as (mPAP-mLAP/CO)
where mLAP was assumed equal to LV end diastolic pressure (LVEDP)
(5). TPG was computed as mPAP minus mLAP.

RV mechanical function was assessed using established parameters
including maximum and minimum pressure derivatives (dP/d#max,
dP/dtmin), end-systolic elastance (Ecs), and the slope of dP/dfyax-end
diastolic volume (Veq) relationship obtained from inferior vena cava
occlusions (21, 57, 70). Ventricular-vascular interactions were as-
sessed using Ecs/arterial elastance (E.) (21, 70). Finally, cardiac
energetics were assessed via pressure-volume area (PVA), external
mechanical work (EW), and ventricular mechanical efficiency (EW/
PVA) as previously reported (45, 55).

Ex vivo pulmonary vascular pressure-flow dynamics. The isolated,
ventilated, perfused lung preparation was used as previously validated
and detailed by our group (73, 76). Briefly, following euthanasia with
150 mg/kg of pentobarbital, the trachea was cannulated for ventila-
tion. The lungs were ventilated with room air between end expiratory
and end inspiratory pressures of ~1 and ~8 mmHg, respectively.
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Fig. 1. Development of left ventricular (LV) dysfunction and dilation post-myocardial infarction (MI). A-D: increased LV size develop by 4 wk post-MI and
persist through 12 wk (A and B) and are associated with impaired systolic function measured by reduced LV ejection fraction (C) and impaired diastolic function
measured by increased isovolumic relaxation time (IVRT; D). *P < 0.05 vs. sham.

Following cannulation of the trachea, 1 ml of heparin (1.25 mg/ml)
was injected into the RV to prevent clots from forming in the
pulmonary vasculature (76). Subsequently, the pulmonary artery (PA)
and left atrium were cannulated for perfusate inflow and outflow,
respectively (76, 77). The lungs were perfused with warm RPMI 1640
cell culture medium with 3.5% Ficoll (an oncotic agent). Steady-state
perfusion was conducted using a syringe pump and pulsatile flow was
achieved using a high-frequency oscillatory pump in parallel with the
syringe pump. Pressure transducers (ADT300; Harvard Apparatus,
Holliston, MA) were used to measure PAP, left atrium pressure
(LAP), as well as airway pressure (MPX; Harvard Apparatus, Holli-
ston, MA). Perfusate inflow (Q) was monitored using an in-line flow
meter (MEI PXN; Transonic Systems, Ithaca, NY). Pressures and
flows were continuously monitored on a computer display and were
recorded at 200 Hz (77). Lungs were monitored for development of
edema. One set of sham lungs developed edema, and the experiment
was stopped before collection of pulsatile perfusion data.

The pulsatile flow measurements were performed and recorded as
previously validated (73, 76). The lungs were initially perfused with
RPMI at 1 ml/min for 2 min or until lungs were fully perfused and had
turned white. The flow rate was then increased to 3 ml/min, and sinu-
soidal flow rates of the form Q = 3 + 2 sin (27ff) ml/min were generated
for frequencies of f = 1, 2, 5, 10, 15, and 20 Hz. This range of
frequencies was chosen to fully include the physiologic heart rate of
mice (~10 Hz) (73). The lungs were held at end expiratory pressure
(~1 mmHg) throughout data collection, and PAP, LAP, and Q were

recorded as described above. Immediately following the pulsatile flow
protocol, the lungs were allowed to rest at a flow rate of 0.5mL/min
for 1 min and normal ventilation was resumed, along with intermittent
deep inspirations of ~15 mmHg to maintain airway patency.

After the pulsatile flow protocol and rest period, steady-state
measurements were obtained. First, the flow rate was increased to 1
ml/min and then flow rate was increased to 5 ml/min in increments of
1 ml/min with PAP, LAP, and Q recorded once steady state was

Table 1. Biventricular morphometric changes due to MI

Tissue Sham MI P Value
n 14 12
BW, g 29.5 £0.63 29.3 = 0.48 0.969
LA/BW 0.12 £0.01 0.21 £0.01 0.002
LV + S, mg 924 £29 128.3 = 7.8 <0.001
LV + S/BW, mg 3.1 =0.07 4.4 +0.24 <0.001
RA/BW 0.14 £0.01 0.16 £ 0.02 0.368
RV, mg 233 %09 305+ 1.7 <0.001
RV/BW, mg/g 0.79 £ 0.03 1.04 = 0.08 <0.001
RV/LV + S, mg/mg 0.25 £0.01 0.24 £ 0.01 0.338
Lungs/BW#* 45*+0.1 49+ 0.3 0.267

Values are means = SE. BW, body weight; LV + S, left ventricle and
septum; RV, right ventricle; LA, left atrium; R, right atrium; MI, myocardial
infarction. Bold indicates significance. *n = 6 for sham, n = 9 for ML
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Table 2. In vivo metrics of right ventricle and pulmonary
vasculature function

Parameter Sham MI P Value
n 9 6
Heart rate, beats/min 554 = 12 521 =24 0.231
LV end-systolic pressure,
mmHg 76 £ 7.0 66 = 6.5 0.096
LV end-diastolic pressure,
mmHg 20=*0.1 8.6* 1.5 0.010
Right ventricular indexes
RV systolic pressure,
mmHg 19.6 £ 1.0 29.0 1.2 <0.001
RV diastolic pressure,
mmHg 0.74 = 0.69 442 =144  0.029
End-systolic volume, .l 182 = 1.6 134 1.7 0.102
End-diastolic volume, .l 373 £35 26.7 £ 2.0 0.055
Cardiac output, ml/min 106 = 1.1 7.0+0.8 0.048
Systolic indexes
RV ejection fraction, % 50.5 2.7 498 = 3.9 0.881
dP/dtmax, mmHg/s 1590 = 160 1633 + 150 0.848
dP/dtmax end-diastolic volume,
mmHg-s™ -l 49.1 =84 614 +6.7 0.292
Stroke work, mmHg/pl 357 = 41 365 = 110 0.919
Diastolic indexes
dP/dtmin, mmHg/s —1,230 £ 160 —1,200 £ 140 0.894
Relaxation factor T, ms 89+19 16.2 = 3.0 0.049
Chamber compliance,
wl/mmHg 1.00 £ 0.14 0.54 =£0.06  0.044
Pulmonary vascular indexes
Total pulmonary vascular
resistance, mmHg-min~!-ml 2.05 =0.29 4.49 = 0.73 0.004
Pulmonary vascular resistance,
mmHg-min~'-ml 1.61 = 0.21 370 = 0.40  0.026
Transpulmonary pressure
gradient, mmHg 16.6 = 1.1 21.7 1.0 0.045

Values are means = SE. LV, left ventricular; RV, right ventricular. MI,
myocardial infarction. Bold indicates significance.

reached. The flow rate was then decreased from 5 to 1 ml/min, again
at 1 ml/min increments as soon as steady state was reached. The lungs
were held at end expiratory pressure (~1 mmHg) throughout data
collection.

From the steady state flow protocol, TPG was calculated as PAP —
LAP and PVR was calculated as TPG/Q for each flow rate. Disten-
sibility, o, was determined from the steady-state pressure-flow curve
as previously described (43, 64). Pulmonary vascular impedance
magnitude (Z) and phase (8) were calculated from one full sinusoidal
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cycle of AP = PAP — LAP and Q at each frequency tested (77). Input
resistance Zy was calculated from the average impedance at the Oth
harmonic of all frequencies. Characteristic impedance Zc was calcu-
lated as the average impedance between the first minimum (5 Hz) and
highest frequency imposed (20 Hz) (77). Wave reflection R, was
calculated as (Zo — Z.)/(Zo + Z.) (76).

Tissue harvest, fixation, and histology. Following either completion
of the isolated lung procedure or right heart catheterization, the heart
and lungs were removed from the mouse. The RV was then separated
from the LV and septum, and the LA and RA were also separated.
Heart tissues were weighed and then divided for preservation by either
flash freezing or placement in 10% formalin. The right and left lungs
were separated and weighed. The right lung was preserved in 10%
formalin, and the left lung was flash frozen.

Harvested tissues following right heart catheterization that were
fixed in 10% formalin as described above were preserved in 70%
ethanol. Tissues were then embedded in paraffin, sectioned, and
stained as detailed below for histological analysis.

Perivascular pulmonary fibrosis. Pulmonary sections were stained
with picrosirius red to assess collagen deposition, as previously
described (21, 79). An inverted microscope (TE-2000-5; Nikon,
Melville, NY) was used to acquire histological images using a Spot
CCD camera (Optical Analysis Systems, Nashua, NH). The area of
perivascular collagen was determined using color thresholding in a
representative field of view by an observer blinded to the experimental
groups using MetaVue software (Optical Analysis Systems). In the
RV, collagen area was divided by total tissue area of the representa-
tive image to calculate collagen area percent (21, 79). In pulmonary
arterioles, collagen area was divided by the perimeter of the identified
arteriole. Pulmonary arterioles were differentiated from venules by
their immediate proximity to airways (72). Arteriole diameters ranged
from 50 to 200 pm.

Pulmonary vascular remodeling. Verhoeff-Van Giesson immuno-
histochemical staining was performed on paraffin-embedded lung
sections as previously described (22). In a blinded fashion, pulmonary
arteries <200 pwm in diameter were identified by proximity to terminal
bronchioles or alveolar ducts under a X20 objective as previously
described (41). Images were obtained using an Olympus BX41 mi-
croscope with Olympus camera. At least 20 vessels per animal were
sampled, and the wall fraction [(total area — luminal area)/total area)]
was calculated using ImagelJ software.

RV capillarization. RV sections were stained with DAPI (staining
nuclei; Prolong Gold with Dapi antifade mounting media; Life
Technologies-ThermoFisher) and antibodies directed against lectin
Griffonia simplicifolia (staining capillary endothelial cells; 1:75;
Life Technologies- ThermoFisher) or wheat germ agglutinin (1:
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Fig. 2. Right ventricular-pulmonary vascular uncoupling following myocardial infarction (MI). A: representative pressure-volume loops in sham and MI mouse
right ventricles. Data obtained during alteration of preload by occlusion of the inferior vena cava occlusions. B—D: increased arterial elastance (Ea; B) and
decreased end-systolic elastance (E.s; C) result in impaired ventricular-vascular coupling (Ees/Ea; D) at 12 wk post-ML *P < 0.05 vs. sham.
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500; Life Technologies-ThermoFisher). Capillaries were identified
by lectin positivity and cardiomyocytes were identified by wheat germ
agglutinin staining (27). The number of capillaries and cardiomyocytes
per field was counted by a blinded investigator, and capillary density was
then expressed as capillary/cardiomyocyte ratio (22, 27). Five fields with
cross sectionally cut cardiomyocytes were analyzed per animal.

Western blotting. Western blotting was performed by a blinded
investigator on whole lung homogenates as previously described (15).
Briefly, lung tissue was homogenized with an Omni international
tissue grinder (Thermo Fisher Scientific, Waltham, MA) in ice-cold
RIPA lysis buffer (Pierce-Thermo Fisher Scientific) containing pro-
teinase inhibitor cocktail (EMD-Millipore-Sigma Aldrich, St. Louis,
MO) and PhosStop inhibitor cocktail (Roche, Pleasanton, CA). After
homogenization, the lysate was sonicated (for ten 1-s pulses at 100%
power) and then centrifuged. The supernatant was saved and used as
whole lung lysate. Protein concentration was measured using BCA
Protein Assay (Pierce-ThermoFisher Scientific). Antibodies used were
proliferating cell nuclear antigen (PCNA; 1:500; Abcam, Cambridge,
MA) and vinculin (1:5,000; Calbiochem; Billerica, MA). Densitom-
etry was performed via Imagel.

Statistical Analysis. All values are presented as means * SE. Stu-
dent’s t-test was used to compare between sham and MI groups. Repeated
measures ANOVA was used to compare serial measurements within
groups. Bivariate correlations were performed using Pearson’s correla-
tion analysis. All P values were two-sided, and P < 0.05 was taken as
statistically significant.

RESULTS

Impaired LV function post-MI. Cardiac function was evalu-
ated by echocardiography following MI. Echocardiographic
imaging demonstrated evidence of LV dilation with a near
doubling of LVEDV and nearly 30% increased LV internal
diameter occurring by 4 wk post-MI (Fig. 1, A and B). These
increases in LVEVD and LV internal diameter were sustained
through 12 wk post-MI. As a consequence, there was significant
impairment in LV systolic function, as evidence by a 30% de-
crease in LV ejection fraction (EF) as soon as 4 wk post-MI (Fig.

[EW/PVA]

HI171

Fig. 3. Myocardial infarction (MI) leads to
increased right ventricular (RV) oxygen con-
sumption and decreased mechanical effi-
ciency. A—C: increased oxygen consumption
measured by pressure-volume area (PVA; A)
with no change in RV external work (EW; B)
result in reduced mechanical efficiency (EV/
PVA; C) at 12 wk post-ML*P < 0.05 vs.
sham.

Sham (n=9)

MI (n=4)

1C). This decrease in EF persisted through 12 wk post-MI without
evidence of recovery. There was evidence of diastolic dysfunc-
tion as measured by increased isovolumetric relaxation time at
8 and 12 wk post-MI (Fig. 1D). These impairments in systolic
and diastolic function as well as LV dilation are consistent with
the development of left heart failure post-MI.

Biventricular remodeling post-MI. Tissue analysis at 12 wk
post-MI demonstrated biventricular remodeling. Both left atrial
weight and LV weight, which includes LV + septum, were
elevated, demonstrating left sided cardiac remodeling (Table
1), which is consistent with the LV dilation determined by
echocardiography (Fig. 1, A and B). Additionally, there was a
significant increase in the absolute RV weight as well as the
RV weight indexed to body weight. Interestingly, the Fulton
index (RV weight indexed to the weight of LV + septum) was
unchanged, indicating RV hypertrophy occurred in proportion
to LV remodeling (Table 1). Analysis of lung tissues demon-
strated a trend toward increased wet lung weight that did not
reach statistical significance.

Development of secondary PH and RV dysfunction post-MI.
Invasive hemodynamic measurements were obtained at 12 wk
post-MI. LVEDP increased over fourfold following MI (Table
2). In addition, there was a significant increase in RVSP (Table
2), demonstrating the development of secondary PH. Consistent
with this, there was a doubling of the TPVR and a significant
increase in the TPG in the post-MI group. There was also a
significant elevation in RV afterload as measured by the E, (Fig.
2, A and B). Hemodynamic analysis further demonstrated
significantly lower CO post-MI (Table 2), which is consistent
with the development of heart failure with reduced ejection
fraction (HFrEF).

In the setting of reduced CO, RV systolic function was
largely preserved as demonstrated by maintained RV EF and
stroke work (Table 2). Despite maintained function by some
indexes, pressure-volume loops obtained with varying preload
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Fig. 4. Increased pulmonary vascular resistance and impedance following myocardial infarction (MI). A and B: steady isolated lung perfusion demonstrated
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Table 3. Ex vivo metrics of pulmonary vascular function

Tissue Sham MI P Value

n 5 6
Input resistance, Zo,

mmHg-min~'-ml 4.01 =057 5.83 = 0.44 <0.05
Characteristic impedance, Z,

mmHg-min~'-ml 0.44 = 0.11 0.60 = 0.12 0.375
Wave reflection index, Ry 0.81 =0.02 0.82 = 0.03 0.941
Distensibility, «, 1/mmHg 0.037 = 0.005  0.027 = 0.004 0.176

Values are means = SE. MI, myocardial infarction. Bold indicates signifi-
cance.

(Fig. 2A) demonstrate a significant decrease in E¢s (Fig. 2, A
and C). In combination with the increased RV afterload (E,),
decreased E resulted in RV-pulmonary vascular uncoupling
(Fig. 2D). In the setting of PAH, ventricular-vascular uncou-
pling suggests development of RV dysfunction and is predic-
tive of increased mortality (1, 6, 32, 38, 58). In addition,
increased T and decreased chamber compliance provide evidence
of RV diastolic dysfunction (Table 2). There was a trend toward
decreased RV volumes as measured by right heart catheterization
(Table 2). These findings were consistent with echocardio-
graphic assessments that demonstrated no change in RV inter-
nal diameter (data not shown).

We further evaluated RV mechanical energy consumption
and output. There was a significant increase in RV energy
consumption, as measured by PVA (Fig. 3A). However, despite
this increase in consumption, RV mechanical energy output as
measured by EW was similar to sham (Fig. 3B). Taken to-

>
w
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gether, this resulted in a significant decrease in EW/PVA
occurring in the setting of post-MI secondary PH (Fig. 3C).
Increased PVR and impedance post-MI. In vivo hemody-
namic analysis demonstrated increased afterload measured by
E, (Fig. 2B) in addition to increased TPVR and LVEDP (Table
2), indicating the development of PH-LHF. In addition, there
was significant elevation in the TPG. To better characterize
maladaptive changes in the pulmonary vasculature, we per-
formed ex vivo isolated lung perfusion at 12 wk post-MI.
Figure 4A demonstrates increased TPG at flow rates between 2
and 5 ml/min in post-MI lungs. Consistent with increased TPG,
PVR was significantly elevated in the post-MI lungs at flow
rates from 3 to 5 ml/min (Fig. 4B), indicating a progression to
Cpc-PH potentially driven by vasoconstriction or remodeling
of the pulmonary vasculature in the post-MI setting. Pulmo-
nary vascular impedance was evaluated using a pulsatile flow
protocol as described above. The input resistance, Zj, was
significantly elevated in the post-MI group (Fig. 4C and Table
3). There was a trend toward increased Z., a measure of
proximal artery stiffness, which did not reach statistical signif-
icance, and no change in wave reflection index, Ry,, an indi-
cator of pulse pressure wave reflections (Table 3). Similar to
the findings for Z., there was a trend toward reduced distensi-
bility, a, which was not statistically significant (Table 3).
Development of perivascular pulmonary fibrosis without
medial hypertrophy or increased proliferation post-MI. Histo-
logical examination of the pulmonary vasculature was com-
pleted to determine if the observed changes in pulmonary
vascular function (increased PVR, E,, and Z;) were associated

o
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Fig. 5. Development of perivascular pulmonary fibrosis following myocardial infarction (MI). A and B: picrosirus red staining demonstrates increased
perivascular collagen deposition in pulmonary arteries (PAs) (marked by arrows) post-MI. C and D: amount of perivascular collagen correlates with right
ventricle (RV)-systolic pressure (C) and total pulmonary vascular resistance (TPVR) (D). *P < 0.05 vs. sham. E and F: remodeling was assessed by Verhoeff-van
Giesson staining (E) and calculation of PA wall area fraction (PA wall area/total vessel area; F) in PAs <200 pm. Representative images are shown. Size
bars = 50 pm. *P < 0.05 by r-test. G: proliferating cell nuclear antigen (PCNA) was measured in lung homogenates from sham or MI animals by Western
blotting and densitometric quantification. Vinculin was used as loading control.
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with structural changes. Picrosirus red staining demonstrated
significant increase in perivascular collagen deposition in pul-
monary arterioles (Fig. 5, A and B). The amount of perivascular
collagen correlated with both RVSP, a surrogate for mPAP,
and TPVR (Fig. 5, C and D). These findings demonstrate that
perivascular remodeling characterized by increased collagen
deposition is one mechanism contributing to the development
of increased PVR in secondary PH. Pulmonary arterial remod-
eling was further assessed by examination of medial hypertro-
phy using Verhoeff-van Giesson staining and calculation of PA
wall area fraction (Fig. 5, E and F). Analysis demonstrated no
evidence of medial hypertrophy in the post-MI group, which
actually showed a slight decrease in PA wall area fraction
compared with control. To assess for PA cell proliferation,
PCNA expression was measured in lung homogenates from
sham or MI animals. As demonstrated in Fig. 5G there was no
difference in PCNA between the sham and MI groups.

Absence of RV fibrosis or change in capillarity density
post-MI. Histological examination of the RV was also per-
formed. As shown in Fig. 6, there were no changes in collagen
content or RV capillary density.

DISCUSSION

This study investigated the mechanical mechanisms of pul-
monary vascular and RV dysfunction due to secondary PH in
a mouse model of ischemic HFrEF. We observed the following
changes in the pulmonary vasculature: increased PVR, Zy, and
E,. These were associated with perivascular fibrosis in the
pulmonary arteries. RV diastolic dysfunction occurred in ad-
dition to reduced E.s and ventricular-vascular uncoupling.
While cardiac output decreased in the setting of MI leading to

A

Sham Mi

Sham

w
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HFrEF, RV EF was preserved, indicating that RV failure had
not yet developed.

Our findings of increased LVEDP, RVSP, and RV hyper-
trophy are consistent with previous studies showing evidence
of PH-LHF in rodent models (2, 8, 31, 33, 37, 49, 56, 61, 80).
In addition to documenting the development of PH in a murine
model of HFtEF, this study demonstrated changes in the pulmo-
nary vascular response to steady and pulsatile flow developing in
this context through both in vivo and ex vivo assessments. This
comprehensive approach enabled demonstration of progression
to Cpc-PH from Ipc-PH post-MI. Moreover, from ex vivo
pulmonary vascular pressure-flow dynamics, we demonstrated
that Cpc-PH in this model is not characterized by a change in
characteristic impedance (indicative of proximal arterial stiff-
ening) in contrast to findings in small animal models of PAH
(44, 74). Interestingly, there was also no change in distensibil-
ity of the small pulmonary arterioles. A recent study demon-
strated that reduced pulmonary vascular distensibility was
correlated with degree of PH, exercise capacity, and survival in
patients with PH-LHD (47). This patient cohort had significant
reduction in RV EF indicating severe disease with RV EF.
However, at 12 wk postsurgery in the MI mice, the PH was
moderate and RV EF was maintained. Thus significant changes
in pulmonary arteriolar distensibility may require more severe
disease or longer term PH.

Structural changes underlying the increased resistance and
impedance were identified in the pulmonary vasculature. There
was a significant increase in perivascular collagen in the pulmo-
nary arteries, which is consistent with previous reports of pulmo-
nary fibrosis in a rodent models of PH-LHF (8, 33) as well as
with pulmonary vascular remodeling consistently found in
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Fig. 6. No right ventricular (RV) remodeling seen following myocardial infarction (MI). A and B: Picrosirus red staining shows low levels of RV collagen in
MI and sham mice. Scale bars = 50 pm. C and D: RV capillarization was determined in RV sections by staining nuclei (DAPI; blue), endothelial cells (lectin
Griffonia simplicifolia; red) and cell membranes [wheat germ agglutinin (WGA); green]. Capillaries were identified by lectin positivity; cardiomyocytes were
identified by WGA staining. The number of capillaries per field was then normalized to the number of myocytes (expressed as capillary/myocyte ratio).

Representative images are shown. Scale bars = 50 pm.
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small animal models of PAH (67-69). Additionally, the pres-
ence of structural remodeling of the pulmonary vasculature has
been demonstrated on autopsy specimens of patients with
Cpc-PH who died following heart transplant (11). The current
study goes beyond previous investigations of PH-LHF in
demonstrating functional mechanical changes associated with
these histological changes. This study demonstrates mechani-
cal changes in the pulmonary vasculature including increased
PVR without evidence of changes in proximal PA stiffness
(i.e., no change in characteristic impedance). Consistent with
these findings, there is evidence of perivascular pulmonary
arterial fibrosis without evidence of medial hypertrophy or
increased proliferation, two traditional hallmarks of pulmonary
vascular remodeling in PAH (30, 34, 48). Thus this model
likely represents an early stage of Cpc-PH in which some of the
precapillary component of the PH is due to vasoconstriction
and potentially reversible. These results highlight that the types
and mechanisms of pulmonary vascular remodeling in PH-
LHF are potentially different than those well characterized in
PAH. Further studies are needed to quantify the pulmonary
venous and capillary remodeling, which likely occur before
pulmonary arterial remodeling in PH-LHF and were unable to
be fully assessed in the current study.

Beyond evaluation of the pulmonary vasculature, RV me-
chanical function was evaluated through in vivo pressure-volume
loop analysis. We demonstrate the development of RV dysfunc-
tion with reduced E.s and impaired ventricular-vascular cou-
pling as well as impaired diastolic function (decreased com-
pliance and increased 7). A recent study in human patients with
PH-LHF showed reduced RV pulmonary vascular coupling in
Cpc-PH compared with Ipc-PH (17). RV diastolic dysfunction
has been demonstrated in patients with LHF; interestingly, RV
diastolic dysfunction did not correlate with degree of PH and
occurred in patients with LHF without PH (81). There was no
RV dilation found in our PH-LHF model, which is consistent
with a state of RV dysfunction rather than failure as RV
dilation has been shown to occur late in the progression to
RV failure (3, 78).

While this study provides important insights into PH-LHF,
there are important limitations to note. Invasive measurements
of pulmonary vascular and RV function were completed at a
single time point. Therefore, causal relationships between RV
and pulmonary vascular hemodynamic changes or between
structural and functional changes cannot be determined. We
document RV hypertrophy but did not elucidate when it occurs in
relationship to LV remodeling and increased PVR. The post-MI
mice show evidence of Cpc-PH, but we cannot differentiate the
contributions of reversible vasoconstriction from irreversible re-
modeling (unresponsive to vasodilators) to the Cpc-PH. The
presence of pulmonary vascular fibrosis suggests progression
to a fixed disease state; however, other markers of pulmonary
arterial remodeling were negative. The response to pulmonary
vasodilators would enable the active versus passive mechanical
mechanisms of Cpc-PH to be distinguished. Additionally,
further evaluation of pulmonary vascular remodeling including
PA calcification, pulmonary capillary remodeling, and pulmo-
nary venous remodeling are important areas to be addressed in
future work. It is important to note that diastolic pressure
gradient, the primary metric for distinguishing Ipc-PH and
Cpc-PH in clinical practice, was not able to be determined as
PAPs were not directly measured in vivo. Both PVR and TPG,
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two key features of Cpc-PH (28, 50), were assessed both in
vivo and ex vivo. In particular, ex vivo isolated, ventilated,
lung perfusion where measurements are taken across varying
flow rates overcome many of the limitations of in vivo assess-
ments, the primary of which is that they are flow dependent
(52, 53). Furthermore, all in vivo pressure measurements were
acquired using an open-chest technique and intravenous anes-
thesia (urethane) was used, which can cause artifactual reduc-
tions in pressures (62). It is likely but unknown whether these
factors would impact both groups similarly and thus are key
limitations that must be taken into account in interpreting the
results. Despite these limitations, this work uncovers mechan-
ical mechanisms in the pulmonary vascular and RV progres-
sion of disease in a rodent model of HFrEF.

Conclusion. This study is among the few to quantify pul-
monary vascular biomechanics in a small animal model of
HFrEF leading to PH-LHF. It goes beyond previous reports in
models of PH-LHF to provide a both robust and comprehensive
evaluation of pulmonary vascular and RV mechanical function.
Cpc-PH associated with increased PVR, input resistance, and
arterial E, is shown to develop by 12 wk post-MI in mice.
These hemodynamic changes correlate with structural remod-
eling in the pulmonary vasculature. We further quantified RV
mechanical function in the setting of Cpc-PH due to HFrEF
and demonstrate diastolic dysfunction and ventricular-vascular
uncoupling consistent with findings in patients with PH-LHF.
Future studies are needed to evaluate the time course and
progression of pulmonary vascular and RV mechanical
changes in PH-LHF as well as the molecular drivers of these
mechanical mechanisms.
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