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Abstract

The acceleration and collimation/decollimation of relativistic magnetocentrifugal winds are discussed
concerning a cold plasma from a strongly magnetized, rapidly rotating neutron star in a steady axisymmetric
state based on ideal magnetohydrodynamics. There exist unipolar inductors associated with the field line angular
frequency, α, at the magnetospheric base surface, SB, with a huge potential difference between the poles and the
equator, which drive electric current through the pulsar magnetosphere. Any “current line” must emanate from one
terminal of the unipolar inductor and return to the other, converting the Poynting flux to the kinetic flux of the wind
at finite distances. In a plausible field structure satisfying the transfield force-balance equation, the fast surface,
SF, must exist somewhere between the subasymptotic and asymptotic domains, i.e., at the innermost point along
each field line of the asymptotic domain of � 2

A/�
2 � 1, where �A is the Alfvénic axial distance. The criticality

condition at SF yields the Lorentz factor, γF = µ1/3
ε , and the angular momentum flux, β, as the eigenvalues in terms

of the field line angular velocity, α, the mass flux per unit flux tube, η, and one of the Bernoulli integrals, µδ , which
are assumed to be specifiable as the boundary conditions at SB. The other Bernoulli integral, µε, is related to µδ
as µε = µδ[1 − (α2� 2

A/c
2)]−1, and both µε and � 2

A are eigenvalues to be determined by the criticality condition
at SF. Ongoing MHD acceleration is possible in the superfast domain. This fact may be helpful in resolving a
discrepancy between the wind theory and the Crab-nebula model. It is argued that the “anti-collimation theorem”
holds for relativistic winds, based on the curvature of field streamlines determined by the transfield force balance.
The “theorem” combines with the “current-closure condition” as a global condition in the wind zone to produce a
two-component “quasi-conical” field structure as one of the basic properties of MHD outflows of centrifugal origin
in the pulsar magnetosphere.
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1. Introduction

Shortly after the discovery of pulsars, parallel to pulsar
electrodynamics pioneered by Goldreich and Julian (1969), the
research of pulsar MHD winds was initiated by Michel (1969),
who extended Weber and Davis’s (1967) theory of the solar
wind to relativistic centrifugal winds. Making use of a split-
monopolar radial field structure, he investigated cold plasma
outflows in a steady axisymmetric state, which yielded the
Lorentz factor at infinity as γ∞ = µ1/3

ε , although acceleration
up to γ∞ = µε is in principle possible, where µε is one of
the Bernoulli integrals along each field line [see equation (44)
later]. The remaining energy, corresponding to the difference
µε(1 − µ−2/3

ε ) ≈ µε if µε � 1, was regarded as still being
carried by the Poynting flux. Goldreich and Julian (1970)
showed that Michel’s minimum-torque solution is nothing but
the critical solution with the magnetosonic point at infinity.
Their adoption of isothermal pressure revealed that thermal
∗ Present address: Department of Physics, Rivers State University of
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acceleration is possible when the magnetosonic points at finite
distances, and if the sound speed tends to zero the magne-
tosonic point also tends to infinity in the radial field struc-
ture. To overcome any inefficiency in the acceleration of
cold plasma along radial field lines, Kennel, Fujimura, and
Okamoto (1983) adopted a polytropic finite-temperature wind,
and showed that an arbitrary degree of acceleration is reached.
This is because it turned out soon that the Crab-nebula observa-
tions indicated that the energy flux is kinetically dominated far
from the source (Rees, Gunn 1974; Kennel, Coroniti 1984), but
a plasma consisting of e + –e− pairs is not of so high tempera-
ture to ensure sufficient thermal acceleration.

The discrepancy between the wind model predicting “high
σ∞” and the nebula model showing “low σ∞” has been
referred to as a “long-standing puzzle” (see, e.g., Begelman
1998). This shows the necessity of some breakthrough either
in wind theory or in nebula models. By being free of the
spell of radial field structures, one can accomplish a break-
through within the framework of a “conventional” picture of
ideal MHD (see Okamoto 2002, 2003; cf. Chiueh et al. 1991;
Begelman, Li 1994; Begelman 1998). It will for example be
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shown that one need not abandon the central tenet of the Rees–
Gunn model (cf. Begelman 1998).

It has, on the other hand, generally been believed for almost
the last two decades since Heyvaerts and Norman (1989)
“established” that the MHD outflows have an intrinsic tendency
of global collimation toward the rotation axis. The claim
for this tendency is referred to as the “hoop-stress paradigm”
(Okamoto 1999, hereafter Paper I). It seems that the paradigm
was initiated by a self-similar analysis of MHD outflows by
Blandford and Payne (1982), then by numerical calculations of
MHD equations by Sakurai (1985, 1987), and finally “estab-
lished” by analytic analyses by Heyvaerts and Norman (1989)
in the nonrelativistic case and by Chiueh, Li, and Begelman
(1991) in the relativistic case. The paradigm is summarized
as follows: “Under some quite general assumptions, collima-
tion of outflow to either parabolic or cylindrical surfaces is
inevitable asymptotically” (Blandford 1993). It has already
been shown (Paper I) that the “paradigm”, i.e., the claim for
global collimation of all open field lines, was not deduced from
use of the most basic equation for the transfield force balance,
which should determine the sign of curvature of each field line,
1/R = ∂ψ/∂s, that is, which direction the flow bends, toward
the pole or the equator. What can correctly be derived by using
the transfield component of the MHD equation of motion (i.e.,
transfield equation; also see Okamoto 1974) is not the “hoop-
stress paradigm”, but the “anti-collimation theorem” (Okamoto
2003). In spite of these critiques, the same statement for
the global collimation was simply repeated in Heyvaerts and
Norman (2003a, b, c), without refuting the “anti-collimation
theorem” on a firm physical basis.

As easily conjectured, acceleration and collimation/decolli-
mation are two sides of the coin (i.e., the field-streamline
curvature). Extending Heyvaerts and Norman’s asymptotic
formalism, it can be shown, by becoming free from the spell of
radialness (zero-curvature), that the fast surface, SF, must be
situated at the innermost distances of the asymptotic domain of
� 2 � � 2

A. Denoting the innermost surface of the asymptotic
domain rather vaguely by Sa, then it can be seen that SF ≈ Sa,
both in the nonrelativistic and relativistic winds. The criticality
condition at SF yields γF = µ1/3

ε for the Lorentz factor, which
implies that the flow will be accelerated from the initial value
of γ at the magnetospheric base surface, SB, to γF =µ1/3

ε in the
subasymptotic domain of SB � S � Sa. Then, ongoing inter-
actions between the field and the flow take place in the asymp-
totic, superfast domain of Sa ≈ SF � S � S∞, to transfer from
the Poynting flux to the kinetic flux, so that γ will increase
from µ1/3

ε at SF to µε at S∞.
The key quantities, which play a crucial role in the

acceleration-collimation/decollimation problem in the asymp-
totic domain, are the generalized Michel magnetization
parameter, σ , and the curvature, 1/R, because σ plays the
role of an independent variable in the asymptotic domain
[see equation (73)], and also the field-flow interactions can
be ensured only through the inertial term containing 1/R in
the transfield equation. However, small though it may be,
the curvature must be finite, whether positive (collimate) or
negative (decollimate), and tends to zero, together with σ ,
toward infinity along each field line for s → ∞. There is no
room for “field regions” with 1/R≈0 in the asymptotic domain

(cf. Heyvaerts, Norman 2003a, b, c). The absence of such
“field regions” in the superfast domain can be easily shown
(see subsection 7.1). The asymptotic, superfast domain must be
such a domain that by ongoing interactions through the inertial
curvature term with the field, the flow is continually accelerated
fully up to γ = µε, followed by a gradual decrease of 1/R and
σ , with 1/R > 0 in the polar region (collimate) and 1/R < 0 in
the equatorial region (de-collimate), that is, “quasi-conical” in
the sense of “�/R→ 0 for s→∞” (Okamoto 2002, hereafter
Paper IV).

It will be shown in this paper that the implausibility of
MHD acceleration prevailing widely in the pulsar community
is produced by the plausibility of radialness of the structure
in a region far from the source, and it turns out by showing
this that one need not abandon the central tenet of the Rees–
Gunn model for the Crab nebula. Similarly, making use of
the asymptotic form of the transfield equation, the “current-
closure condition” requires the “anti-collimation theorem” to
hold for the field-flow structure. In section 2, basic assump-
tions are introduced, together with clearly defined terminology,
and the basic relations for pulsar magnetospheres are derived
from ideal MHD in the steady, axisymmetric state. In section 3,
several surfaces of crucial importance are defined, such as
critical surfaces and the surfaces of equipartition of energy and
angular momentum between the field and the flow. In section 4
are derived the quadratic equation for the axial distances, � ,
and the transfield equation.

In section 5, the asymptotic domain is defined, and it is
shown that it must be equivalent to the superfast domain
— the fast surface, SF, must be situated at the innermost
distances of the asymptotic domain — and that the equipar-
tition surfaces are farther outside of SF. In section 6, the
transfield equation in the asymptotic domain is combined with
the equations for energy and angular momentum integrals, to
clarify the acceleration-collimation/decollimation properties of
MHD outflows in general. In section 7, the present results
obtained in this paper are contrasted with the previous ones,
and in the last section the conclusions are presented.

2. Basic Assumptions, Terminology, and Relations

2.1. Assumptions and Terminology

Making use of ideal MHD with perfect conductivity, we
consider the pulsar magnetosphere in a steady axisymmetric
state around a rapidly rotating, strongly magnetized neutron
star, through which the pulsar wind carries the spin-down
energy of the star to infinity. In this paper we confine ourselves
to clarifying the basic properties of a magnetized wind carrying
energy to infinity, without meeting with the surrounding media,
and so constructing a nebula model, like the Crab nebula, is out
of the scope of this paper. We assume that plenty of plasma
particles are supplied at the magnetospheric base surface, SB,
and so we do not consider the particle source problem, such as
pair-creation processes at the polar cup or somewhere else.

We use the terminology of the “criticality condition” and
the “regularity condition”, distinguishing these from the
“boundary condition” at the stellar or magnetospheric base
surface SB (see Okamoto 2006). The “criticality condi-
tion” requires the wind solution to pass smoothly through the
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“critical surfaces”, such as the Alfvénic and fast surfaces,
SA and SF, and the “regularity condition” describes how the
solution be “regular” toward the sphere-at-infinity S∞, in
particular on the behavior of the “key quantities” σ and 1/R.
We understand that the criticality problem poses a kind of
eigenvalue problem for determining the Alfvénic distances,
�A, the angular momentum per unit flux tube, β, etc., by
the “criticality condition” at SF in terms of α, η, µδ , and the
magnetic flux, which are given by the “boundary conditions” at
SB, where α is the angular velocity of each field line, η the mass
flux per unit flux tube, and µδ one of the Bernoulli integrals.
Then, the “regularity condition” on σ and 1/R ensures that the
flow properties at S∞ be determined by the “criticality condi-
tion” at SF, without contradicting the causality principle. We
use the words physical and unphysical for flow solutions in
such a way that the physical solution behaves physically well
all the way from the source to infinity, while the unphysical
solution does not. Both solutions usually appear as a pair of
functions that intersect each other at critical points, e.g., SF,
like an X.

The fact that the angular frequency α be given at SB as the
“boundary condition” in ideal MHD semi-automatically means
the existence of some kind of unipolar battery there, which
drives the poloidal electric current in the pulsar magnetosphere,
crossing field lines and thereby doing MHD work to the mean
flow to transfer from the field energy to the flow energy [see
Okamoto (2006) for the differences between SB and the black
hole horizon surface]. Then the “current-closure condition”
must be imposed in the steady state, requiring no current line
being snapped on the way from one terminal to the other of the
neutron star unipolar battery (see figure 1). It turns out that this
condition is closely connected to the acceleration/collimation-
decollimation problem of the outflow in the superfast domain.

2.2. Geometrical Relations

Besides the usual cylindrical coordinates (�,φ,z) and polar
ones (r, θ, φ), we use local coordinates (P, s, ψ), where P
labels the field lines, s measures the distances along a P -fixed
field line, andψ is the angle between the tangent to it at a given
point and the � -axis. Then, the poloidal field is expressed in
terms of P by

Bp = − t ×∇P
�

. (1)

Together with the unit toroidal vector t, we use the two other
orthogonal unit vectors:

p = Bp/Bp, n = p × t = −∇P/|∇P |. (2)

Note that the direction of n is toward rather than away, from
the axis. We denote the derivatives in the p- and n-directions
as follows:

(p · ∇) =
(
∂

∂s

)
P

, (3)

(n · ∇) =
(
∂

∂n

)
s

= − 1
|∇P |∇P · ∇ = −|∇P |

(
∂

∂P

)
s

. (4)

The following geometrical relations turn out soon to be useful:(
∂�

∂s

)
P

= cosψ,
(
∂z
∂s

)
P

= sinψ. (5)

The curvature radius along each field line becomes

1
R

=
∂ψ

∂s
=
(
∂ sinψ
∂�

)
P

= −
(
∂ cosψ
∂z

)
P

(6)

=
∇2P −∇P · ∇ ln� |∇P |

|∇P | (7)

=
1

Bp�

[
1
r2

∂

∂r

(
r2 ∂P

∂r

)
− 1

2� 2

∂

∂P

(
�
∂P

∂r

)2
]

(8)

(see appendix 1). The topology of field lines is described by
P (r, θ ) = constant. This implies that if P = P (r, θ ) is given
by some way or another, then R is calculated along each field
line by using equation (7). If one expresses the right-hand side
of (7) in spherical coordinates, one has equation (8). It can be
seen that if P =P (θ ), then 1/R= 0, and hence the field structure
is obviously radial. Conversely, if R =R(r,θ ) is given, one can
in principle solve equation (7) to obtain P = P (r,θ ).

If R = R(�,P ) is known, one can follow the change in ψ
along a given field line with P by equation (6),

sinψ = sinψa +
∫ �

�a

�

R
d ln�

∣∣∣
P
, (9)

whereψa is the value ofψ at some reference level with� =�a,
and
∫ |P denotes the integral along a given field line with P .

In order that ψ converges to some angle ∞|P for � → ∞|P ,
i.e.,

sin∞|P = sinψa +
∫ ∞

�a

�

R
d ln�

∣∣∣
P
, (10)

then �/R must sufficiently rapidly reduce to null, i.e.,
�

R
→ 0 for � →∞, (11)

similarly in the nonrelativistic case (see Paper I; Okamoto
2000, 2001, hereafter Paper II, Paper III), because if �/R
is, for example, constant or a function of P only, the
above integral yields a logarithmic divergence for | sinψ |.
Equation (11) will be referred to as the “regularity condition”
at S∞.

If R = R(z, P ) is known, one likewise obtains from
equation (6)

cosψ = cosψa −
∫ z

za

z
R
d lnz

∣∣∣
P
. (12)

If R =R(ψ,P ) is given, one has instead of equation (9) or (12)

� =�a +
∫ ψ

ψa

R cosψ dψ, z = za +
∫ ψ

ψa

R sinψ dψ. (13)

Thus, to depict the field-line topology, it is indispensable
to know the change of R−1 = ∂ψ/∂s from the source to
infinity along each field-streamline. Without referring to 1/R,
one cannot discuss the collimation/decollimation of the MHD
wind.
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2.3. Electromotive Force, Electric Current, and the Current-
Closure Condition

In the coordinate system comoving with the flow with
velocity v, the electric field vanishes, i.e., E′ = [E + (v/c) ×
B]/
√

1− v2/c2 = 0. The induction equation in the inertial
frame then yields

Ep = −v

c
×B = −vF

c
×B =

α�

c
Bp n = −α

c
∇P (14)

and Et = 0 in the steady axisymmetric state, where the relations
v =κB + vF and vF ≡α� t are used [see equations (37) and (40)
later], together with equations (1) and (2). The angular velocity
of field lines α(P ) is usually assumed to be given by the
angular velocity of the matter that field lines under consider-
ation are frozen in. This presumes semi-automatically not only
the magnetic slingshot effect related to the angular velocity
of the field line, vF, in the wind zone, but also the existence
of a unipolar inductor on the source surface giving rise to an
electromotive force (EMF) between any pair of field lines (say
P1 and P2),

EMF = −1
c

∫ P2

P1

α(P ) dP (15)

(see Okamoto 2006). Then, every current line must connect
the EMF to the Joule-dissipating or MHD-accelerating domain
continuously in the steady state.

Let us introduce the “current function”, i.e.,

I (�,z) = I (s,P ) ≡−c�Bt

2
. (16)

The poloidal electric current becomes in the axisymmetric state

jp = − t ×∇I
2π�

(17)

[cf. equation (1) for Bp]. Then, the components perpendicular
and parallel to Bp become

j⊥ =
(p · ∇I )

2π�
= − 1

2π�

(
∂I

∂s

)
P

, (18)

j‖ =
(n · ∇I )

2π�
= −Bp

2π

(
∂I

∂P

)
s

. (19)

The toroidal component of electric current, in passing,
becomes in terms of 1/R

jt =
c

4π
(∇×B)t =

cBp

4π

(
∂ lnBp

∂n
− 1
R

)
(20)

[see equation (A4) in appendix 1 for derivation]. Note that
jt �= 0 in spite of Et ≡ 0 by assuming axial symmetry.

The current function, I (�, z), denotes the total current
passing downward through a loop with � = constant. If
I = I0 �= 0 at � = P = 0, this means the existence of a line
current along the axis. A comparison of equation (17) with (1)
indicates that, just as lines of P = constant depict field lines,
lines with I = constant depict the “current lines” along which
the poloidal current flows (see, e.g., figure 1 in Paper III).
The collimation-acceleration problem is crucially governed by
topological features of the current lines crossing the field lines.
There will probably be no large-scale region in a physically

Fig. 1. Specifying the boundary condition for α = α(P ) indicates the
presence of a kind of unipolar inductor, which a current line (say, I12)
emanates from P =P2 and comes back to P =P1, dissipating electricity
to accelerate the flow with j⊥ > 0. Note j‖ < 0 in P1 < P < Pn and
j‖ > 0 in Pn < P < P2. See equations (15), (19), and (42).

reasonable model where I ∝ −�Bt = constant, and hence
j⊥ = j‖ = 0 (see later section 7).

In the steady axisymmetric state, we assume that the charge
inflow into the central source be equal to the outflow from
it. Then, imposing the “current-closure condition” expressing
charge-neutrality on an arbitrary s-surface (referred to as an
s-surface), one has

0 ≡
∮
s

jp · dA = −
∫

∂I

∂P
dP

∣∣∣∣
s

= I (s,0)− I (s,P ), (21)

where dA = 2π (dP/Bp) p and P is the limiting field line of
the wind zone [see equation (4.12) in Paper I]. Unless one
introduces a line current at the axis with P = 0 and a surface or
sheet current at P = P , equation (21) reduces to

I (s,0) = I (s,P ) = 0, (22)

which indicates the existence of an extremum value of I (say
Iex) at some field line (say “neutral” field line Pn), where
j‖ ∝ (∂I/∂P )s = 0 from equation (19), and hence j‖ < 0 in the
range of field lines in 0 < P < Pn and j‖ > 0 in the range of
field lines in Pn < P < P (see figure 2). These equations (21)
and (22) later turn out to be helpful in clarifying the field struc-
ture in the asymptotic domain.

Let us now imagine one current line given by I (s, P ) =
constant (say I12), which emanates at P =P2 from one terminal
of the pulsar unipolar battery on the magnetospheric base SB
and returns to the other terminal at P = P1. Note here that one
must choose a pair of field lines for P1 and P2 so as to satisfy
P1 <Pn <P2, and then define I (s,P ) = I (sB,P2) = I (sB,P1) =
I12 (see figure 1).

The charge density, i.e., Goldreich–Julian density becomes
from equations (14) and (20)
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�e = − 1
4πc

∇· (α∇P )

=
α�

c2

(
jt +

cBp

4π
∂ lnα� 2

∂n

)
(23)

=
Ep

4π

(
∂

∂n
lnαBp�

2 − 1
R

)
, (24)

where Ep = (α/c)|∇P | = (α�/c)Bp and jt is eliminated by
using equation (20). It turns out that the total charge in a
volume within the surface with constant s is null, i.e.,

0 ≡
∫
�e dV = − 1

4πc

∫
∇· (α∇P ) dV

∣∣∣∣
s

= − 1
4πc

∮
α∇P · dA

∣∣∣∣
s

, (25)

because −∇P · dA = 2π�dP(n · p) = 0. We emphasize that
the local charge conservation law, ∇ · jp = 0, is ensured by
equation (17), but equation (22) as the current-closure condi-
tion is necessary as a global condition, although the total
charge within the s-sphere always vanishes.

The curves of I = I (P ) with parameter s are shown in
figure 2. In order that MHD acceleration takes place along
each field line, I (s,P ) must be a decreasing function of s, i.e.,
j⊥ ∝ −(∂I/∂s) > 0 by equation (18), and hence in the P –I
diagram with parameter s, the curves of I = I (s,P ) go lower
and lower with increasing s, and I (s,P ) → 0 for s → ∞. We
assume for the sake of simplicity that the value of Pn where
I (P ) has an extremum (say Iex) does not depend on s.

For the Poynting flux one obtains from (14)

S =
c

4π
E×B =

αI

2πc
Bp +

B2
p

4π
α� t, (26)

and then its divergence becomes from (18)

∇· S = −j ·E = −α�
c
Bp j⊥ =

α

2πc
(Bp · ∇)I. (27)

The total Poynting flux passing through an s-surface becomes∮
s

S · dA =
2
c

∫ P

0
αI dP

∣∣∣∣∣
s

. (28)

If I is a function of P only in some finite domain, conse-
quently with j⊥ = 0 but j‖ �= 0 from equations (18) and (19),
then the total Poynting flux remains constant there, i.e.,
∇· S = 0. If that domain extends to infinity, the nonvanishing
Poynting flux reaches the “sphere-at-infinity” at s =∞, without
being transferred to the kinetic flux. This implies piling-up
of electric charges on the “sphere-at-infinity”, but because it
should not be a garbage dump of charges, one must contrive an
“artificial” surface current flowing from the equatorial side to
the polar side on the force-free “sphere-at-infinity”, endowing
it with surface resistivity with 4π/c = 377 ohm (Macdonald,
Thorne 1982; Phinney 1983; Okamoto 1992, 2006). A more
natural way to dispose this matter is to make the return current
flow toward the axis, i.e., j⊥ > 0 at finite distances, so that the
“current lines” can close crossing field-streamlines in the wind
zone. Thus, one has

Fig. 2. Schematic picture of I = I (P ; s), which satisfies the
“current-closure condition” as one of global conditions in the wind
zone [see equations (21) and (22)]. For a fixed P , I decreases with
increasing s, and I → 0 for s→∞.

I (s,P ) = −c�Bt

2
→ 0, for s→∞, (29)

which means that the Poynting flux along each field line must
tend to null for s → ∞, with the maximum possible accelera-
tion achieved [see equation (46) later]. It will be shown later
[see, e.g., equation (195)] that I → 0 in equation (29) is related
to �/R→ 0 in equation (11) by the transfield equation in the
asymptotic domain.

2.4. MHD Equation of Motion

The relativistic MHD (RMHD) equation of motion for cold
plasma outflow in the steady state reduces to

�e E +
1
c

j ×B = ρ(v · ∇)γ v

= ρ
[
c2∇γ − v× (∇× γ v)

]
(30)

(Michel 1969; Gordreich, Julian 1970; Okamoto 1978).
The p- and t-components of equation (30) become

ρ

(
c2 ∂γ

∂s
− vt

�

∂γ � vt

∂s

)
= −1

c
j⊥Bt, (31)

ρ vp
∂� γ vt

∂s
=

1
c
j⊥Bp�, (32)

and the n-component is given by

ρ γ v2
p

R
− ρ γ v2

t
∂ ln�
∂n

= �eEp +
1
c

(
j‖Bt − jtBp

)
(33)

(see appendix 1 for derivation). It can be seen from
equation (27) that the right-hand side of equation (32) is equal
to −∇ · S/α. It thus turns out that the conversion of electro-
magnetic energy to kinetic energy is possible only if ∇·S< 0,
i.e., j⊥ > 0, which implies that −� Bt ∝ I decreases with s
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increasing, as already indicated by equation (29). That is, the
Lorentz volume force on the mean flow leads to MHD acceler-
ation by j⊥ > 0 only.

The transfield component (33) of the equation of motion
contains the extra terms of curvature radius R through �e
and jt. Eliminating (1/c) jt Bp and �e Ep by using expres-
sions obtained from equations (20) and (24), one reaches the
following form for the force balance in the transfield direction:

ρ γ v2
p

R

[
1− B2

p

4πρ γ v2
p

(
1− α2� 2

c2

)]

= − ∂

∂n

[
B2

p

8π

(
1− α2� 2

c2

)]

+

(
ρ γ v2

t +
B2

p

4π
α2� 2

c2

)
∂ ln�
∂n

+
1
c
j‖Bt. (34)

Equation (34) is equivalent to Chiueh, Li, and Begelman’s
(1991) equation (11) and also Chiueh, Li, and Begelman’s
(1998) more understandable equation of the same number (11),
but they did not utilize this most important equation explic-
itly in their discussion of collimation-acceleration (see later
section 7).

By using equation (19), the following three terms of the
right-hand side of equation (34) are written jointly:

∂

∂n

(
B2

p

8π
α2� 2

c2

)
+
B2

p

4π
α2� 2

c2

∂ ln�
∂n

+
1
c
j‖Bt

= − 1
8π� 2

∂

∂n

[
(� Bt)2 −

(
αBp�

2

c

)2]
. (35)

Then, substitution of equations (16) and (35) into (34) yields

ρ γ v2
p

R

[
1− B2

p

4πρ γ v2
p

(
1− α2� 2

c2

)]

= − ∂

∂n

(
B2

p

8π

)
+ ρ γ v2

t
∂ ln�
∂n

− 1
2π� 2 c2

∂

∂n

[
I 2 −

(
αBp�

2

2

)2]
. (36)

One can use equation (4) to show ∂�/∂n = −Bz/Bp, and
then the second term of equation (36) is negative for Bz > 0.
Thus, in a domain far from SA, the centrifugal force due to v2

t
contributes negatively to the curvature of the field lines, i.e.,
toward the equator.

2.5. Integral Relations and the Alfvénic Surface

There holds a kinematical relation in the steady axisym-
metric state,

vt = κBp, (37)

which combines with the Poisson equation to yield

ρ κ = η(P ). (38)

The angular-momentum integral becomes, from equation (32)
with the elimination of j⊥ from equation (18),

I

2πc
+ η� γ vt = − β

4π
. (39)

Integration of what is usually called the induction equation
yields Ferraro’s isorotation law of α = α(P ), which leads in
the wind zone to

vt = κ Bt + α�. (40)

It is worth while reiterating that specifying α = α(P ) on SB
indicates the existence of such an unipolar inductor there that
gives rise to the EMF shown in equation (15). Equations (39)
and (40) combine to yield

� vt =
α� 2 + κβ

1− 4πρ γ κ2 , I =
−cβ/2− 2πηγ α� 2 c

1− 4πρ γ κ2 (41)

[also see equations (2.9a, b) and (2.8) in Okamoto 1978; Mestel
1968]. From equations (31), (32), and (40) one obtains

∂γ

∂s
=
α�

c

j⊥Bp

ρc2 vp
=

j ·E
ρc2 vp

= − ∇ · S
ρc2 vp

, (42)

which combines with equation (18) to yield

γ
(

1− α� vt

c2

)
= µδ (43)

or by using equation (39)

γ +
αI

2πηc3 = µε, (44)

where

µε = µδ − αβ

4πηc2 . (45)

Equations (43) and (44) indicate that 1< µδ < γ ≤ µε , and in
particular the upper limit of γ is given by µε, when I → 0, that
is, when the outward Poynting flux tends to zero for � → ∞
[see equations (26) and (29)], i.e.,

γ∞ = µε. (46)

From equations (41) and (43) one obtains

γ = µδ
1− 4πρ γ κ2

(
1− αβ

4πηµδ c2

)

1− 4πρ γ κ2 − α2� 2

c2

, (47)

� vt =
α� 2 + 4πρ γ κ2 β

4πηµδ

1− 4πρ γ κ2

(
1− αβ

4πηµδ c2

) , (48)

I = −cβ
2

1− α2� 2

c2

(
1− 4πηµδ c2

αβ

)

1− 4πρ γ κ2 − α2� 2

c2

. (49)

Imposing the criticality condition at the Alfvénic surface SA
with � =�A, one obtains from equations (47) and (45)

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/58/6/987/2898110 by guest on 21 August 2022



No. 6] Pulsar MHD Winds 993

−β = 4πηµε α� 2
A,

(
ρ

γ

)
A

=
4πη2

1− α2� 2
A

c2

, (50)

µε =
µδ

1− α2� 2
A

c2

(51)

[see equation (A34) in appendix 4 for the nonrelativistic limits
of µδ and µε]. Then, it can be seen that (� vt)∞ = α� 2

A by
equations (43) and (51).

When α, η, and µδ are given externally by the boundary
condition at SB, one of � 2

A, β, and µε must be sought inter-
nally as the eigenvalue problem by the criticality condition at
the fast surface, SF (see Okamoto 2006), where the other two
values are related by relations (45), (50), and (51) (see subsub-
section 5.2.2).

2.6. Variable ζ and Related Quantities

If one defines the Alfvénic Mach number as

M2 = 4πρ γ κ2 = 4πη2 γ

ρ
, (52)

then its value at SA, i.e., MA, becomes

M2
A =
(

1− α2� 2
A

c2

)
. (53)

Then, similarly in the nonrelativistic case, it is convenient to
introduce the following functions using equation (51):

Π2 =M2
A
ρ� 2

4πη2γ
=M2

A
Φ

4πηcup
, (54)

ζ ≡ 4πηµε αΠ2 =
µδ α

η

ρ� 2

γ
=
µδ α

c

Φ
up
, (55)

M2 =M2
A
ζA

ζ

� 2

� 2
A
, (56)

where

Φ = Bp�
2 =� |∇P | (57)

and up = γ vp/c is the poloidal component of the four velocity
vector u = γ v/c. Note that both Π and ζ may be slowly
decreasing functions of � |P . In the nonrelativistic limit, by
equation (A34), ζ and Π2 reduce to equations (3.1) and (3.2)
in Paper I. At SA from equations (50) and (51)

ΠA =�A, ζA = 4πηµε α� 2
A = −β. (58)

The relation ζA = −β indicates that ζ has the same dimension
as β, and it is shown later in section 5 that ζ ≈ −� Bt = 2I/c
in the asymptotic domain, that is, it gives the electric current
distribution as well as the angular momentum flux there.

The denominator of γ and I is expressed as follows:

1− 4πρ γ κ2 − α2� 2

c2 = −ζA

ζ

� 2

� 2
A
D, (59)

D ≡
(

1− α2� 2
A

c2

)
+
α2� 2

A

c2

(
1− c2

α2� 2

)
ζ

ζA
. (60)

Note that D(� ) � 0 for � ��A, D(c/α) =M2
A and D→M2

A

for � |P →∞.

Expressing γ , �vt, ut, and I in terms of variables ζ and � ,
one obtains from equations (47)–(49)

γ =
µδ

D

(
1− � 2

A

� 2

ζ

ζA

)
, (61)

� vt = α� 2
A

1− ζ

ζA

1− � 2
A

� 2

ζ

ζA

, (62)

ut = µδ
α� 2

A

c�

1
D

(
1− ζ

ζA

)
, (63)

(
I

2πηc

)
= µε α� 2

A
ζ

ζA

(
1− � 2

A

� 2

)
1
D
. (64)

The specific field angular momentum is given by equation (64),
while the flow angular momentum per unit mass becomes from
equations (61), (63), and (51)

γ � vt = µε α� 2
A

(
1− α2� 2

A

c2

)(
1− ζ

ζA

)
1
D
. (65)

The total angular momentum per unit flux tube is, of course,
equal to µεα� 2

A =−β/4πη. From equations (61) and (63) one
obtains the relation

γ − cut

α�
= µδ

2I
cζ
. (66)

2.7. Generalized Michel’s Magnetization Parameter σ

At first we define the ratio of the Poynting flux to the kinetic
energy flux in the poloidal direction from equations (26), (44),
(61), and (64)1 as

w =
|α� BtBp|
4πγρ c2 vp

=
µε

γ
− 1

=
ζ

(ζB − ζA)

(
1− � 2

A

� 2

)
(

1− � 2
A

� 2

ζ

ζA

) =
(2I/c ζB)

1− (2I/c ζB)
, (67)

where from equations (51) and (58)

ζB ≡ ζA +
4πηµδ c2

α
=

4πηµε c2

α
, (68)

ζA

ζB
=
α2� 2

A

c2 = 1− µδ

µε
= 1−M2

A (69)

[see equation (A36) for the nonrelativistic limits of ζA and ζB].
Then, from equations (54) and (55) one obtains

ζ

ζB
=
α2 Π2

c2 . (70)

1 Phinney (1983) and Begelman and Li (1994) denoted the ratio w∞ at
infinity with σ∞ and the following generalized Michel parameter σ in
equation (73) with a.
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Similarly, one obtains for the ratio of the field angular
momentum to the flow angular momentum from equations (64)
and (65)

wAM =
(I/2πηc)
γ � vt

=
µε

γ

α� 2
A

� vt
− 1. (71)

It is then obvious that wAM > w at each point, since � vt <

α� 2
A.

Denoting the mass flux per unit flux tube by f = ρ vp�
2 =

ηΦ, we introduce the following two parameters:

� 2
0 ≡ Φ2

4πf c
=

Φ
4πηc

, (72)

σ =
α2� 2

0

c2 =
α2 Φ

4πηc3 (73)

(see Michel 1969 and Okamoto 1978; see also appendix 4 for
the nonrelativistic limits of w and σ ). Note that σ varies with
s through Φ only.

From equations (55), (73), and (68) one can relate σ to ζ and
up:

σ =
α ζ up

4πηµδc2 =
ζ

ζB − ζA
up. (74)

We use the “regularity condition” for σ toward S∞, i.e.,

σ → 0 for � |P →∞, (75)

consistently to the “regularity condition” for �/R in
equation (11). It is shown later (see subsections 5.1 and 6.2)
that in the asymptotic domain, ζ , γ , I , etc., are a two-valued
function of σ for the critical solution, and along the physical
branch downstream of SF, one has

ζ → 0, w→ 0, wAM → 0 for σ → 0, (76)

in accordance with equations (29) and (46).

3. Several Surfaces of Importance along Field-
Streamlines

It is usually thought that in the neighborhood of the star the
field is so strong and the curvature is so large that the curva-
ture radiation will be efficient enough to induce the cascade
creation of a pair plasma near to, but probably inside of, the
light cylinder, and to ensure MHD treatment downstream. It is,
however, out of the scope in this paper to make a comprehen-
sive model of supplying a pair plasma into the wind zone. We
just postulate some reference level, referred to as the “magne-
tospheric base” surface, SB, well inside the Alfvénic surface,
SA, and the RMHD outflow starts with charge density �e,
particle density ρ, velocity v, and the Lorentz factor γ , speci-
fied together with α, η, and µδ at SB.

The quantities σ and ζ , defined in equations (74) and (55),
play a significant role in RMHD wind theory, similarly in
the nonrelativistic case. We anticipate that both σ and ζ are
monotonically decreasing functions of� |P , fairly steeply near
the source and rather slowly in the asymptotic domain. We pick
up some surfaces (or points) of interest along a given open field
line (see figure 3):

Fig. 3. Schematic distribution of various surfaces of interest along
each field line from the magnetospheric base surface, SB, to the
sphere-at-infinity, S∞. The wind zone is divided into the two domains,
subasymptotic and asymptotic, by the innermost surface, Sa, satisfying
the condition � 2

A/�
2 � 1. It is in the former domain of SB ≤ S < Sa

that SA and SL are located. The fast surface, SF, must lie between the
two domains, i.e., SF ≈ Sa. In the latter domain of Sa & S & S∞,
every field-flow variable is a two-valued function of σ , with the two
branches, physical and unphysical, intersecting each other like X at SF
(see figures 4 and 5).

(i) The “magnetospheric base surface”, SB. If one gives α(P ) at
SB, the EMF over SB is given by equation (15). We may define
SB by, e.g., ζ = ζB from equation (68). Note that ζB > ζA in
general and ζB � ζA in the ultrarelativistic case with� 2

A �� 2
L .

Then the Alfvénic Mach number becomes at SB

M2
B =

α2� 2
B

c2

(
1− α2� 2

A

c2

)
< 1, (77)

and then from equations (60) and (61),

γB = µδ


1−

α2� 2
B

c2

(
1− α2� 2

A

c2

)
(

1− α2� 2
B

c2

)


−1

. (78)

Note that γB>µδ > 1. The “magnetospheric base surface”, SB,
as defined above, may not necessarily coincide with the surface
of injection of pair plasma into the pulsar magnetosphere as the
boundary surface of specifying the input parameters α, η, and
µδ . This is because, as can be seen in equation (68), ζB at SB
must be determined by solving the eigenvalue problem due to
the criticality condition at SF.

In this paper we, however, regard the magnetospheric
surface in general as the “surface” from which magnetic fluxes
emanate with α = α(P ) and on which there exists not only the
pulsar unipolar inductor with the EMF given in equation (15),
but also the source of copious plasma particles.

(ii) The Alfvénic surface SA: We have already obtained
equations (50) and (51) by the criticality conditions for γ ,�vt,
and I in equations (47)–(49) at SA.

Anticipating that ζ is a decreasing function of � |P , we
denote the gradient of ζ at SA from equation (55), as follows:

νA = −
(
∂Π
∂�

)
A

= −
(
∂ lnζ
∂ ln� 2

)
A
. (79)

Note that νA > 0 for the physical branch of the solution. Then,
by applying l’Hôpital’s rule from equations (63), (64), and (61)
at SA, one obtains in terms of νA

γA = µε
M2

A(1 + νA)
1 + νAM

2
A

= µδ
1 + νA

1 + νAM
2
A
, (80)

(� vt)A = α� 2
A

νA

1 + νA
, (81)
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IA

2πηc
=
µε α�

2
A

1 + νAM
2
A
, (82)

utA = µδ
νA
α�A

c

1 + νAM
2
A
. (83)

Substitution of equations (80) and (83) into an identity
relation, γ 2

A = 1 + u2
pA + u2

tA, yields

νA =
1
M2

A

[√
µ2
ε(1−M2

A)M2
A

µ2
ε M

2
A − (1 + u2

pA)
− 1

]
(84)

[see Heyvaerts and Norman’s (1989) equations (48) and (49)
and equation (3.14) in Paper I for the nonrelativistic case],
where upA is given from equations (54) and (73) by

upA =
M2

A ΦA

4πηc� 2
A

=
M2

A

1−M2
A σA

, σA =
α2 ΦA

4πηc3 . (85)

It turns out later (see section 5) that by solving the criticality-
eigenvalue problem at SF, one can thus determine the gradient
of ζ at SA, νA, as well as the eigenvalues� 2

A, µε, ζA =−β, and
ζB, in terms of the input parameters α, η, and µδ for a specified
field structure.

It can be seen that by using equations (80)–(82) the ratio of
angular momentum of the field to the flow becomes

(wAM)A =
1

νAM
2
A
. (86)

Also, the ratio of the Poynting energy flux to the kinetic energy
flux reduces by equations (67)–(69), (79), and (53) to

wA =
1

1 + νA

ζA

ζB − ζA
=

1
1 + νA

1−M2
A

M2
A

. (87)

For wA < 1 to hold at SA, one has the condition that M2
A >

1/(2 + νA) or equivalently α2� 2
A/c

2 < (1 + νA)/(2 + νA). It
will, however, be shown later (see subsection 5.4) that the
surfaces of equipartition of energy flux and angular momentum
between the field and the flow, i.e., w = 1 and wAM = 1, are in
the asymptotic domain of � 2 �� 2

A. In ultrarelativistic winds
with ζB � ζA or M2

A � 0, one finds wA � 1.

(iii) The light surface SL: α�L/c = 1, where D(�L) = M2
A.

From equations (56) and (69) one obtains

M2
A

M2
L

=
ζL

ζB
< 1. (88)

Also, from equations (51) and (61)–(64)

γL = µε

(
1− ζL

ζB

)
, (89)

(γ � vt)L = µε α� 2
A −µε α� 2

L
ζL

ζB
, (90)

IL

2πηc
= µε α� 2

L
ζL

ζB
. (91)

Further, from equations (67) and (71) one obtains by using
relations (53), (68), and (69)

wL =

ζL

ζB

1− ζL

ζB

, (wAM)L =

ζL

ζA

1− ζL

ζA

, (92)

and if ζL < ζA < ζB < 2ζL, then wL > 1 and (wAM)L > 1.

(iv) The “pure Alfvénic surface” (see Okamoto 1978): SpA
is defined by M2 = 1, and using equations (53) and (56) one
obtains

ζpA

ζA
=
� 2

pA

� 2
A

(
1− α2� 2

A

c2

)
< 1. (93)

From equations (60), (61), (62), (64), and (93), D(�pA) =
(α2� 2

pA/c
2)[1− (α2� 2

pA/c
2)], and

γpA = µε
� 2

A

� 2
pA
, (94)

(γ � vt)pA = µε α� 2
A

[
1−
(

c2

α2� 2
pA

)(
� 2

pA

� 2
A

− 1

)]
, (95)

IpA

2πηc
= µε α� 2

A

(
c2

α2� 2
pA

)(
� 2

pA

� 2
A

− 1

)
. (96)

It turns out from a comparison of equations (89) and (94) and
using equation (88) that

�L ��pA ⇐⇒ � 2
A

� 2
pA

+
M2

A

M2
L

� 1. (97)

For the nonrelativistic limit of�L →∞,M2
L �M2

A and� 2
pA →

� 2
A.
It is needless to say that not only the light surface, but

also the pure-Alfvénic surface, are not critical surfaces in the
relativistic MHD wind theory.

(v) The surface Sa is rather vaguely defined as the innermost
surface along each field line of the asymptotic domain of
� 2

A � � 2
A � � 2 <∞. That is, Sa is introduced as a conve-

nient way of clarifying the asymptotic behavior of the physical
quantities. Note, however, that there is no sharp boundary
of physical meaning between the asymptotic and subasymp-
totic domains. In this domain of S � Sa, the terms of order
higher than� 2

A/�
2 may be dropped in every physical quantity,

if one remarks that this produces an effect that the indepen-
dent variable � disappears in the domain, and it is instead
the magnetization parameter, σ (�,P ), that plays a role as a
of coordinate variable. It then turns out that every quantity
is a two-valued function of σ , that is, there are two branches,
physical and unphysical (see subsection 5.1 later). The two
branches must cross each other like an X at the fast surface, SF,
which must exist in the vicinity of Sa (see subsection 5.2).

(vi) The fast magnetosonic surface, SF: It is certain that there
exists no superfast region in the subasymptotic domain of
S < Sa, whereas by definition the coordinate variable �F used
to fix that point of�F disappears in the asymptotic domain with
S � Sa. It thus turns out that one must retain the terms with the
lowest order of � 2

A/�
2 in S � Sa, thereby enabling one to fix

the location �F of SF in terms of the gradient of σ (�,P ). It
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is easily conceivable that if σ = constant, �F → ∞. It can be
shown that SF must be situated at the innermost distances of
S � Sa, that is, the asymptotic domain must almost coincide
with the superfast domain, itself, i.e., SF ≈ Sa (see subsec-
tion 5.2).

(vii) The equipartition surfaces, SEQ, Seq: One can define an
equipartition surface, SEQ, where the Poynting energy flux
equals the kinetic energy flux, and γEQ = µε/2, by setting
wEQ = 1 in equation (67). One then obtains from equations (60)
and (61)

1− � 2
A

� 2
EQ

=

(
1− α2� 2

A

c2

)
(

2
α2� 2

A

c2 − 1
) ( ζA

ζEQ
− 1
)
. (98)

The equipartition surface of the total angular momentum,
−β/4πη = µε α� 2

A, between the field and the flow is given
by the condition wAM = 1 in equation (71), i.e., (� ut)eq =
µε α�

2
A/2c, and then by equations (60) and (63)

1− � 2
A

� 2
eq

=
(

1− α2� 2
A

c2

)(
ζA

ζeq
− 1
)
. (99)

It will be shown later (see subsection 5.4) that Sa ≈ SF <SEQ <

Seq, that is, it is beyond SF that the equipartition of energy or
angular momentum is achieved.

(viii) The “sphere-at-infinity”, S∞: We define S∞ as a physical
sphere at infinity where no Poynting flux reaches. One of the
purposes of this paper is to show within the framework of ideal
MHD that it is possible, in principle, that all of the Poynting
flux from the star is converted to kinetic flux by the ongoing
work of the Lorentz force upon the mean flow. This should be
ensured by the centripetal cross-field inertial force containing
the curvature radius, 1/R, in balance with the Lorentz force in
the asymptotic domain. It is then necessary to take �/R→ 0,
I → 0, and σ → 0 into account as the “regularity condition” at
S∞, already given in equations (11), (29), and (75).

In a real situation, like the Crab pulsar wind, one must of
course consider the existence of the nebular surface, SN, before
reaching infinity, and take into account interactions of the cold
wind with the surrounding medium or nebula in the region
probably far from SF on the way to S∞. However, in such
various processes as, e.g., the collision of the superfast wind
with the medium, the dissipating surface current on the shock
surface, etc., will not affect the upstream field-flow structure.
These phenomena of great interest are beyond the scope of this
paper. Then at S∞, by the “regularity conditions” given in
equations (11) and (75), one has the following results along
the physical branch:

γ → µε, � ut → µε
α� 2

A

c
,

2I
cζ

→ µε

µδ
, (100)

and also w→ 0 and wAM → 0, all of which indicate that all of
the quantities at S∞ are determined by the initial values at SB
and the eigenvalues at SF.

Distinguished from S∞, we introduce another sphere at
infinity for the split-monopolar field structure where the finite
Poynting flux reaches as denoted with the pseudo-force-free

sphere-at-infinity, Spff∞ (see Okamoto 2006). As is well
known, if one assumes � Br = constant, then Φ = constant and
σ = constant. This implies that without being fully consumed in
the flow acceleration, the Poynting flux is carried to “infinity”,
i.e., Spff∞. Thus, it is not a good approximation to assume the
split-monopolar field structure with�Br =constant, not only in
the neighborhood of the star where the field is so strong that the
curvature of field lines is important, but also even in the asymp-
totic domain where the particle inertia is certainly large, but
MHD interactions are still ongoing through the inertial curva-
ture term (see section 6).

As long as the steady state is assumed for axisymmetric
MHD winds, the “current-closure condition” must be assumed,
that is, no snapping of current lines. Any current line must
emanate from one terminal of the unipolar battery given in
equation (15) and return to the other terminal, converting the
Poynting flux to the kinetic flux by the Lorentz volume force. If
some current line extends to infinity in some (e.g., force-free)
model, the surface current must be introduced on the (force-
free) sphere-at-infinity, connecting it with the return current
line. Any model with current lines extending to infinity, left
as it is, will be incomplete in the steady state (see Okamoto
2006).2

4. Quadratic Equation for the Axial Distance, the Slope
of ζ , and the Transfield Equation

4.1. Quadratic Equation for the Axial Distance

We express up in terms of ζ and σ from equation (74) as

up =
4πηµδ c2 σ

α ζ
=
ζB − ζA

ζ
σ. (101)

From equations (60) and (68)

D =
(

1− ζA

ζB

)[
1 +
(

1− c2

α2� 2

)
ζ

ζB − ζA

]
. (102)

Thus, from equations (63) and (64) one obtains

I =
cζ

2D

(
1− � 2

A

� 2

)
. (103)

We also make full use of an identity relation,

γ 2 = 1 + u2
p + u2

t . (104)

Then, substituting equations (61) and (63) into equation (104),
one obtains

(1 + u2
p)D2

= µ2
δ

[(
1− � 2

A

� 2

ζ

ζA

)2

− α2� 2
A

c2

� 2
A

� 2

(
1− ζ

ζA

)2
]
. (105)

Then from equations (102) and (105) one obtains the Bernoulli
equation for a relativistic outflow in an algebraic form,

A
� 4

� 4
A

+ B
� 2

� 2
A

+ C = 0, (106)

(see Michel 1969; Okamoto 1978), where

2 This paragraph is added to reply to the referee’s request.
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A = µ2
ε − (1 + u2

p)
(

1 +
ζ

ζB − ζA

)2

, (107)

B = −µ2
ε

[
2ζ
ζA

+
ζ 2

A

ζ 2
B

(
1− ζ

ζA

)2
]

+ 2(1 + u2
p)

ζB

ζB − ζA

ζ

ζA

(
1 +

ζ

ζB − ζA

)
, (108)

C =

[
µ2
ε − (1 + u2

p)
(

ζB

ζB − ζA

)2
](

ζ

ζA

)2

, (109)

and for a given σ , up is related to ζ by equation (101). The
discriminant of equation (106) becomes

B2 − 4AC = 4µ2
ε

ζ 2
A

ζ 2
B

(
1− ζ

ζA

)2

×
{
µ2
ε

[
ζ

ζA
+
ζ 2

A

4ζ 2
B

(
1− ζ

ζA

)2
]

−(1 + u2
p)

ζB ζ

ζA(ζB − ζA)

(
1− ζ

ζA

)}
. (110)

As is usually done in the cold-wind approximation, we
have neglected the gas pressure as well as gravity. Therefore,
contrary to the nonrelativistic case, one can explicitly set up a
quadratic equation for � 2/� 2

A. But notice that coefficients A,
B, and C are functions of not only P through µε , ζB, and ζA,
but also of ζ and σ through up in equation (101), and hence
these coefficients are weakly dependent on � through σ for a
fixed field line.

Solving the quadratic equation (106), one can obtain the
two values of (�/�A)2 in terms of ζ or up. One may then
conversely have ζ = ζ (� 2) or up = up(� 2) for each field line.
If σ = constant is assumed, as is so often done, e.g., like a split-
monopolar field, then A, B, and C are not dependent on � ,
even weakly.

However, in real situations the situation is much more
complicated. We may suppose that the field structure, e.g.,
σ = σ (�,P ) is given in a first step of iterations, so that µε,
ζA, and ζB can be obtained as eigenvalues by solving the “criti-
cality problem” at SF for each field line. Then, substituting
up from equation (101) into A, B, and C in equations (107)–
(109), which are dependent weakly on� through σ , one needs
to solve the quadratic equation for � 2/� 2

A in terms of ζ by
suitable iteration, and finally obtains ζ = ζ (� ;P ) and then
up = up(� ;P ). It turns out (see subsubsection 5.2.2) that this
weakly dependent part of ζ on � per se is most essential for
locating SF near Sa, and thereby achieving MHD acceleration
in the asymptotic domain of S � Sa ≈ SF.

4.2. Slope of ζ

In order to solve the “eigenvalue problem”, one requires the
flow to pass smoothly through the critical surfaces at finite
distances. For this purpose, one needs to calculate the slope
of physical quantities, e.g., ζ as follows:

∂ lnζ
∂�

=
N
D , (111)

D ≡ u2
pD−µ2

δ

ζ

ζB

(
2I
cζ

)2

= u2
pD− γ 2 ζ

ζB


 1− � 2

A

� 2

1− c2

α2� 2

ζ

ζB




2

, (112)

N ≡
(
u2

p
∂ lnσ
∂�

− u2
t

�

)
D + 2µδ

cut

α� 2

ζ

ζB

(
2I
cζ

)
(113)

(see appendix 2 for derivation). At SA, using equations (82)
and (83), one obtains from equations (112) and (113)

N (�A) = −2νA

�A
D(�A)

=
2νA

�A

µ2
δ

α2� 2
A

c2[
1 + νA

(
1− α2� 2

A

c2

)]2 . (114)

Substituting equation (114) into (111) at SA, one can easily
reproduce the definition of νA in equation (79). From
equations (101), (102), and (103) one can also show that

D = −u2
p
� 2

A

� 2

ζ

ζA

(
1− 4πρ γ κ2 − α2� 2

c2 +
B2

t

B2
p

)
(115)

[see equations (2.18a, b) and (2.19a, b) in Okamoto (1978)].
The condition D(� ) =N (� ) = 0 yields the criticality condition
at the fast magnetosonic surface, SF, through which the flow
should smoothly pass.

4.3. Transfield Equation

The curvature, ∂ψ/∂s =1/R, along each field line is a crucial
quantity to judge whether the flow does collimate or decolli-
mate, similarly in the nonrelativistic case. The equation deter-
mining 1/R is the transfield component of the RMHD equation
of motion, which is expressed in terms of the balance of various
forces in the cross-field direction, as shown in equation (36).
This becomes from equations (19) and (52)(

1−M2 − α2� 2

c2

)
1
R

=
∂ lnBp

∂n
−M2 u

2
t

u2
p

∂ ln�
∂n

+
B2

t

B2
p

∂ ln�Bt

∂n
− α2� 2

c2

∂ lnBpα�
2

∂n
. (116)

It is not difficult to derive equation (116) from Chiueh, Li,
and Begelman’s (1991) equation (11). The quantities related
to 1/R are jt and �e, and from equations (20) and (24) one
obtains
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(
1−M2 − α2� 2

c2

)(
4πjt

cBp

)

= −M2 ∂ lnBp

∂n
+ M2 u

2
t

u2
p

∂ ln�
∂n

− B2
t

B2
p

∂ ln�Bt

∂n

+
α2� 2

c2

∂ lnα� 2

∂n
(117)

and(
1−M2 − α2� 2

c2

)(
4π�e

Ep

)

= −M2 ∂ lnBp

∂n
+ M2 u

2
t

u2
p

∂ ln�
∂n

− B2
t

B2
p

∂ ln�Bt

∂n

+ (1−M2)
∂ lnα� 2

∂n
. (118)

At SA, the bracket of the left-hand side of equation (116)
vanishes, and to avoid a kink, i.e., R = 0, one must impose the
right-hand side to vanish as well. To determine RA, (�e)A, and
jtA, one must use l’Hôpital’s rule for equations (116)–(118).

For later convenience, we rewrite the square bracket
of equation (36), which yields the last two terms of
equation (116). Utilizing equations (55), (61), (63), (103),
and (104), it can be shown that

I 2 −
(
αΦ
2

)2

=
c2

4
� 2 (B2

t − |E|2)

=
c2

4
ζ 2

µ2
δ

(
1− µ2

δ

D2

� 2
A

� 2

(
1− ζ

ζA

)

×
{

2− α2� 2
A

c2

[
1− ζ

ζA
+

c2

α2� 2

(
1 +

ζ

ζA

)]})
, (119)

which must of course be positive , i.e., � 2 (B2
t − |E|2) > 0.

Note that in the asymptotic domain of � 2 �� 2
A,

I 2 −
(
αΦ
2

)2

≈ c2

4
ζ 2

µ2
δ

, (120)

and (2I/cζ )2
∞ = (αΦ/cζ )2

∞ + 1/µ2
δ = µ2

ε/µ
2
δ for � → ∞|P

[see equation (100)].

5. The Asymptotic Domain and the Fast Surface Sa

We denote the innermost surface of the asymptotic domain
of� 2 �� 2

A rather vaguely with Sa and� =�a(P ); the suffix
“a” is attached to quantities in this domain, like Da, Da, etc.3

A careful and subtle treatment is necessary for locating the fast
surface, SF, in the cold-wind approximation in the neighbor-
hood of Sa, because Sa ≈ SF, like in the case of nonrelativistic
winds (see Paper III).

3 Contrary to Chiueh, Li, and Begelman (1991), Eichler (1993), and
Tomimatsu (1994), who defined the asymptotic domain as in � � �L,
we utilize the domain as defined above, because the “asymptotic domain”
should not lose its physical meanings even in the nonrelativistic limit of
c→∞.

5.1. Flow Properties in the Asymptotic Domain

5.1.1. Solution for w = w(σ )
In the asymptotic domain with � 2

A/�
2 � 1 we use the

nondimensional variable w instead of ζ , where both quantities
are related by equations (67) and (69) as

w =
ζ

ζB − ζA
=

ζ

M2
A ζB

. (121)

Then, one obtains from equations (61), (63), (102), and (103)

γ =
µδ

Da
=

µε

1 + w
, (122)

� ut = µε
α� 2

A

c

1
1 + w

[
1−
(
ζB

ζA
− 1
)
w

]
, (123)

I =
c

2
ζ

Da
=
c ζB

2
w

1 + w
, (124)

where from equations (102) and (69) one obtains

Da =
(

1− ζA

ζB

)
(1 + w) =M2

A(1 + w). (125)

The ratio of the field angular momentum to the flow angular
momentum becomes from equations (71) and (121)

wAM =
ζB

ζA

w

1−
(
ζB

ζA
− 1
)
w

. (126)

The quadratic equation (106) reduces simply to A≈ 0 in the
asymptotic domain and then from equations (107) and (122)

up ≈
√
γ 2 − 1 =

√
µ2
ε

(1 + w)2 − 1. (127)

This form can also be derived from equations (122) and (104)
with the condition u2

p ≈γ 2−1�u2
t . Then, from equations (74)

and (127)

σ =wup =w

√
µ2
ε

(1 + w)2 − 1 (128)

[see equation (3) in Paper IV], which can also be derived
from equations (73) and (120) for � 2 � � 2

A. The nonrela-
tivistic version of equation (128) is given by equation (A39) in
appendix 4.

It is worth remarking here that the coordinate variables �
and z disappear in the above expressions for the asymptotic
behavior of the variables. It is Φ or σ that plays the role of an
independent variable in the asymptotic domain. Keeping this
fact in mind, let us clarify the flow properties in the asymptotic
domain.

By solving w = w(σ ;µε) as a function of σ (� ;P ) from
equation (128), we can determine all other variables (ζ , γ , etc.)
in terms of w(σ ) by equations (121)–(124). Differentiation of
w with σ yields

dw

dσ
=
σ

w

(1 + w)
Fa(1 + w)

, (129)

where
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Fig. 4. Schematic figure of w(σ ) = ζ/(ζB − ζA), as given by
equation (128) in the asymptotic domain. The two branches join with a
vertical slope at the critical point. To connect the solution causally with
that in the subasymptotic domain, one must transform the critical point
to an X-type point, taking the weak dependence of, e.g., ζ on � 2

A/�
2

into account. See figure 2 in Paper III for the nonrelativistic case.

Fa(x) =
µ2
ε

x2 − x. (130)

Note that Fa(x) � 0 for x � µ2/3
ε . As shown in figure 4,

the algebraic equation (128) for w = w(σ ) has two branches.
The upper branch expresses the unphysical solution, yielding
w = µε − 1, γ = 1, and up = 0 at σ = 0, whereas the lower one
gives the physical branch withw = 0, γ =µε, and up =

√
µ2
ε − 1

at σ = 0. The two branches join at σ = σF =w3/2
F and w =wF ≡

µ2/3
ε − 1. It must be remarked here that there is no other point

at which the two branches cross each other in the region of
σ <σF, and this implies that σ =σF =w3/2

F = (µ2/3
ε −1)3/2 corre-

sponds to the fast surface, SF, and the domain of 0 ≤ σ ≤ σF
is nothing but the superfast domain. Simultaneously we must
note that the solution of w =w(σ ) possesses a vertical tangent,
(dw/dσ )F = ±∞ at σ = σF. This implies that the two branches
cannot constitute an X-type critical point, and that there is no
solution in the region σ > σF. To connect the physical solution
for σ <σF smoothly with the solution upstream for σ >σF, one
must consider the criticality condition at SF rigorously with the
weak dependence of the variables on� in the neighborhood of
Sa (see subsection 5.2).
5.1.2. Solution for γ = γ (σ )

Concerning the relation between γ and σ , equations (122)
and (128) similarly give

σ =
(
µε

γ
− 1
)√

γ 2 − 1,
dγ

dσ
=

√
γ 2 − 1
Fa(γ )

. (131)

One can then depict such a picture as figure 4 with an infinite
gradient at σ = σF (see figure 5, and figure 1 in Paper IV). It
is seen that dγ/dσ < 0 for the physical branch with µε ≥ γ ≥
µ1/3
ε . It is easy to obtain equation (4.3a) in Paper III, by taking

the nonrelativistic limit of equation (131).
Because Φ, and hence σ , are decreasing functions of s or

Fig. 5. Schematic picture of γ = γ (σ ), as given by equation (131).
The upper branch stands for the physical solution with γ∞ = µε , and
the lower stands for the unphysical solution with γ → 1. Note that both
branches join at the fast magnetosonic point with an infinitely steep
gradient. To connect the two solutions to those in σ > σF, one must
modify the solutions to possess an X-type geometry in the vicinity of
SF. See figure 1 in Paper IV.

� |P , one can expect ongoing acceleration down to infinity,
with the extremum values of γ → µε and � vt → α� 2

A, i.e.,
w =wAM = 0. This implies complete transfer of the field energy
to the flow energy. This is ensured by j⊥ > 0 in the asymptotic
domain, because one obtains from equations (18), (121), (124),
and (128)

j⊥ = − c ζB

4π�
1

(1 + w)2

∂w

∂s
∝−∂σ

∂s
> 0. (132)

Remember that we are presuming that ζ is a slowly decreasing
function of � |P or s. This is a natural reflection of the
presumption that Φ or σ is a slowly decreasing function of� |P
or s, so that all quantities in the asymptotic domain change
slowly with � , like w and γ .

5.2. The Criticality Condition at SF

The fast surface SF is formally defined as a surface
consisting of the magnetosonic critical points through which
the flow passes smoothly without becoming singular; this
surface is given by the conditions D = N = 0 in equation (111).
Similarly in nonrelativistic cases, the fast surface will show
up somewhere between the subasymptotic domain where those
terms on order of � 2

A/�
2 are significant, and the asymptotic

domain where they are negligible with σ playing the role of an
independent variable, instead of � , that is, SF ≈ Sa.

It is shown above that all of the physical quantities, such as
w, ζ , γ , I , etc., are expressible as a two-valued function of
σ in the asymptotic domain [see subsection 6.2 for I = I (σ )],
but have no values in the subasymptotic domain with σ > σF,
where all quantities are dependent on not only σ , but also the
coordinates � and z explicitly. In order to connect the above
solutions to those upstream in σ > σF, avoiding divergence
at σ = σF, one must naturally take the � 2

A/�
2 terms so far

neglected explicitly into account in the neighborhood of Sa in
equation (111).
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In the asymptotic domain, D in equation (112) reduces from
equations (122), (125), and (127) to

Da = u2
pDa − γ 2 ζ

ζB
=
(

1− ζA

ζB

)
Fa

(
µε

γ

)
, (133)

where Fa(x) is given by equation (130). On the other hand, N
becomes by equations (69), (113), (121), and (123)–(125)

�Na

Da
= u2

p
∂ lnσ
∂ ln�

− u2
t + 2µδ

cut

α�

1
D2

a

ζ

ζB

= u2
p
∂ lnσ
∂ ln�

+ µ2
ε

� 2
A

� 2Ga, (134)

where

Ga(w) =
w

(1 + w)3

[
1−
(
ζB

ζA
− 1
)
w

]

×
[

(w + 3)− ζA

ζB

(w + 1)2

w

]
. (135)

In the above derivation of Da, we may well neglect the term u2
t

in γ in equation (112), and hence all terms of order O(�−2).
But for Na to vanish somewhere near Sa, one must take into
account the terms with an order of O(�−2) through ut in
equation (134). This is of crucial importance to locate the SF at
correct distances, �F, and to connect the asymptotic solutions
causally to the solutions upstream, by making the points into
X-type critical points.
5.2.1. The eigenvalues

By imposing Da = 0 or Fa(µε/γ ) = 0 in equations (133),
(122), and (130), as already shown in subsection 5.1, we obtain

γF = µ1/3
ε , (136)

ζF

ζB
=
(

1− ζA

ζB

)
(µ2/3

ε − 1), (137)

wF = γ 2
F − 1 = µ2/3

ε − 1. (138)

Then from equations (125), (137), (51), and (68)

ζF =
4πηµδ c2

α
(γ 2

F − 1), (139)

utF =
c

α�F
(µ1/3

ε −µδ), (140)

IF =
c ζB

2

(
1− 1

γ 2
F

)
(141)

[see equation (157) for �F]. The angular momenta of the field
and the flow at SF become

IF

2πηc
=
µε c

2

α

(
1− 1

γ 2
F

)
, (142)

(γ � vt)F = µε α� 2
A − µε c

2

α

(
1− 1

γ 2
F

)
. (143)

From equations (73), (74), (121), (127), and (138), we obtain
the magnetization parameter at SF,

σF =
α2 ΦF

4πηc3 =
ζFupF

ζB − ζA
= (γ 2

F − 1)3/2, (144)

or conversely

γ 2
F = 1 + σ 2/3

F . (145)

Also, from equation (138)

wF = σ 2/3
F . (146)

From equations (142) and (143), or from equations (71)
and (137) one obtains for the ratio wAM at SF

(wAM)F =
µ1/3
ε (µ2/3

ε − 1)

µ
1/3
ε −µδ

=
σ

2/3
F

1− µδ√
1 + σ 2/3

F

. (147)

The location of SA is thus determined using equations (136),
(145), and (73) as

α2� 2
A

c2 = 1− µδ

(1 + σ 2/3
F )3/2

= 1− µδ[
1 +
(
α2 ΦF

4πηc3

)2/3
]3/2 (148)

[see appendix 4 for the nonrelativistic limits of ζF, utF, and IF
in equations (139)–(141) and �A in equation (148)].

Then, the eigenvalue −β = ζA becomes from equations (58),
(69), and (148)

−β = ζA =
4πηc2

α



[

1 +
(
α2 ΦF

4πηc3

)2/3
]3/2

−µδ


 , (149)

which reduces to (α/c) ΦF for η → 0 in the force-free limit
and to equation (4.13) in Paper III for the limit of c → ∞
[see equation (10.1a) in Okamoto (1978); see also Okamoto
(2006)].

Following Michel (1969), we normalize the total angular
momentum per unit flux tube by α� 2

0 at SF from equations (72)
and (73),

λF ≡ µε α�
2
A

α� 2
0

=
µδ

σF

α2� 2
A

c2

1− α2� 2
A

c2

, (150)

or conversely

α2� 2
A

c2 =
σFλF

µδ + σFλF
. (151)

One then obtains from equations (51) and (145)

γ 3
F = (1 + σ 2/3

F )3/2 = µε =
µδ

1− α2� 2
A

c2

= µδ + σFλF. (152)

Equation (148) gives � 2
A explicitly in terms of α, η, µδ ,

and ΦF. Thus, � 2
A can be determined by fixing ΦF at SF,

as described in the next subsubsection. Then, substituting
equation (151) into (150) gives

λF =
(1 + σ 2/3

F )3/2 −µδ
σF

, (153)
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and also from equations (139) and (152)

ζF

ζB
=

µδ σ
2/3
F

(1 + σ 2/3
F )3/2

. (154)

For the ultrarelativistic case of σF � 1 or the force-free limit
of η → 0 with α2� 2

0 /c
2 � 1, then λF � 1, µε � σF � 1,

α2� 2
A/c

2 � 1, ζA/ζB � 1−µδ/σF and ζF/ζB �µδ/σ 1/3
F . Thus,

(wAM)F ≈ wF � 1. Negligible angular momentum has been
transferred from the field to the flow down to SF.
5.2.2. The location of the fast surface SF

To determine the location of SF, itself, in the present asymp-
totic formalism, we must make use of equation Na = 0 with the
terms of order � 2

A/�
2 retained. From equations (134)–(138),

one then obtains the most crucial condition,(Na

Da

)
F

= (γ 2
F − 1)

(
∂ lnσ
∂ ln�

)
F

+ µ2
ε

� 2
A

� 2
F
Ga(wF) = 0,

(155)

where

Ga(wF) =
(γ 2

F − 1)
γ 6

F

[
1−
(

1− ζA

ζB

)
γ 2

F

]

×
[

(γ 2
F + 2)− ζA

ζB

γ 4
F

γ 2
F − 1

]
. (156)

Thus, by using equations (156) and (136), the gradient of lnσ
at SF is given by equation (155) as

α2� 2
F

c2 = γ 2
F (γ 2

F − 1)



α2� 2

A

c2

1− 1
γ 2

F

− 1




×


 2
γ 2

F
−



α2� 2

A

c2

1− 1
γ 2

F

− 1





∣∣∣∣∂ ln�
∂ lnσ

∣∣∣∣
F

(157)

(see appendix 4 for the nonrelativistic limit of � 2
F ). This is

the critical condition by which one can locate the fast surface,
SF, where the steady axisymmetric outflow must smoothly pass
through in the prescribed field structure, and therefore to deter-
mine the eigenvalues of the flow parameters in terms of input
values of α, η, and µδ given at the source surface as the
boundary conditions. That is, by inserting γF and� 2

A/�
2
L from

equations (145) and (148) into (157), we obtain one equation
to determine the eigenvalues σF and �F self-consistently from
the prescribed field structure with σ = σ (� ;P ).

For the present formalism to be valid, not only condition
(γ � vt)F > 0 holds in equation (143), but also the square
brackets on the right-hand side of equation (157) must be
positive; that is, one obtains(

1− 1
γ 2

F

)
<
α2� 2

A

c2 <

(
1− 1

γ 2
F

)(
1 +

2
γ 2

F

)
. (158)

Equation (158) is one of the necessary conditions for the
presence of SF. If γ 2

F > 2, the upper limit of α2� 2
A/c

2 is given
by unity.

Begelman and Li (1994) numerically calculated δF ≡
(d lnσ/d ln� )F in terms of tF ≡ (α�F/c)−1 for three different
values of w = 10, 102, and 105. Their figure 2(a) seems to
well depict the relation analytically given in equation (157).
Takahashi and Shibata (1998) adopted Φ ∝ �−0.4, i.e.,
(∂ lnσ/∂ ln� )P = −0.4, to show that a transfast MHD wind
is possible (see also subsection 6.5).

Thus, (� 2
F /�

2
L) |∂ lnσ/∂ ln� |F is finite at SF, by equa-

tion (157). If one assumes the split-monopolar structure, as
has often been done so far (see, e.g., Michel 1969; Goldreich,
Julian 1970), then (∂ ln σ/∂� )P = 0 everywhere, and hence
one must take � 2

F → ∞; that is, one must regard SF as being
at infinity. There is, however, no physical reason to have to
a priori suppose that (∂ lnσ/∂ ln� )F = 0 and � 2

F → ∞. In
Okamoto (1978), we mistakenly took � 2

F → ∞, in spite of
presuming a “general” field with (∂ lnσ/∂ ln� )F �= 0. No radial
field model can accommodate SF at finite distances for cold
winds.

5.3. The Gradients of ζ , w, etc., at SF

The gradient of each quantity in all of the wind domains of
SB � S � S∞ can in principle be related to

ν ≡− ∂ lnζ
∂ ln� 2 = −�

2
N
D , (159)

except for the critical surfaces, where both D and N in
equations (112) and (113) vanish, and one must use l’Hôpital’s
rule. As shown so far, independent coordinate variables �
and z in the asymptotic domain of S � Sa appear through
the quantity σ only, under the assumption of magnetic fluxes
continuously extending from SB to S∞. It is thus possible to
apply the asymptotic formalism, not only to fix the location of
SF, but to fix the gradient νF at SF, as follows.

From the criticality condition Na =0 at SF, the equation (157)
has been obtained between the location of SF, � = �F, and
the gradient of σ there. For both the physical and unphysical
solutions of w =w(σ ) in σ <σF to pass smoothly through SF to
join those in σ > σF, one must determine the finite gradients of
(∂ lnw/∂ lnσ )F, by applying l’Hôpital’s rule to equation (111);
that is, one must use at SF

∂ lnζ
∂�

∂Da

∂�
=
∂Na

∂�
, (160)

where Da and Na are given in equations (133)–(135). After
some manipulation (see appendix 3), one arrives at a quadratic
equation for (∂ lnw/∂ lnσ )F or (∂ lnζ/∂ lnσ )F, which reads(

∂ lnζ
∂ lnσ

)2

F
− 2K1

(
∂ lnζ
∂ lnσ

)
F

+ K2 = 0, (161)

K1 ≡ 1
2

+
γ 2

F

3
− 1

6

ζA

ζB
γ 2

F

1−
(

1− ζA

ζB

)
γ 2

F

+
γ 2

F

6

1 + 2
(

1− ζA

ζB

)
γ 2

F

γ 2
F + 2− ζA

ζB

γ 4
F

γ 2
F − 1

, (162)
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K2 ≡ γ 2
F

[
2
3

+
1
�

(
∂�

∂ lnσ

)
+

1
3

(
∂�

∂ lnσ

)2(
∂2 lnσ
∂� 2

)]
F

,

(163)

where we note that γF, ζA/ζB = α2� 2
A/c

2, (∂�/∂ lnσ )F, and
(∂2 ln σ/∂� 2)F are already known. It seems likely that the
absolute value of the second term in the square bracket forK2 is
larger than the other two terms, and henceK2<0. We may thus
expect K2

1 −K2 > 0, ensuring that there are two real roots in
equation (161) (see subsection 6.5 for a ultrarelativistic wind).

Solving the quadratic equation (161), one obtains two values
of the slope, νF ≡ −(∂ ln ζ/∂ ln� 2)F = −(∂ ln ζ/∂ ln σ )F ×
(∂ lnσ/∂ ln� 2)F, with a positive sign for the physical branch
and a negative one for the unphysical solution [cf. νA in
equation (84)]. The sign for the slope of γ or up is opposite
to that of ζ between these two branches.

5.4. The Equipartition Surfaces, SEQ and Seq

One of our main concerns in MHD outflows is MHD acceler-
ation, that is, how efficiently the magnetic energy and angular
momentum are transferred to those of the flow. One of the
parameters used to measure the efficiency is the ratio w or
wAM. Thus, the locations of SEQ where w = 1, and Seq
where wAM = 1 have physical meanings. From equations (146)
and (147), one obtains (wAM)F > wF = σ 2/3

F = γ 2/3
∞ − 1, which

indicateswF> or � 1 for γF> or �√
2; that is, for example,

the Poynting flux is still much larger than the kinetic flux at SF.
Thus, the two surfaces SEQ and Seq are located far beyond SF
in the asymptotic domain.

From equations (98), (67), and (68), for � 2
EQ � � 2

A, one
obtains

ζEQ = ζB − ζA = ζB
µδ

µε
=

4πηµδ c2

α
. (164)

The ratio of ζEQ to ζF becomes from equations (139) and (164)

ζEQ

ζF
=

1

µ
2/3
ε − 1

=
1

γ
2/3∞ − 1

, (165)

and hence ζEQ < or � ζF. Also, by putting wEQ = 1, from
equations (122), (123), (124), (126), and (128)

γEQ =
µε

2
, (166)

(wAM)EQ =
1

2
ζA

ζB
− 1

=
1

1− 2
µδ

µε

> 1, (167)

σEQ =

√
µ2
ε

4
− 1. (168)

The ratio (wAM)EQ is still larger than unity at SEQ. Thus, one
sees that γEQ = γ 3

F /2 > or � γF from equation (136), which
means SEQ > or � SF.

From equation (71) for wAM = 1 one obtains for � 2
eq �� 2

A

ζeq = ζA

(
1− ζA

ζB

)
(

2− ζA

ζB

) = ζEQ

(
1− µδ

µε

)
(

1 +
µδ

µε

) . (169)

Then, by substituting ζ = ζeq from equation (169) into (121),
one obtains

weq =

ζA

ζB

2− ζA

ζB

= 1− 2µδ
µε + µδ

< 1, (170)

and then from equations (122) and (128)

γeq =
1
2

(µε + µδ), (171)

σeq =
µε −µδ

2

√
1−
(

2
µε + µδ

)2

. (172)

Thus, ζEQ > ζeq, which means that �EQ <�eq; in other words,
the equipartition of energy is accomplished earlier than that of
angular momentum.

The actual axial distances, �EQ, and �eq, must be sought
not from equations (67) and (71), but from equations (168)
and (170) for a specified or solved function, σ = σ (�,P ), in
this asymptotic formalism.

6. Transfield Force Balance in the Asymptotic Domain

It is argued in the previous section that the flow proper-
ties in the asymptotic, superfast domain can be described in
terms of the magnetization parameter, σ (�, P ). One can
estimate various quantities as a two-valued function of σ . For
example, the ratio of the Poynting flux to the kinetic energy
flux, w, has two branches, physical and unphysical. Along
the physical branch, w decreases nearly linearly with σ , like
w � σ/√µ2

ε − 1 for σ → 0, by equation (128). To connect the
solutions in σ ≤ σF with those upstream in σ > σF, one must
rigorously treat the criticality condition with � 2

A/�
2, which

are taken into account in equation for Na = 0, at SF, because
SF is itself situated between the asymptotic domain and the
subasymptotic domain. To determine σ (�,P ), itself, one must
solve the equation describing the transfield force balance, i.e.,
the transfield equation (33) or (36), consistently with these flow
properties, yielding a decreasing σ (� ) for � →∞|P .

6.1. Properties of Transfield Force Balance

At first we derive the asymptotic forms for R, jt and �e from
equations (116)–(118) and (120). The following relations from
equations (52) and (124)–(127) are useful in the asymptotic
domain:

M2 =
ζB − ζA

ζ

α2� 2

c2 , (173)

M2 +
α2� 2

c2 ≈ α2� 2

c2

ζB

ζ
Da, (174)

ρ γ v2
p =

Φ2

4π� 4M
2, (175)

Bt

Bp
≈−α�

c

c

αΦ
ζ

Da
, (176)

α2Φ2

c2 ≈ ζ 2

D2
a
− ζ 2

µ2
δ

= u2
p
ζ 2

µ2
δ

. (177)
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We can then easily obtain from equations (116)–(118)

�

R
≈ c2

2α2Φ
1
Da

ζ

ζB

∂

∂P

ζ 2

µ2
δ

, (178)

1
c
jtBp ≈− Φ

8π� 3

c2

α2� 2

[
1
Da

ζ

ζB

∂

∂P

ζ 2

µ2
δ

+
α2Φ2

c2

∂ lnB2
p

∂P

]
,

(179)

�eEp ≈ Φ
8π� 3

[
(1− ζA/ζB)

Da

∂

∂P

ζ 2

µ2
δ

− ∂

∂P

ζ 2

D2
a

]
(180)

[see equation (A45) in appendix 4 for the nonrelativistic limit
of equation (178)]. Also, from equations (19) and (176)

1
c
j‖Bt = − Φ

8π� 3

∂

∂P
(� Bt)2 ≈− Φ

8π� 3

∂

∂P

ζ 2

D2
a
. (181)

Substitution of ∂(ζ 2/µ2
δ)/∂P from equation (178) and

∂(ζ 2/D2
a )/∂P from equations (181) into (180) reproduces the

original form of the force balance in the transfield direction;
that is,

ργ v2
p

R
≈ �eEp +

1
c
j‖Bt, (182)

which naturally coincides with the asymptotic expression (33),
because ργ v2

t |∂ ln�/∂n| and |jtBp/c|� |j‖Bt/c| and |�eEp|
by a factor of α2� 2/c2. Thus, similarly, equation (180) for �e
expresses the original force balance, itself. On the other hand,
dropping the term B2

p/4πρ γ v
2
p of the left-hand side as well as

the first two terms of the right-hand side in equation (36), gives

ρ γ v2
p

R

[
1 +

1
M2

α2� 2

c2

]

≈ 1
c
j‖Bt +

α2� 2

c2

B2
p

4π
∂

∂n
lnαBp�

2. (183)

Making use of equations (3), (4), (52), (55), and (124), one
can easily show that the two expressions in (182) and (183) are
equivalent to each other, and also one can derive equation (178)
from (183).

The curvature of a field line at SF becomes, when using
equations (136)–(139) and (144),

1
RF

=
c

α�F

√
γ 2

F − 1
γ 2

F

∂

∂P

(
ζ

µδ

)
F
, (184)

which indicates that because the fast surface must locate at
finite distances, the curvature radius is also finite there, and
therefore the field structure cannot be even locally radial. This
is consistent with the condition of ongoing acceleration, for
which field lines carrying energy/angular momentum must be
curved with finite curvature.

Finally, we give two more expressions for the transfield force
balance in the form of second-order partial differential equation
for P . Utilizing relations (4), (7), (68), (72), and (73), it is not
difficult to derive

∇2P −∇P · ∇ ln� |∇P |

=
1(

1 +
ζ

ζB − ζA

) σ

u3
p
∇P · ∇ ln

αΦ
cup

, (185)

where up is given in terms of ζ in equations (127) and (121).
The left-hand side of equation (185) is equal to |∇P |/R,
and the right-hand side is proportional to the magnetization
parameter, σ . If expression (8) is used for 1/R, the transfield
equation reduces to

∂

∂r

(
r2 ∂P

∂r

)
− 1

2sin2 θ

∂

∂P

(
�
∂P

∂r

)2

=
1

4πηα
1

3sin2 θ

∂

∂P

(
αΦ
cup

)3

=
1

4πηα
1

3sin2 θ

∂

∂P

(
ζ

µδ

)3

.

(186)

If P =P (θ ), obviously 1/R = 0 and αΦ/cup = ζ/µδ = constant.
It is worth emphasizing that the expressions given in

equations (178), (182), (183), (185), (186), and (193) are all
equivalent to each other for describing the field-flow topology
in the asymptotic domain. This means that even if one
does not necessarily seek a perfect solution to the second-
order partial differential equation (185), or (186), one may
be able to elucidate physically important properties of the
MHD acceleration-collimation/decollimation of outflows in
the asymptotic domain, as shown in the next subsections.

6.2. The Current Function and MHD Acceleration

Let us here consider the role of the current function, I , in the
asymptotic domain. All of the physical quantities of interest
can be made to be related to I . For example, w and ζ become
by equations (121) and (124) as follows:

w =

2I
cζB

1− 2I
cζB

, (187)

ζ = (ζB − ζA)

2I
cζB

1− 2I
cζB

. (188)

Then, from equations (128) and (187), a relation is obtained
between σ and I ,

σ = µε

2I
cζB

1− 2I
cζB

√(
1− 2I

cζB

)2

− 1
µ2
ε

. (189)

This expression describes the current distribution in the asymp-
totic domain as a function of the “independent variables” σ
and P (through ζB and µε). For example, a curve of I (σ,P ) =
constant depicts the topology of a “current line”, along which
the poloidal current jp flows in the domain of S � Sa. Also,
this gives the behavior of I as a function of σ for a fixed P ,
which is more or less similar to that shown in figures 4 and 5.
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Needless to say that, just like in an ordinary DC circuit,
every current line in the asymptotic domain must continu-
ally and causally be connected, beyond SF ≈ Sa, passing
through the Alfvénic surface, SA, to the unipolar battery on
the magnetospheric-base surface, SB, defined in equation (14).
However, as already shown, the solution of equation (189)
yields infinitely steep gradients at I = IF, where IF is the value
of I at SF, given by equation (141). In reality, differentiation
with σ yields

(
∂I

∂σ

)
P

=
I

σ

(
1− 2I

cζB

)[(
1− 2I

cζB

)2

− 1
µ2
ε

]
(

1− 2I
cζB

)3

− 1
µ2
ε

, (190)

which indicates (∂I/∂σ )F = ±∞ at I = IF and σ = σF. As done
in subsection 5.3, to connect the solutions of equation (189)
in the domain of S � Sa causally with those in the domain
of S < Sa, one must give finite gradients to the solutions, to
make an X-type crossing at SF, and to relate to the gradient
νF = −(∂ ln ζ/∂ ln� 2)F, as determined by the solutions of
equation (161). Using equation (188), one can relate the
gradient of (∂ lnI/∂ lnσ )F to νF as(

∂ lnI
∂ lnσ

)
F

=
1

µ
2/3
ε

(
∂ lnζ
∂ lnσ

)
F

= − νF

µ
2/3
ε

(
∂ ln� 2

∂ lnσ

)
F
. (191)

It thus turns out that equations (189)–(191), together with those
in section 5, describe the behavior of the current function,
I = I (σ ), along each field line in the domain from SF ≈ Sa to
S∞, when Φ or σ is given as a slowly decreasing function of s
or � |P .

Let us next examine how the acceleration of the flow is
coupled with the field/current topology. Substitution of αΦ/c
from equation (177) into equation (178) yields for k ≡ �/R

along each field line in terms of w and ζ

k ≡ �

R
=
c

α

w√
µ2
ε − (1 + w)2

∂

∂P

(
ζBw

µε

)
(192)

=

c

α

ζ

(ζB − ζA)√
µ2
ε −
(

1 +
ζ

ζB − ζA

)2

∂

∂P

(
ζ

µδ

)
. (193)

Also, expressing in terms of γ and I using of equations (121),
(122), and (124), equation (193) becomes

k =
c

α

(
1− γ

µε

)
√
γ 2 − 1

∂

∂P

[
ζB

µε

(
µε

γ
− 1
)]

(194)

=
c

µεα

(
2I
cζB

)
√(

1− 2I
cζB

)2

− 1
µ2
ε

∂

∂P


4πηc2

α

2I
c ζB

1− 2I
c ζB


 .

(195)

Note that k ≡�/R is in general a function of not only P , but

also s, through ζ , γ , or I and is hence closely related to the
magnetization parameter, σ .

It can be seen in equations (131), (189), (194), and (195)
that �/R → 0 for γ → γ∞ ≡ µε, I → 0, and σ → 0, or
conversely γ → µε, I → 0, and σ → 0 for �/R → 0. This
means that as the Poynting flux decreases outwardly together
with I , w, and ζ and the kinetic flux increases with γ , the flow
becomes more and more ballistic, and then field-streamlines
become more and more straightened, i.e., �/R → 0. This is
because, as a consequence of ongoing field-flow interactions
in the asymptotic domain, the magnetic energy is converted to
particle energy, which in turn makes particles more and more
ballistic, and hence field-streamlines are elongated (Okamoto
2003).

It is easy to show for the nonrelativistic limit of c→∞ that
equation (193) reduces to equations (6.11) and (6.12) in Paper I
and (3.9) in Paper II [see appendix 4 for the nonrelativistic limit
of equation (194)]. Also, �e in equation (180) becomes negli-
gible, because ζA/ζB → 0, Da → 1, and µδ → 1 in the limit of
c→ ∞ and the two terms cancel each other. Thus, there is a
continuous connection from the relativistic case to the nonrel-
ativistic case, or vice versa. Thus, if it is implausible that the
transfield component of the Lorentz force, j‖ Bt/c, vanishes
almost exactly in the nonrelativistic case, it will be so even in
the relativistic case that the magnetic pressure force is canceled
almost exactly by a cross-field electric force (cf. Chiueh et al.
1998; see section 7). That is, we shall find no reasonable
reason to require �eEp to cancel out (1/c)j‖Bt almost exactly
in equation (182). If one demands an almost exact cancel-
lation, i.e., �/R ≈ 0 in equation (178), then one obtains
ζ/µδ ≈ constant, which is nothing but a relativistic general-
ization of the “solvability condition for the conical structure
at infinity” (Heyvaerts, Norman 1989; Chiueh et al. 1991).
An almost exact cancellation leads to 1/R = 0, and thereby
to unreasonable prohibition of MHD interactions between the
field and the flow, leading to no acceleration and no collima-
tion/decollimation.

6.3. Collimation/Decollimation

MHD acceleration is a cause as well as a result of a straight-
ening of the field lines, i.e., 1/R→ 0, mainly in the superfast
domain. This means that even there, the curvature of the field
lines possesses a finite value, positive or negative, however
small it may be becoming. In the range of field lines with
1/R = ∂ψ/∂s > 0, field-streamlines collimate toward the axis,
while in the range of 1/R < 0, field-streamlines decollimate
toward the equator. Then, assuming for the sake of simplicity
that k =�/R does not change sign along each field line, let us
refer to the field line separating the range with �/R = k > 0
from that with �/R = k < 0 as the separatrix field line Px.
Then, Px is defined by the condition k = 0 in equation (193) or
(195), i.e.,

∂ lnI
∂P

=
µ′
ε

µε
+

2I
c ζB

d

dP
ln
ζB

µε
, or

∂ lnζ
∂P

=
µ′
δ

µδ
. (196)

On the other hand, we have so far used the current-closure
condition within the wind zone in the steady state. Then, in the
asymptotic domain, from equations (22) and (124), one obtains
I (s,0) = I (s,P ) = 0 at an arbitrary surface with constant s:
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2I
c

=
ζ

Da(P,ζ )
= 0, at P = 0, P . (197)

Hence, we must presume the existence of a “neutral” field line
denoted by P = Pn, which is given by the solution of equation
j‖ = 0, i.e., by equations (19), (121), and (124):

∂ lnI
∂P

= 0, or
∂ lnζ
∂P

= −ζ
′
A ζB − (ζA − ζ )ζ ′B
ζB (ζB − ζA)

. (198)

Then, j‖< 0 in the range of 0<P <Pn and j‖> 0 in the range
of Pn < P < P . It is conceivable that Pn = Pn(s).

The line Px is obviously bifurcated from Pn, owing to a
relativistic effect due to the �eEp term. A more detailed inves-
tigation will be necessary on the field/current line topology
in the neighborhood of Pn and Px. In the limit of c2 → ∞,
Px →Pn. Similarly in the nonrelativistic case, one can however
conclude that the “two-component” structure is one of the
basic properties of stationary, axisymmetric MHD outflows
with the current-closure condition fulfilled in the wind zone,
with convex field lines near the axis (1/R > 0) and concave
ones (1/R < 0) near the equator, separated by some “critical”
field line(s) probably in between Pn and Px.

6.4. A Simple Model

Acceleration and collimation/decollimation are the conse-
quences of long-range interactions between the field and the
flow, which require finite, positive, or negative, values of
k =�/R, however small it may be, in the asymptotic, superfast
domain. And yet, full acceleration of γ∞ = µε and (� vt)∞ =
α� 2

A is both a cause and a result of k = �/R→ 0 for σ → 0
as � → ∞|P . Then, combining equations (193) and (9) for
�/R = k and sinψ , it turns out that ζ in equation (55) must be
a slowly decreasing function of ln� along each field line. This
indicates that the asymptotic domain of� 2 �� 2

a �� 2
A, where

the field-flow interactions are due to a “long-range” force,
is much larger than the subasymptotic domain of � 2 � � 2

a .
This feature of MHD acceleration is consistent with the large-
scaleness of observed jet phenomena, where MHD processes
are probably deeply involved.

Here, by introducing a simple assumption of variable separa-
tion with respect to P and s in the asymptotic domain,

ζ = ζa(P )
lnsa
lns

, (199)

we work out the behavior of ψ with s. Substitution of
equation (199) into equation (193) yields

k =
A

lns
√

(µ2
ε − 1)(lns)2 − 2B lns−B2

, (200)

A≡ B c
α

d

dP

ζa lnsa
µδ

, B ≡ ζa lnsa
ζB − ζA

, (201)

where both of A and B are functions of P only. Then, from
equation (9) one obtains

sinψ = sinψa

+ A
∫ �

�a

d�/�

lns
√

(µ2
ε − 1)(ln s)2 − 2B lns−B2

∣∣∣∣∣
P

.

(202)

It goes without saying that the absolute values of the integrated
values must be smaller than unity in �a � � ≤ ∞, so that
|sinψ(� )| ≤ 1 holds.

Putting d�/� ≈ ds/s in equation (202), one can easily
carry out integration as follows:

sinψ = sinψa + AΛ(s,P ), (203)

Λ ≡
[

sin−1 1
µε

(
1 +

B

lnsa

)
− sin−1 1

µε

(
1 +

B

lns

)]

=
[

sin−1 1
µε

(
1 +

ζa

ζB − ζA

)
− sin−1 1

µε

(
1 +

ζ

ζB − ζA

)]

=
[

sin−1 Da(ζa)
µδ

− sin−1 Da(ζ )
µδ

]
, (204)

where we note Da/µδ < 1. For s → ∞, Da(ζ ) → Da(0) =
1− ζA/ζB, and then

sin∞|P = sinψa + A
[

sin−1 Da(ζa)
µδ

− sin−1 1
µε

]
. (205)

It can be seen that whether ψ increases from ψa or not depends
on the sign of A(P ) in equation (201), that is, the sign of
dζa lnsa/dP ∝ ∂(Da/µδ)/dP or naturally the sign of 1/R. As
shown in the previous subsection, the “critical” field line, Pc, is
different from the “neutral” field line, Pn. It will be of no doubt
that as long as the current-closure condition is fulfilled within
the wind zone, both of the field lines exist near the midst of the
wind zone, unless, e.g., the equatorial sheet current is consid-
ered.

6.5. Crab-like Ultrarelativistic Winds

We now apply the results from sections 5 and 6 to an ultra-
relativistic wind, like a Crab pulsar wind with γ∞ ∼ 106 and
w∞∼10−2. From equation (46) one obtains µε =γ∞∼106 for
one of the eigenvalues for a “critical” solution, and then from
equation (69) one obtains

ζA

ζB
=
α2� 2

A

c2 = 1− µδ

µε
∼ 1− 10−6µδ, (206)

i.e., �A ≈ (1−µδ/2µε)�L. From equations (136)–(138) and
(144) at SF

γF = µ1/3
ε ∼ 102, (207)

ζF

ζB
=
µδ

µε
(µ2/3

ε − 1) ∼ µδ

µ
1/3
ε

∼ 10−2µδ, (208)

wF = µ2/3
ε − 1 ∼ µ2/3

ε ∼ 104, (209)

σF = (µ2/3
ε − 1)3/2 ∼ µε ∼ 106. (210)

At SEQ with wEQ = 1 from equations (164) and (168)

ζEQ

ζB
= 1− ζA

ζB
=
µδ

µε
∼ 10−6µδ, (211)

σEQ =

√
µ2
ε

4
− 1 ∼ µε

2
∼ 5× 105. (212)

At Seq with wAM = 1 from equations (169), (170), and (172)

ζeq

ζB
∼ µδ

µε

(
1− 2

µδ

µε

)
, weq = 1− 2

µδ

µε
, (213)

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/58/6/987/2898110 by guest on 21 August 2022



1006 I. Okamoto and F. Sigalo [Vol. 58,

σeq ∼ µε

2

(
1− µδ

µε

)
. (214)

It can thus be seen that as the flow travels from SF to SEQ and
then to Seq in the asymptotic domain, w decreases from 104 to
unity at SEQ and to (1 − 2µδ/µε) at Seq, and then w → 0 for
S → S∞. σ rather slowly decreases from µε at SF to (1/2)µε
at SEQ and σ → 0, while γ increases from 102 at SF to 5× 105

at SEQ, and then γ → 106 for S → S∞. From unity at SB,
ζ/ζB decreases to (1− 10−6µδ) at SA, then to 10−2µδ at SF, to
10−6µδ at SEQ and finally to null at S∞.

With respect to the location of SF, from equation (157), one
obtains

α2� 2
F

c2 ∼
(

1− µ2
δ

µ
2/3
ε

)
1
δF
, (215)

where δF = |(∂ lnσ/∂ ln� )F|. If µ2
δ/µ

2/3
ε ≈ 10−4µ2

δ � 1, then
α�F/c ∼ 1/

√
δF. If one adopts a power law like Φ ∝�−δ in

the neighborhood of Sa ≈ SF, �F ∼ (1/
√
δ) (c/α) is obtained.

Begelman and Li (1994) calculated a δF versus c/α�F relation
for σF = 10, 102, 105. Equation (215) or (157) seems to well
reproduce their numerical results (see their figure 2). For
δF ∼ 0.4 (Takahasi, Shibata 1998), then �F ∼ 1.6 (c/α). This
seems to yield a too-close location of SF to SL.

The coefficients in the expressions for the slope of w =w(σ )
become from equations (162), (163), and (206)–(210)

K1 ∼ 1
2

+
µ2/3
ε

4
,

K2 ∼−µ2/3
ε

[
1
δF

− 2
3
− � 2

F

3δ2
F

(
∂2 lnσ
∂� 2

)
F

]
.

(216)

Thus, one obtains from equation (161)(
∂ lnζ
∂ lnσ

)
F

=K1 ±
√
K2

1 −K2. (217)

The location of SF may be situated in a delicate place
near the border line between the asymptotic domain, where
variables change with a logarithmic scale, and the subasymp-
totic domain, where terms with � 2

A/�
2 are still significant.

Therefore, accurate estimations of δF and the second derivative
of σ will be needed to locate SF exactly.

As is well known, the Crab neutron star is an oblique rotator,
and the energy conversion due to the dissipation of a series
of current sheets associated with nonaxisymmetric, nonsteady
wind may be important (e.g., Lyubarsky, Kirk 2001). The
purpose of this paper is, as obvious already, to demonstrate that
there is no difficulty in MHD acceleration for axisymmetric
magnetocentrifugal winds.

7. Comparison with Previous Theories

To fully understand our results in the previous sections, it
would be helpful to clarify the similarities and dissimilarities of
the present theory with others. For later convenience, we firstly
show one “artificial solution” in the asymptotic domain, which
may appear to be plausible, but physically impossible. This
solution was indeed treated as if realizable in the literature so

far, as shown below. Secondly we discuss some other solutions
found in the literature.

7.1. Models with Zero Curvature in the Domain of S � Sa

7.1.1. The model with ζ (P,s)/µδ(P ) = g1(s)
At first let us consider such a solution that leads to zero

curvature of stream-fieldlines in the asymptotic domain, which
demands variable separation of ζ (P, s) = µδ(P ) g1(s) in
equation (178), where g1(s) is an arbitrary function of s at this
moment. One then has

1
R

= k = 0, (218)

that is, the field lines must be straight, perhaps conical, i.e.,
ψ = ψa in equation (9). From equations (121)–(125) one
obtains

w =
µε

ζB
g1, γ =

µε(
1 +

µε

ζB
g1

) , (219)

� ut =
µε α�

2
A

c

(
1− µδ

ζA
g1

)
(

1 +
µε

ζB
g1

) , (220)

I =
c

2
µεg1

1 +
µε

ζB
g1

, (221)

and then from equations (18) and (19)

j⊥ = − c

4π�
µεg

′
1(

1 +
µε

ζB
g1

)2 , (222)

j‖ =
cΦ

4π� 2

µεg1(
1 +

µε

ζB
g1

)2

(
µ′
ε

µε
+
µε

ζB

ζ ′B
ζB
g1

)
, (223)

where g′1 = dg1/ds and

Φ =
4πηc3

α2 σ =
cg1

α
√�� µ2

ε(
1 +

µε

ζB
g1

)2 − 1. (224)

Then, by equations (180) and (182)

�e = − (1/c)j‖Bt

Ep
= − cg1(s)2

8πα� 2

∂

∂P

(
µ2
δ

D2
a

)

= − c

4πα� 2

µ2
εg

2
1(

1 +
µε

ζB
g1

)3

(
µ′
ε

µε
+
µε

ζB

ζ ′B
ζB
g1

)
. (225)

It can thus be seen that this artificial choice of
ζ (P,s)/µδ(P ) = g1(s) produces a decoupling of the field with
the flow. If g1 = constant, and hence j⊥ = 0 by equation (222),
all quantities including w, γ , I , etc., are a function of P only,
and therefore no changes take place along each field line in the
region of g1 = constant. On the other hand, if g′1< 0 and g1 → 0
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for s → ∞, then w, I , and Φ diminish to null, and γ → µε,
� ut → µε α�

2
A/c with j⊥ > 0. A strange thing is that in

spite of no field-flow coupling due to 1/R = 0, the field energy
decreases, while the flow energy increases toward infinity. It is
not certain how to determine function g1(s) causally in terms
of the upstream quantities at SF. This is the reason why this
choice is physically impossible.
7.1.2. The spell of radial-field models

It may be concluded that a long-standing puzzle, i.e.,
disagreement between MHD wind theory and the Crab nebula
model, is brought about by the assumption of a radial field
model. The split-monopolar field model extensively utilized in
pulsar wind theory has Φ = Bp�

2 = constant and σ = constant
throughout the wind region, independent of s along each field
line (i.e., g′1 = 0 in subsubsection 7.1.1), and hence no cross-
field current, j⊥ = 0 and no MHD acceleration, i.e., ∂γ/∂s = 0
for a cold wind. The disagreement is the result invited by an
abuse of the radialness, and yet its plausibility in the asymp-
totic domain has prevented one from discovering the seed of
the puzzle.

It seems that the plausibility of the radialness in the
asymptotic domain has recently invited another claim for the
existence of “field regions” with 1/R ≈ 0 (Heyvaerts, Norman
2003a, b, c). The logic needed to justify such regions seems
to be as follows. Far from the source, plasma particles
will be well accelerated to behave ballistically so that field-
streamlines will be straightened enough already, i.e., 1/R ≈ 0,
which combines with the transfield equation (182), to yield
�eEp + (1/c)j‖Bt ≈ 0, a kind of force-free state (referred to
as the pseudo-force-free state; see Okamoto 2003). This is
obviously a strange conclusion, because the kinematically-
dominated state leads to the opposite magnetically dominated
state. Certainly factor 1/R will be sufficiently small in the
superfast domain, but however small it may be, it appears in the
inertial term of the transfield equation, as a combination of the
factor γ ρ v2

p, which is conversely sufficiently large. The trans-
field force balance requires the product of both, i.e., γ ρ v2

p/R

to be equal to the Lorentz force. Neglecting the presence of
a large factor, γ ρ v2

p, one cannot divide the most fundamental
equation, i.e., the transfield equation, into the two, i.e., 1/R≈0
and �eEp + (1/c) j‖ Bt ≈ 0, corresponding the two opposite
extreme physical states.

7.2. “Anti-Collimation Theorem”

The “hoop-stress paradigm” has governed the field of
magnetized winds and jets for these two decades. In spite
of outflows from rotating central objects, of which the prime
motive force is mainly the centrifugal force, even though
strongly magnetized, the claim that all of field-streamlines
collimate globally to the rotation axis in the asymptotic domain
seems to be “unnatural” (Okamoto 1999). And yet, the
paradigm seems to insist that this property is due to axisym-
metry of the system (see, e.g., Spruit 1996) or to anisotropy
introduced by the magnetic field (Blandford 2002). Whether
the flow collimates or decollimates should be determined on
the basis of the sign of curvature of its field-streamlines, which
in turn must be fixed by the cross-field force balance. That is
to say, the paradigm is neither based upon the sign of curva-
ture of field-streamlines nor, hence, upon the consequence of

the transfield force balance in the steady state (cf. Heyvaerts,
Norman 1989; Chiueh et al. 1991). The case in which R
was utilized so far was entirely limited to irrelevantly showing
logarithmic collimation of the outflow (Chiueh et al. 1991,
1998; Eichler 1993; Tomimatsu 1994; Begelman, Li 1994;
Bogovalov, Tsinganos 1999; also see subsubsection 7.3.3
later).

It is then of crucial significance to derive the correct expres-
sion of the transfield force balance containing the curvature
of field lines. Not surprisingly, Chiueh, Li, and Begelman
(1991) have already given a correct form of the transfield
equation. If they had correctly interpreted theirs, they would
have reached the same conclusion as that of this paper as well
as Papers I–III. Eichler (1993) also had the same chance to
reach the correct conclusion on collimation, because he cited
Chiueh, Li, and Begelman’s transfield equation. But both
Chiueh, Li, and Begelman (1991) and Eichler (1993) and also
Tomimatsu (1994) have remained in the same line of research
as Heyvaerts and Norman (1989), consequently allowing the
paradigm to govern the field of MHD outflows in the 1990s
and even in this century (Heyvaerts, Norman 2003a, b, c).
The influence of the paradigm was exerted even on the force-
free pulsar magnetosphere models. We have already made a
“critical” review of force-free models for cylindrical jets (see
Okamoto 1997).

Similar to Papers I–III for nonrelativistic winds, and
hence, dissimilar to Chiueh, Li, and Begelman and Eichler
for relativistic winds, we interpret the transfield equation
containing R as it indicates, that is, as the expression for deter-
mining R as a result of the transfield force balance. It is
thus the “anticollimation theorem”, but not the “hoop-stress
paradigm” that has a firm physical basis in MHD outflows,
whether relativistic or nonrelativistic.

7.3. Some Comments on Chiueh, Li and Begelman’s Works

In spite of treating the same topics as in this paper, Chiueh,
Li, and Begelman’s conclusions are quite different from the
present ones. It will be important to clarify why and where
significant disagreements take place.
7.3.1. Begelman and Li’s (1994) analysis

Begelman and Li (1994) studied the conditions that lead to
converting most of the Poynting flux into the kinetic energy
flux in cold relativistic MHD winds. They ascribed extreme
inefficiency of plasma acceleration along a precisely radial
flow to near cancellation of the toroidal magnetic pressure and
tension forces. They noticed that from their energy integral (2),
for a given total energy, µε, and angular momentum, l ≡
µε α �

2
A, the dimensionless flow variables at any location,

x = α�/c, along a flux tube depend only on the local value
of σ (x) [their a(x)]. Since in the asymptotic domain of
x2 � x2

A (i.e., � 2 � � 2
A), coordinate x or � disappears and

hence the flow variables depend only on σ literally. Their
“simplified” equations (5) and (7) are completely equivalent
to equation (128) in this paper, and if one puts M2

f∞ = 1
in their equation (6), one arrives at τ 3

∞ a2
∞ = 1 for the criti-

cality condition at SF, which equals wF = σ
2/3
F , as can be

seen in equation (146). Then, for ultrarelativistic flows with
µε � 1, from equation (128) one obtains w ≈ σ/µε for the
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supermagnetosonic solution in the physical branch and w≈µε
for the submagnetosonic solution in the unphysical branch (see
figure 4). Since σF ≈µε by equations (138) and (146), one has
w ≈ σ/σF in the physical branch.

With respect to the location of SF, Begelman and Li
remarked that only a negative value of δf ≡ (∂ lnΦ/∂ ln� )PF =
(∂ lnσ/∂ ln� )PF can move SF to a finite radius, which means
that the divergence of the flux tube must be faster, rather than
slower, than in a radial wind. As can be seen in equation (136),
the kinetic energy at SF is equal to the cubic root of the
total energy, i.e., γF = µ1/3

ε , and yet wF = µ2/3
ε − 1. They

stated that “this differs drastically from the near equipartition
between kinetic and magnetic energies that occurs at SF in
the nonrelativistic flows”, because v2

pF/2 = ε/3 and wF = 2
[see equation (A40) and appendix 4]. As can be seen in
equations (A40), (A43), and (A44), the nonrelativistic limits
of the present results coincide with those given in Paper III
for nonrelativistic magnetized centrifugal winds, as naturally
should be so. But wF = µ2/3

ε − 1 � 1 for relativistic cases,
compared with wF = 2 for the nonrelativistic case, takes place
not because a large electric field in relativistic flows may cancel
the magnetic pressure to large extent, but just because signifi-
cant acceleration must occur beyond SF in the relativistic flow.
In any case, we confirm their conclusion that nearly all energy
could be converted eventually into kinetic form (w∞ � 1),
provided that the field lines have such a geometry that the
quantity σ decreases significantly from its value at the fast
point, σF, to its asymptotic value σ∞ (σ∞/σF � 1) once the
fast point is passed.

Then, led by the “hoop-stress paradigm”, that is, the idea of
the “general” tendency of collimation toward the rotation axis,
Begelman and Li next attempted to determine the condition
under which such solutions of the relativistic Grad-Shafranov
equation can develop a vanishingly small ratio of the Poynting
flux to the kinetic flux. The asymptotic solutions they sought
are related to “current-free paraboloidal asymptotes”, which
they refer to as “force-free” in the sense that the cross-field
force balance is determined by the electromagnetic stresses,
with inertial forces playing a negligible role, though not “force-
free” in the poloidal direction, since the flows continue to
accelerate (j⊥ > 0; see the case of g′1 < 0 in subsubsec-
tion 7.1.1). They “generalize” these solutions to include flows
that have a finite total flux, confined by an external medium
with the pressure decreasing to zero at infinity. They stated
that these asymptotic solutions are uniquely determined by the
pressure boundary condition and the distribution of a partic-
ular flux function. They also presumed the existence of a non-
force-free region where the inertia is still important on field
lines that have not yet been collimated parallel to the rotation
axis, illustrating how solutions in the non-force-free region join
smoothly onto the corresponding force-free asymptotes. To
show these presumptions, they utilize their asymptotic form
[see their equation (11)] of the transfield equation with the
same number (11) in Chiueh, Li, and Begelman (1991). These
are coincident with equations (183) and (34), respectively.

We must point out that, in spite of utilizing the equivalent
expressions describing the cross-field force balance, the results
we have drawn here are quite opposite to those of Begelman
and Li. For both nonrelativistic winds in Papers I–III and

the relativistic winds described here, we have demonstrated
that one form of the transfield equation demands σ (� ) → 0
or ζ (P,� ) → 0 for � → ∞|P , and therefore w → 0 [see
equations (10) and (11)]. As argued in Paper III, the trans-
field equation should be utilized not to show logarithmic colli-
mation, but to avoid logarithmic divergence. This indicates
ongoing interactions of the field with the flow, which ensures
ongoing acceleration in the whole asymptotic domain of �F ≈
�a � � � ∞ as well as in the subasymptotic domain of
� ��F. There is no physical reason to support the existence
of the “force-free” region both in the cross-field as well as the
poloidal direction in the asymptotic domain. Smooth flow of
the poloidal electric current and the current-closure condition
indicate that the two-component structure is the case in the
relativistic as well as nonrelativistic winds. For another form
of the transfield equation, one can show that the second-order
partial differential equation for P is expressible in terms of
ξ ≡ lnr and θ for coordinates, so that the asymptotic variables
change rather more slowly with lnr than r . We favor Begelman
and Li’s non-force-free region extended to� →∞|P , with the
two-componentness taken into account, but do not agree with
their conclusion that it is very difficult for an ultrarelativistic
wind, such as the Crab pulsar wind with γ ∼ 106, to reach the
kinetically dominated asymptotic state discussed here.
7.3.2. Begelman’s (1998) analysis

To resolve any discrepancy between the pulsar wind theory
yielding w∞ � 1 and the Rees–Gunn Crab model predicting
w∞ � 1, Begelman (1998) proposed that the existence of
a concentric toroidal field outside the pulsar wind’s termina-
tion shock is physically implausible. Abandoning the central
tenet of the Rees–Gunn model for the Crab nebula, he seems
to be favoring the result from pulsar wind theory based upon
near cancellation of the magnetic force by the electric force,
that is, domination of the Poynting flux on the kinetic energy
flux even far outside. The present analysis of the transfield
equation indicates that the condition for field lines to reach
infinity is I → 0 for σ → 0 with � → ∞|P , as can be seen
in equation (29), that is, the Poynting flux vanishing toward
infinity, w → 0. This is a natural basic property of RMHD
winds, which is similar to that of nonrelativistic winds (see
Papers I–III). This basic property of RMHD winds supports
the central tenet of the Rees–Gunn model for the Crab nebula.

The current-closure condition as a global condition should
be imposed within the wind zone in the steady state, and thus
the field-flow structure has a two-component nature; that is,
the structure consists of polar flow with j‖ < 0 and equatorial
wind with j‖ > 0. Begelman’s stability analysis of a concen-
tric toroidal field structure due to pinch and kink modes would
itself be interesting, because it may have a significant applica-
tion to the polar rather collimated jet-like outflow. Thus, insta-
bilities may certainly destroy the concentric toroidal field, but
this interesting topic is out of the scope of this paper. The point
is that one needs not abandon the central tenet of the Rees–
Gunn model, just to resolve the long-standing puzzle, and of
course more detailed work is certainly needed.
7.3.3. Chiueh, Li, and Begelman’s (1998) analysis

Chiueh, Li, and Begelman’s (1998) presented what they
called a “critical” examination of the ideal MHD model
for the stationary Crab pulsar wind with γ∞ ∼ 106 and

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/58/6/987/2898110 by guest on 21 August 2022



No. 6] Pulsar MHD Winds 1009

w∞ ∼ 10−2–10−3. They concluded that transitions to a
low w∞-configuration cannot occur gradually in regions well
beyond SL, and pined down the only situation where a
stationary ideal MHD low-w wind may exist, requiring almost
the entire acceleration to take place in the immediate neigh-
borhood of SL. They demanded drastic modifications to the
conventional picture of the pulsar dipole magnetosphere, in
that the outer magnetosphere must be dominated by the toroidal
fields and that the pulsar wind is carried by only a small fraction
of the magnetospheric field lines emerging from the star. To
derive these results, they again utilized the same set of ideal-
MHD equations as given in this paper, although our conclu-
sions are quite opposite to theirs, as briefly discussed in the
following.

From the criticality condition at SF, they obtained µε ≈ σF
in their equation (10), which is naturally coincident with the
result from equations (136) and (144) for γ 2

F = γ 2/3
∞ � 1. As

shown in equation (146), wF = σ 2/3
F ≈ γ 2/3

∞ � 1, and therefore
the Poynting flux still dominates the kinetic energy flux at SF.
Certainly the only way to attain a low value of w∞ is for the
flux tubes to diverge significantly outside SF, thus lowering Φ
or σ . Assuming that the variation of magnetic field in the cross-
field direction occurs on a scale of order� , and that the spatial
derivative can be estimated to be 1/� , they derived∣∣∣�

R

∣∣∣� 1
1 + τ

(
1
γ 2 +

β

(α�/c)2

)
+

β

(α�/c)2 (226)

from their equation (11), where β is a constant of O(1) and
τ = M2/(α�/c)2. Their expression (11) for the rate at which
a flux tube diverges is exactly the same as, e.g., equation (36)
here. They utilized this equation for estimating the flux surface
collimation rate. We note that the change in the collimation
angle ψ over a distance ∆� is

∆ψ ≈




ln(α∆�/c)
γ 2(1 + τ )

,
α�

c
� γ

√
1 + τ � 1,

(α∆�/c)
(α�/c)3 , 1 � α�

c
� γ

√
1 + τ .

(227)

They stated that the upper part of equation (227) is a general-
ization of the logarithmic collimation in the works of Chiueh,
Li, and Begelman (1991), Eichler (1993), Begelman and Li
(1994), and Tomimatsu (1994), and the lower rate may remain
valid over many decades of the local wind radius for an
extremely large γ . What they deduced from equation (227)
is as follows. The fact that �/R� 1 implies that Φ = Bp�

2

changes only by a small factor along the flux tube surfaces, and
the change of the kinetic energy must be negligible compared
with the total energy. Thus, the poloidal field lines in a
smoothly varying ultrarelativistic MHD flow must be nearly
straight far beyond SL; in this region efficient conversion of
the Poynting flux to the kinetic energy flux is impossible.
According to Chiueh, Li, and Begelman, the fundamental
reason for this behavior is that the magnetic pressure in the
cross-field direction is canceled almost exactly by a cross-field
electric field in the region with both γ and α�/c being large.
“A diverging channel configuration needed for sufficient accel-
eration can never be set up”.

As shown in equation (182) for the Grad-Shafronov equation

in the asymptotic domain, the degree of the “cancellation”
of the magnetic pressure by a cross-field electric field [i.e.,
�eEp + (1/c)j‖Bt] is equal to the “rate” (i.e., �/R) at which
a flux tube diverges, multiplied by a large factor, ρ γ v2

p.
Needless to say, what is meant by this transfield force balance
is nothing but expressing that the inertial centripetal force
upon the poloidal motion along a curved field line must be
in balance with the transfield component of the Lorentz force.
Then, if one concludes for some reason or other that both
�eEp + (1/c)j‖Bt ≈0 and�/R≈0 hold separately in some, or
the whole, of the asymptotic domain, this means that the two,
opposite extreme states, i.e., inertially dominated and magnet-
ically dominated, must coexist there. These mutually contra-
dicting states are a product of artificially dividing one equation
for the cross-field force balance into the two conditions.

Instead the procedure taken in this paper is to treat the Grad-
Shafronov equation faithfully as it indicates in the asymp-
totic domain. This leads to the relation between the “rate”
(i.e., �/R) and each of such quantities as w, ζ , γ , I , etc.,
through the Lorentz force, �e Ep + (1/c) j‖ Bt, as given in
equations (192)–(195). These quantities in turn are a two-
valued function of σ , which passes smoothly through the fast
X-type critical point at SF ≈ Sa, as given in equations (128),
(131), and (189). Taking the physical branch of each solution
satisfying the “regularity condition” near S∞, one can naturally
accomplish full MHD acceleration, i.e., γ → µε and γ� vt →
µε α �

2
A with w → 0, wAM → 0, ζ → 0, and I → 0 for

σ → 0. This means that the “regularity condition”, �/R→ 0,
is fulfilled, but this must happen rapidly enough to assure
|sinψ∞| ≤ 1, as indicated in equation (11).

8. Conclusions

It is shown in this paper that nondissipative ideal MHD is
sound and robust enough to be applied to relativistic outflows
and related phenomena. If we treat the MHD equations
correctly, and deduce results from them under appropriate
conditions, one can feasibly understand the basic structure of
a pulsar magnetosphere with two-componentness, where the
expected full MHD acceleration takes place. It is however only
by handling physical equations and conditions properly that
one can obtain theoretical results consistent with the obser-
vational facts. Even in the 21st century, the ideal MHD
will still play the role of a good paradigm for exploring the
phenomena of magnetized centrifugal outflows in the nonrel-
ativistic, relativistic, and general-relativistic regimes with a
possible exception of dissipative processes in some localized
regions. The followings are the basic properties for pulsar
MHD winds clarified in this paper:

1) The induction equation, the most basic in MHD, integrates
in the steady axisymmetric state to yield Ferraro’s isorotation
law for each field line, and the requirement that α = α(P ) be
given as the boundary condition at the stellar surface or magne-
tospheric base must imply the existence of a unipolar inductor
or battery there.

2) The concept of a “current line” is as important as that of
a “field line”. Contrary to field lines in the wind zone, each
current line defined by I = I (s, P ) must close like in a kind

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/58/6/987/2898110 by guest on 21 August 2022



1010 I. Okamoto and F. Sigalo [Vol. 58,

of DC circuit, emanating from one terminal of the battery
and returning to the other terminal, without snapping on the
way. This is referred to as the “current-closure condition”, as
one of the global conditions, which is closely related to the
acceleration-collimation/decollimation of field-streamlines.

3) A dipole-like distribution of magnetic fluxes at SB is implic-
itly assumed so far, with antisymmetry between the upper and
lower hemispheres. Then, in the upper hemisphere the current-
closure condition means that the domain of ingoing current,
j‖ < 0, is separated by the “neutral” field line, Pn, (j‖ = 0),
from the domain of the outgoing current by j‖ > 0, with the
current line continuously crossing field lines j⊥ > 0, thereby
causing MHD acceleration, i.e., ∂γ/∂s ∝ j⊥ ∝−∂I/∂s > 0 in
the wind zone.

4) The asymptotic formalism for the wind zone is a useful tool
for clarifying the basic properties in the asymptotic domain
where the main acceleration and collimation/decollimation of
the flow take place. The domain is defined as that where
the factors with orders more than � 2

A/�
2 are negligible, and

consequently the coordinate variables � and z appear only
through the flux function, Ψ=Bp�

2, or the generalized magne-
tization parameter, σ . Every field-flow quantity is a two-valued
function of σ , and the two branches intersect each other at the
innermost distances (or surface Sa) of the asymptotic domain.

5) The asymptotic domain must also be the superfast domain,
and the fast surface, SF, lies in the neighborhood of the inner-
most surface of the asymptotic domain, i.e., SF ≈ Sa. The criti-
cality condition at SF yields the eigenvalues for � 2

A, µε, γF,
etc., in terms of the input values of α, η, µδ , and the magnetic
flux at SB. In order to fix SF, itself, at the innermost distances,
the lowest-order terms of� 2

A/�
2 must be retained to relate�F

to the gradient of σ along each field line.

6) The main MHD acceleration takes place in the asymp-
totic domain, because γF = µ1/3

ε at SF and γ∞ = µε at S∞,
which are much larger than γF for an ultrarelativistic wind [cf.
(1/2) v2

pF = (1/3) ε and (1/2) v2
p∞ = ε for the nonrelativistic

case]. The large-scaleness of astrophysical jets, in general, if
these are associated with MHD processes, will be a manifesta-
tion of the vastness of the superfast, asymptotic domain.

7) In the subasymptotic domain of SB ≤ S � Sa, the coordinate
� is naturally live. Wind with γB ≈ µδ at SB must smoothly
pass through the critical surface, SA, with γA ≈ µδ(1 + νA), to
flow beyond Sa. The eigenvalue for �A must be determined by
the criticality condition fairly downstream at SF, just beyond
the subasymptotic domain, whereas the values at S∞, such as
γ∞, ut∞, etc., are already fixed by the criticality condition far
upstream at SF. The boundary surface, Sa, is introduced for
mathematical convenience and hence not a physical surface,
but the physical properties are fundamentally different across
it.

8) In order that magnetized outflows can be an efficient carriers
of energy/angular momentum from the central source in the
steady state, the current-line topology as well as the field-line
topology must obviously be reasonable across surfaces Sa and
SF. The field lines will reach the sphere-at-infinity, S∞, with

diminishing magnetic fluxes, i.e., Φ→ 0 or σ → 0, while every
current line must close at finite distances mainly in the super-
fast domain with j⊥ > 0. It is difficult to find a way to connect
the “quasi-force-free” region where I = constant, j⊥ = 1/R = 0
causally to any region where the poloidal current flows.

9) One of the crucially important quantities is the field-line
curvature, 1/R, which has often been mistakenly regarded as
being negligible in the asymptotic domain. However small
it may be, when multiplied by a quite large factor, γ ρ v2

p,
the product as an inertial force must be in balance with the
relativistic Lorentz force. Otherwise, one would reach an
incorrect result that “the inertially-dominated state is equiva-
lent to the magnetically dominated state”. By using the trans-
field equation correctly, it can be shown that as σ → 0, then
I → 0, γ →µε, . . . , and�/R→ 0, or vice versa. It is the sign
of �/R, determined by the transfield force balance, whether
the flow collimates with �/R > 0 and ∂ψ/∂s > 0, or the flow
decollimates with �/R < 0 and ∂ψ/∂s < 0.

Appendix 1. Derivation of the Three Components of the
RMHD Equation of Motion

(1-I) We now derive equation (7) and (20) for R and jt. In
terms of angle ψ between Bp and the � -axis, the two unit
vectors become

p = (cosψ,0,sinψ), n = (−sinψ,0,cosψ), (A1)

and the two components of Bp become from equation (1)

B� = Bp cosψ = − 1
�

∂P

∂z
, Bz = Bp sinψ =

1
�

∂P

∂�
. (A2)

Then,
4π
c
jt =

∂B�

∂z
− ∂Bz

∂�

= − 1
�

(∇2P −∇P · ∇ ln� 2) (A3)

= − 1
�

[
(∇P · ∇) ln

|∇P |
�

+
|∇P |
R

]
, (A4)

where equation (6) for 1/R is used. Thus, one obtains
equation (20) for jt by using equation (3) and Bp = |∇P |/� .
Equation (7) for 1/R is derived by solving equations (A3)
and (A4). One more direct way of verifying equation (7) is
as follows: Noting ∇P = −|∇P |n from equation (2), one has

∇2P =
1
�

[
∂

∂�
(� |∇P |sinψ)− ∂

∂z
(� |∇P |cosψ)

]

= − 1
�

(n · ∇)� |∇P | + |∇P |(p · ∇)ψ

= (∇P · ∇) ln� |∇P | +
|∇P |
R

(A5)

and then one can arrive at the expression for 1/R.

(1-II) We give the three components expressed in equa-
tions (31)–(33) from the vectorial form of the RMHD equation
of motion in equation (30). In terms of ψ , the two components
of vt are given by
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v� = vp cosψ, vz = vp sinψ. (A6)

Then,

∇× γ v = − t
�

×∇(γ � vt) + (∇× γ v)t t, (A7)

(∇× γ v)t =
∂

∂z
(γ v� )− ∂

∂�
(γ vz )

= (n · ∇)γ vp − γ vp(p · ∇)ψ

=
∂γ vp

∂n
− γ vp

R
, (A8)

where equations (A6) and (3) are utilized. Thus, one has

v× (∇× γ v) =
vt

�
∇(γ � vt)

− vp

�

∂γ � vt

∂s
t +
(
∂γ vp

∂n
− γ vp

R

)
n. (A9)

Then, the RHD of equation (30) becomes

ρ[c2∇γ − v× (∇× γ v)]

= ρ
(
c2 ∂γ

∂s
− vt

�

∂γ � vt

∂s

)
p

+
ρ vp

�

∂γ � vt

∂s
t +

(
−ρ γ v2

t
∂ ln�
∂n

+
ρ γ v2

p

R

)
n. (A10)

The Lorentz force can also be given in terms of three compo-
nents (j‖, jt, and j⊥) as

1
c

j ×B =
1
c

[−j⊥Bt p + j⊥Bp t + (j‖Bt − jtBp)n
]

(A11)

[see equation (1.2) in Paper I]. Noting �e E = �eEp n, upon
substituting equations (A10) and (A11) into (30), one obtains
equations (31)–(33) for the p-, t-, and n-components of the
RMHD equations of motion.

Appendix 2. Derivation of the Slope of ζ

Here we derive the expressions for D and N given in
equations (112) and (113), which appear in equation (111) for
the slope of ζ . From equations (39), (44), (64), and (65), one
obtains

γ = µε −µε ζ
ζB

(
2I
cζ

)
, (A12)

ut =
c

α�

[
α2� 2

A

c2 −µε ζ
ζB

(
2I
cζ

)]
, (A13)

= µδ
α� 2

A

c�

1
D

(
1− ζ

ζA

)
, (A14)

2I
cζ

=
1
D

(
1− � 2

A

� 2

)
. (A15)

Differentiation of γ in equations (104) and (A12) and ut in
equation (A13) yield

γ
∂γ

∂�
= u2

p
∂ lnup

∂�
+ u2

t
∂ lnut

∂�
, (A16)

∂γ

∂�
= −µε ζ

ζB

(
2I
cζ

)
∂

∂�
ln
[
ζ ·
(

2I
cζ

)]
, (A17)

∂ lnut

∂�
= − 1

�
− cµε

α�ut

ζ

ζB

(
2I
cζ

)
∂

∂�
ln
[
ζ ·
(

2I
cζ

)]
.

(A18)

Also, from equation (74)

∂ lnup

∂�
= −∂ lnζ

∂�
+
∂ lnσ
∂�

. (A19)

Substitution of equations (A17), (A18), and (A19) into
equation (A16) yields

u2
p
∂ lnζ
∂�

−
(
γ − cut

α�

)
µε
ζ

ζB

(
2I
cζ

)
∂

∂�
ln
(
ζ · 2I
cζ

)

= u2
p
∂ lnσ
∂�

− u2
t

�
. (A20)

Making use of equations (61), (A14), and (A15), one has the
relation

γ − cut

α�
= µδ

2I
cζ
, (A21)

and therefore

u2
p
∂ lnζ
∂�

−µδ µε ζ
ζB

(
2I
cζ

)2
∂

∂�
ln
(
ζ · 2I
cζ

)

= u2
p
∂ lnσ
∂�

− u2
t

�
. (A22)

Next, differentiation of equations (A15) and (60) yields

∂

∂�
ln
(

2I
cζ

)
=

2
�

� 2
A

� 2(
1− � 2

A

� 2

) − 1
D

∂D

∂�
, (A23)

∂D

∂�
=
ζ

ζB

(
1− c2

α2� 2

)∂ lnζ
∂�

+
2
�

c2

α2� 2

1− c2

α2� 2


 . (A24)

Thus,

∂

∂�
ln
(
ζ · 2I
cζ

)
=
[

1− 1
D

ζ

ζB

(
1− c2

α2� 2

)]
∂ lnζ
∂�

+
1
D

2
�

� 2
A

� 2

(
1− α2� 2

A

c2

) 1− ζ

ζA

1− � 2
A

� 2

=
1
D

(
1− α2� 2

A

c2

)∂ lnζ
∂�

+
2
�

� 2
A

� 2

1− ζ

ζA

1− � 2
A

� 2


 .

(A25)

Substituting equation (A25) into equation (A22) by using
equations (A14) and (A15), we obtain the expressions for D
and N given in equations (112) and (113).
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Appendix 3. Expression for the Derivative of d lnζ/d lnσ

at SF

From (125), (127), and (133) one obtains a form of Da
expressed in terms of w and σ , i.e.,

Da =
(

1− ζA

ζB

)[
σ 2 1 + w

w
−µ2

ε

w

(1 + w)2

]
. (A26)

The derivative of Da at SF becomes(
∂Da

∂�

)
F

=
(

1− ζA

ζB

)(
σ 2 1 + w

w

)
F

×
[
∂

∂�
ln
(
σ 2 1 + w

w

)
− ∂

∂�
ln

w

(1 + w)2

]
F

=
(

1− ζA

ζB

)
γ 2

FwF

(
∂ lnσ
∂�

)
F

×
[

2 + 3
∂

∂ lnw
ln
(

1 + w
w

∂ lnζ
∂ lnσ

)]
F
. (A27)

On the other hand, the derivative of Na at SF becomes from
(134)(

∂Na

∂�

)
F

=
(

1− ζA

ζB

)
γ 2

F
σ 2

F

w2
F

(
∂ lnσ
∂�

)2

F

×
[
∂ ln�
∂ lnσ

∂

∂�
ln
(
σ 2� 2 ∂ lnσ

∂�

)

−∂ lnGaw
2

∂ lnw
∂ lnζ
∂ lnσ

]
F
. (A28)

Substitution of (A27) and (A28) into (160) yields(
∂ lnζ
∂ lnσ

)2

F
− 2K1

(
∂ lnζ
∂ lnσ

)
F

+ K2 = 0, (A29)

K1 =
γ 2

F

6

(
∂ lnGaw

4

∂ lnw

)
F
, (A30)

K2 =
γ 2

F

3

(
∂�

∂ lnσ

)
F

(
∂

∂�
lnσ 2� 2 ∂ lnσ

∂�

)
F
. (A31)

Substitution of Ga in equation (135) into the above equations
yields equations (162) and (163).

In the nonrelativistic limit, K1 and K2 reduce to

K1 =
2
3
ε2 − 4ε δ− 3δ2

(ε + δ) (ε− 3δ)
, (A32)

K2 =
2
3

+
1
�F

(
∂ ln�
∂ lnσ

)
F

+
1
3

(
∂�

∂ lnσ

)2

F

(
∂2 lnσ
∂� 2

)
F
, (A33)

which coincide with those given in (A4) in Paper III.

Appendix 4. Nonrelativistic Limits of Various Quantities
and Expressions

Nonrelativistic limits of various quantities and expressions
for c→∞ are given here, partly because of checking the results
by comparing with the nonrelativistic results already given in

Papers I and III and partly because of showing no discontinu-
ities between the relativistic and nonrelativistic theories.

(4-I) The nonrelativistic limits of µδ and µε are

µδ ≈ 1 +
δ

c2 , µε ≈ 1 +
ε

c2 (A34)

[see equation (2.6) in Paper I for δ and ε]. Then, equations (45)
and (51) reduce to

µε≈1 +
1
c2

(
δ− αβ

4πη

)
, ε=δ− αβ

4πη
=δ + α2� 2

A. (A35)

To obtain the nonrelativistic limit of ζA and ζB in equations (58)
and (68), using equations (A34) gives

ζA = 4πηα� 2
A, ζB =

4πηε
α

, (A36)

where one needs to subtract a relativistic factor, 4πη c2/α, in
ζB [see equation (2.12) in Paper II].

(4-II) The nonrelativistic definition of σ is σ = α2Φ/
[4πη (2ε)3/2] = (ζ/ζB) [vp/(2ε)1/2] in equation (3.13) of
Paper III, where ζB = 4πη ε/α in equation (3.11a). If one
defines the nonrelativistic w as

w =
(
−α� Bt

4π
Bp

)/(
1
2
ρ v2

p vp

)

=
(
� Bt

ζB

)(
v2

p

2ε

)−1

, (A37)

then in the asymptotic domain

w =
ζ

ζB

/(
1− ζ

ζB

)
, or

ζ

ζB
=

w

1 + w
. (A38)

Thus,

σ =
w

2(1 + w)3/2 ,
dw

dσ
=

4(1 + w)5/2

2−w . (A39)

Thus, one obtains wF = 2 at σF = 1/3
√

3 and wEQ = 1 at σEQ =
1/4

√
2.

(4-III) In the nonrelativistic limit, equations (A34), (136),
and (137) give

v2
pF =

2ε
3
,

ζF

ζB
=

2
3
, (A40)

which are coincident with equation (4.4) in Paper III, since
yF ≡ vpF/vp∞ = (1/3)1/2 and ζB = 4πη ε/α. Also, using
equation (69), α2� 2

A = ε− δ, and

Ga(wF) → 1
3c4 (ε− 3δ) (ε + δ) for c→∞, (A41)

from equation (156), equation (157) reduces to

� 2
F

� 2
A

= − (ε− 3δ) (ε + δ)
2ε (ε− δ)

(
∂ ln�
∂ lnσ

)
F
, (A42)

which coincides with equation (5.2b) in Paper III.

(4-IV) In the limit of c→∞, one obtains ε = δ + α2� 2
A, and

then (139)–(141) become, respectively,
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ζF =
2
3

4πηε
α

=
2
3
ζB, (� vt)F =

ε− 3δ
3α

,

(� Bt)F = −2ζB

3
,

(A43)

which coincides with equations (4.6b), (4.7a, b) in Paper III.
Also, equation (148) reduces to

α2 ΦF

4πη (2ε)3/2 =
(

1
3

)3/2

. (A44)

We defined σ ≡ (α2Φ)/[4πη(2ε)3/2] for a nonrelativistic wind,
and hence one can reconfirm the eigenvalue of the criticality
problem at SF, i.e., σF = (1/3)3/2 [see equations (3.2) and (4.4)
in Paper III].

(4-V) By taking D2
a → 1, µδ → 1, and ζB/c

2 → 4πη/α for
c→∞, it can be seen that equation (178) reduces to

�

R
=

ζ 2

4πηαΦ
∂ζ

∂P
=

4πηα2Π4

vp ζ

∂ lnζ
∂P

, (A45)

which coincides with equation (6.10) in Paper I, where vp =
αΦ/η and αΠ2 = ζ/(4πη) are used. It is also easy to confirm
that |�eEp|/|j‖Bt/c| ∼O(c−2) in equation (182).

(4-VI) The nonrelativistic limit of equation (194) is given by

�

R
=

√
ε√

2α

(
1− v2

p

2ε

)
(
vp√
2ε

) ∂

∂P

[
ζB

(
1− v2

p

2ε

)]
. (A46)

If one substitutes v2
p/2ε = 1 − ζ/ζB into equation (A46), one

obtains equation (6.1b) in Paper III. Thus, �/R → 0 for
v2

p/2ε→ 1 or vice versa.
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