
RESEARCH Open Access

PuLSaR: preference-based cloud service
selection for cloud service brokers
Ioannis Patiniotakis, Yiannis Verginadis* and Gregoris Mentzas

Abstract

Over the last few years, the vast increase of cloud service offerings that are available from heterogeneous cloud

vendors, has made the evaluation and selection of desired cloud services, a cumbersome task for service

consumers. In that respect, there is an increasing need for user guidance and intermediation during the

service selection process but also during the cloud service consumption that should always refer to the best

possible choice based on user preferences. In this paper, we discuss the Preference-based cLoud Service

Recommender (PuLSaR) that uses a holistic multi-criteria decision making (MCDM) approach for offering

optimisation as a brokerage service. The specification and implementation details of this proposed software

mechanism are thoroughly discussed while the background method used is summarised. Both method and

brokerage service allow for the multi-objective assessment of cloud services in a unified way, taking into

account precise and imprecise metrics and dealing with their fuzziness. We cope with the fuzziness of

imprecise metrics in the sense that this approach deals with linguistically expressed preferences and cloud

service characteristics that lack a fixed or precise value and entail a level of vagueness which can only be

captured using the Zadeh’s Fuzzy Set Theory. Furthermore, this paper reports on a number of experiments

that were conducted in order to measure PuLSaR’s performance and scalability.

Keywords: Cloud Service Broker, Optimisation, Service Ranking, MCDM

1 Introduction
Nowadays, enterprises are increasingly moving their IT

environments into the cloud, reducing operating costs

by converting from a business model reliant on hard-

ware and software ownership, to one based on utility

service consumption. This has resulted in an unprece-

dented rise of cloud providers that serve their offerings

as a service but at the same time has created additional

challenges (e.g., regarding the quality-of-service [1],

security etc.). Examples of such additional challenges

include: i) conducting and monitoring service level

agreements that refer to cloud applications composed of

heterogeneous service offerings from different cloud

service vendors, ii) efficiently comparing available

cloud offerings, using appropriate methods that con-

sider all the dimensions of cloud consumers’ require-

ments but also the unified and fair use of comparable

criteria across heterogeneously described services, iii)

addressing in a unified way security aspects (e.g.,

access control, authentication etc.) of composed cloud

applications from offerings that may comply to differ-

ent vendor’s standards. As the multitude and com-

plexity of heterogeneous cloud services increases, the

role of cloud brokers in the cloud service ecosystems

becomes increasingly important. Technology analysts

such as Gartner [2] and Forrester [3] foresee an in-

creasing role for cloud service brokers, intermediaries

who already offer related brokerage capabilities such

as integration, customization or aggregation of soft-

ware services. Their analysis regarding cloud service

brokers is based on the fact that the unprecedented

rise of available cloud services from different vendors,

dictate the need for intermediating entities that their

sole purpose will be to cope with the challenges

mentioned above thus alleviate the heterogeneity

existing among such offerings. Nevertheless, even in

the emergent commercial cloud services, there is still

lack of standard mechanisms that allow for the com-

parison of cloud service specifications against user
* Correspondence: jverg@mail.ntua.gr

Institute of Communications and Computer Systems, National Technical

University of Athens, 9, Iroon Polytechniou Str., Zografou 15773, Greece

© 2015 Patiniotakis et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

DOI 10.1186/s13174-015-0042-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-015-0042-4&domain=pdf
mailto:jverg@mail.ntua.gr
http://creativecommons.org/licenses/by/4.0/

requirements, taking into account the implicit uncer-

tainty and vagueness, during the cloud service evalu-

ation and selection.

Recent research work has focused on developing

methods and mechanisms to allow the comparison and

ranking of competitive cloud services and help the user

during the cloud service selection. According to the

existing work [4, 5], service evaluation may be affected

by a set of quantitative and qualitative service character-

istics. Quantitative characteristics are those that can be

measured without any uncertainty, e.g., response time,

while qualitative characteristics refer mainly to non-

functional service characteristics and cannot be quanti-

fied in an objective manner, as they are based typically

on user experience such as service usability. Although

the existence and significance of qualitative characteris-

tics are identified, existing approaches up to now do not

provide models and methods to handle qualitative

service characteristics in an efficient and objective

way. Furthermore, current approaches use quantitative

models to insert user requirements [4]. However, im-

precise models are closer to the human needs when

expressing preferences, since they can capture the

vagueness of the user requirements. We define an im-

precision model as a set of qualitative cloud service

metrics that cannot be objectively quantified or mea-

sured. These metrics can be used for both describing

a cloud service and expressing requirements during

the cloud service selection phase. This imprecision

can be entered in the cloud consumer’s requirements

side even if it refers to quantitative metrics. For in-

stance, while availability is a quantitative metric, it is

obviously more intuitive for the user to express her

requirements by using expressions such as High or

Medium, rather than specifying precise numerical

thresholds. For that reason for the rest of the paper,

we use the notion of precise metrics/criteria and im-

precise metrics/criteria for either describing a cloud

service or capturing the cloud consumer’s require-

ments. The precise metrics refer to those that include

only crisp values (i.e., quantitative/measurable without

any uncertainty) while the imprecise metrics refer to

those that cannot be objectively quantified or mea-

sured and usually include fuzzy or linguistic values,

for both describing and expressing a requirement for

a cloud service offering. Fuzzy numbers that we argue

they can be used for expressing imprecise criteria, are

based on Zadeh’s pioneer work on Fuzzy Set Theory

[6]. Fuzzy sets are sets of ordered pairs A = {(x,

μA(x)), x ∈ A, μ ∈ ℝ}, where μ(x) is called the member-

ship function. They extend the notion of membership

of an element in a set, from binary (belongs or not

belongs) to a grade of membership, expressed as a

real number, usually in [0,1] interval.

In this paper, we aim to tackle the aforementioned

limitations in cloud service ranking and thus optimize

cloud service use, by providing a preference-based cloud

service recommender as a brokerage service that allows

cloud service evaluation based on a heterogeneous

model of service characteristics. We focus on imprecise

metrics and on a unified method to manage them along

with the precise ones for providing cloud service

rankings. Examples of such imprecise metrics include:

Provider’s Brand Name Reputation - the linguistic

expression of the reputation of the cloud service pro-

vider as perceived by its consumers; Support Satisfac-

tion – the linguistic expression that indicates the

aggregated perception of the cloud consumers regard-

ing the support that they have received from the

vendor; Provider’s business stability – the fuzzy de-

scription of the likelihood that the service provider

will continue to exist throughout the contracted term.

Cloud consumers need to declare their preferences in

a way that retains their inherent vagueness, such as

using linguistic terms, which are easier, more intuitive

and more comprehensible than using numbers. In

order to cope with all the meaningful metrics that

should be used for an optimised use of cloud service

offerings, we developed the Preference-based cLoud

Service Recommender (PuLSaR). PuLSaR is a cloud

consumer preference based recommender that uses a

holistic multi-criteria decision making approach for

offering optimisation as brokerage service.

This paper is structured as follows: In Section 2, we

present the related state-of-the-art while in section 3, a

discussion on the meaningful attributes for comparing

cloud service offerings and optimizing their selection

and use, is given. In Section 4, we summarise our pro-

posed cloud service recommendation method, while in

Section 5, we propose a formal way to express prefer-

ences using a Linked Unified Service Description Lan-

guage (Linked – USDL) extension. In Section 6, we

give technical details about the preference-based

cloud service recommender. Section 7 accommodates

the details of our proposed mechanism’s performance

evaluation and we conclude with the next steps in

Section 8.

2 Related work
The majority of the existing approaches focus on opti-

misation issues before or during the cloud migration

process from the legacy systems and mostly target cost

optimisation issues [7] in terms of resource allocation

and deployment [8]. For example, Litoiu et al. [7] have

presented a business driven cloud optimization architec-

ture, called CERAS that enables cross-layer services

optimization which considers platform profit and hard-

ware utilization as main optimization goals. They

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 2 of 14

implement approximate optimization using available

techniques such as linear programming, to balance com-

plex business factors and come close to optimal profits

at all cloud layers. Similarly, Huu [8] proposed four

different resource allocation strategies in an effort to

reduce infrastructure costs while also optimizing appli-

cation performance. Such efforts, mainly target Infra-

structure as a Service (IaaS) level optimisation issues

from the perspective of the cloud provider. Other ef-

forts, that examine cloud service optimisation from the

cloud consumer perspective, focus on comparing low

level performance aspects of cloud services such as CPU

and network throughput [9] addressing mainly IaaS-

related issues [5, 10] or they are concerned with compar-

ing similar services based on mainly cost issues [11].

Although these works aim to identify optimal cloud ser-

vices from a cloud consumer perspective by considering

user preferences, they are limited because they only con-

sider quantitative metrics and they do not use advanced

MCDM strategies to solve the multi-criteria optimisa-

tion problem. Similarly, in another interesting approach

[12], the authors proposed an indexing technique for

managing the comparable information of a large number

of cloud service providers and developed an efficient ser-

vice selection algorithm that ranks potential service pro-

viders, instead of their offerings. In particular, they

proposed the Cloud Service Provider (CSP) index which

was built based on an encoding technique that captures

similarity among various properties of service providers.

But, this work, although it is offered as a cloud broker-

age service, it focuses only on ten properties (e.g., service

type, security, operating system etc.) of the cloud service

providers by considering one offering per provider thus

limiting this ranking service to infrastructure and plat-

form as a service offerings. Moreover, there is no sup-

port for any vagueness in the expression of cloud

consumers’ requirements, even if they refer to qualitative

properties.

In other more recent works, there is some effort to

consider qualitative metrics and try to address the in-

herit vagueness that exists in the cloud service optimisa-

tion by adopting MCDM techniques [13–15]. In one of

the most interesting approaches, Garg et al. [4] present a

framework for comparing and ranking cloud services

based on QoS requirements and on current performance

measurements of services’ attributes. Their work is based

on the Service Measurement Index (SMI), which is a set

of business-relevant key performance indicators (KPI’s)

that provide a standardized method for measuring and

comparing business services [16]. Garg et al. [4], try to

quantify some of these KPIs in order to model several

quality dimensions of cloud services. They use an

Analytic Hierarchy Process (AHP) [17] based ranking

mechanism to solve the multi-criteria decision making

problem of finding the optimal cloud service. This

quantification however, although helpful, in many

cases it seems arbitrary and vague as mentioned in

the introduction section.

In this paper, we cope with such inefficiencies or arbi-

trary assumptions by providing a more realistic approach

that takes under consideration the implicit vagueness in

certain criteria along with the fuzziness when dealing

with user’s preferences or requirements, expressed lin-

guistically. Therefore, we use fuzzy and linguistic values

that are more appropriate for dealing with imprecise cri-

teria. Moreover, in contrast to the above-mentioned

work that is using eigenvectors, we use extent analysis

[18] for deriving the relative value-based weights for

ranking Cloud services. This compared to the conven-

tional AHP, makes it simpler and easier to implement

the calculation of weights, for prioritizing consumer

satisfaction. For optimisation purposes, we consider as

criteria values the ones that appear in the Linked-

USDL based service description regarding the precise

criteria, while we use the aggregated user feedback

for imprecise criteria values. Moreover the approach

in [18] uses single instance performance analysis fo-

cusing only on IaaS aspects while do not consider

any aggregation of measurable values.

3 Attributes for cloud service optimisation
In order to develop a software system, capable of

comparing cloud service offerings and optimizing

their selection and use during any phase of the cloud

service lifecycle, an appropriate model for describing

their comparable characteristics is required. This

model should encapsulate all the necessary perform-

ance indicators that will allow for comparisons

between cloud services. From the state-of-the-art-ana-

lysis, it is evident that a lot of efforts have been dedi-

cated to exactly this issue. One of the most accepted

and cited work is the Service Measurement Index

(SMI) [16]. SMI is currently being developed by the

Cloud Services Measurement Initiative Consortium

(CSMIC) and involves a set of business-relevant Key

Performance Indicators (KPI’s). SMI is a hierarchical

framework that divides the measurement space into 7

top level categories [16] that are further refined by

three or more level of attributes. These top level

categories are:

� Accountability - measures the properties

characterizing the cloud service provider

organizations related to standards, processes, and

policies that they follow;

� Agility - indicates the impact of a service upon a

client’s ability to change direction, strategy, or

tactics quickly and with minimal disruption;

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 3 of 14

� Assurance - indicates how likely it is that the service

will be available as specified;

� Financial – relates to the amount of money spent

on the service by the client;

� Performance – covers the performance features and

functions of the provided services;

� Security and Privacy - indicates the effectiveness of a

cloud service provider’s controls on access to

services, service data, and the physical facilities from

which services are provided;

� Usability - relates to the ease with which a service

can be used by its consumers.

It is evident from the literature review (see section 2)

that most of the research efforts focus only on quantita-

tive metrics (or at best on quantifiable metrics), thus

only crisp numbers are used in the methods and tech-

niques implemented for ranking cloud services [4].

However, sometimes it can be hard to classify the char-

acteristics in one of the two categories, since even for

some quantitative attributes it makes sense that the

users express their preferences in a qualitative manner.

There are a number of metrics that can be seen as quali-

tative but at the same time with some reasonable as-

sumptions they can be quantified (e.g., Interoperability,

Usability etc.) or they can be resolved in a number of

lower level metrics, involving both quantitative and

qualitative attributes (e.g., Serviceability - the ease and

efficiency of performing maintenance and correcting

problems with the service) or involving both precise and

imprecise values. For instance, the Usability metric has

been defined as a quantifiable attribute [4] in the sense

of the average time experienced by users of the cloud

service to install, learn, understand and operate it. But,

often this average time is not enough to define how us-

able a cloud service is, since this information is often

vague and imprecise. It might be the case that the aver-

age learning time for a cloud customer about a specific

service is relative short because of the customer’s huge

experience in the specific domain and not because the

service is really usable for an average user. It would be

an oversight to ignore the degree of difficulty that other

users experience based on their degree of expertise,

when they tried to learn, understand and operate the

specific cloud service. This value is highly subjective, un-

certain and often is available through linguistic terms

when previous users are expressing their opinions. In

this example the experienced user might indicate that it

is difficult to operate the specific cloud service (for an

average user) although it didn’t take her too long to

learn how to operate it.

Therefore, we believe that a blending of precise and

imprecise metrics is more meaningful for characterizing

and ranking a cloud service. We adopt and extend the

SMI model [16] in order to use widely acceptable criteria

for cloud service ranking and selection. The extensions

made are mostly related to imprecise attributes and took

into account the state of the art and the relevant needs

of real pilot cloud platforms (i.e., CAS Open of the

German company CAS and Orbi of the Greek company

Singular Logic) that were formulated after three series of

interviews. In Fig. 1, an overview of the hierarchical

structure of the defined criteria is presented. Because of

the size of its current version not all the attributes can

be depicted. The reader can find the complete list of

attributes used, online here: http://imu.ntua.gr/software/

pulsar. The main extensions over SMI [16] involved the

introduction of a new top-level attribute called Reputa-

tion. It is related to the reputation of the Service pro-

vider and of the cloud service offerings that are provided

and involves the following 2nd level attributes: Brand

name, Service Reputation, Contracting Experience, Ease

of doing business, Provider business stability, Provider

Ethicality and Sustainability. For example, the Brand

name attribute refers to the linguistic expression of the

reputation of the cloud service provider as perceived by

its consumers. The rest of the extensions involved the

introduction of 2nd level imprecise attributes: Robust-

ness, Monitoring, Reusability under the Agility, Perform-

ance, Usability top level attributes, respectively and the

introduction of 3rd level imprecise attributes: Technical

competency of the support employees, Support Satisfac-

tion and Documentation, Interoperability level and

Monitoring level under the Accountability, Assurance

and Performance top level attributes.

4 Cloud service recommendation method
The proposed method aims at providing a cloud service

ranking technique capable to exploit both crisp and

fuzzy information in order to be used for optimisation

purposes. It extends the SMICloud approach [4]. Based

on our method the service KPI and user requirement

values can be fuzzy numbers and intervals, or linguistic

terms. In the latter case, linguistic terms are mapped

onto fuzzy numbers in order to ensure unified process-

ing, both of the imprecise and precise, user-provided

values. Using techniques similar to SMICloud’s, we de-

rive fuzzy comparison matrices and subsequently using a

fuzzy Analytical Hierarchical Process (AHP) method, we

rank services. For example, this method is able to cope

in unified way with the following heterogeneous criteria

values:

– service response time expressed as an integer in the

cloud service descriptions (e.g., 20msec) and as a

fuzzy number when a potential cloud consumer

provides her requirements (e.g., (10,20,25) msec).

We note that it is the Broker’s responsibility that the

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 4 of 14

http://imu.ntua.gr/software/pulsar
http://imu.ntua.gr/software/pulsar

measurements are acquired in a way that allows for

fair comparisons between different services of

different providers. This is achieved by setting the

appropriate broker policy that dictates for example

the use of similar probes thus considering the

network latency in all response times.

– support satisfaction expressed as a linguistic value

for both the cloud service description (e.g., High)

and requirement (e.g., ≥Medium). It refers to the

consumers’ aggregated satisfaction (expressed

linguistically) when performing maintenance or

correcting problems with the service. The algorithm

considers this criterion by mapping the linguistic

values to fuzzy numbers.

In our work we have also selected the method pre-

sented in [18], appropriately adapted for service rank-

ing purposes. In addition, we have also chosen to use

triangular fuzzy numbers and trapezoidal intervals

due to their simplicity and broad use. Our approach

provides more expressive and unified way to capture

user opinions and preferences, both precise and

imprecise, than traditional service ranking methods.

This proposed service ranking method involves the

following four phases that have been thoroughly dis-

cussed in [19]:

� Phase 1: Expressing ranking problem into a

hierarchical structure

� Phase 2: Computation of relative quality of service

(QoS) attribute weights

� Phase 3: Computation of relative service

performances

� Phase 4: Aggregation of relative service weights

Next, we are presenting a high-level view of the service

ranking algorithm (Fig. 2), where the main steps of this

process are depicted, while we provide excerpts of the

algorithm in pseudocode for revealing additional import-

ant details (Algorithm 1). The thorough description of

our cloud service recommendation method can be found

in our previous work [19].

Fig. 1 Hierarchical Structure of Service Measurement Attributes (based on [16])

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 5 of 14

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 6 of 14

However, the ranked list of cloud services calculated

based on this approach is not yet suitable for recom-

mendation to the service consumer directly. This is due

to several reasons. For instance, some of the services in

the recommended list might have been recently replaced

by another cloud application, due to adaptation actions

initiated by a failure prevention and recovery mechanism

that a broker may offer. Another case is that the service

consumer has repeatedly ignored a suggested service (in

the context of a previous recommendation). For the

aforementioned reasons the ranked list returned from

service ranking algorithm needs to be filtered first before

it can be presented to service consumer.

The proposed method also provides the capability to

define a selection policy on the ranked and filtered list

of services. The selection policy picks a certain number

of services from the ranked and filtered list and creates a

recommendation that is sent to the service consumer.

Specifically, the selection policy defines the number of

items (services) included in the recommendation, for ex-

ample the top one or top-3 or top-N services. Selection

can also occur based on a score, taking into account the

relative service weight calculated during service ranking.

It is possible to define a relevance threshold and filter

out services with lower scores. The threshold can either

be a specific value or a percentage of the value of the

top ranked service. For example, let the top ranked

service has score 0.37 and let the percentage be set to

20%. Then all services with scores from 20% below 0.37

(i.e., 0.296) up to 0.37 will be accepted as recommend-

able items. Furthermore, service consumer might also

send a response (to the recommendation event) indicat-

ing that he/she accepts certain recommended services.

These responses can be used to filter out services from

future recommendations.

5 Formally expressing preferences
In order to implement the above mentioned cloud ser-

vice recommendation method, it is desired to be able to

formally express and register cloud consumers’ prefer-

ences. Therefore we are using and appropriately extend-

ing Linked-USDL [20], as an adequate, acceptable and

easily extensible ontological framework for describing

services. We propose Linked USDL Preferences – a

novel Linked USDL schema which aims at: (i) providing

an open, linked, and interoperable framework for captur-

ing consumer-expressed preferences with respect to a

set of precise and imprecise attributes that characterise

cloud services; (ii) establishing a clear relationship be-

tween consumer preferences, service-level profiles, and

SDs. The Linked USDL Preferences schema takes into

account the vagueness, or fuzziness, often implicit in

consumer-expressed preferences, whilst allowing for the

intuitive expression of preferences using linguistic terms

Fig. 2 High-level view of Service Ranking Algorithm

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 7 of 14

and imprecise values. This is particularly important as

the majority of research efforts in modelling consumer

preferences predominantly focus on attributes that can

be measured precisely, i.e., in terms of crisp numbers

[4]. The basic concepts of the Linked-USDL Preferences

schema are outlined below.

A cloud consumer is potentially associated with a

number of diverse preference profiles, assumed to be

drawn from the class ConsumerPreferenceProfile (see

Fig. 3). Each such profile aggregates, through the hasPref

property, the consumer’s preferences relative to a par-

ticular functional category of cloud services – i.e., of a

grouping of cloud services of comparable functionality,

e.g.,: ‘CRM Apps’, ‘Project Management Services’, ‘Sales

Services’ etc. . Consumer preference profiles are associ-

ated with their corresponding functional categories via

the adheresTo property. Now a consumer preference is

invariably expressed in terms of the OptimisationAttri-

bute class. This class is assumed to comprise all service

attributes used for optimisation purposes. In fact, a

consumer preference expresses a constraint on such

an attribute – one which is represented here in terms

of a preference expression. Such an expression is

associated with the attribute that it constrains via the

property hasOptAttr. Consumer preferences are asso-

ciated with their corresponding expressions via the

property hasPrefExpr.

Optimisation attributes may be either precisely or im-

precisely measurable. Precisely-measurable attributes

may characterise functional aspects of a service, in

which case they are associated, through the belongsTo

property (see Fig. 3), with the functional category to

which the service pertains. Precisely-measured attributes

are assumed to draw their values from the GoodRelations

class gr: QuantitativeValue. Analogously, imprecisely-

measured attributes draw their values from the class gr:

QuantitativeValue, and fuzzy attributes draw their values

from the class FuzzyValue.

Each preference variable in a consumer’s preference

profile is additionally associated with a weight which

indicates its significance relative to the rest of the prefer-

ence variables in the same profile. In this respect, the

Linked USDL Preferences model introduces the class

Weight, a subclass of the gr: QuantitativeValueFloat

class, which draws its instances from the range [0,1].

Clearly based on this model, different preference pro-

files may be associated with diverse sets of preference

variables and hence different consumer preferences.

Moreover, a consumer may express different preferences

for the same cloud service depending on the particular

circumstances under which the service is consumed; this

may occur, for example, when the same cloud service is

consumed as part of two different cloud applications.

6 Preference-based cloud service recommender
6.1 Architecture

In this section we discuss the conceptual architecture of

PuLSaR. Certain technical choices that have been made

are depicted in Fig. 4. This conceptual architecture en-

compasses both the subcomponents of PuLSaR as well

as the interactions with “external” components that may

exist in a modern Broker [21]. These external to PulSaR

components involve the service governance and quality

control for assuring quality in all the brokerage phases

Fig. 3 Linked USDL Preferences Model

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 8 of 14

and the failure prevention and recovery mechanism for

adapting failing cloud service offerings.

If PuLSaR is embedded into or integrated with another

system, such as a broker’s platform, the user-facing com-

ponents and user agents (considered as external to PuL-

SaR) are expected to be substituted from platform specific

services or parts. The user-facing components can also

co-exist with the services of a hosting system in order to

provide any functionality missing from the hosting system

(for instance consumer preference profile management).

The core of PuLSaR is shown as a central box in the

architectural diagram. It encompasses six subcomponents,

which implement the relevant functionalities and

mechanisms. Five of them provide the means for

humans or external software to interact with PuLSaR

whereas the sixth one implements the ranking algorithm.

Therefore, PuLSaR involves the following subcomponents

presented below.

Consumer Preference Profile Management subcompo-

nent. It provides APIs and functionality for creating,

updating and deleting consumer preference profiles. Con-

sumer preference profiles are logical containers where all

selection preferences and configuration pertaining to a

specific selection problem are stored. A service consumer

can have any number of preference profiles pertaining to

different applications and purposes. These profiles are

subsequently used by the Multicriteria Cloud Service

ranking engine to rank services and generate recommen-

dations. Each preference profile provides a different set of

selection criteria and options therefore leading to a pos-

sibly different service ranking, even for the same service

selection problem.

Consumer Feedback Management subcomponent. It is

responsible for collecting service consumer feedback for

services she has already used. It generates questionnaires

based on imprecise selection criteria and gives the con-

sumer the opportunity to provide her subjective opinion

about them. Of course, the service consumer is asked to

provide feedback only for services she has already used.

Furthermore, this subcomponent is able to aggregate dif-

ferent consumers’ opinions and upon reaching a param-

eterized threshold of participation, it can provide an

average value for the related imprecise attributes and

notify providers accordingly. For example, this means

that if for a certain cloud service the imprecise attribute

“Support Satisfaction” has value “Very High” but PuLSaR

aggregates the value “Medium” for more than 80% of its

consumers (based on their feedback) then the corre-

sponding provider will be notified about the opinion of

its cloud consumers with respect to the certain attribute.

Using this subcomponent, consumers may also update

their previous feedback.

Fig. 4 PuLSaR Conceptual Architecture

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 9 of 14

Recommendations Management subcomponent. It is

used to store new recommendations and collect con-

sumer responses to recommendations. More specifically,

this subcomponent receives ranked lists of services from

the Multicriteria Cloud Service ranking engine and it

subsequently filters them according to the selection policy

chosen. To this end, it can contact a failure prevention

and recovery component in order to check if any of the

top ranked services have recently been adapted in order to

be omitted by the PuLSaR recommendations list.

Optimisation Attributes Management subcomponent.

It is used to manage the optimisation attribute model

used by PuLSaR. Currently, this model is based on and

extends [16] work on service selection attributes (criteria).

This subcomponent provides search-create-retrieve-up-

date-delete (SCRUD) operations on that model.

Optimisation Opportunity Management subcompo-

nent. It is responsible for subscribing, receiving and pro-

cessing Service Life-cycle Management (SLM) events

from the platform and initiating the recommendation

process if appropriate. More specifically, when Service

On-boarded (i.e., made available through the Broker

platform), Service Deprecated, Service Description chan-

ged, then SLM events are published through an event

bus. Based on these events the subcomponent checks if

any existing service with an associated preference profile

is affected (i.e., deprecated or updated or an alternative

service has been on-boarded). In any such case it calls

the Multicriteria Cloud Service ranking engine passing the

relevant SLM event and consumer preference profile.

Multicriteria Cloud Service Ranking engine. This sub-

component implements the service ranking algorithm. It

is called either by the Optimisation Opportunity Man-

agement subcomponent (as a reaction to a relevant SLM

event) or by Consumer Preference Profile Management

subcomponent in order to provide on-demand recom-

mendations and assist the service consumer during profile

development or maintenance.

The subcomponents of PuLSaR rely on a few infra-

structural capabilities for their operation that are dis-

cussed below.

RDF store. The Jena Fuseki server is used. Fuseki ser-

ver accepts SPARQL queries and statements via HTTP

protocol and forwards them to an underlying RDF store.

This gives considerable flexibility to the overall platform

architecture since the RDF store can be accessed re-

motely, shared with other components, replaced seam-

lessly and it can also abstract the actual RDF store

intricacies, since only standard SPARQL is exchanged

with Fuseki.

RDF persistence. We have implemented an RDF per-

sistence framework that converts java object instances

into sets of RDF triplets of the form (subject, predicate,

object). Based on them it builds SPARQL queries or

updates, which are then sent to Fuseki server for pro-

cessing. Vice versa, the results returned from Fuseki

server are converted back to java objects.

Local data store. It is used to store information per-

taining to PuLSaR and not shared or exchanged with

other components (for instance consumer feedback or

responses to recommendations). It also caches tempor-

ary information, intermediary calculations or data of

technical nature. In the context of PuLSaR we have

chosen MariaDB database as the local data store.

Logging framework. PuLSaR logging mechanism relies

on the well-known SLF4J logging abstraction mechanism

for Java.

Pub/Sub mechanism. It is used to send and receive

events to/from other Broker platform components.

WSO2 pub/sub is used for exchanging information be-

tween components.

As seen in Fig. 4, PuLSaR should be able to interact

with the following Broker platform components:

Service Governance and Quality Control (SGQC). This

component indirectly interacts with PuLSaR since it is

responsible for checking and uploading broker policies

and service descriptions to the fuseki store. Such infor-

mation is queried by PuLSaR before issuing recommen-

dations. In addition, any update on service descriptions

(i.e., new service onboarded) is published by the SGQC

to the Pub/Sub system for propagation in the form of

SLM events. Such events may trigger new PuLSaR

recommendations.

Failure Prevention and Recovery component (FPR).

This component is contacted in order to retrieve the

recommendations it has recently sent to service con-

sumers in order to avoid recommending cloud services

that have been recently adapted. FPR component can

contact PuLSaR, through its RESTful API, in order to

retrieve PuLSaR recommendations already sent to the

consumers, in order to use this information for appropri-

ately adjusting any adaptation actions.

User-Facing components. These components constitute

the front-end of PuLSaR. They provide GUIs that enable

users of a Broker platform to access information and use

its services. User-facing components can either be stand-

alone applications or they can be part of (or integrated to)

a third-party brokerage or cloud provider infrastructure.

At present, user-facing components have been imple-

mented as stand-alone web-based applications using

Web2.0 technologies like JavaScript, DOM, XHR and

JSON format for the exchanged data. Currently, we con-

sider three major user roles: service consumers, service

providers and platform administrator(s). These facts are

depicted in PuLSaR architecture diagram (Fig. 4) as the

purple boxes “SC facing”, “SP facing” and “Admin facing”

components (denoting the server-side part of them), as

well as “Consumer User Agent (UA)”, “Provider UA” and

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 10 of 14

“Admin UA” cyan boxes (denoting the client-side part of

them, presented to the corresponding user roles).

6.2 Illustrative walkthrough of using PuLSaR

PuLSaR can enhance any cloud platform with brokerage

capabilities with respect to optimized consumption of

cloud offerings as long as the platform is able to describe

in a neutral way the available cloud services and the bro-

ker policy that needs to be enforced. In this work,

Linked-USDL has been used for that specific purpose.

Based on the expressed broker policy, PuLSar can

undertake the optimisation attributes management. This

enables the maintenance of the optimisation attribute

model used to describe services in terms of selection

criteria. This means that the offered model with service

attributes discussed in section 2, can be specialised for

each brokerage platform and instantiated according to the

broker’s hosting platform policies (e.g., Learnability is a

linguistic attribute with allowed values {Low, Medium,

High}). After this, the prototype implementation performs

the collection of service consumer preferences on specific

service selection problems expressed and captured as

Consumer Preference Profiles. PuLSaR guides consumers

to interactively develop their consumer preference pro-

files, add selection criteria and assign importance values

to them (as weights) through a series of pairwise compari-

sons. Specifically, based on the selected classification

dimensions all the associated service attributes are pre-

sented in order for the consumer to declare his choices

(Fig. 5 - screen 1). Next, the consumer is invited to declare

the weights of the selected attributes through pairwise

comparisons (Fig. 5 - screen 2). It is possible to display

recommendations based on the current settings of the

profile being edited thus helping consumers to pick a

service for the initial composition of their application.

PuLSaR presents the calculated weights and allows for

defining constraints over them (Fig. 5 - screen 3). Last, it

generates recommendations, either on-demand (during

consumer preference profile creation) or in response to an

SLM event (Fig. 5 - screen 4). In both cases, recommenda-

tions are stored in the local data store and published as

recommendation events to the corresponding event

Fig. 5 PuLSaR Walktrough

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 11 of 14

topics. These recommendations are based on the ranking

of cloud services based on the consumer preference

profiles.

The PuLSaR prototype was implemented in Java using

the Apache Jena (Core and ARQ) APIs and was released

as open source under the Apache Dual License. The

reader can find PuLSaR open source, detailed illustrative

walkthrough and explanatory videos here: http://

imu.ntua.gr/software/pulsar.

7 Evaluation of PuLSaR
In order to evaluate the performance of PuLSaR against

an increasing set of requirements that could be met in a

cloud service broker, we conducted a number of experi-

ments and measured certain key performance indicators

(KPI’s) that assess the behaviour of PuLSaR. These

experiments involve an increasing number of fabricated

consumer preferences profiles (i.e., 1–1000) that trigger

PuLSaR to issue recommendations for finding the op-

timal cloud offerings in a hypothetical SaaS cloud

marketplace. The size of available offerings also varies

(i.e., 1–1000) while linguistic (imprecise) attributes

are used to describe offerings, since they require

more complex operations than numeric attributes

during processing. The two variant aspects (profiles

and cloud services, keeping the selected attributes

fixed to 10) constitute 8 experiments that we conducted.

For each of these variants the CPU, memory and time

consumed for issuing PuLSaR recommendations were

measured. Specifically, these 8 experiments have clustered

to two series of experiments. The variable increased in

each series of these experiments, respectively, is:

1. the number of consumer preference profiles to be

processed - Tests for 1, 10, 100 and 1000 profiles

were executed, keeping other parameters fixed (i.e.,

available service descriptions to 10 and 10 criteria

per profile)

2. the number of available service descriptions in the

triplestore - Tests for 1, 10, 100 and 1000 service

descriptions were executed, keeping other

parameters fixed (i.e., profiles to be processed to 10

with 10 criteria per profile)

All of our experiments have been performed on an

Ubuntu SMP, kernel version 3.13.0-49-generic, installed

on a virtual machine with 8 cores of Intel(R) Xeon(R)

64-bit CPU E5-2470 v2 @ 2.40GHz, 25600 KB cache

and 10GB of RAM. Java version is 1.7.07 OpenJDK 64-

bit server VM. It should be also noted that after some

preliminary tests, PuLSaR has been enhanced with

multi-threading capabilities in order to deal with scal-

ability issues evident in the cloud computing domain.

In the results of the first series of tests, involving an

increasing number of consumer preference profiles, it is

evident that test duration (i.e., processing all profiles) in-

creases linearly as the number of profiles climbs up

(Fig. 6a). This is the expected behaviour since each pro-

file is handled separately from the others. The only data

shared between profile processing iterations (and

threads) are service descriptions and broker policy ele-

ments, which are cached the first time they are retrieved

from Fuseki. Adding extra cores would reduce the in-

clination of the trend line. Memory consumption also

exhibits a linear behaviour as profiles in this test require

roughly the same amount of memory (Fig. 6b) with the

exception of the beginning of the test where a lot of pro-

file pre-fetching and queuing takes place, constituting

steeper inclination. CPU load is measured both for the

whole system and for PuLSaR (JVM process) separately.

Fuseki and PuLSaR were collocated in the same platform

during tests, therefore system load gives an idea of the

impact of PuLSaR requests onto Fuseki. Figure 6c sug-

gests that system and PuLSaR CPU loads exhibit similar

behaviours although system load is higher than that of

PuLSaR. This is reasonable since Fuseki serves requests

(and consumes CPU) at the rate PuLSaR submits them.

Figure 6c also indicates increased CPU load for low

profile numbers (1 and 10). This effect stems from

the logging strategy used and the fact that PuLSaR

retrieves and queues profiles at the beginning of the

experiment.

a b c

Fig. 6 First Series of Evaluation Tests, (a) Duration vs. Profiles, (b) Av. mem. consumption vs. Profiles, (c) Av. CPU load vs. Profiles

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 12 of 14

http://imu.ntua.gr/software/pulsar
http://imu.ntua.gr/software/pulsar

Regarding the second series of tests involving an in-

creasing number of cloud offerings it is obvious that test

duration increases abruptly as their number climbs up

(Fig. 7a). This is due to the nature of the algorithm

which requires N(N–1)/2 pairwise comparisons of cloud

offerings per criterion, where N is the number of offer-

ings. For instance if N = 10 then only 45 comparisons

are required but if N = 100 then 4950 comparisons are

required, which is 110 times larger than 45. Obviously

this step’s complexity is O(N2) thus leading in significant

increase of test duration as cloud offerings increase from

100 to 1000. For low numbers of cloud offerings (<10)

test duration seems to remain unchanged (or climbing

slowly) because overhead is comparable to or exceeds

the processing time of services and profiles. Memory

consumption seems to increase in a linear fashion with

the number of cloud offerings, since their descriptions

are cached and in this test require roughly the same

amount of memory (Fig. 7b). The CPU usage of PuLSaR

increases up to a point (approx. at 100 offerings) and

then remains constant (Fig. 7c). As the number of offer-

ings increases the cloud offerings comparison step of the

recommendation algorithm, takes considerably more

time than the other steps, therefore we conjecture the

maximum software throughput (processing speed) is

reached at around that point, for the specific test. Hence

CPU usage becomes almost constant. The system CPU

usage increases with the number of cloud offerings up to

around 100 and then drops to reach the average PuLSaR

usage (Fig. 7c). This behaviour occurs because PuLSaR

retrieves all needed information from Fuseki at the ini-

tial phase of the recommendation process and then con-

tinues with offerings comparisons. In small numbers

these phases may overlap between simultaneously exe-

cuting threads causing both PuLSaR and Fuseki compete

for CPU time. Contrary, in higher numbers the cloud of-

ferings’ comparisons step take considerably more time

(during which only minimal interaction with Fuseki

might occur) than other information retrieval activities

and Fuseki seems to become idle leaving PuLSaR occupy

most of CPU time. Therefore the system CPU load

appears to initially increase up to 100 offerings and then

decrease down to PuLSaR average CPU usage level,

which as already explained becomes constant at high of-

fering numbers.

Since PuLSaR uses processing threads to create rec-

ommendations for consumer preference profiles, it is

possible to increase its throughput (profiles processed

per unit of time) by making available extra cores and

heap memory to it. Also, in terms of memory consump-

tion PuLSaR exhibits a linear behaviour whereas in

terms of CPU load it reaches a plateau and remains

steady. These findings suggest that PuLSaR can accept-

ably scale up and operate in increasing numbers of offer-

ings and profiles.

8 Conclusions
In this work we presented a method and a tool for opti-

mising the cloud service usage by performing cloud ser-

vice evaluations based on a heterogeneous model of

service characteristics. Specifically, we presented and im-

plemented a fuzzy AHP approach that solves the prob-

lem of service ranking and allows the multi-objective

assessment of cloud services. This approach provides a

more expressive and unified way to capture and process

user opinions and preferences (both precise and impre-

cise) than traditional service ranking methods. Based on

this method and a proposed Linked-USDL model for

formally expressing preferences, we designed and im-

plemented the Preference-based cLoud Service Rec-

ommender (PuLSaR). PuLSaR is a cloud consumer

preference based recommender that uses a multi-criteria

decision making approach for offering optimisation as

brokerage capability. The specification and implementa-

tion details of this dedicated software component were

presented. In addition, PuLSaR was evaluated with respect

to performance though a number of experiments that

measured certain KPIs of the mechanism. Based on the

evaluation findings it became evident that PuLSaR can be

considered as an efficient and scalable software mechan-

ism that can enhance as a service any cloud service broker

with optimisation capabilities.

a b c

Fig. 7 Second Series of Evaluation Tests, (a) Duration vs. Services, (b) Av. mem. consumption vs. Services, (c) Av. CPU load vs. Services

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 13 of 14

The next steps of this work, involve the evaluation of

PuLSaR’s optimisation capabilities in real-life brokerage

scenarios using heterogeneous hosting platforms and

enriching them with valuable brokerage capabilities.

PuLSaR’s capabilities will be enhanced in real cloud plat-

forms that aspire to add brokerage functionalities in

their offerings. Such evaluation will be done with respect

to usability issues by conducting surveys targeting real

cloud service consumers. Additionally, PuLSaR will be

extended to support distributed processing (i.e., several

PuLSaR processing nodes working in parallel), thus

further increasing scalability. Eventually, extensions of

the proposed method are considered to the direction

of reducing the number of cloud offerings pairwise

comparisons and the faster calculation of relative

weights.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

IP has participated in the design of this study, led the implementation work

of the PuLSaR software component and conducted the evaluation

experiments. YV has contributed to the conception and implementation of

this study, led the Linked-USDL extension work and contributed in the de-

sign and analysis of the evaluation experiments. GM have made substantial

contributions to the conception and design of PuLSaR software component,

led the state-of-the-art analysis and drafted the manuscript. All authors read

and approved the final manuscript.

Acknowledgments

The research leading to these results has received funding from the

European Union Seventh Framework Programme (FP7/2007-2013), the

Broker@Cloud project (www.broker-cloud.eu). The authors would like to

thank the project partners for their valuable feedback.

Received: 29 April 2015 Accepted: 24 November 2015

References

1. Ardagna D, Casale G, Ciavotta M, Pérez J, Wang W. Quality-of-service in

cloud computing: modeling techniques and their applications. J Internet

Serv Appl. 2014;5(1):1–17.

2. Gartner. Defining Cloud Services Brokerage: Taking Intermediation to the

Next Level. 2010. https://www.gartner.com/doc/1448121/defining-cloud-

services-brokerage-taking. Accessed 1 Jun 2015.

3. Forrester. Cloud Brokers Become Change Agents: Understanding The Cloud

Broker Opportunity. 2012. www.forrester.com/Cloud+Brokers+Become

+Change+Agents/fulltext/-/E-res71622. Accessed 1 Jun 2015.

4. Garg SK, Versteeg S, Buyya R. A framework for ranking of cloud computing

services. Future Gen Comp Syst Elsevier. 2013;29:1012–23.

5. Godse M, Mulik S. An Approach for Selecting Software-as-a-Service (SaaS)

Product. In: International Conference on Cloud Computing, CLOUD’09.

Bangalore, India: IEEE; 2009. pp 155–158.

6. Zadeh LA. Fuzzy sets. Inf Control. 1965;8(3):338–53.

7. Litoiu M, Woodside M, Wong J, Ng J, Iszlai G. A business driven cloud

optimisation architecture. In: Proceedings of the 2010 ACM Symposium

on Applied Computing, SAC ‘10. Sierre, Switzerland: ACM, New York;

2010. 380–385.

8. Huu TT, Koslovski G, Anhalt F, Montagnat J, Primet PV-B. Joint elastic cloud

and virtual network framework for application performance-cost

optimisation. Grid Computing J. 2011;9(1):27–47.

9. Iosup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema D.

Performance analysis of cloud computing services for many-tasks scientific

computing. IEEE Trans Parallel Distrib Syst J. 2011;22(6):931–45.

10. Chintapalli VR. A deadline and budget constrained cost and time

optimisation algorithm for cloud computing. In: Advances in Computing

and Communications in Computer and Information Science 193. Berlin,

Heidelberg: Springer; 2011. pp 455–62.

11. Rehman ZU. Towards Multi-criteria Cloud Service Selection. In: Fifth

International Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing. Seoul, South Korea: IEEE; 2011. pp 44–48.

12. Sundareswaran S, Squicciarini A, Lin D. A brokerage-based approach for

cloud service selection. In: 5th International Conference on Cloud

Computing, CLOUD’12. Honolulu, USA: IEEE; 2012. pp 558–565.

13. Shivakumar U, Ravi V, Gangadharan GR. Ranking cloud services using fuzzy

multi-attribute decision making. In: International Conference on Fuzzy

Systems, FUZZ’13. Hyderabad, India: IEEE; 2013. pp 1–8.

14. Qu L, Wang Y, Orgun MA. Cloud Service Selection Based on the

Aggregation of User Feedback and Quantitative Performance Assessment.

In: 10th International Conference on Services Computing, SCC’13. Santa

Clara, USA: IEEE; 2013. pp 152–159.

15. Baliyan N, Kumar S. Quality Assessment of Software as a Service on Cloud

Using Fuzzy Logic. In: International Conference on Cloud Computing in

Emerging Markets, CCEM’13. Bangalore, India: IEEE; 2013. pp 1–6.

16. CSMIC. Cloud Service Measurement Index Consortium: SMI framework

Version 2.1. 2014. http://csmic.org/downloads/SMI_Overview_TwoPointOne.

pdf. Accessed 1 Jun 2015.

17. Saaty TL. A scaling method for priorities in hierarchical structures. J Math

Psychology. 1977;15(3):234–81.

18. Chan KY, Kwong CK, Dillon TS. An enhanced Fuzzy AHP method with

extent analysis for determining importance of customer requirements

computational intelligence techniques for new product design. In: Springer-

Verlag, editor. Computational Intelligence Techniques for New Product

Design, 403. 2012. p. 79–93.

19. Patiniotiakis I, Rizou S, Verginadis Y, Mentzas G. Managing Imprecise Criteria

in Cloud Service Ranking with a Fuzzy Multi-Criteria Decision Making

Method. In: Proceedings of the European Conference on Service-Oriented

and Cloud Computing, vol 8135. Malaga, Spain: Springer Berlin Heidelberg;

2013. pp 34–48.

20. Pedrinaci, C, Cardoso, J, Leidig, T. Linked USDL: a Vocabulary for Web-scale

Service Trading. In: Proceedings of the 11th Extended Semantic Web

Conference, ESWC’14. Crete, Greece: Springer International Publishing; 2014.

8465:68–82.

21. Veloudis S, Paraskakis I, Friesen A, Verginadis Y, Patiniotakis I, Rossini A.

Continuous Quality Assurance and Optimisation in Cloud-Based Virtual

Enterprises. In: Proceedings of the 15th IFIP Working Conference on Virtual

Enterprises, PRO-VE’14. Amsterdam, Netherlands: Springer Berlin Heidelberg;

2014. pp 621–632.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26 Page 14 of 14

http://www.broker-cloud.eu/
https://www.gartner.com/doc/1448121/defining-cloud-services-brokerage-taking
https://www.gartner.com/doc/1448121/defining-cloud-services-brokerage-taking
http://www.forrester.com/Cloud+Brokers+Become+Change+Agents/fulltext/-/E-res71622
http://www.forrester.com/Cloud+Brokers+Become+Change+Agents/fulltext/-/E-res71622
http://csmic.org/downloads/SMI_Overview_TwoPointOne.pdf
http://csmic.org/downloads/SMI_Overview_TwoPointOne.pdf

	Abstract
	Introduction
	Related work
	Attributes for cloud service optimisation
	Cloud service recommendation method
	Formally expressing preferences
	Preference-based cloud service recommender
	Architecture
	Illustrative walkthrough of using PuLSaR

	Evaluation of PuLSaR
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgments
	References

