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ABSTRACT 

Gonadotropin-releasing hormone (GnRH) is typically secreted in a pulsatile manner. It is still 

unclear whether pulsatility depends on a GnRH pulse generator residing in the GnRH neurons or in 

other neurons. Since the cell bodies of GnRH neurons are located rostrally to the optic chiasm and 

the majority of GnRH terminals in the median eminence of the rat hypothalamus, we have 

compared GnRH secretion from individual preoptic, retrochiasmatic and median eminence 

explants using a static incubation system. GnRH is released from the three different types of 

explant in response to depolarization with veratridine or glutamate receptor stimulation using the 

agonist N-methyl-D-aspartate. Only the retrochiasmatic explants, however, show a characteristic 

pulsatile secretion of GnRH. The mean (± SD) interpulse interval is respectively 37 + 5,25 ± 4 and 12 

± 1 min when the fractions are collected at 7.5-, 5.0- and 2.5-min intervals. The 

immunocytochemically stained GnRH cell bodies are normally distributed in the preoptic explants 

(n = 212-420) while only 3 GnRH cell bodies can be visualized in 7 retrochiasmatic explants. Semi-

quantitative RT-PCR shows that GnRH mRNA is present in the retrochiasmatic explant in a ratio of 

about 1:600 relative to the preoptic explant. We conclude that pulsatile GnRH secretion occurs in 

the virtual absence of GnRH cell bodies but does not occur from GnRH terminals in the isolated 

median eminence. These data further indicate that a mechanism of GnRH pulsatility is located in 

the retrochiasmatic hypothalamus and involves neurons different from the GnRH neurons. 
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Introduction 

Gonadotropin-releasing hormone (GnRH) is secreted in a pulsatile manner which is critical for 

pituitary gonadotropin secretion in different species [1-3]. Knobil [4] has proposed the existence of 

a hypothalamic pulse generator evidenced through the periodic electrophysiological 

manifestations preceding luteinizing hormone (LH) secretory pulses. Whether GnRH pulsatility is 

generated in the GnRH neurons or through a distinct neuronal apparatus remains elusive. In the 

rat, the mediobasal hypothalamus retains its capacity to secrete GnRH in a pulsatile manner when 

deafferented in vivo [5, 6] or when studied in vitro [7, 8]. Since such an isolated hypothalamus does 

presumably not contain GnRH cell bodies which are located in the preoptic area [9], the existence 

of a pulse-generating mechanism external to the GnRH neurons is suggested. Recently, however, it 

has been proposed that GnRH neurons have the intrinsic capacity to generate secretory pulses 

since the immortalized GnRH neurons (GT-1 cell line) can release GnRH in an intermittent manner 

[10, 11]. Alternatively, some mechanism of GnRH pulsatility could reside in the terminals 

independently of neuronal cell bodies since pulsatile GnRH secretion has been shown using the 

isolated median eminence [12]. The aim of this study was to show whether the cell bodies of GnRH 

neurons are required or whether GnRH terminals suffice to elicit pulsatile secretion of GnRH from 

hypothalamic explants. 

Materials and Methods 

ANIMALS AND EXPLANT DISSECTION 

Adult male Wistar rats were housed under standardized conditions of temperature (25 °C) and light 

darkness rhythm (12/12 h) with free access to food and water. The animals were studied at 50 days 

of age. 

After decapitation, the preoptic and retrochiasmatic explants of the hypothalamus were dissected 

through 3 coronal incisions: 2 mm rostrally to the optic chiasm, at the caudal border of the optic 

chiasm and at the rostral border of the mamillary bodies. Two lateral incisions along the lateral 

sulci and a 2 mm deep frontal section were made to obtain the preoptic and retrochiasmatic 

explants. The median eminence was dissected following a procedure described by Negro-Vilar et 

al. [13]. 

EXPLANT INCUBATION AND GNRH RADIOIMMUNOASSAY 

The explants were studied using a static incubation procedure which was described in detail 

previously [7, 8]. In a first experiment, 10 individual retrochiasmatic explants and the 

corresponding preoptic explants were studied. In a second experiment, 5 retrochiasmatic explants 



Published in: Neuroendocrinology (1997), vol. 66, n°5, pp. 305–312 

DOI: 10.1159/000127253 

Status: Postprint (Author’s version)  

 

 

 

and 5 median eminences were studied. They were incubated individually in 0.5 ml Eagle’s 

Minimum Essential Medium (Flow, McLean, Va., USA) supplemented with glycine, magnesium, 

glucose and bacitracin to achieve concentrations of 10 nM, 1 mM, 25 mM and 20 µM, respectively. 

The medium was collected and renewed every 7.5 min during 4 h. At the end of the experiment, the 

release of GnRH was evoked by incubation for 7.5 min using 50 µM of veratridine, a Na+ channel 

opener (Sigma) and, 30 min later, 50 mM of N-methyl-D-aspartate (NMDA, Sigma). In a third 

experiment, retrochiasmatic explants were incubated and the fractions for GnRH assay were 

collected at different intervals (15, 7.5, 5 and 2.5 min, 10 explants studied for each sampling 

interval). The collected samples were frozen until assayed. 

GnRH was measured in the collected fractions using the specific RR-5 antiserum (provided by Dr. A. 

Root). This RIA procedure has been described previously [7, 8]. The limit of sensitivity was 5 pg/7.5-min 

fractions which was the value assigned to samples with undetectable GnRH level. The release of 

GnRH evoked by NMDA or veratridine was calculated as the difference between the amounts of 

GnRH secreted immediately prior to and during incubation with the secretagogue. 

IMMUNOCYTOCHEMISTRY 

Seven rats anesthetized using chloral hydrate received intracardiac perfusion of Zamboni’s 

buffered picric acid-paraformaldehyde fixative (pH 7.4). The brains were dissected and incubated 

overnight in the fixative at 4°C. After overnight washing in PBS 0.02 M containing 30% sucrose, the 

brains were embedded in OCT, frozen on dry ice and sectionned at 14 µm on a cryostat. After 

preincubation with PBS 0.02 M containing 10% normal swine serum and 0.1% Triton X-100 and 

washing, the sections were incubated during 4 or 5 days at 4°C with the anti-GnRH LR1 antiserum 

(a generous gift from Dr. R. Benoit, Montreal, Canada), diluted at 1:2,000. This antiserum was 

previously characterized [14], After washing, the sections were incubated sequentially with 

biotinylated swine anti-rabbit immunoglobulins (Prosan, Glastrup, Denmark), used overnight at 

4°C at 1:200 dilution and StreptAB Complex (Prosan) at room temperature. Staining was obtained 

using 3,3'-diaminobenzidine (with β-D(+)glucose and glucose oxydase) and counterstaining using 

hematoxylin. All the sections were screened for GnRH-immunoreactive neuronal cell bodies, 

paying attention to avoid double cell counting. 

REVERSE TRANSCRIPTASE-POLYMERASE CHAIN REACTION 

After decapitation of 50-day-old male rats, the preoptic and retrochiasmatic explants were 

dissected and rapidly frozen in RNase-free liquid nitrogen. The samples were weighed and stored 

at -70°C. Total RNAs were extracted according to the RNAzol method [15] and stored at -70°C. The 

extracted RNAs were quantified by UV-spectroscopic measurement and the absence of 

degradation was assessed by electrophoresis on formaldehyde agarose denaturating gel. Based on 

the rat GnRH cDNA sequence [16,17], GnRH primers were synthesized using the following 

oligonucleotide sequences which were proposed by Kim et al. [18]. Upstream primer: 5' 

CACTATGGTCACCAGCGGGG 3' (sequence 894-913; exon 1; accession number M 31670) and 

downstream primer: 5'AGAGCTCCTCGCAGATCCCTAAGA 3' (sequence 3,635-3,658; exon 3; 
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accession number M 31670). The predicted size of this PCR product is 375 bp [16, 17], As positive 

and semi-quantitative controls, the upstream and downstream primers of β-actin were used: 

5'GATGGTGGGTATGGGTCAGAAGGA 3' and 5'GCTCATTGCCGATAGTGATGACCT 3' [19], The predicted 

size of this PCR product is 632 bp. All primers were chosen to flank introns so that the amplified 

GnRH and β-actin cDNAs can be distinguished from an amplification of possible contaminating 

genomic DNA. 

Reverse transcriptase and PCR were performed in a one-step method, using the RNA PCR Perkin-

Elmer kit. Briefly, 10 µg of total RNAs were reverse transcribed into cDNAs with an 

oligodeoxythymidilate-oligo (dT) as primer, in a volume of 20 µl (10 min at 70°C, 60 min at 42°C and 

5 min at 4°C). The reaction mixture contained 25 mM MgC12, 1 mM dNTP mix, 1 U/µl RNAse 

inhibitor, 2.5 µl/ml M-MuLV reverse Transcriptase (Eurogentec, Liege, Belgium) and 2.5 µM oligo 

(dT)16. The cDNAs obtained were amplified in the presence of DNA polymerase (Goldstar, 

Eurogentec) and the specific primers. PCR was performed in a Perkin-Elmer PCR automated 

thermocycler with the following cycles: 1.5 min at 94°C (denaturation), 1.5min at 60°C (primer 

annealing) and 1.5 min at 72°C (primer extension) followed by a post-PCR incubation during 10 min 

at 72 ° C. Negative controls (water instead of cDNA) were run in parallel. Ten micrograms preoptic 

RNAs and 10 µg retrochiasmatic RNAs were used for PCR. After 20 cycles, 5 µl of the preoptic 

medium were diluted at 1:75, 1:100, 1:150, 1:200 and 1:300 in the PCR mixture. PCR was allowed to 

run again to cycle 50 for the different dilutions of the preoptic product and for the retrochiasmatic 

product. The PCR products were studied through electrophoresis on 1.5% agarose gel in TAE 

buffer, stained with ethidium bromide and photographed under UV illumination. An electronic 

densitometric scanning of PCR product signals was directly processed from agarose gel under UV 

transilluminator with a black and white high-sensitive CCD camera connected to an IBM personal 

computer. Densitometric scanning of the β-actin bands at different PCR cycles (23-27) indicated 

that the extraction rates were similar in the preoptic and the retrochiasmatic explant. As specificity 

controls, PCR products from preoptic and retrochiasmatic mRNAS were digested with Eac 1, Hha 1 

and Tag 1. This resulted in the following anticipated fragments: 162 and 213 bp, 231 and 144 bp, 

321 and 54 bp as predicted by analysis of restriction sites (data not shown). 

STATISTICAL ANALYSIS 

The occurrence of significant pulses of GnRH secretion was determined using the Pulsar program 

[20, 21] as described previously [22]. The individual interpulse intervals and the mean ± SD 

intervals were calculated. The coefficient of variation (CV) of the interpulse interval was also 

calculated. The significance of difference in mean GnRH release evoked by veratridine or NMDA 

was calculated using the unpaired Student’s t test. 
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Fig. 1. Representative profiles of GnRH secretion by 4 individual explants of the retrochiasmatic hypothalamus 

(A) and the corresponding preoptic hypothalamus (B). The mean (± 1 SD) GnRH release evoked by veratridine (50 µM) 

and NMDA (50 mM) is studied using 6 individual retrochiasmatic (C) or preoptic (D) explants. The dashed line 

indicates the limit of sensitivity of the GnRH assay. • = Significant pulse detected by the Pulsar program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Representative profiles of GnRH secretion by 5 individual explants of the retrochiasmatic hypothalamus 

including the median eminence (A) or the median eminence only (B). The mean (± 1 SD) GnRH release evoked by 

veratridine (50 µM) and NMDA (50 mM) is studied using the retrochiasmatic (C) or median eminence (D) explants. 

The dashed line indicates the limit of sensitivity of the GnRH assay. • = Significant pulse detected by the Pulsar 

program. 
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Fig. 3. Distribution of GnRH interpulse intervals observed during static incubation of individual retrochiasmatic 

explants from 50- day-old rats and collection of fractions at intervals of 15 (a), 7.5 (b), 5 (c) or 2.5 min (d). The CV 

of the GnRH interpulse interval is given in each condition. 

 

Results 

The retrochiasmatic explants exhibit a spontaneous pulsatile pattern of GnRH secretion (fig. 1A, 

2A). The mean interpulse interval is 34.7 ± 3.9 min (fig. 1A) or 37.9 ± 4.5 min (fig. 2A). Using the 

preoptic explants, few irregular pulses of low amplitude are seen (fig. 1B). Using the median 

eminences, no GnRH secretory pulses are observed (fig. 2B). The release of GnRH evoked by 

veratridine or NMDA is similar using the retrochiasmatic (fig. 1C) and preoptic explants (fig. 1D). 

Likewise, a similar GnRH release is evoked by veratridine or NMDA using the retrochiasmatic (fig. 

2C) and median eminence explants (fig. 2D). Using retrochiasmatic explants, the GnRH interpulse 
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interval is a function of the sampling interval (fig. 3). Using 15- min fractions, no more than one 

single pulse was secreted by each explant during a study period of 180 min. Therefore, the 

interpulse interval could not be calculated (>90 min). Using 7.5-, 5- and 2.5- min fractions, the 

interpulse intervals show a respective reduction: 37 ± 5, 25 ± 4 and 12 ± 1 min. In those conditions, 

the intervals between GnRH pulses are distributed in a relatively narrow range with a similar 

pattern peaking at 37.5, 25 and 12.5 min (fig. 3). 

Immunocytochemical study of the preoptic explant shows the normal distribution of GnRH cell 

bodies in that region (fig. 4). The total number of cell bodies found in 7 preoptic explants varies 

between 212 and 420. Among the 7 retrochiasmatic explants studied thoroughly, only one GnRH 

cell body can be observed in three of them. These cell bodies are located at the border of the optic 

chiasm, in the vicinity of the section separating the 2 explants. In the median eminence area, the 

convergent network of GnRH fibers is observed. 

Using RNAs extracted from preoptic explants, the RT- PCR reproducibly generates a (Lactin band of 

632 bp and a GnRH band of 375 bp. Using RNAs from retrochiasmatic explants, the RT-PCR 

generates a (Lactin band and a slight GnRH band. Gel electrophoresis of the RT-PCR products (fig. 

5) shows that the intensity of the GnRH band from retrochiasmatic extracts is similar to that 

obtained from the 1:200 diluted preoptic extract. Taking into account the difference in tissue 

weight and RNAs obtained from preoptic and retrochiasmatic explants, it can be estimated that 

GnRH mRNA is distributed in retrochiasmatic and preoptic explants in a ratio of about 1:600. 

Fig. 4. Rostrocaudal distribution of cell bodies of GnRH neurons in the hypothalamus of a 50-day-old male rat. 

Each bar represents the data from 3 adjacent coronal sections of 14 µm. The level of dissection between the 

preoptic and retrochiasmatic explants is indicated. 
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Fig. 5. Electrophoresis of RT-PCR products (10 µl) from RNAs extracted from the retrochiasmatic (RCH) and 

preoptic (PO) parts of the rat hypothalamus. PM = 1-kb DNA ladder. For each band (A-G), the RNA origin, the 

number of PCR cycles and the studied concentration are shown. Densitometric analysis indicates that the 

amount of retrochiasmatic PCR products (B) is comparable to the 1:200 dilution of preoptic PCR products (F). 

 

 

 

 

 

 

 

Discussion 

In this paper, we show that retrochiasmatic explants of the rat hypothalamus secrete GnRH in a 

pulsatile manner in the absence of GnRH cell bodies. In contrast, only few irregular pulses are 

observed using explants of the preoptic hypothalamus where GnRH cell bodies are located and no 

pulses are seen using explants of the median eminence. The absence of GnRH cell bodies in the 

retrochiasmatic area of the rat hypothalamus is consistent with previous observations [9, 23-25]. 

We found a single GnRH cell body in some of the studied retrochiasmatic explants. This raises the 

question as to whether a single retrochiasmatic GnRH neuron may be sufficient to act as pulse 

generator. Pulsatile LH secretion can be restored in the hpg mouse by third-ventricular graft of 

fetal preoptic tissue containing as few as one single GnRH neuron [26]. In such experiments, 

however, it is possible that GnRH synthesized by a single neuron is stored in the median eminence 

in a sufficient amount for pulsatile secretion driven by a pulse generator in the arcuate nucleus-

median eminence area. This hypothesis is supported by experiments in rats with hypothalamic 

deafferentation which show restoration of LH pulsatility by third ventricular graft of mediobasal 

hypothalamic tissue containing no GnRH neurons [27], The observation of GnRH pulsatility in the 

absence of GnRH cell bodies also raises the question as to whether synchronization or integrated 

activation of different GnRH neurons is a critical component of pulsatile GnRH secretion. 
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Synchronization may in fact occur at the axon-terminal level of GnRH neurons if the pulse 

generator involves the input of external neurons in the retrochiasmatic hypothalamus. Evidence 

against communication between GnRH cell bodies as a prerequisite to pulsatility is provided by the 

effectiveness of one or two grafted GnRH neurons in restoring LH pulsatility and fertility in the hpg 

mouse [26]. 

Based on the concept that the mRNAs are primarily located in neuronal perikarya and dendrites 

[28], we have used semi-quantitative RT-PCR to compare the amount of GnRH transcripts in the 

preoptic and retrochiasmatic explants. These results are consistent with the presence of very few 

GnRH cell bodies in the retrochiasmatic explant. The low amount of GnRH mRNA in the 

retrochiasmatic explant is in agreement with the observations of Kim et al. [18] who have used the 

mediobasal hypothalamus as a negative control for GnRH RT-PCR. In the rat preoptic area, 

hundreds of GnRH neurons are observed and distributed as described previously [9,24,25,27,29]. In 

this respect, the rat hypothalamus provides an original model to separate the GnRH cell bodies 

from their terminals since in other species such as man, the monkey and guinea pig, the GnRH 

neurons migrate more caudally in the retrochiasmatic area [30-32], The similar amplitudes of GnRH 

release evoked by veratridine and NMDA using the preoptic and retrochiasmatic explants attest 

that GnRH axon-terminals and NMDA receptors are present in these two regions and are still 

functional at the end of the in vitro experiment. This observation is consistent with the existence of 

GnRH axon projection to the median eminence in the retrochiasmatic explant as well as to the 

organum vasculosum of the lamina terminalis in the preoptic explant [33-35]. Thus, the absence of 

GnRH pulsatility using the preoptic explant cannot be explained by the absence of functional GnRH 

terminals since neurosecretion of GnRH can be evoked from this fragment. 

The localization of a pulse generator mechanism at the GnRH terminal level was suggested by the 

observation of episodic GnRH release from the isolated rat median eminence as reported by 

Rasmussen et al. [12], However, using median eminence explants in the same conditions as the 

retrochiasmatic explants, we did not obtain any evidence of pulsatile GnRH secretion. This cannot 

be explained by an altered viability of the preparation since GnRH release could be evoked through 

depolarization or NMDA receptor stimulation in a manner which was similar to that seen using 

retrochiasmatic explants. Thus, while the median eminence appears to contain the components 

required for the autofeedback to be operational, pulsatility is not observed in our conditions. We 

cannot exclude that dissection of the median eminence has resulted in the loss of some 

anatomical structures involved in a pulse generator. Taken together, our data suggest the 

existence of a retrochiasmatic GnRH pulse generator mechanism which is external to the GnRH cell 

bodies and the GnRH terminals. 

The question was raised whether methodological aspects such as periodic agitation when the 

incubation medium was renewed, could account for pulsatility. Indeed, the GnRH interpulse 

interval changed as a function of the sampling interval. Using a perifusion system where the 

samples were drawn at constant interval and varying flow rate, flow rate dependency of GnRH 

interpulse interval was observed as well [36]. Thus, mechanical factors were unlikely to be involved 

and the effect of sampling interval should not be biased by missing pulses not detected when that 
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interval was too long. While the frequency of pulsatile GnRH secretion seen in different 

experiments was reproducible, important variations in GnRH pulse amplitude were seen from one 

experiment to the other. It was therefore important to compare two types of explants in the same 

experiment as we did. A useful parameter in the evaluation of pulsatility is regularity of the 

process. This can be estimated through the distribution of GnRH interpulse intervals. While we 

found that the interpulse interval was distributed within 3-4 fractions of 7.5 min (coefficient of 

variation, CV: 8-16%), it was more variable in the study by Rasmussen [12] using the median 

eminence. From his data, we calculated a CV of 53-56%. That difference in CV is unlikely to be 

explained by the incubation system since Rasmussen et al. [37] observed a more regular periodicity 

using perifused human mediobasal hypothalami in vitro (CV: 35%). More recently, other authors 

also reported pulsatile GnRH secretion showing less variable intervals using the mediobasal 

hypothalamus than using preoptic explants [38], We tend to conclude that different mechanisms of 

episodic GnRH secretion may coexist because pulsatility is less regular using the median eminence 

than using the retrochiasmatic or mediobasal hypothalamus. 

The mechanism of pulsatile GnRH secretion from the retrochiasmatic explants of the rat 

hypothalamus is not fully elucidated. The present data are consistent with an inhibitory 

autofeedback regulation of GnRH pulsatility. An autoregulatory mechanism of pulsatility is 

supported by the demonstration of an inhibitory autofeedback of GnRH which can affect the 

frequency of pulsatile secretion [39], possibly through NMDA receptor antagonism by 1-5 GnRH, a 

physiological degradation product of the secreted decapeptide [40]. 

The developmental increase in GnRH pulse frequency which precedes the onset of puberty, is 

observable using our in vitro paradigm. This indicates that not only a pulse generator but also the 

neuronal network involved in maturational changes are located in the retrochiasmatic area [7, 22, 

39]. In agreement with our data, in vivo electrophysiological experiments suggest that a GnRH 

pulse generator is located in the rat arcuate nucleus instead of the median eminence or the 

preoptic area [41] and deafferentation studies show that integrity of the arcuate nucleus is 

required to maintain a pulsatile LH secretion [5, 6]. Such a concept is also consistent with our 

recent demonstration that antisense oligodeoxynucleotides for some subunits of NMDA or GABA 

receptors can affect pulsatile GnRH secretion in the absence of the preoptic area [42, 43]. Finally, it 

is of interest that mathematical modelization of the GnRH pulse generator has come to the 

conclusion that a minimal external neuronal unit with a facilitatory neuron and an inhibitory 

interneuron should be involved [44]. Virtually, every neuron has the capacity to function as a 

pacemaker. The challenge remains to determine where in the hypothalamus and which type of 

neurons will superimpose their periodic activity on that of the other neurons to result in the 

characteristic pulsatility of LH secretion. 
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