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In contrast to its coherent state, the quantal harmonic oscillator allows the existence of 

another state of completely nonclassical character. It is represented by a Gaussian wave 

packet, of which the center remains at rest and the width varies sinusoidally with time. 

Thus we may term it pulsating state. 

It has been pointed out recently by one 

of the present authors') that, for a one­

dimensional system specified by a time-in­

dependent Hamiltonian H, the position 

probability density at an instant of time t 

is represented as 

l(q'IU(t) 1</JW=<cJ!Io[q(t) -q'J lcJ!>, (1) 

where the initial statevector, the evolution 

operator and the Heisenberg operator for 

position are denoted by I<JI), U(t) 

=exp( -itH/h) and q(t) = U 1 (t)qU(t) 

with q(O) =q respectively. The remarkable 

advantage of Eq. (1) is that we need not 

care about the phase factor appearing in 

the time-dependent wave function cjJ (q', t) 

=(q'IU(t)lcJ!). 

In the case of a one-dimensional harmo­

nic oscillator specified by the Hamiltonian 

H=p2j2m+mw 2q2/2, the time-dependence 

of the position operator is given by 

q (t) =q cos (wt) + p sin (wt) /mw 

=[a1 exp(iwt)+aexp(-iwt)]/k (2) 

with a constant k= -/21ruv/h and the con­

struction operators a=k(q+ip/mw)/2 and 

a1=k(q-ipjmw)/2 such that [a, a1] =1. 

As is well known, the normalized ground 

state IO) of the system is such that ajO) 

=0, (Oia1 =0 and (010)=1. If the initial 

state in Eq. (1) is defined by lcJ!)=XIO) 

in terms of a unitary operator X such that 

X 1q(t)X= [a1u(t) +au*(t) +w(t) ]/k, 

(3) 

then Eq. (1) is evaluated as 

2rr(Oio[X1q(t) X-q'] IO) 

= J dy(Oiexp[iy(a1u 

+au*+w-kq') /k] IO) 

= f dy exp[iy(w/k-q') -y2 lul 2/2k2J 

X (Oiexp(iyua1/k) ·exp(iyu*ajk) IO) 

= -/27r (k/lul)exp[- (w-kq') 2/21ul 2]. 

(4) 

Here use is made of the operator identity: 

exp (aa1 +/]a)= exp(aa1) exp (/]a)exp (a/3/2). 

First we shall consider the case when 

the unitary operator X is identified with 

the displacement operator D (z) = exp (za1 

-z*a) such that D 1 (z)aD(z) =a+z and 

D 1 (z)a1D(z) =a1+z* for an arbitrary com­

plex number z= lzlexp (i¢). Then from 

Eqs. (2) and (3) we see that u (t) = exp (iwt) 

and w(t) =uz*+u*z=2lzlcos(wt-¢). If 

we write lz)=D(z) IO), then Eq. (3) gives 

w(t) =k(zlq(t) lz), so that Eq. (4) is simp­

lified to 

I (q'l U (t) lz) 12 = (mw/rrh) 112 

Xexp[-mw{q'-(zlq(t)lz)} 2/h]. (5) 

The statevector lz) represents the coherent 

state2 J due to Glauber, and we may charac­

terize it as being "as classical as possible" 

according to Carruthers and NietoY 
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In contrast to the above we can think 
of the case where the displacement w (t) 
vanishes in Eq. (3). Then for a unitary 
operator V replacing X we must have 

V 1[a1 exp (iwt) -1-a exp (- iwt)] V 

=a1u(t) +au*(t). (6) 

Then Eq. (4) represents a Gaussian wave 
packet, of which the center remains at rest 
and the width varies with time as 

l(q'l U(t) Vl0)[2= [mw/rrhlu(t) 1 2 ] 112 

Xexp[ -mwq'2/hlu(t) 1 2]. (7) 

The unitary operator V in Eq. (6) may be 
assumed to be 

wherein a nonnegative parameter x is vari­
able while r= exp (2ip) and a real param­
eter s are kept constant. On account of 
the quadratic nature of the exponent in 
Eq. (8) we shall have 

(9) 

with complex functionsf(x) and g(x) such 
that f(O) =1 and g(O) =0. By virtue of 
[a, a 1] = 1 it follows from Eq. (9) and its 
Hermitean conjugate that 

lf(x) 12 -lg(x) 12 =1. (10) 

Now Eq. (9) is differentiated with re­
spect to the continuous parameter x to 
yield 

alj' (x) +ag' (x) 

= [alj(x) +ag(x), r*a12 - ra2 +2isa1a]/2 

(11) 

and accordingly 

f'(x) =r*g(x) -isf(x), 

g'(x) =rf(x) +isg(x). J (12) 

Since I rl = 1, these are combined to give 

f"(x)=e2f(x) and g"(x)=e2g(x) (13) 

with e2 =1-s2• Hence for lsl<1 the con-

stant e is equal to v'l _ _::__s2 and one obtains 

f(x) =cosh(ex)- (is/e)sinh(ex), J 
(14) 

g(x) = (r/e)sinh(ex), 

for which the condition (10) holds evi­
dently. Moreover it will be easily seen that 

f(x)=lf(x)lexp(-2i8), J (15) 

g(x) = lg(x) lexp(2ip) 

with tan 28 =s sinh (ex)/ e cosh (ex). For 
lsi =1 we are only to take the limit e~O 
in the above, and for lsl>1 we have e 
= iv's2 .:_1. 

The function u (t) in Eq. (6) is evaluat­
ed on the basis of Eq. (15) as 

u(t) =f(x)exp(iwt) +g*(x)exp( -iwt) 

= lf(x) lexp[i(wt-28) J 
+ lg(x) lexp[ -i(wt+2p) ], (16) 

and accordingly one obtains 

lu(t) 12 = lf(x) 12 + lg(x) 12 

+2lf(x)g(x)lcos2(wt+p-8), (17) 

of which the extremal values are [lf(x) I 
± lg(x) 1] 2• Thus for a quanta! harmonic 
oscillator a new time-dependent position 
probability density function is afforded by 
Eq. (7) and shows a striking contrast to 
Eq. (5) for the coherent states. The nor­
malized state 

lx; r, s)= V(x) IO) (18) 

defined with the unitary operator (8) may 
be termed the pulsating state, since the 
width of the wave packet (7) varies peri­
odically with time according to Eq. (17). 

All the foregoing considerations can be 
transferred straightforwardly to the momen­
tum space. Since 

p(t) =imw[a1 exp(iwt) -a exp( -iwt)]/k, 

(19) 

we have, corresponding to Eq. (3), 
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-av*(t) -iw'(t)]/k. (20) 

The momentum probability density function 

at an instant of time t is given in just the 

same way as Eq. (4) by 

I(P'I U(t)XIO)I 2 = (Oio[X 1p(t) X-p'] IO) 

= (2n) - 1S dy(Oiexp[iy{inuo (a1v 

-av*-iw') /k- p'} J IO) 

= (27!) - 1s dy exp[iy(miOW1 /k-p') 

- (mUJylvl/k) 2/2] 

X (OI exp ( -mUJyva1/k) 

X exp (mUJyv*a/k) IO) 

= [n:hmUJiv(t) 12]-1/2 

Xexp[- (mUJW 1 /k-p') 2/hmUJiv(t) 12]. 

(21) 

For a coherent state lz)=D(z) IO) with X 

=D(z) one obtains v(t) =exp(iUJt) and 

w'(t) =k(zlp(t) lz)/mUJ, so that Eq. (21) 

is transcribed as 

I(P'I U(t) lzW= (n:hmUJ) - 112 

X exp [- (p'- (ziP (t) lz)) 2 /hmUJ]. (22) 

Then for a pulsating state (18) we see in 

view of Eq. (6) that we have to find out 

a function v (t) such that 

V 1[a1 exp (iUJt) -a exp ( -iUJt)] V 

=a1 v(t) -av*(t), (23) 

from which it follows with the aid of Eq. 

(9) that 

v (t) = f(x) exp (iUJt)- g* (x) exp (- iUJt). 

(24) 

Then Eqs. (15) and (16) lead at once to 

lv(t) 12 = lf(x) 12+ lg(x) I' 

-2lf(x)g(x)lcos2(UJt+p-8). (25) 

Therefore the momuntum probability den­

sity function (21) is simplified to 

I(P'IU(t) V(x) 10)12= [n:hmUJiv(t) 12]- 112 

X exp [-p'2 /hmUJ I v (t) 12]. (26) 

As for the uncertainties in position and 

momentum for a pulsating state, they can 

be easily evaluated on the basis of Eqs. 

(7) and (26) as 

(ilq) ,2 =I u (t) l2:h/2muJ , 

(ilp), 2 = lv(t) l2hmUJ/2, J (27) 

so that the uncertainty product varies with 

time as 

(lip· ilq), = lu (t) v (t) lh/2?::.h/2, (28) 

wherein we see from Eqs. (10), (17) and 

(25) that 

lu(t)v(t) l2 =1+41f(x)g(x) 12 

X sin22 (0t+ p- 8). (29) 

Subsuming all the above discussions we 

can easily construct a pulsating coherent 

state. On factorizing the unitary operator 

X in Eq. (3) as D (z) V (x) one obtains 

lz, x; r, s)=D(z) V(x) IO), (30) 

of which the position probability density 

function is evaluated with the aid of Eqs. 

(4), (5), and (7) as 

l(q'l U(t) lz, x; r, s)l 2 

= (Oio [V 1(x)D\z)q(t)D(z) V(x) -q'] IO) 

= [mUJ/n:hlu(t) 12)1/2 

X exp [ -mUJ(q'- (zlq(t)lz) )" /:hlu(t)l 2]. 

(31) 

In addition the expectation value and the 

uncertainty of the Hamiltonian H=hUJ(a1a 

+ 1/2) in the state (30) are evaluated re­

spectively as 

(H)z,x=:hUJ[2Izl 2 + lf(x) I'+ lg(x) 12]/2, 

(32) 

(ilH) z,x =hiLl [2lfgl 2 + lzf+ z*g*l 2]!12• (33) 

If we want to treat a coherent state and a 

pulsating state separately, then we have to 
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set x= 0, f(O) = 1, g (0) = 0 for the former 
and z = 0 for the latter respectively. 

Finally we have to remark that the ex­
istence of a harmonic oscillator wave pac­
ket corresponding to our pulsating coherent 
state has recently been noticed by Mar­
hic!l-*l Moreover the time-dependent un­
certainty product (28) was investigated by 
Stoler5l by making use of the unitary op­
erator (8) for s=O. Detailed discussions 
concerning the unitary transformation (9) 
were given by Yuen6l in connection to the 
two-photon coherent states. 

The physical implication of the mathe-

*l A similar wave packet was found also 
by Prof. H. W ergeland in Trondheim as we 
heard from him late in 1979, 

matical structures discussed above is now 
under investigation. 
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