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ABSTRACT

Context. New observational means such as the space missions CoRoT and Kepler and ground-based networks are and will be collect-
ing stellar pulsation data with unprecedented accuracy. A significant fraction of the stars in which pulsations are observed are rotating
rapidly.
Aims. Our aim is to characterise pulsation modes in rapidly rotating stellar models so as to be able to interpret asteroseismic data from
such stars.
Methods. A new pulsation code is applied to stellar models based on the self-consistent field (SCF) method.
Results. Pulsation modes in SCF models follow a similar behaviour to those in uniformly rotating polytropic models, provided that
the rotation profile is not too differential. Pulsation modes fall into different categories, the three main ones being island, chaotic,
and whispering gallery modes, which are rotating counterparts to modes with low, medium, and high ℓ − |m| values, respectively.
The frequencies of the island modes follow an asymptotic pattern quite similar to what was found for polytropic models. Extending
this asymptotic formula to higher azimuthal orders reveals more subtle behaviour as a function of m and provides a first estimate of
the average advection of pulsation modes by rotation. Further calculations based on a variational principle confirm this estimate and
provide rotation kernels that could be used in inversion methods. When the rotation profile becomes highly differential, it becomes
more and more difficult to find island and whispering gallery modes at low azimuthal orders. At high azimuthal orders, whispering
gallery modes, and in some cases island modes, reappear.
Conclusions. The asymptotic formula found for frequencies of island modes can potentially serve as the basis of a mode identification
scheme in rapidly rotating stars when the rotation profile is not too differential.
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1. Introduction

New observational means are and will be collecting stellar pul-
sation data with unprecedented accuracy. The space mission
CoRoT has considerably lowered the detection threshold for pul-
sation modes, thus allowing photometric observation of solar-
like pulsations in stars other than the Sun and increasing the
number of detected modes in early-type stars. The forthcoming
space mission Kepler will add a wealth of pulsation data by ob-
serving a large number of stars for a period of four years. Other
projects include the space mission PLATO as well as ground-
based networks such as SONG.

Stellar pulsations yield valuable information on the internal
structure of stars which can be used to constrain stellar evolu-
tion models. Although a great deal of success has been achieved
in probing the internal structure of the Sun and of a number
of other stars, a number of difficulties arise for rapidly rotating
stars. Indeed, rapid stellar rotation introduces a number of phe-
nomena which considerably complicate their modelling and the
study of their pulsation modes. These include centrifugal defor-
mation, gravity darkening, baroclinic flows and various forms of
turbulence and transport phenomena (e.g. Rieutord 2006b). As

a result, the internal structure of these stars remains difficult to
probe.

Traditionally, the effects of rotation on pulsation modes have
been modelled using the perturbative approach. In this approach,
rotation is taken into account through corrections which are
added to the non-rotating solutions. The underlying assumption
in this method is that the rotation rate, Ω, can be treated as a
small parameter, thus enabling one to develop the perturbative
corrections as a power series in Ω. Such series can be extended
to first (Cowling & Newing 1949; Ledoux 1951), second (Saio
1981; Gough & Thompson 1990; Dziembowski & Goode 1992)
or third order in Ω (Soufi et al. 1998; Karami et al. 2005). A
natural question to ask is up to what rotation rate is this ap-
proach valid. This remained an open question until Reese et al.
(2006) applied a non-perturbative two-dimensional approach to
calculating acoustic pulsations in polytropic stellar models and
compared the results with perturbative calculations. Their results
showed that perturbative methods remain valid only for values
which are lower than the rotation rate of many early-type stars.
Further comparisons between the two approaches include those
by Lovekin & Deupree (2008), in which more realistic models
were used but at a lower accuracy, and Ouazzani et al. (2009), in
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which the effects of avoided crossings are included in the pertur-
bative calculations.

Due to the limitations of the perturbative method, a number
of recent studies have focused on modelling the effects of rapid
rotation on stellar acoustic pulsations using a two-dimensional
approach. Espinosa et al. (2004) studied the effects of rapid ro-
tation on frequency multiplets in models with a uniform density
and also briefly discussed pulsations of realistic models. They
showed how rotation leads to highly non-uniform multiplets
and causes the frequencies of adjacent modes to pair up, thus
providing a tentative explanation for observed close frequency
pairs (Breger & Pamyatnykh 2006). Lignières et al. (2001) stud-
ied pulsation modes in a uniform density spheroid using a per-
turbative method and two different numerical approaches. This
was done in order to validate their two-dimensional numerical
method before applying it to more realistic models. Their work
was followed by Lignières et al. (2006), Reese et al. (2006) and
Reese et al. (2008a) who did the first accurate calculations of p-
modes in rapidly rotating polytropic models. They investigated
the limits of the perturbative approach, studied disk averaging
factors which intervene in mode visibility, compared the effects
of the centrifugal and Coriolis forces and found an empirical for-
mula which characterises the structure of the frequency spectrum
for low degree modes. At the same time, Lignières & Georgeot
(2008) and Lignières & Georgeot (2009) applied ray dynamics to
the study of acoustic modes in rotating polytropic models. They
classified modes into several categories, the main ones being is-
land, chaotic, and whispering gallery modes which are rotating
counterparts to modes with low, intermediate, and high ℓ − |m|
values, where ℓ is the harmonic degree and m the azimuthal or-
der. They showed that each category has its own frequency or-
ganisation and provided an explanation involving travel time in-
tegrals for the empirical formula found in Lignières et al. (2006)
and Reese et al. (2008a). Finally, Lovekin & Deupree (2008) and
Lovekin et al. (2009) studied p-modes with low radial orders
in realistic models from Deupree (1990) and Deupree (1995)
with both uniform and differential rotation. They investigated
how frequencies and the large and small separations vary with
uniform or differential rotation and compared their calculations
with a perturbative approach.

Before being able to interpret pulsation modes in observed
stars, more progress is needed in understanding the effects of
rotation on pulsation modes. Indeed, although a number of im-
portant results have been established for p-modes in polytropic
models, these need to be extended to more realistic models. The
calculations involving more realistic models have currently been
limited to small mode sets and the analysis has not been pushed
far enough to see whether similar results apply. In what follows,
we calculate pulsation modes, using the numerical method de-
veloped in Lignières et al. (2006) and Reese et al. (2006), in real-
istic models of rapidly rotating stars based on the self-consistent
field (SCF) method (Jackson et al. 2005; MacGregor et al. 2007).
In particular, we investigate whether a similar mode classifica-
tion exists in these models, whether a similar empirical formula
applies to frequencies of modes with low ℓ − |m| values, and
quantify the effects of using a differential profile. The next sec-
tion deals with the SCF method and the models it produces. The
following section explains the pulsation equations, the numeri-
cal method used for calculating the pulsation modes and a num-
ber of tests to validate the method. Afterwards, Sects. 3 and 4
describe the results for models with mildly and strongly differ-
ential rotation, respectively. Our conclusions are summarised in
Sect. 5.

2. Stellar models based on the SCF method

The SCF method is an iterative procedure for solving the equa-
tions that govern the structure of a conservatively rotating star.
The basic approach underlying the method is to alternately solve
Poisson’s equation to derive the 2D shapes of equipotential sur-
faces, and the equations of mass, momentum, and energy con-
servation to obtain the 1D profiles of thermodynamic quantities
along a radius in the rotational equatorial plane. As described
in detail in Jackson et al. (2005), this procedure yields a se-
quence of models which, under most circumstances, converges
to a model that satisfies all the equations for a prescribed internal
rotation law.

The method was first developed and used 40 years ago to
compute uniformly and differentially rotating polytropic stel-
lar models (Ostriker & Mark 1968). Although subsequently ex-
tended through the incorporation of more realistic input physics
(Jackson 1970), application of the method was limited to mas-
sive stars, a consequence of convergence difficulties encountered
in lower mass models with sufficiently high values of the central
mass concentration (see, e.g., Clement 1978). This problem was
addressed and remedied through a reformulation of the method
in which the normalised distributions of thermodynamic quan-
tities and the central values of those quantities are adjusted in
separate iterative loops. The new SCF method has been imple-
mented in a code that utilises up-to-date input physics. The opac-
ities are obtained from the tables of OPAL opacities computed
by Rogers & Iglesias (1992) and from tables of low-temperature
opacities compiled by Alexander & Ferguson (1994), using in-
terpolation subroutines written by Vandenberg (1983). The equa-
tion of state for the stellar material is calculated according to the
formula of Eggleton et al. (1973), and the nuclear energy gener-
ation rates for hydrogen burning are from Caughlin & Fowler
(1988), with the treatment of electron screening effects from
Graboske et al. (1973) for the case of equilibrium abundances
of CNO isotopes. Energy transport in sub-photospheric convec-
tive envelopes is treated using a standard mixing-length model
(see, e.g., Kippenhahn et al. 1967), in which the local gravita-
tional acceleration g is replaced by the value of g as reduced
by the local centrifugal acceleration, averaged over equipoten-
tial surfaces. For the models utilised in the pulsation mode com-
putations described in subsequent sections, a value of 1.9 was
adopted for the ratio of the mixing length to the pressure scale
height. The method and the code are both robust and rapidly con-
vergent, and have been thoroughly tested and validated through
such applications as the interpretation of interferometric obser-
vations of rapid rotators like the Be star Achernar (Jackson et al.
2004, and references therein) and an examination of the effects
of differential rotation on the structure of stars less massive than
2 M⊙ (MacGregor et al. 2007).

Models computed using the SCF method are chemically ho-
mogeneous, ZAMS models with the following abundance frac-
tions by weight of H, He, and heavy elements: X = 0.7112,
Y = 0.27, and Z = 0.0188. The rotation profile is imposed be-
forehand and is conservative, i.e. the centrifugal force derives
from a potential. As a result, the stellar structure is barotropic –
different thermodynamic quantities remain constant along lines
of constant total (centrifugal plus gravitational) potential. The
rotation profile used in the present calculations was:

Ω(s) =
ηΩcr

1 +

(

αs
Req

)2
(1)
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where s is the distance from the rotation axis, Req the equatorial
radius, and Ωcr the break-up rotation rate at Req. The parame-
ters η and α determine how rapid and differential the rotation is.
In particular, the ratio between the polar and equatorial rotation
rate is 1+α2. The associated angular momentum increases with s
thereby satisfying the dynamical part of the Solberg-Høiland cri-
terion for stability. Various forms of shear instability may, how-
ever, be present if the rotation profile becomes too differential,
i.e. if α becomes too large (e.g. Zahn 1974). Also, as explained
in Zahn (1993) and Rieutord (2006a), baroclinic flows occur in
radiative zones of rapidly rotating stars thus leading to a non-
conservative rotation profile. Exploring these effects is, however,
beyond the scope of this paper.

Equation (1) corresponds to a rotation profile in which the
rotation rate decreases with s. Such profiles can be used to con-
struct highly distorted configurations. Indeed, the stellar core can
be made to rotate quite rapidly since the local break-up velocity
is larger than at the equator. This type of model was used to try
to explain Achernar’s extreme oblateness (Jackson et al. 2004).
The SCF method can also produce models with a rotation rate
that increases with distance from the rotation axis. This resem-
bles somewhat the solar rotation profile in which the rotation rate
increases with decreasing latitude in the convection zone (Schou
et al. 1998; Thompson et al. 2003).

2.1. The pulsation equations

In order to derive the set of equations which govern acoustic pul-
sation modes in a differentially rotating star, we start by repre-
senting the differential rotation by a permanent background flow
uo = sΩ(s)eφ. In what follows, we will work with cylindrical co-
ordinates (s, z, φ) and their associated unit vectors (es, ez, eφ). We
write out the Eulerian perturbation to various equations, starting
with Euler’s equation, and only keep first order linear terms:

ρo

∂u

∂t
+ ρuo ·∇uo + ρou ·∇uo + ρouo ·∇u = −∇p+ ρgo − ρo∇Ψ, (2)

where quantities with the subscript “o” are equilibrium quanti-
ties, and those without a subscript Eulerian perturbations. The
quantity go is the background gravity excluding the centrifugal
acceleration. The different terms on the left hand side of Eq. (2)
can be worked out explicitly in terms of Ω(s):

uo · ∇uo = −sΩ2
es, (3)

u · ∇uo = Ω × u + vss∂sΩeφ, (4)

uo · ∇u = Ω × u + imΩu, (5)

where we have assumed an eimφ azimuthal dependence for u and
Ω = Ωez. The first term corresponds to the centrifugal acceler-
ation and the sum of the next two includes the Coriolis force.
Combining these equations with Eq. (2) yields:

[λ + imΩ] ρou = −∇p + ρgeff − ρo∇Ψ

−2Ω × ρou − ρo s
∂Ω

∂s
vseφ, (6)

where we have assumed an eλt time dependence for u and where
geff = ∇po/ρo is the background effective gravity which in-
cludes the centrifugal acceleration. The Eulerian perturbation to
the continuity equation gives:

∂ρ

∂t
+ ∇ · (ρou) + ∇ · (ρuo) = 0. (7)

In terms of Ω, this becomes:

[λ + imΩ] ρ = −u · ∇ρo − ρo∇ · u. (8)

The Eulerian perturbation to Poisson’s equation is simply:

∆Ψ = 4πGρ, (9)

where G is the gravitational constant. These equations are then
supplemented by the adiabatic relation between the pressure and
density perturbations which takes on the following form:

∂p

∂t
+ u · ∇po + uo · ∇p = c2

o

[

∂ρ

∂t
+ u · ∇ρo + uo · ∇ρ

]

(10)

where c2
o =

Γ1 po

ρo
is the square of the sound velocity and Γ1 the

adiabatic exponent. Provided that uo · ∇po = uo · ∇ρo = uo ·
∇c2

o = 0, this form can be shown to be equivalent to δp =
c2

oδρ where δp and δρ are the Lagrangian pressure and density
perturbations, respectively. This leads to the following equation
after some manipulations:

[λ + imΩ]
(

p − c2
oρ
)

=
[

−∇po + c2
o∇ρo

]

· u. (11)

2.2. Non-dimensional form

These equations are then put into non-dimensional form using
the following length, density and pressure scale factors:

Req, pc, ρc, (12)

where the subscript “c” refers to the centre of the star, and Req is
the equatorial radius. This gives a time scale tref defined as:

tref =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ρcR2
eq

pc

⎞

⎟

⎟

⎟

⎟

⎟

⎠

1/2

· (13)

Based on these scale factors, all of the above equations remain
the same as in dimensional form, except for Poisson’s equation
where a non-dimensional factor Λ = 4πGρ2

cR2
eq/pc appears:

∆Ψ = Λρ. (14)

2.3. Spheroidal geometry

In order to achieve higher accuracy when solving these equa-
tions numerically, a coordinate system which follows the shape
of the star is introduced. This new coordinate system (ζ, θ, φ)
can be related to the usual spherical coordinate system (r, θ, φ)
via the following relationship:

r(ζ, θ) = (1 − ε)ζ + 5ζ3 − 3ζ5

2
(Rs(θ) − 1 + ε), (15)

for ζ ∈ [0, 1]. When ζ = 1, r coincides with the stellar surface,
Rs(θ). The variables θ and φ remain the same in both systems. A
second domain is added around the first, in which r is given by:

r(ζ, θ) = 2ε+(1−ε)ζ+
(

2ζ3 − 9ζ2 + 12ζ − 4
)

(Rs(θ) − 1 − ε), (16)

for ζ ∈ [1, 2]. With these definitions, r and rζ ≡ ∂ζr remain con-
tinuous across ζ = 1. As ζ approaches 0 or 2, this coordinate
system behaves like a spherical coordinate system: the constant
ζ-lines become spherical and rζ becomes independent of θ. This
is important as it simplifies the regularity conditions in the cen-
tre and the boundary condition on the perturbation to the grav-
ity potential on the outer boundary. The same coordinate system
was used in Lignières et al. (2006) and Reese et al. (2006) and
is based on Bonazzola et al. (1998). The stellar model is then
interpolated onto a grid based on this new coordinate system.
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Another possibility would be to base the radial coordinate
on the equipotentials. This has the advantage of simplifying the
pulsation equations because terms such as ∂θρo and ∂θpo vanish.
However, this requires using numerical rather than analytical dif-
ferentiation when calculating terms with radial derivatives such
as rζ , thereby reducing the accuracy of the results. Furthermore,
the regularity conditions in the centre of the star become more
complicated as the equipotentials do not in general become cir-
cular towards the centre.

Based on the coordinate system presented above, the conti-
nuity equation becomes:

[λ + imΩ] ρ = −
ζ2∂ζρo

r2rζ
uζ − ζ∂θρo

r2rζ
uθ − ζ

2ρo

r2rζ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂ζ
(

ζ2uζ
)

ζ2

+
∂θ
(

sin θuθ
)

ζ sin θ
+
∂φu

φ

ζ sin θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (17)

Euler’s equation takes on the following form:

[λ + imΩ] ρo

[

ζ2rζu
ζ

r2
+
ζrθu

θ

r2

]

=

ρo

2Ωζ sin θuφ

r
− ∂ζ p +

∂ζ po

ρo

ρ − ρo∂ζΨ, (18)

[λ + imΩ] ρo

⎡

⎢

⎢

⎢

⎢

⎣

ζ2rθu
ζ

r2
+
ζ(r2 + r2

θ
)uθ

r2rζ

⎤

⎥

⎥

⎥

⎥

⎦

=

ρo

2Ωζ(rθ sin θ + r cos θ)uφ

rrζ
− ∂θp +

∂θpo

ρo

ρ − ρo∂θΨ, (19)

[λ + imΩ] ρo

ζuφ

rζ
= −ρo

2Ωζ2 sin θuζ

r

−ρo

2Ωζ(rθ sin θ + r cos θ)uθ

rrζ
−
∂φp

sin θ
− ρo

∂φΨ

sin θ

−ρo sin θ (∂sΩ)

[

ζ2 sin θuζ +
ζ(rθ sin θ + r cos θ)

rζ
uθ
]

, (20)

the adiabatic relation is given by:

[λ + imΩ]
(

p − c2
oρ
)

=
ζ2

r2rζ

(

−∂ζ po + c2
o∂ζρo

)

uζ

+
ζ

r2rζ

(

−∂θpo + c2
o∂θρo

)

uθ, (21)

and Poisson’s equation takes on the following form:

0 =
r2 + r2

θ

r2r2
ζ

∂2
ζζΨ + cζ∂ζΨ −

2rθ

r2rζ
∂2
ζθΨ +

1

r2
∆θφΨ − Λρ, (22)

where uζ , uθ, and uφ are the three velocity components (see
below for details) and terms of the form rζ , rθ ... are different
derivatives of r based on Eqs. (15) and (16). Explicit expression
for cζ and ∆θφ are as follows:

cζ =
1

r2r3
ζ

(

2rζrθrζθ − r2rζζ − r2
ζ rθθ + 2rr2

ζ

−r2
θrζζ − r2

ζ rθ cot θ
)

, (23)

∆θφ = ∂
2
θθ + cot θ∂θ +

1

sin2 θ
∂2
φφ. (24)

The above expressions are obtained by using tensorial expres-
sions for the differential operators which intervene and working

them out explicitly. Furthermore, the components to the velocity
are written on the following basis:

aζ =
ζ2

r2rζ
Eζ =

ζ2

r2
er,

aθ =
ζ

r2rζ
Eθ =

ζ

r2rζ
(rθer + reθ) ,

aφ =
ζ

r2rζ sin θ
Eφ =

ζ

rrζ
eφ,

(25)

where {Ei} and {ei} are the natural and spherical basis, respec-
tively. When the star becomes spherical, the basis {ai} converges
to {ei}. Apart from some multiplicative factors, Euler’s equation
is expressed on the dual basis, as is done in Reese et al. (2006),
since this has the advantage of limiting the effective gravity to
the radial component at the stellar surface. More details on how
to derive the above expressions can be found in Reese (2006)
and references therein.

Equations (17–22) were completed with a number of bound-
ary conditions which ensure that the solution remains regular in
the centre, the Lagrangian pressure perturbation vanishes on the
stellar surface and the perturbation to the gravitational potential
goes to zero at an infinite distance from the star.

2.4. Numerics

The above equations were then projected onto the spherical har-
monic basis in the same way as was done in Lignières et al.
(2006) and Reese et al. (2006). This is achieved by expressing
the different unknowns as a sum of scalar or vectorial spheri-
cal harmonics multiplied by unknown radial functions, and then
projecting the equations themselves onto the spherical harmonic
basis, using Gaussian quadrature to numerically perform the in-
tegrations. The resultant system is an infinite system of coupled
ordinary differential equations in terms of the radial variable ζ
which is truncated at a maximal harmonic degree Lmax. The so-
lution to this system yields the radial functions used in the har-
monic decomposition of the different unknowns.

This system of ordinary differential equations is discre-
tised using one of three methods: a spectral method based
on Chebyshev polynomials, finite differences or a polynomial
spline-based method. In the latter two cases, the order can be
adjusted. When applying these methods, the stellar model is
interpolated onto either a higher resolution uniform grid or a
Chebyshev Gauss-Lobatto collocation grid using cubic spline in-
terpolation. For the spectral method, this is analogous to what
was done in Dintrans & Rieutord (2000) in which a 1.5 M⊙
CESAM model was interpolated onto the same type of colloca-
tion grid before being used to calculate gravito-inertial modes.

After discretisation, the eigenvalue problem is in algebraic
form:Av = λBvwhereA andB are square matrices. With a suit-
able choice of variables, these matrices can be made real, thereby
reducing the computational cost. Also, pulsation modes are ei-
ther symmetric or anti-symmetric with respect to the equator,
so that only spherical harmonics of the same parity are needed
to describe them. The problem is then solved numerically using
the Arnoldi-Chebyshev algorithm (e.g. Chatelin 1988) around
different target frequencies, called frequency shifts. In what fol-
lows, most of the calculations have been done using a 4th order
finite difference approach. The angular resolution was typically
Lmax = 80 and the radial resolution Nr = 501.
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Intermediate radial order High radial order

Fig. 1. Evolution of various forms of the frequency error with Lmax and Nr for two pulsation modes in an 25 M⊙ star rotating uniformly at 60%
of the break-up velocity. The mode on the left corresponds to ñ = 16 and the one the right to ñ = 50 (the meaning of ñ is given in Sect. 3 and
illustrated in Fig. 3). The solid and dotted lines correspond to the relative frequency error. This first case uses the numerical frequency and the
second is based on the variational frequency. The dashed curve shows the relative difference between the numerical and variational frequencies.
The frequencies ωo and ωvar

o are the numerical and variational frequencies calculated at highest resolution (i.e. Lmax = 100, Nr = 751 for the mode
on the left and Lmax = 160, Nr = 1001 for the mode on the right). As can be seen in the figures, the numerical frequencies are very stable as a
function of the resolutions, and the variational frequency somewhat less stable. Also, a discrepancy remains between the two types of frequencies.

2.5. Accuracy of the calculations

Various tests can be used to assess the accuracy of the calcula-
tions. A first test consists in following the evolution of the fre-
quency error as a function of the radial and angular resolution.
The solid lines in Fig. 1 show the evolution of the relative er-
ror on the numerical frequency for two modes in a 25 M⊙ model
uniformly rotating at 60% of the break-up rotation rate, using the
frequencies calculated at highest resolution as references. The
first two panels apply to an ñ = 16 mode and the other two to
ñ = 50 (see Sect. 3 for the definition of ñ). As is evident from
the figure, the stability of the numerical frequencies is very good,
especially for the angular resolution where spectral convergence
seems to be achieved.

The right two panels of Fig. 2 of Reese et al. (2008b) show
similar curves for a pulsation mode in a 1.8 M⊙ star rotating
uniformly at 90% of the break-up rotation rate. In this case the
results were not as good. As explained in Reese et al. (2008b),
evaluating the error in this case was not entirely straightforward
due to difficulties in identifying the correct mode at different res-
olutions. Indeed, at such high rotation rates, regular modes inter-
act much more with chaotic ones thus distorting their geometric
features. Furthermore, the amount of interaction between the dif-
ferent modes seems to depend on the numerical resolution.

Although the problem is expressed in terms of real matrices
and frequencies are searched for around real target frequencies,
complex conjugate solutions sometimes appear. For instance,
two of the calculations in the panel to the far right of Fig. 1 (at
Nr = 601 and Nr = 801) correspond to complex solutions. The
imaginary parts are most likely due to numerical inaccuracies as
these solutions are replaced by real solutions at other numerical
resolutions. Their relative magnitude (3×10−5−10−4) suggests a
comparable accuracy on the corresponding frequencies.

Another test consists in applying a variational formula on
the eigenmodes to yield an independent value for the frequency.
According to the variational principle, the error on the “varia-
tional frequency” is proportional to the square of the error on the
eigenmode, thus minimising its effect provided it is sufficiently
small (Christensen-Dalsgaard & Mullan 1994). By comparing
this value to the original (numerical) frequency, it is possible
to estimate the accuracy of the calculation. In what follows, we
calculated variational frequencies using the following formula

which is only valid for uniform rotation:

0 = (ωvar + mΩ)2

∫

V

ρo‖u‖2dV + 2i (ωvar

+mΩ)

∫

V

ρoΩ · (u∗ × u) dV −
∫

V

ρoN2
o

∣

∣

∣u · eg

∣

∣

∣

2
dV

−|ω + mΩ|2
(∫

V

|p|2dV

ρoc2
o

− 1

Λ

∫

V∞

‖∇Ψ‖2dV

)

, (26)

where ω is the numerical frequency, ωvar the variational fre-
quency, m the azimuthal order, V the volume of the star, V∞ in-
finite space, and eg the unit vector in the same direction as the
effective gravity. The geometric term mΩ comes from the fact
that the pulsation frequencies are expressed in an inertial frame.
In Sect. 3.4, we give a more general variational formula which
is also valid for differential rotation, but is expressed in terms
of the Lagrangian displacement rather than the Eulerian veloc-
ity perturbation. Such a formulation gives comparable results as
Eq. (26), i.e. δω/ω � 10−3−10−2, even for the most differential
rotation profiles.

The dashed lines in Fig. 1 show the relative difference be-
tween the numerical and variational frequencies. As can be seen
in the figure, these differences are much larger than the variations
caused by modifying the resolution. A third set of curves, the
dotted lines, show the relative error on the variational frequen-
cies when using the variational frequency at highest resolution as
a reference. From these, we deduce that the variational frequen-
cies do converge to a specific value, but at a slower rate than the
numerical frequencies, which is the opposite of what we would
expect from the variational principle. Furthermore, the limit of
the variational frequencies is different than that of the numerical
frequencies, as can be seen from the dashed curves. Such a dis-
crepancy can occur if the models are not in perfect hydrostatic
equilibrium due typically to numerical inaccuracies. Indeed, hy-
drostatic equilibrium is implicitly assumed when deriving the
variational formula, and deviations from this state will tend to
produce errors which are independent of the resolution of the
eigenfunctions. Nonetheless, these discrepancies remain small
when the rotation rate is not too close to break-up and proba-
bly affect the different modes in a similar way for a given model
so that the analysis in the rest of the article is not likely to be
affected.
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Finite differences Chebyshev polynomials Polynomial splines

Fig. 2. Comparison of a pulsation mode calculated using finite differences (left), a spectral method (centre), and polynomial splines (right) to
discretise the equations in the radial direction. These and other similar plots show a meridional cross-section of the Eulerian pressure perturbation
divided by the square root of the background density profile so as to bring out near surface regions. The difference on the frequencies is less than
0.1 µHz.

Finally, a last test consists in applying different numeri-
cal techniques to calculate the eigenmodes and seeing if they
give similar results. Figure 2 shows such a comparison. The
mode on the left is calculated using 4th order finite differ-
ences in the radial direction, the one in the middle a spectral
method based on Chebyshev polynomials and the one on the
right 4th order polynomial splines. The angular resolution was
very similar for the three cases and the radial resolution went
from Nr = 101 for the calculation based on Chebyshev polyno-
mials to Nr = 301 for the spline-based calculation. As can be
seen in the figure, the three calculations yield very similar re-
sults, and the corresponding frequencies are less than 0.1 µHz
apart. Furthermore, as will be explained later on, some pulsation
modes were calculated using the Lagrangian displacement rather
than the Eulerian velocity perturbation. When comparing the two
methods, differences on the frequencies are very small for m = 0
and can be larger for m � 0 (for example, δω/ω = 10−3 for the
mode represented in Fig. 11, right panel), thereby providing yet
another verification on the pulsation mode calculations.

Overall, these tests indicate a good numerical stability both
with respect to the numerical resolution and the choice of nu-
merical method. The tests on the variational principle, on the
other hand, show that some numerical difficulties remain, pos-
sibly resulting from a loss of precision on the stellar models.
Furthermore, the accuracy is not as good when the rotation rate
approaches break-up, as shown in Reese et al. (2008b). Before
doing accurate comparisons with actual observations, these dif-
ficulties will need to be addressed. Nonetheless, these are not
expected to change the basic behaviour of the pulsation modes
nor the results in following sections.

3. Uniform or nearly uniform rotation profile

3.1. Mode classification

As was stated above, Lignières & Georgeot (2008) and Lignières
& Georgeot (2009) have previously shown that for rotating poly-
tropic models, pulsation modes fall into the following main cat-
egories: island, chaotic, and whispering gallery modes. We have
found that a similar classification also applies to pulsation modes
in SCF models with uniform or mildly differential rotation (at
least up to α = 0.4, which, based on Eq. (1), gives an equatorial
rotation rate which is 84% of the polar rotation rate). Figure 3

compares pulsation modes from both types of models. As can
be seen in the figure, corresponding modes with an analogous
geometric structure are also present in SCF models.

3.2. Quantum numbers for island modes

As was also the case for polytropic models, it is possible to in-
troduce a new set of quantum numbers (ñ, ℓ̃,m) based on the
geometry of island modes (see lower left plot in Fig. 3). These
quantum numbers then intervene in a new asymptotic formula
which describes the frequency organisation of these modes:

ω = ñ∆ñ + ℓ̃∆ℓ̃ + m2∆m̃ − mΩfit + α̃ (27)

where ∆ñ, ∆ℓ̃, ∆m̃ and α̃ are free parameters which depend on
stellar structure. The parameter Ωfit corresponds to the rotation
rate but is treated as a free parameter. This formula is quite simi-
lar to the one introduced in Lignières & Georgeot (2008), Reese
et al. (2008a) except that |m| has been replace by m2 as this pro-
vides a slightly more accurate fit to the frequencies. The reason
why |m| had been obtained in Reese et al. (2008a) is because
the formula was first derived for the quantum numbers (n, ℓ, m),
where a term proportional to |m| dominates, and then adapted to
(ñ, ℓ̃, m).

Table 1 gives the values of these parameters for selected
SCF models as well as for a polytropic model. The parameters
were calculated from a sparse frequency set and are therefore
subject to some error. The ranges on the quantum numbers are
10 ≤ ñ ≤ 26, 0 ≤ ℓ̃ ≤ 3 and −2 ≤ m ≤ 2. Furthermore, due
to difficulties in mode identification, the parameters given for
the most rapidly rotating models (η = 0.9) must be taken with
caution. Nonetheless, a second calculation based on a more com-
plete mode set shows that these values provide a reasonable esti-
mate for 2 of the models (see following section). The true value
or range of values for the rotation rate,Ωreal, is also provided and
shows a posteriori thatΩfit does approximately correspond to the
rotation rate.

As was noted in Reese et al. (2008a), the ratio ∆ℓ̃/∆ñ de-
creases for increasing rotation rates. Using ∆ℓ/∆n = 1/2 in the
non-rotating case (Tassoul 1980), and the relationships between
∆ñ, ∆ℓ̃ and ∆n, ∆ℓ given in Reese et al. (2008a), one finds a the-
oretical value of 2 for ∆ℓ̃/∆ñ when Ω = 0. Since the values in
Table 1 are much smaller, the “small” frequency separation is no
longer small but comparable with the large frequency separation,
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Fig. 3. A comparison between pulsation modes in polytropic models and models based on the SCF method. The same three categories apply in
both cases as can be seen by the analogous geometric structure. The quantum numbers ñ and ℓ̃, which only apply to island modes, are the number
of nodes in the directions indicated in the lower left plot.

Table 1. Parameters for the asymptotic formula Eq. (27).

M

M⊙
η α Nmodes

∆ñ

(µHz)

∆ℓ̃

∆ñ

∆m̃

∆ñ

α̃

∆ñ

Ωfit

∆ñ

Ωreal

∆ñ

〈

δω2
〉1/2

∆ñ

poly⋆ 0.6 0.0 84 36.7 0.66 0.029 2.92 0.827 0.838 0.047
1.7 0.7 0.0 40 37.1 0.77 0.018 3.52 0.975 0.982 0.023
1.8 0.9 0.0 11 33.5 0.42 0.011 2.86 1.157 1.167 0.038
25.0 0.6 0.0 39 15.2 0.79 0.016 3.39 0.947 0.969 0.030
25.0 0.6 0.2 31 15.1 0.85 0.018 3.63 0.944 0.947-0.987 0.045
25.0 0.6 0.4 31 15.5 0.90 0.050 3.37 0.915 0.830-0.988 0.059
25.0 0.9 0.0 24 12.4 0.70 -0.002 3.41 1.380 1.387 0.033

Values of the different parameters from Eq. (27) for selected SCF models as well as for a polytropic model (first line). The first three columns
identify the model, where η and α come from Eq. (1). The parameters (Cols. 5–9) were based on a sparse mode set (the number of modes being
indicated by Nmode) and are therefore subject to error. The last column contains the average deviation between asymptotic frequencies based on
Eq. (27) and the numerical frequencies.
⋆ Polytropic model with N = 3, M = 1.7 M⊙ and Req = 1.84 R⊙. These are also the mass and equatorial radius of the model on the next line.

as was also observed in Lignières et al. (2006) and Lovekin et al.
(2009).

In the last column, the standard deviation between the
asymptotic and numerical frequencies is given. It is defined as
follows:

〈

δω2
〉1/2
=

√

√

√

1

Nmodes

Nmodes
∑

i=1

(

ωi − ωasymp

i

)2
(28)

where ω
asymp

i
are the frequencies given by the asymptotic for-

mula and ωi the numerical frequencies. Although the asymptotic
formula captures the basic structure of the frequency spectrum
(at least for low values of m), there are differences which are
larger than observational error bars. The main causes seem to
be deviations resulting from avoided crossings and also a slight

variation of the azimuthal dependence of the frequencies with ℓ̃
and ñ (see following section).

3.3. High azimuthal orders

The results presented so far were based on pulsation modes with
azimuthal orders between –2 and 2. However, island modes also
exist for high values of m as is illustrated in Fig. 4. As can be
seen in the figure, high m island modes have an analogous struc-
ture to their low m counterparts except that they are much closer
to the equator. This is similar to the behaviour of sectoral modes
in non-rotating stars.

Figure 5 shows two pulsation frequency spectra with ñ = 15
to 20, ℓ̃ = 0 to 1 and m = −10 to 10. The left plot is for a uni-
formly rotating model and the right one corresponds to differ-
ential rotation. The symbols represent the numerical frequencies
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Fig. 4. Two island pulsation modes, one with a low m value (left) and the other with a high m value (right). Although the basic structure remains
the same, the mode with a high azimuthal order is concentrated much closer to the equator. This is analogous to what happens with sectoral modes
in non-rotating stars when m increases.

Fig. 5. Pulsation frequency spectrum in a uniformly (left panel) and differentially (right panel) rotating model. The radial order ñ goes from 15
(bottom) to 20 (top), and ℓ̃ = 0 and 1. Each hyperbola corresponds to a distinct pair (ñ, ℓ̃). The symbols represent the numerically calculated
frequencies and the continuous lines correspond to a least-squares fit based on Eq. (27). Some of the irregular features in the numerical frequencies
are caused by avoided crossings.

and the continuous lines are a least-squares fit based on the fol-
lowing formula:

ωñ, ℓ̃,m = ñ∆ñ + Dm̃(ℓ̃)

√

m2 + µ(ℓ̃)2 − mΩfit + α̃(ℓ̃). (29)

The term mΩfit has been removed from both the numerical fre-
quencies and the fit in Fig. 5 so as to bring out their more subtle
azimuthal dependence. In Eq. (29), the term with ∆m̃ has been re-
placed so as to give the frequencies a hyperbolic dependence on
m, as is visually suggested by the numerical frequencies. Besides
the modification to the azimuthal term, the term ∆ℓ̃ has been re-
moved but is compensated for by allowing the parameters Dm̃, µ
and α̃ to depend on ℓ.

Table 2 gives the values of the different parameters used to
fit the frequency spectra in Fig. 5. Comparing these values with
those in Table 1 shows reasonable agreement, provided one com-
pares ∆m̃ and ∆ℓ̃ with Dm/2µ and α(ℓ̃ = 1) − α(ℓ̃ = 0), respec-
tively, where the expressions Dm/2µ comes from a Taylor expan-
sion of Eq. (29) around m = 0. Although the average deviations
are larger in this table, Eq. (29) is a better fit to the frequencies

than Eq. (27). The reason for this apparent contradiction is be-
cause the frequency sets used in Table 2 cover a larger range of
m values. Applying Eq. (27) to these expanded sets would yield
〈

δω2
〉1/2
/∆ñ = 0.079 and 0.088 for the uniformly and differen-

tially rotating models, respectively.

An important difference between the two formulae, is that
contrary to what is suggested by Eq. (27), the azimuthal depen-
dence is different for ℓ̃ = 0 and ℓ̃ = 1 modes. A likely cause
is the fact that pulsation modes are closer to the equator at high
m values. This would then modify the path which intervenes in
the time integrals used to calculate ∆ℓ̃, when working with ray
dynamics (Lignières & Georgeot 2008). As a result, a physically
more relevant formula for the frequencies would include a ∆ℓ̃
term which depends on m rather than an azimuthal term which
depends on ℓ̃. Of course, a quantitative calculation based on ray
dynamics is needed to support this explanation.

It is also interesting to look at what happens when ñ is in-
creased to a large value. Figure 6 compares 4 sets of pulsa-
tion frequencies corresponding to ñ = 20, 40, 50 and 60. The
symbols represent the numerical frequencies and the continuous
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Table 2. Parameters for the asymptotic formula Eq. (29).

Stellar parameters . . . . . . . . . . . ℓ̃ = 0 . . . . . . . . . . . . . . . . . . . . . . ℓ̃ = 1 . . . . . . . . . . .

M

M⊙
η α

∆ñ

(µHz)

Ωfit

∆ñ

Ωreal

∆ñ

Dm̃

∆ñ

µ
α̃

∆ñ

Dm̃

2µ∆ñ

Dm̃

∆ñ

µ
α̃

∆ñ

Dm̃

2µ∆ñ

〈

δω2
〉1/2

∆ñ

25 0.6 0.0 14.91 0.980 0.989 0.197 5.95 2.67 0.0166 0.234 5.11 3.41 0.0229 0.045
25 0.6 0.2 15.01 0.962 0.953–0.993 0.221 6.04 2.50 0.0183 0.244 4.52 3.52 0.0270 0.052

Values of the parameters from Eq. (29) used to fit the frequencies in Fig. 5 (i.e. the ranges on the quantum numbers are 15 ≤ ñ ≤ 20, 0 ≤ ℓ̃ ≤ 1
and −10 ≤ m ≤ 10). These values are similar to those in Table 1 (see text for details). The two values of Ωreal for the differentially rotating model
(second line) are the lower and upper bounds on the angular velocity, i.e. the equatorial and polar rotation rates, respectively. The parameter Ωfit is
twice as close to Ωreal as in Table 1 for the uniformly rotating model (α = 0) due to the inclusion of higher azimuthal orders.

Fig. 6. Four sets of pulsation frequencies in a co-rotating frame in which
ñ = 20, 40, 50 and 60. The other quantum numbers are ℓ̃ = 0 and
m = −10 to 10 for all sets. The azimuthal order has been scaled by

1/
√

ñ as this causes the high order curves to overlap and reduces the
difference between these curves and the ñ = 20 curve.

lines a fit based on Eq. (29). The frequencies are given in a co-
rotating frame and have been shifted so that the different curves

are at 0 for m/
√

ñ = 0. Plotting the frequencies as a function of

m/
√

ñ rather than m causes the curves associated with the high
order frequencies to overlap and reduces the difference between
these curves and the ñ = 20 curve. These results suggest that as
ñ goes to infinity, the azimuthal dependence of the co-rotating
frequencies can be described by a law of the form ñδ f (m/ñγ)
where f is a function and 2γ − δ = 1.

3.4. An effective rotation rate

Of particular interest is the parameter Ωfit. In the uniformly ro-
tating case, the term −mΩfit represents, to first order, the advec-
tion of the modes by stellar rotation. The value given for Ωfit in
Table 2 is quite close to the true rotation rate and only differs by
0.93%, this difference probably resulting from the Coriolis force.
In the differentially rotating case, −mΩfit can also be interpreted
as an estimate of the advection of the pulsation modes by stel-
lar rotation. The parameter Ωfit would then be an average of the
rotation rate in which the weighting depends on the structure of
the pulsation modes. We will refer to Ωfit as an effective rotation
rate. We can then use Eq. (1) to calculate the position sfit where
Ω(s) is equal to Ωfit for the differentially rotating model. This is
represented by the thick vertical line in Fig. 7 for the numeri-
cal value given in Table 2. The hashed region on either side of
this line is an estimate of the error on this position using the
difference between Ωfit and Ωreal from the uniformly rotating
model as a guide.

Fig. 7. The (ñ, ℓ̃, m) = (20, 0, 10) island mode in the differentially rotat-
ing model. The vertical thick line corresponds to the position where Ωfit

is equal to the local rotation rate. The hashed region on either side is an
estimate of the error on this position, based on the difference between
Ωfit and Ωreal for the uniformly rotating model.

As can be seen from Fig. 7, sfit is located towards the outer
regions of the star. This means that Ωfit, when viewed as an av-
erage of the rotation profile, has a stronger weighting in these
outer regions. This seems logical from the point of view of ray
dynamics because a sound wave travelling along a ray path will
spend most of its time in the outer regions of the star where the
local sound velocity is lower. As a result, it will spend more time
being advected by rotation in that region rather than in an inner
region. Sound-travel times along ray paths have already been
used to establish an asymptotic expression for rotational kernels
of high order p-modes in spherical stars (Gough 1984).

One of the best ways to confirm these ideas in a quantitative
way is to apply a variational formula which is valid for differ-
ential rotation. Such a formula has been established in Lynden-
Bell & Ostriker (1967). Here we give a different and somewhat
simpler expression which is only valid for conservative rotation
profiles:

0 =

∫

V

(ωvar + mΩ)2ρo‖ξ‖2dV

+2i

∫

V

(ωvar + mΩ)ρoΩ · (ξ∗ × ξ) dV

−
∫

V

ρo |ξs|2 s∂s

(

Ω2
)

dV −
∫

V

|p|2dV

ρoc2
o

−
∫

V

ρoN2
o

∣

∣

∣ξg
∣

∣
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2
dV

+
1

Λ

∫

V∞

‖∇Ψ‖2dV, (30)
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Fig. 8. A plot of the kernel associated with the (ñ, ℓ̃, m) = (20, 0, 10)
mode shown in Fig. 7. As can be seen, the highest amplitudes are
reached very near the surface, just like for p-modes in non-rotating stars.
The vertical line indicates the position of seff

fit
= Ω−1 (Ωeff) which can be

compared with the position of sfit as shown in Fig. 7.

where ξ is the Lagrangian displacement, ξs the displacement
component perpendicular to the rotation axis and ξg the displace-
ment component in the same direction as the effective gravity. In
order to apply this formula, it is necessary to calculate pulsation
modes in terms of ξ rather than u, the Eulerian velocity pertur-
bation. This has been done, and the relevant pulsation equations
are described in Appendix A.

In the uniformly rotating case, the term that corresponds to
the advection of pulsation modes by rotation is mΩ, which is
contained in the first integral. By analogy, we can define an ef-
fective rotation rate for the differentially rotating case as follows:

∫

V

(ωvar + mΩ)2ρo|ξ|2dV = (ωvar + mΩeff)2

∫

V

ρo|ξ|2dV. (31)

Solving for Ωeff leads to the following expression:

Ωeff = −
ωvar

m
+

1

m

√

∫

V

(ωvar + mΩ)2KdV , (32)

where

K = ρo‖ξ‖2
∫

V
ρo‖ξ‖2dV

· (33)

When mΩ ≪ 2ω, then Ωeff can be approximated by
∫

V
ΩKdV .

This is similar to the first order perturbative expression describ-
ing the advection of modes by slow rotation, except that the ker-
nel K has been defined from the eigenmode in the rotating star.
Figure 8 shows a plot of the kernel associated with the mode
in Fig. 7. As can be seen in the figure, the highest amplitudes
are reached very near the surface, just like for acoustic modes
of non-rotating stars. Superimposed on the diagram is a vertical
lines which indicates the position of seff

fit
= Ω−1 (Ωeff). This can

be compared with sfit which is plotted in Fig. 7. As can be seen
from the two figures, seff

fit
< sfit. This difference comes from the

fact that sfit not only includes the advection of modes by rotation
but also the effects of the Coriolis force on the mode frequencies.

The rotation rateΩeff turns out to be a very good indicator of
the advection of modes by rotation. This is illustrated in Fig. 9,

which shows a comparison between
(

ωñ, ℓ̃,m − ωñ, ℓ̃,−m

)

/2m

(solid line) and (Ωeff(m) + Ωeff(−m)) /2 (dotted line), for a set

Fig. 9. Different measures of the effective rotation rate. The solid and
dotted curves show an average over m and −m of Ωeff based on the nu-
merical frequencies and on Eq. (32). The two last curves show the sep-
arate contributions from m and −m, where m corresponds to retrograde
modes and −m to prograde modes.

of modes in which the Coriolis force has been removed. The rel-
ative difference between the two is around 10−6−10−5, making it
difficult to distinguish the two curves. The downward trend re-
sults from the fact that the pulsation modes are becoming closer
to the equator as |m| increases. The dent between m = 5 and
m = 6 is caused by an avoided crossing. Also, the curves corre-
sponding to Ωeff(m) and Ωeff(−m) have been included. The rea-
son why these curves are not identical is because modes with
azimuthal orders m and −m are not identical even without the
Coriolis force, because of the differential rotation profile.

This naturally leads on to the idea of applying inversion
theory to probe the rotation profile using the rotational kernels
defined in Eq. (33). The quantity (ωñ, ℓ̃,m − ωñ, ℓ̃,−m)/2m is read-
ily available from observations, once an accurate mode identi-
fication has been done. Furthermore, it turns out that Ω1

eff
=

∫

V
ΩKdV is a very good approximation to Ωeff , at least in the

example considered above, thereby allowing the use of linear in-
version theory. These kernels will, nonetheless, need to refined
so as to include the effects of the Coriolis force.

4. Highly differential rotation

When the rotation profile becomes highly differential, the stel-
lar structure becomes more and more deformed and the polar
regions can, in some cases, become concave. These polar con-
cavities result from the particular choice of rotation profile as
expressed in Eq. (1) since they do not appear in models where
the rotation rate increases with distance from the rotation axis.
This deformation naturally affects the structure and organisation
of pulsation modes. Figure 10 shows a chaotic and what appears
to be a whispering gallery mode in models where the rotation
profile is very differential. No island modes are shown as they
seem to have disappeared. In the more distorted configurations,
even whispering gallery modes become difficult to find. Instead,
most of the modes are of a very chaotic nature.

One way to counteract the effects of stellar distortion is to
increase the azimuthal order m. Indeed, increasing the azimuthal
order causes the pulsation modes to become closer to the equa-
tor and move away from the poles where stellar deformation is
strongest. As can be seen in Fig. 11, highly regular whispering
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Fig. 10. The left figure corresponds to a chaotic mode and the right one to what appears to be a whispering gallery mode in SCF models with a
highly differential rotation profile. No island modes are shown as they seem to have disappeared in the models (for low m).

Fig. 11. The two figures corresponds to pulsation modes with a high azimuthal order in models with a highly differential profile. The left figure
corresponds to a whispering gallery mode and the right one to an island mode. As can be seen in these plots, pulsation modes become less chaotic
with increasing azimuthal order.

gallery modes exist even in the most deformed configurations.
Also, for models with less distortion, it is possible to find some
island modes. Nonetheless, such modes are not likely to be visi-
ble in stars due to disk averaging effects. Therefore, if stars reach
this degree of distortion, it will be very challenging to interpret
their pulsation spectra.

5. Conclusion

As has been shown in this paper, results concerning pulsa-
tion modes in rapidly rotating polytropic models can be gener-
alised to more realistic models based on the self-consistent field
method (Jackson et al. 2005; MacGregor et al. 2007) provided
the rotation profile is not too differential. In particular, pulsation
modes fall into different categories, island, chaotic and whisper-
ing gallery modes, each with their own characteristic geome-
try, in full agreement with previous calculations based on ray
dynamics (Lignières & Georgeot 2008; Lignières & Georgeot
2009). The frequencies of the island modes obey the same type
of asymptotic formula as those in polytropic models although a
more careful investigation of their m-dependence reveals a more
complex behaviour than was previously established. This type
of formula potentially provides a promising way of identifying
pulsation modes in rapidly rotating stars, especially at high ra-
dial orders where the agreement between formula and frequency
is very good (Reese et al. 2009). Of course, when applying this

formula to observations, one should restrict themselves to modes
with low ℓ̃ and m values, because cancellation effects reduce the
visibility of modes with more nodes on the surface. As a result,
the approximate form given by Eq. (27), which is valid for low
m values, is sufficiently accurate.

A useful by-product of the asymptotic formula is an estimate
of the effective rotation rate which gives the average advection of
modes by rotation when the rotation profile is mildly differential.
The obtained value indicates a stronger weighting near the sur-
face, where the local sound velocity is smaller. This goes hand
in hand with the intuitive picture based on ray dynamics that a
sound wave is most advected in those regions where it spends the
most time. A rigorous calculation based on a variational princi-
ple yields rotation kernels which confirm this picture and help
provide effective rotation rates similar to the one obtained in the
asymptotic formula, apart from the effects of the Coriolis force
on the frequencies. These rotation kernels could then be used in
inversion methods to probe the rotation profile.

When the rotation profile is highly differential, pulsation
modes tend to be predominantly chaotic, probably as a result
of the star’s geometric distortion. Increasing the azimuthal order
counteracts this effect by drawing the pulsation modes closer to
the equator thereby causing regular whispering gallery modes,
and in some cases, island modes, to reappear. Nonetheless, such
modes are not likely to be visible due to disk averaging effects
thus making pulsation spectra in such stars difficult to interpret.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811510&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811510&pdf_id=11
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Appendix A: Pulsation equations based

on the Lagrangian displacement

In order to derive Euler’s equation in terms of the Lagrangian
displacement, we begin with Eq. (13) of Lynden-Bell & Ostriker
(1967) and calculate its Eulerian perturbation in an inertial
frame:

ρo

D2
oξ

Dt2
− ρoξ · ∇ (uo · ∇uo) = −∇p + ρgeff − ρo∇Ψ, (A.1)

where ξ is the Lagrangian displacement, and other quantities
have the same definitions as before. The time derivation oper-
ator is defined as follows:

Doξ

Dt
=
∂ξ

∂t
+ uo · ∇ξ = λξ +Ω × ξ + imΩξ. (A.2)

Simplifying Eq. (A.1) yields:

[λ + imΩ]2 ρoξ + 2 [λ + imΩ] ρoΩ × ξ + ρoξss∂s

(

Ω2
)

es =

−∇p + ρgeff − ρo∇Ψ.(A.3)

This is the same equation as what is used in Lovekin et al.
(2009). If one uses the following relationship between ξ and u
(e.g. Christensen-Dalsgaard 2003):

u =
∂ξ

∂t
+ uo · ∇ξ − ξ · ∇uo, (A.4)

it is possible to show that Eqs. (6) and (A.3) are equivalent.

In terms of the coordinate system described in Sect. 2.3,
Euler’s equation takes on the following explicit form:

0 = [ω + mΩ]2 ρo

[

ζ2rζξ
ζ

r2
+
ζrθξ

θ

r2

]

+ 2i [ω + mΩ]
Ωζ sin θ

r
ρoξ
φ

−ρos
(

∂sΩ
2
)

rζ sin θ

[

ζ2 sin θ

r2
ξζ +

ζ (rθ sin θ + r cos θ)

r2rζ
ξθ
]

−∂ζ p +
∂ζPo

ρo

ρ − ρo∂ζΨ, (A.5)

0 = [ω + mΩ]2 ρo

⎡

⎢

⎢

⎢

⎢

⎣

ζ2rθξ
ζ

r2
+
ζ(r2 + r2

θ
)ξθ

r2rζ

⎤

⎥

⎥

⎥

⎥

⎦

+2i [ω + mΩ]
Ωζ (rθ sin θ + r cos θ)

rrζ
ρoξ
φ

−ρos
(

∂sΩ
2
)

(rθ sin θ + r cos θ)

[

ζ2 sin θ

r2
ξζ

+
ζ (rθ sin θ + r cos θ)

r2rζ
ξθ
]

− ∂θp +
∂θPo

ρo

ρ − ρo∂θΨ, (A.6)

0 = [ω + mΩ]2 ρo

ζ

rζ
ξφ − 2i [ω + mΩ]

Ωζ2 sin θ

r
ρoξ
ζ

−2i [ω + mΩ]
Ωζ (rθ sin θ + r cos θ)

rrζ
ρoξ
θ

−
∂φp

sin θ
− ρo

∂φΨ

sin θ
· (A.7)

where iω = λ. This is then supplemented by the the continuity
equation,

0 = ρ + ∇ · (ρoξ), (A.8)

the adiabatic relation,

0 = p + ξ · ∇po − c2
o (ρ + ξ · ∇ρo), (A.9)

and Poisson’s equation,

0 = ∆Ψ − Λρ, (A.10)

which in spheroidal geometry are:

0 = ρ +
ζ2∂ζρoξ

ζ + ζ∂θρoξ
θ

r2rζ
+
ζ2ρo

r2rζ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂ζ
(

ζ2ξζ
)

ζ2

+
∂θ
(

sin θξθ
)

ζ sin θ
+
∂φξ

φ

ζ sin θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A.11)

0 =
(

p − c2
oρ
)

+
ζ2

r2rζ

(

∂ζ po − c2
o∂ζρo

)

ξζ

+
ζ

r2rζ

(

∂θpo − c2
o∂θρo

)

ξθ, (A.12)

0 =
r2 + r2

θ

r2r2
ζ

∂2
ζζΨ + cζ∂ζΨ −

2rθ

r2rζ
∂2
ζθΨ +

1

r2
∆θφΨ − Λρ. (A.13)

Using this set of equation yields the same modes and similar fre-
quencies as using the system of equations based on the Eulerian
velocity perturbation u. This approach nonetheless has the ad-
vantage of yielding ξ which can be used more readily in the
variational formula for differential rotation.
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