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Summary. The pulsational instability of accretion disks to axially symmetric
oscillations is examined in the approximation that conditions are quasi-
adiabatic and quasi-inviscid. The essential difference from the usual stellar
pulsation is that the shear motion in the unperturbed state has two (thermal
and dynamical) effects on the stability of oscillations. Both effects act so as
to excite oscillations if the coefficient of viscosity increases by a certain
degree in the compressed phase of oscillations, in comparison with the
expanded phase. The numerical condition of the growth is examined, in
particular for the nearly radial oscillations whose radial wavelength is shorter
than the radius of the disk (i.e. local oscillations) but longer than the
thickness of the disk. The examination is made mainly for optically thin
disks, and secondarily for an optically thick disk. In the particular disk
examined in the optically thick case, the radiative diffusion of thermal energy
in the vertical direction contributes positively to the excitation of oscillations
by the very fact that the flows of oscillations are nearly radial. The instability
of accretion disks to local oscillations will be important as a possible cause of
turbulence leading to viscosity.

1 Introduction

Accretion disks have been extensively examined in relation to binary X-ray sources, quasars
and galactic nuclei. Recent theoretical investigations of stationary disk models have revealed
that some models are secularly unstable (Lightman & Eardley 1974) or thermally unstable
(Pringle, Rees & Pacholczyk 1973; Shibazaki & Hoshi 1975; Shakura & Sunyaev 1976;
Pringle 1976). The presence of instabilities is of interest because periodic, quasi-periodic or
chaotic variability have been observed in some binary X-ray sources and quasars.

Among possible instabilities of accretion disks, however, pulsational instability has not
been examined, and the purpose of this paper is to remedy this omission. Pulsational
instability is particularly interesting in relation to periodic components of variability. For
example, Ozernoi & Usov (1977) thought that disk models had difficulty in explaining any
quasi-periodic light variations of quasars, and regarded this as one of the defects of such
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models. If pulsational instability is present, the situations are different from what they
assumed. The global oscillations of disks are of interest in this respect but, in this paper,
the instability to local oscillations is studied as the first step. Such a study also has its own
importance. If a disk is sufficiently unstable to local oscillations, acoustic and eddy
turbulence will be generated and these turbulent motions may lead to a large viscosity.

The mechanism of pulsational instability of accretion disks is also interesting as an
extension of the theory of stellar pulsation. The reason is that two processses due to the
shear motion of the disk become important for pulsational instability, although they are not
so in normal stellar pulsation. One of these processes is thermal and the other is dynamical.
First we remember that, in the usual accretion disks, thermal energy is supplied by viscous
dissipation of shear motions. If the coefficient of viscosity increases in the compressed phase
of oscillations in comparison with the expanded phase, the thermal energy generation by
shear motions increases correspondingly. This leads to amplification of the oscillations by
the same mechanism as applies to nuclear energy generation in stellar pulsation. This effect
of viscous energy generation on the criterion of pulsational instability, although unimportant
in normal stellar pulsation because the contribution from viscous energy is a minor part of
the thermal energy, is important in accretion disks. The dynamical effect of shear motions
is the following. If the coefficient of viscosity varies during an oscillation, the viscous force
in the longitudinal direction varies in such a way that it has a component in phase with the
longitudinal motion of the oscillation. If it is in the positive sense, the viscous force gives
energy to the oscillation and amplifies it.

In addition to the above, in optically thick disks the radiative diffusion in the vertical
direction acts, at least in a particular case, so as to amplify oscillations by the very fact that
they are nearly radial, as will be shown. The fact that the unperturbed state has a slow
accretion flow also affects the stability condition, but it is not important unless oscillations
of global scale are considered.

In Section 2, the basic equations to be used are summarized. A general expression for the
criterion of pulsational instability to axially symmetric oscillations is given in Section 3.
Section 4 is devoted to a study of local oscillations with nearly radial motions. Sections 5
and 6 show that local oscillations are overstable if the coefficient of viscosity varies, during
an oscillation, with temperature by a certain power larger than a critical one. The final
section discusses the results.

2 Basic equations for perturbations

The unperturbed disk is assumed to be in a stationary accreting state. In the lowest order of
approximations, a thermal balance and a hydrostatic equilibrium in the vertical direction
hold. The latter implies that the pressure gradient in the vertical direction of the disk is
balanced by the component of the gravitational attraction of the central body normal to the
disk. (The self-gravitation of the disk has been neglected.) Such a stationary state will not,
in general, be realized with a radial flow v, alone; a much slower vertical flow vo, will
inevitably accompany it. The effects of this slow stationary flow cannot be neglected in
deriving a general criterion of pulsational instability of the disk.

Axially symmetric, small-amplitude oscillations are considered over the above stationary
state. The perturbed quantities associated with the oscillations are referred to by attaching
the subscript 1, and those in the unperturbed state by the subscript 0. In the cylindrical
polar coordinate frame (r, ¢, z), where the z axis is the axis of the disk rotation, the
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equations describing the small perturbations are
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where v,, vy and v, are the velocity components over the rotational motion (0, Qr, 0), ¢ is
the velocity of sound, (YPo/po)’? and 7 is the ratio of the specific heats. The epicyclic
frequency () will be equated to the angular velocity (r) of the disk rotation in Section 4,
because the rotation is Keplerian in a system with no self-gravitation.

The right-hand sides of equations (2.2) to (2.5) represent the effects on oscillations both
of non-conservative processes and of the stationary accretion flow in the unperturbed state.
The symbols Ny,, N1, and Ny, represent the perturbed components of the viscous force per
unit volume:

0 1 0
Ny, = ———(@T,) + = Tpy — — T3, 26
1r rar( rr) , o0} 9z rz ( )
N, (r*Ty,) __a T, 2.7)
= _ r J— , .
1o r2or o) Ty T
and
d 0
le=-_' (rTzr)“_‘Tzz; (2~8)
ror 0z

where the T’s are the components of the viscous stress tensor in the perturbed state. Their
expressions in terms of the coefficient of viscosity are given in the Appendix. The 7, ¢ and z
components of the viscous force per unit mass are pp' [Ny, — (01/00)Norl, Po" [N1g —
(01/P0) Nog] and pg' [Nz — (p1/Po)No,], respectively but, except for the longitudinal
component, the second terms in the brackets have been neglected in equations (2.2) and
(2.4), because they are negligibly small. The expression for Nog, the viscous force (per unit
volume) in the longitudinal direction in the unperturbed state, is

N 0 ( 3 dQ) (2.9)
= r —_— 5 .
¢ rtor o dar
where ng is the coefficient of viscosity in the unperturbed state.

The terms, W;,, Wiy and W,, in equations (2.2)—(2.4) represent the effects of stationary
flow in the unperturbed state. In the case of vg,= Vo (r, z) and vo; = Vo, (7, z), their
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expressions are
0 al)r avor
er = _'_a; (UOrvr) — Voz a_Z — Uz 3z > (210)
0 al)¢
Wi = — Vo, — (rVg) — Vo, — , (2.11)
ror 0z
and
ov, 0vy, 0
Wiz =~ vOr”g; — U 3 oz (Voz Vz)- (2.12)

The above expressions can be simplified by neglecting some terms if the accretion flow in
the unperturbed state and the characteristics of the oscillations are specified. We will not
discuss these problems here, however.

In equation (2.5), @, represents the perturbation of the rate of thermal energy generation
(per unit volume) by the viscous dissipation:

® =2 ,dQ d (v¢) ( dQ)2 (2.13)
=2mer* — —|—|+tm|r—), :
' " ar or\r U

while div F; represents the perturbation of the rate of loss of thermal energy by radiation.

For an optically thin disk we take

p
diV Fl =p0,,(/)0(&'+:l—l), (214)
pPo %o

where Z(p, T) is the so-called cooling function per unit mass. For an optically thick disk
we adopt

16073

3Kk,0

where K, is the opacity and o is the Stefan—Boltzmann constant.

On the right-hand side of equation (2.5), there are some additional terms which result
from the presence of stationary flow in the unperturbed state. The terms, however, have
been neglected from the beginning in equation (2.5), because they are negligible compared
with the term (y — 1) (—div F; + ®;) in such low entropy systems as disks (the internal
energy is much less than the rotational energy). In the equation of continuity (2.1), the
right-hand side also has some additional terms representing the effects of the flow in the
unperturbed state. The effects of these terms again are negligible in disks (this can be shown
easily by retaining the terms until further transformation of the equations). In order to avoid
unnecessary complications, we have neglected the terms from the beginning.

Elimination of vy, p; and p; from the set of equations (2.1)—(2.5) gives two relations
between v, and v;. One is derived by taking the time derivative of equation (2.2) and by
substituting equations (2.1), (2.3) and (2.5) in it. The result is

22 3 /1 9pe 2 )
ERATERS N TN
[aﬂ * rar ¥po Or (Povr) or p°ar( r)

div F, = — div [ grad T] , (2.15)
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The other relation between v, and v, is obtained from equation (2.4) by eliminating p; and
p1 by use of equations (2.1) and (2.5):

[82 a(l apo)]( ) a (2 avz) 0 ( ap0)+ 1 9p, 0o ( |
—_—— v)——\Ppo—)—— (v, — | +— — (7
ot dz\py Oz Pobz 0z Po 3z) oz \ or) po 0z ror Pobr

0 0 0 ‘ 0
2 [c2po i (rvr)] = - D) (CdivE B+ o Vis +poWy). (217)
0z ror 0z ot

3 General criterion of pulsational instability of accretion disk

When the right-hand sides are neglected, equations (2.16) and (2.17) give, under suitable
boundary conditions, the set of purely periodic oscillations of frequencies wy, w,, . ... We
shall now write the eigenfunctions, v, and v,, corresponding to the mth eigenvalue w,, as

U (7, 2, t; Wy, ) = Re exp (1621 1) Uy

and 3D

U (7, 2, t; Wy ) = Re exp (W, 1)Uz, .-

Our present purpose is to examine how the above oscillations are amplified or damped when
the effects of the right-hand sides of equations (2.16) and (2.17) are taken into account as
small perturbations upon the oscillations.

To do so, we shall first show that the eigenfunctions are orthogonal when the right-hand
sides of equations (2.16) and (2.17) are neglected. The outline of the proof is noted only
briefly, since the procedures are well known when equations are self-ajoint. Equations
(2.16) and (2.17) for vy, and v,,, (the right-hand sides of the equations are now taken to be
zero) are multiplied by v}, and v}, (the asterisk denotes the complex conjugate),
respectively, and integrated over the whole volume of the disk. The resulting two equations
are summarized after performing integrations by parts. The surface integrals vanish if the
density vanishes at the surface. The equation thus obtained is symmetric with respect to the
simultaneous changes of v, to v;k,, and v, to v:,,, except for the term of w?3,. In the
proof of this symmetry property, the relation (8po/dr) - (3p0/3z) = (3po/dz) (3pe/dr) has
been used. This relation means po=po(po) and actually holds since § is a function of
alone. (Strictly speaking, the relation po=po(po) and thus the orthogonal relation, do not
hold in general because there is a slow accretion flow in the unperturbed state. The effect
of violation of the orthogonal relation on the instability criterion is, however, negligible.)
Similarly, starting from equations (2.16) and (2.17) for v}, and v}, , we integrate them over
the whole volume after multiplying them by v,,, and v,,,, respectively. The summation of
these two equations gives an equation similar to that above. The difference of these two
equations gives the orthogonality relation:

fffﬁo [Vrm v;kn t Uzm v;kn]dx =0, m#n, (3.2)

where the integrations are performed over the whole volume V of the disk.

The use of the above orthogonality relation allows us to estimate how w,, is changed
by the non-conservative effects and by the effects of stationary accretion flow in the un-
perturbed state. By regarding the right-hand sides of equations (2.16) and (2.17) as small
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perturbations, we see that w,y,, Uy, and vy, are slightly changed as

Wm > Om * Wy Uy = Uy + Uy and Uz 2 Vg + Upm, (3.3)

where

Upm = 2. @uUp, and Uy, = 2. bpUgp, 34)
n¥m n+m

and a, and b,, are expansion coefficients. Equations (3.1), (3.3) and (3.4) are substituted
into equations (2.16) and (2.17), and the resulting two equations are integrated over the
whole volume V after multiplying by v}y, and v),,, respectively. The sum of these two
equations gives, with the orthogonality relation (3.2),

— 2w "‘J;n J\J‘J’po [Vem vfm T Uzm U:m] dx

0

R

P1 0
J]f [Urm {“‘Nlrm +28Q (Nl¢m - “bf N0¢)} + U;km é_tlem] dx
0

0 0
+ J'J‘J’po [v;km (a—t Wirm 282qubm) + U:m g; lem] dx, (3.5)

where the subscript m to N;’s, W;’s and p, means the coefficients of exp (iw,,t) when they
are written in the forms like equations (3.1). The use of integrations by parts, in addition to
3/t = iw,y, and iwp, Vem = — (K*/282) v,m, reduces equation (3.5) to

.7 % *: aT* .
2iw po(v,v, + v0;)dx = 5 (— divF, + ®,)dx
)
JJJ [erlr U¢ (Nup —;No¢) +u; N, ]a’x
0

+ *y,) +£2i * *
Po | Ur ¥1r 2 Uy Wig + vz Wiz dXx, (3.6)

where and hereinafter the subscript m is dropped in order to avoid complications, and &
represents the Lagrangian variation. If the real part of the right-hand side of equation (3.6)
is positive, the oscillations are overstable, since Re (iw') > 0.

The physical meaning of equation (3.6) is clear. The first integral of the right-hand side
represents the well-known criterion of pulsational instability (e.g. Ledoux 1958). In our
present case, however, the viscous generation of thermal energy @, is included in addition to
—div F;. The second integral represents the mechanical work done by viscous forces on the
oscillations. The presence of the factor 4Q%k? before vy results from the following fact.
The real velocity component in the longitudinal direction associated with a displacement is
not vy, but vy + (rdYdr)E, = (4Q2%/k*)vy, where &, is the radial displacement. The third
integral represents the effects of the flow in the unperturbed state.

If there are no shear motions in the unperturbed state, the effects of viscous processes
are only to damp oscillations, but the situation is different if shear motions are present.
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This can be seen clearly by expressing the right-hand side of equation (3.6) in terms of the
cylindrical coordinates. Performing the second integration in equation (3.6) by parts, under
the condition that at the surface there is no tangential shear stress or normal pressure, we
have

2iw'JHpo(lvr P+ v, 1*)dx
dQN28T*[ divF a3

- [l %) T am2G) 5 ) e
dr] T, L divF, dr) or o

J‘ﬂ‘ [ Bvr 2| , v, N v, |2 v, |2 4&22 Bvd,
—_— U J— —_— - J— —_—
o [ 9z or oz 2z
9 [4Q% v 119 ov, |?
._r2._(__)__(____ _f) _l__(rur)+_z
or or r/. 3lror 0z
pr , 49 2 ,dQ\  my 9 (497 v\ , dQ
—— Uy —5— -a— NtV — ) —— —{\— — —ldx
Po  MoK“r: or dr Mo Or r dr
* ﬂ'ﬂi * *
+ Po |0 Wi,y t+ oz Ve Wig + vz Wiz |dx, (3.7)

where | | represents the absolute values. In rewriting the first integration of equation (3.6)
we have used div Fo = ®¢ = 1o (rd2/dr)*.

On the right-hand side of equation (3.7) the last terms in the first two integrals represent
the main effects of the shear motions. The former one with 71;/ne simply represents the
thermal effect that, if the coefficient of viscosity increases in the compressed phase (8T > 0)
of oscillations in comparison with the expanded phase (67 < 0), it acts so as to excite
oscillations. The latter term proportional to —n,dS2/dr - 3(vg/r)/dr represents the dynamical
effect of the shear. If the variation of the shear force in the longitudinal direction, i.e.
d(n,r>dQdr)/r*dr, is in phase in the positive sense with (4Q%/k?)vy, ie. (4Q%v;/k?)d
(n1r3dS2/dr)/r2 or > 0, positive work is done on the oscillations, and the oscillations are
amplified. The above expression of the work is reduced to —n; 3(4Qv3/rk?)/dr -r*d/dr > 0
if it is integrated by parts. Most of the other terms in the second integral are negative, and
represent the usual viscous damping of oscillations.

The third integral on the right-hand side of equation (3.7), representing the effects of the
stationary accretion flow in the unperturbed state of oscillations, is comparable with other
integrals only for global oscillations whose radial wavelength A is of the order of the radius R
of the disk. The momentum flow pgvy, in the radial direction in the unperturbed state is
(2Q2/k?)d [r*nodS2/dr]/r*dr. Thus, the integrand of the third integral is at most of the order
of Mo lv,*/R\. On the other hand, integrands of the first and the second integrals on the
right-hand side of equation (3.7) are of the order no|v,|*/A% This means that the third
integral is smaller than the others by the factor /R unless global oscillations are considered.
In the following sections we shall examine only the local oscillations, so the third integral
will be neglected hereinafter.

4 Nearly radial local oscillations

The purely periodic zeroth-order oscillations are obtained by solving equations (2.16) and
(2.17), after regarding the right-hand sides of the equations as zero. To solve the equations
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in general, however, is beyond the scope of the paper. The following simplest case is con-
sidered here: the radial wavelength, A, of oscillations is taken as sufficiently shorter than the
characteristic radial dimension of the disk, R, but sufficiently longer than the thickness of
the disk, D, i.e. D < \ < R. Furthermore, the oscillations are taken to be nearly radial in the
sense that 0v,/dz < v,/D. Although the flow is nearly radial, it cannot be completely so in
general. As is seen later, or seen from the combination of the equation of motion in the
vertical direction and the equation of continuity, the vertical velocity v, is of the order of
v ~ (D/N)v,. In addition, we use —(1/p0)0po/0z = GMz[r®* = Q%z,k = Q and ¢ < QA.

In the lowest order of approximations, neglecting small quantities of the orders of D/,
MR and ¢/Q\, we can reduce equations (2.16) and (2.17) to, respectively,

aZ
PRI b
and

9? 1 o ov ov.

—+S22)v ———(02 ——f)+ —1)Q%Zz—_L=0. 42
(aﬂ “ pe 0z Po oz - or “.2)

Equation (4.1) shows that the frequency of oscillations is (= k), independent of wave-
length. This is obvious because the pressure force has been neglected in the radial
oscillations. In equation (4.2) the first term (9%/9% + Q?)v, vanishes because the frequency
of oscillations is found to be § by equation (4.1). The derivative 8/3z to c2podv,/0z in the
second term of equation (4.2) is operated only to c?p, in the lowest order of approxi-
mations, because the variation of dv,/9z in the vertical direction is weak (the validity of this
approximation is shown by the result, equation (4.3)). Thus from equation (4.2) we have

v, v—1 ov, Yy—1 v,
—_— e and U, = — z —. (43)
0z Y or v or
Substitution of equation (4.3) into the equation of continuity gives
6p 1 ov
—=i— . (4.4)
Po Y or
The other relations which we need later are
i, a2 @)
Vp =1, — =Y - > .
T To Po
and
pr 6p i dlnpg d1n peo] 6p
[ A s
Po  Po K2 0z dlnzl py

4.6)

Tl _8T i 0ln To _ [1 dln TO:I 6T
To T, oz dlnzl T,

Important characteristics of nearly radial oscillations, which are shown in equations
(4.3)—(4.5), are that in the lowest order of approximations, v,, Vg, 8p/po and 8T/Ty, are
constants with respect to z, but v, varies linearly with respect to z. We have derived the
above results from equations (2.16) and (2.17), but they can be checked directly from the
basic equations (2.1)—(2.5).

For nearly radial and local oscillations considered above, the condition of pulsational
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instability, equation (3.7), is reduced to

, 9(y -1 divF; /Sp\! 2 sp\!
s e () e 2 e
4y div Fy \ po 3 Mo \ Po

k* 1 N (5p \ !
+—5an [— 39— 2(y — 1)  ——+ 37-—1(—) ]dZ, 4.7)
Y 3 Mo \ Po

where k represents the radial wavenumber of perturbations, defined by (dv,/dr) (dv,/dr)* =
k*v,uy.

5 Pulsational instability of optically thin disk

The condition of pulsational instability depends on how the coefficient of viscosity 7
changes during the pulsation. We assume that, to density and temperature variations, 7
responds as Otpo‘Tﬁ ie. m/no=api/po+ BTy/Ty, where a and § are parameters. For a gas
of neutral particles we have, approximately, n « T'? (e.g. Jeans 1904), and n < T2 for a
fully ionized gas (e.g. Cowling 1953). In both cases 7 is independent of density, because
n ~ pcl and the mean free path / is proportional to the inverse of the density. The molecular
viscosity, however, will be negligible in comparison with the turbulent (or magneto-
turbulent) one in actual accretion disks. In the case of turbulence, the mean free path (or
the eddy size) will not depend directly on the gas density (it may be of the order of the
vertical thickness of the disk or of the vertical scale height of density stratification), and it
may be allowed to take ae= 1. In the following we shall consider the two cases of & =0 and
1, focusing our attention mainly on the case of & = 1. A further brief discussion on 7 will be
given in the last section.

First we shall consider an optically thin disk, radiating energy by bremsstrahlung, and take
— div F = — p Pwith £« pT V2 In the unperturbed state, there is a thermal balance po % =
1o (rd2/dr)?, ie. p3T4* o p¢TE, and the hydrostatic balance (1/p0)dpo/dz = —Q?z in the
vertical direction. Then the vertical distributions of temperature To(z) and density po(2)
become

To(2) = Too(1 — 2%/23)

and (5.1)
Po(2) = poo(1 —2%/z5)(F = 12N =)

with

2y = [2+ (28 - /2 — )| RT00/97, (5.2)

where Ty and pgo are the temperature and the density at z = 0, respectively, and z; is the
half-thickness of the disk, # being the gas constant.

For the perturbed state, we have div Fy/div Fy= 2p;/po+ (1/2)T;/T, as well as ny/no=
api/pe+ B(T1/Ty). In addition, the differences between the Eulerian perturbations and the
Lagrangian perturbations (see equation (4.6)) are taken into account. Equation (4.7) is then
reduced to

2
rico =K M0 o (4“‘5*3‘* ,l)/B(itzﬁ;ﬁ‘ ,l)
7 Poo 22~ 2 2Q-0) 2

3 1 1
9 [74- (y = {6~ DB+ @ 1) = (5~ BTy =) ~5} (53)
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Figure 1. The critical value of 8 as a function of v (the ratio of specific heats) for optically thin disks.
The cooling function .# per unit mass of the disk is taken to be & « pT V2 The coefficient of viscosity, 7,
varies during the oscillation as n,/n,=ap,/p,+B8T,/T, The solid curve is for the case where the
coefficient of viscosity in the unperturbed state, n,, changes with z as p, Tf, while the broken curves are
for the case where n, goes as p, T¢/%.

where B(a, b) is the beta function of arguments @ and b. The condition of overstability is
that the term in the brackets is positive. This is realized if § is larger than a critical value.
This critical value of §is shown in Fig. 1 as a function of y fora = 1.

In the above, the temperature dependence of 1 in the unperturbed state is taken to be
same as that in the perturbed state, i.e. no = poTh and /Mo = p1/po+ BT /To. This is,
however, not the case in general. For example, if we consider the case where 1o ~ poColo
and [, is independent of z with /, ~ D, the vertical variation of ng in the unperturbed state
is specified by mox poT¢’%. In this case, the temperature in the unperturbed state is
distributed in the vertical direction in the same form as equation (5.1), but the unperturbed

density is homogeneous in the vertical direction. Then, instead of equation (5.3), we have
k1100
27*poo

3 1 3 1 1
2iw' = B (z, ~2—) X [:1 (7y - 3){3(y — DB+ (a — 1)}—§ (y — D(79y — 25)~§].

(5.4)

The critical § for overstability determined by this equation is also shown in Fig. 1 as a
function of v, fora =1 and 0.
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6 Pulsational instability of optically thick disk

What we need now to know is —div F; expressed in terms of §p/po. In general, — dF;,/0z
is proportional to 8p/pe with a constant proportionality coefficient A, i.e. —dF;,/0z=
A8p/po. The coefficient A is determined by quantities of the unperturbed state. To know
the value of A4, however, detailed forms of Tp(z) and po(z) are required. These forms are
obtained by solving the equation of hydrostatic balance (1/0¢)0po/0z = —Q%z and the
equation of energy balance

0 (1606T3 0T, dQ?
_( _)+n0(__) 0 (6.1)
0z \3K, 000 0z dr

with 1o« p&T8. To make such a disk model is beyond the scope of this paper, and we shall
be satisfied here by demonstrating for a particular case that the radiative diffusion in the
vertical direction can contribute positively to the excitation of oscillations.

The case which we shall consider is that in which the radiation pressure p, dominates over
the gas pressure p,, and the source of opacity is electron scattering alone, i.e. k, = constant.
Since p, > p,, the temperature gradient is directly related to the pressure gradient. The use
of hydrostatic balance in the vertical direction thus reduces equation (6.1) to

4n dQ\?
——Q2+n0(r—- =0. 6.2)
Ko dr
Now we assume that the unperturbed disk is homogeneous in the vertical direction, and the
temperature To(z) varies so that the hydrostatic balance holds. Since equation (6.2) shows
that no must be independent of z, we take no « pg‘Tg with an arbitrary a and = 0.

The quantity —div F; can be calculated as

d (16673 3T\ 0 [4n /1 dp,
a2 2
1 1

0z \ 3K,p Ez- 0z Lk, \p 0z
0 [4n avz)] ( dQ)?‘ 6p

=—l—l——]| = r— —-1)—. 6.3
az[xa( ot o dr o )po (63)

In deriving the last equality, 0v,/0t = iQu,, equations (4.3) and (4.4) have been used. An
important point which is shown in equation (6.3) is that the radiative diffusion in the
vertical direction by electron scattering in a radiation-dominated gas acts so as to amplify
oscillations, since —divF; is positive in the compressed phase (8p/po> 0). This is
independent of the forms of 7, as far as oscillations are nearly horizontal.

The result of equation (6.3) is related to the following fact. In the compressed phase
(6p/po> 0), the gas is compressed in the radial direction, but is expanded in the vertical
direction with a larger displacement for larger z. This relation between 8p/p¢ and the vertical
motion is in anti-phase with that in a purely vertical oscillation. In the latter case, the
radiative diffusion never acts so as to excite oscillation.

Substitution of equation (6.3) into equation (4.7) gives

k? Mo

2w'=~—— [3(7y=3)(a—1) — (y - 1) (17y — 8) — %s]. (6.4)
47°po

This shows that oscillations become overstable for o> 1.33 when y =4/3. This relatively
large value of o results from the adoption of §=0. In general, § in the unperturbed state,
Mo p&TE, and B in the perturbed state, m;/no=ap;/po+ BT/To, need not be equal, as
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mentioned before. If we adopt n1/no = ap;/po + BT1/To with an arbitrary 8, a term 3(y — 1)
(7y — 3)B is added in the brackets of equation (6.4). In this case, the condition of over-
stability is 8 > 56/57, when a =1 and y = 4/3.

7 Discussion

Pulsational instability of accretion disks to axially symmetric oscillations has been examined
for local (A < R) oscillations with nearly radial motions (v, > v,). The radial wavelength of
oscillations was taken to be larger than the thickness of the disk, i.e. D < A. The case of
optically thin disks has been examined, with supplementary discussion for a thick disk. The
stability criterion depends strongly on the density and temperature dependencies of the
coefficient of viscosity during the oscillations. We have considered, in particular, the two
cases where 1 varies as % pT® or as n« Tﬁ, where § is a parameter. The results show that
larger values of 8 are more conductive to instability. The critical value of 8 over which
oscillations become overstable has been shown in Fig. 1 for optically thin disks. We cannot
conclude whether pulsational instability occurs in real disks until we know the actual
temperature and density dependencies of 7.

To know how the coefficient of viscosity changes during the oscillations is a difficult
problem for the case when 1 comes from turbulent processes. If the time-scale 7, of
turbulent eddy motions is much longer than the oscillation period 7, eddies cannot respond
to the rapid change of the mean state during the oscillation; n will then be effectively
constant during the oscillation. On the other hand, if 7, > 7., the viscosity changes,
responding instantly to the variation of the mean state. The turbulent viscosity is of the
order of pcl, where [ is the mean eddy size. Thus, in the case of 7, > 7, we might have
M/Mo=p1/Po+ (3/2)Ty/To, ie. «=1 and B=3/2, if we assume that the mean free path /
is proportional to the disk thickness during the oscillation. The reason is that the above
assumption means that I,/lo ~ D{/Dy (where I; and D, are perturbations of the mean free
path and the disk thickness, respectively) and this is reduced to D{/Dg ~ &,/Dg ~ i(y—1)
(0v,/0r)/2 ~ 8T/T,, where £, is the vertical displacement.

The characteristic time 7, of eddy motions, whose sizes are comparable with D, is
7o ~ Dfc ~ Q71 if the velocity of eddy motions is taken to be c¢. This time-scale is same as
the period of oscillations, 7. Thus, in the practically important case, we have 7, ~ 7.
It is difficult in this case to know the real temperature and density dependencies of 7,
because the oscillations and the eddy motions are strongly coupled to each other. By this
very fact of strong coupling, the case 7, ~ 7, has another importance, related to a possible
cause of large viscosity leading to rapid accretion. In general, large-amplitude local
oscillations with random phases may become a possible source of turbulence, but a situation
particularly favourable to strong turbulence will be expected in the case of 7, ~ 7¢. In this
case, oscillations excited by our pulsational instability may feed back strongly to turbulence
so as to enhance it. By this feedback process, a strong turbulent state may be maintained in
a disk. In stellar pulsation there are similar cases where pulsation and turbulence
(convection) are coupled. A red giant star has a deep outer convection zone, and the
characteristic - time of eddy motions, which transport energy outward in the zone, is
comparable with the pulsation period of the star as a whole. Thus the pulsational instability
criterion depends on how the coupling between eddy motions and the pulsation occurs.
This coupling problem is not solved strictly, although some theories (Unno 1967; Gough
1977) have been proposed.

Here we shall discuss briefly the growth rate of local oscillations. As is seen from equation
(4.7), the growth rate, if any, is of the order of 1o/po A% This increases with decreasing wave-
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length, but for a too-short wavelength the result cannot be applied because it is based on
A> D. We can, however, consider the wavelength dependence of the growth rate until
A 2 D. If the wavelength decreases, the following three effects, which were not taken into
account in our treatment, appear. The first is that the kinetic energy of the vertical
oscillation becomes non-negligible in comparison with that in the disk plane. In other words,
the term of |v,|*> in the integrand of the left-hand side of equation (3.7) becomes
comparable with the term of |v, |2 Since v,vu; = [(y — 1)/7]%k*2? ~ (kD)* « k2, this first
effect is to saturate the growth rate when X approaches D. The second effect is that, if the
wavelength becomes comparable with the disk thickness, the frequency of oscillations
increases by the effect of the pressure force. Furthermore, such characteristics as v,, vy,
8p/po and 8T/T, are no longer constant with respect to z. Investigation of the equations
shows that they act so as to decrease the growth rate. The third effect, which is most
important, is the radiative energy diffusion in the radial direction during the oscillations.
This always acts so as to damp the oscillations. Considering the above three effects, we
suppose that the growth rate reaches a maximum at a certain X not far from D.

It is implicit in the above discussion that the oscillations are standing. In the lowest
order of approximation the oscillations are actually standing (see equation (4.1)), but they
propagate as pressure waves if we proceed to the next order of approximation. We should
estimate to what extent the propagation works so as to damp the oscillations. The time-scale
in which a wave propagates a characteristic length L of an unstable region in a disk is L/c,
which is (no/poA?)"* times LD/\? if we take mo ~ pocD. This means that, if the unstable
region extends so widely that LD/A*> 1, the wave actually grows to a finite amplitude. If
not, careful considerations will be required such as what fraction of oscillations can be
trapped in the unstable region without penetrating to a surrounding stable region.

Finally, the growth rate is compared with that of the thermal instability. The typical
growth rate of thermal imbalance, if any, wili be of the order of ®4/pgc, (¢, is the specific
heat ~1oQ%/poc? which is no/peN* times (A\/D)?). In other words, the growth rate of local
oscillations is lower than that of the thermal instability by the factor (D/\)>.
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Appendix: expressions for viscous stress tensors

The viscous stress tensors in the perturbed state are expressed in the cylindrical polar
coordinate frame as

av, 1
T, =—no (2——+—-divv , (A1)
or 3
2 1
T¢¢ = —"To (-— v, + - div V) , (A2)
r 3
v, 1
T,; = —No (2— +—divv), (A3)
oz 3
0 U¢ dasl
Tp =Ty = — nor——<——) —mr—, (A4)
or\r dr
dv, v,
Trz=T2r=_n0 _‘+_)a (AS)
or oz
al)¢
Ty, =T, = —No— (A6)
0z
where
] ov,
divv=— (ry,) + : (A7)
ror 0z
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