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PULSATIONAL INSTABILITY OF ISOTHERMAL GAS
SPHERES WITHIN THE FRAMEWORK OF GENERAL
RELATIVITY
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SUMMARY

Investigation has been made of the general relativistic pulsational instability
of gaseous spheres such that the equation of state is of the form p = gp, where
p and p are the pressure and energy-density respectively, and ¢ is a constant.
Assuming that during pulsation the motion takes place adiabataically with
index y, the equation forspherical pulsationis derived by using general relativity.
It is shown that the spheres, if sufficiently compressed, are unstable. The
degree of compression needed to make the sphere unstable depends on the
two parameters, y and ¢g. For given value of g, the degree of compression
needed increases with y, while for given y, the compression needed decreases
with increasing g. When ¢ approaches zero, the equation of pulsation reduces
to the corresponding one in Newtonian theory for isothermal gas spheres.
Post-Newtonian effects are also briefly discussed.

I. INTRODUCTION

Recently Chandrasekhar (1972) has investigated within the framework of
general relativity the structure of gas spheres such that the gas obeys the equation
of state of the form p = gp where p and p are the pressure and energy-density
respectively, and ¢ is a constant. The gas sphere is analogous to isothermal gas
spheres in Newtonian theory. In particular the gas spheres extend to infinity unless
compressed by some external media. The relation between the volume of the gas
sphere and the pressure which it exerts at the boundary can be calculated both in
Newtonian theory and in general relativity. In the classical case the isothermal
gas sphere is a model of an H 1 region surrounded by an H 11region (Ebert 1955); the
equation of state p = gp with ¢ = 1/3 is a limiting form of highly energetic gases
(Landau & Lifshitz, 1959) and even the value ¢ = 1 has also been suggested
(Zeldovich & Novikov 1971). Thus the general relativistic gas sphere for which
p = gp is valid can be regarded as the core of a highly energetic neutron star.

The object of the present paper is to investigate, within the framework of gen-
eral relativity, the stability of the gas spheres against pulsation. As has been
shown previously (Ebert 1957; Yabushita 1968) provided that the ratio of specific
heats is not too large, the isothermal gas spheres in Newtonian theory are pulsation-
ally unstable if they are sufficiently compressed. Thus it is of considerable interest
to know how the result for the classical gas spheres is modified by general relativity.
Chandrasekhar (1964) has derived an equation of pulsation; however, in order to
make easy the comparison with the classical gas sphere, the equation of pulsation
will be derived by a slightly different method. As will be seen the spheres are
pulsationally unstable if they are sufficiently compressed. However, the classical
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isothermal gas spheres can be pulsationally unstable if they are sufficiently com-
pressed. Hence the two instabilities, one in Newtonian theory and the other in
general relativity are manifestations of essentially the same phenomenon.

In the following we shall regard ¢ as a free parameter such that o<g<1.
When ¢ tends to zero, we shall recover the classical case while if ¢ is close to 1/3
or 1, we shall be dealing with highly relativistic case.

2. BASIC EQUATIONS

We consider a spherically symmetrical system, and following Tolman (1934),
write the metric in the form

ds? - - et dr2—r2d02 —r? sin20d2¢ + e’dr?, T = ct, (2.1)

where ¢ denotes the velocity of light. Assuming that A and » are functions of # and
7 only, the energy momentum tensors

dx® dx’

T/LV = (P+P)ga;c ';i; 7\; _g,uvp (2'2)
have the following components;
87G (v o1 1
7T11= —é ’\(74‘7‘—2)‘*‘7—2, (2.3)
8nG 1y 887G o, (i’__)\'v’ v’ v'—'—)\')
7T2—CTT3— e 2 4+4+ o (2.4)
S 4o
+e? (§+}‘__’\1)’
2 4 4
87G 1, 2 '_I 1
—64— T4 14 7 ;é)'i‘;é, (2.5)
87G A 882G . A
— Tyl = —e )‘—7;, 7T14=e ;a (2.6)

where the accents denote differentiation with respect to » and the dots with respect
to 7 and where G is the constant of gravity. All the other components vanish. The
identity

Tl = —e®-N Ty4,

which follows from equation (2.6) should also be noted. The contravariant four
velocity # has the components (u!, o, o, #%). When u! is zero, we have that

T = Te?2 = T33 = —p, T4t = p- (27)

For equilibrium, A and v are independent of ¢. Denoting the equilibrium quanti-
ties by suffix o, equations (2.3) through (2.5) yield the well-known relations
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dpo 1 dvo -
3‘;"‘@04‘!’0) 2 g 0,

d 8nG

(re—/‘O) =1-—7 por?, ‘ (2.8)

ﬂdVo_ - *%)4—@1)0.

rodr 12
When an equation of state is given, these equations are sufficient to determine
equilibrium configurations of relativistic fluid spheres.

We now consider small motions about an equilibrium configuration. We
write

A= do+8Xr, 1), v = votdu(r, ),
b = po+p(r,7), p = po+dp(r, ), (2.9)

ul = dul (r, 7), ut = ugt+out (r, 7).

Clearly 82, év, 8p, 6p, oul, du* are to be regarded as small quantities of first order.
Then the relations (2.7) remain valid to this order of approximation. An equation
which corresponds to the equation of conservation of mass in classical mechanics
is

() = T oo, ) T~ (g, o} T, = o

When appropriate expressions for the Christoffel symbols { } are used (Tolman
1934, p. 250), this equation takes the following form

p+Ta' +3A(p+p)+ To! (%A’+%v’+§) =

By differentiating with respect to = and neglecting small 'quantities higher than the
first, the above equation yields

. 6‘4 a 2 "/\0 c4 , , e—,\o s
P_@ (5;'*‘;) 7—-8)\4- {PO‘FPO—'% (}\0 + v ) —;——} oA = oO. (2.10)

But owing to equations (2.8), the last term vanishes.
For small motions about an equilibrium, equations (2.3) through (2.35) yields

Lensh = 8”G{3p+ (5p+3p)+3 (P0+po)3v}

When this relation is inserted into the above equations one finds that
o _ ( 6 + ) {eVo—Ao [S_p +2 (8p+8p) +— (po+po)] =o0. (2.11)
or% \or

Introducing the function f(r, t) through the relation

Sp = 10f

;’E—a—r (2.12)
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and assuming that all the perturbations depend on r through the factor exp (o7),
the above equation can be integrated to give

o2f—72 ¢~ [81) +22 (SP +8p) + — (])o + po)] (2.13)

where C is a constant of integration. Since the perturbations 8p, 6p and dv are to
remain finite at r = o, the constant C must clearly be equal to zero.

The equation (2.13) has to be supplemented by a relation which connects
3p to 8p. Following Chandrasekhar & Friedman (1972), define the adiabatic index
y by the relation

Ap Ap

e Y S 2.1

> = Vpip (2.14)
where Ap and Ap are the Lagrangian changes of p and p respectively. To the
approximation adopted in the present paper we have that

uo? 8p+dul po’ = yp [u04 8p+ul po']. (2.15)

On the other hand, #g* = e™0/2, while dul is given from equation (2.6) as

81;(2 (po+ po) up* oul = — 87/\ e~vo~%o

and the perturbation 8p is given from equation (2. §) by the relation

846

c4

1d
Sp = ;‘2“ E’ (Te—AO SA).

Hence equation (2.15) can be integrated to give the relation

ALY A |
po+p072+ r2dr  po+po r2 (2.16)

8p =

The perturbation v is obtainable from equation (z.3) which yields that

887G ov’ vo! 1
OTY op — o200 2% _ o2 vo o I _

p = et ———e 08 (r+r2)’ (2.17)
and since 8p has been expressed 1n terms of £, §»” can also be regarded as given in
terms of f. In this way one finally arrives at the following equation for spherical
pulsation;

o2 ¥

?fe/\o—vo = T+q g(T) +h(7’)f, (2-18)
where

__2 vy _p’ y 4nG y
g() r(1+q) p0 I+q+ pr eOT(P0+po)I+q
"\ 2

h =I+q—y(iﬂ) _q(l_ﬂl—y_)(gg) 47G
(7) (I +q)2 72 PO (I+q)3 po + A (P0+P0)

xeﬂo{l—_zq_@:_;_r [ Po x2+q—'}’_ popo’ ]}
I+q po bot+po  1+q  (po+po)?
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Following Chandrasekhar (1972), write
4
= 2~ 9
r = of, o 17Gpe119) (2.19)

po=pce ¥ po=gpce?

where pc is the value of energy-density at » = o. When the change of variables
(2.19) has been made, equation (2.18) takes the following form;

P (2 o) &
rgd Teg\TE e T ) 2

o [ o) o ()]

¥ A _ 2g¢ po’ po’ (1+q— 7’)]} o2 ct Ag—v )
e eo[l 1+q,,0+-‘1§,,0 (1+g)? f= 4Gpo1+9) " oh o (2.20)

where the accents denote differentiation with respect to £.

3. BOUNDARY CONDITIONS

The eigenvalue equation (2.20) has to be solved under appropriate boundary
conditions. Since 8p is given from f by the relation

1 df
063 é'_-g d§ (3 . I)
one must have that
df _ _
d-é—oatcf_o. (3.2)

Another condition is given by considering the perturbation at the boundary;
Let us contend that at the boundary, §p = o. From the relation (2.16), this condi-
tion is found to be equivalent to the relation

vy df 1+q—ypo . _ té =
1+qd§+ (+qp pof o, at ¢ = §p, say. (3.3)

It should be noted that in the limit ¢ — o, ¢*o - 1 and ¢’0 — 1, while the function
i reduces to the Emden function i for isothermal gas spheres. Hence, in this
limit equation (2.20) reduces to the form

it (raar e Gl e o

Equation (3.4) is exactly the same as the equation for pulsation of isothermal gas
spheres in Newtonian theory (see equation (2.19) of Yabushita (1968) where ¢ is
defined by p = pce¥). The structure of gas spheres for which the equation of
state p = ¢p is valid has been given by Chandrasekhar; and in the preceding paper
(Yabushita 1973) the relation has been obtained between the volume of the gas
sphere and the pressure which it exerts at the boundary; also the expressions for
Ao and vg have been given. Hence, all the unperturbed quantities that appear in
equation (2.20) can be regarded as given.
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We now proceed to considering the eigenvalue problem  (2.20). Instead of
calculating the eigenvalues o2, it is easier to adopt the following procedure. Equa-
tion (3.1) is of Sturm-Liouville type; hence o2 = o corresponds to marginal
stability. Hence, it is only sufficient to see if the equation admits a solution which
corresponds to 62 = o and which satisfies the boundary conditions (3.2) and (3.3).

To do this numerically, let us first note that if one puts

f=gn(at by ...) £<1,

then equation (2.21) gives that #n(z—3) = o. Since 8p is to remain finite at £ = o,
one must have that # = 3. Therefore one should integrate the differential equation
(2.21) with o2 = o from the initial conditions

f=8, ¢<1

The numberical integration is continued until the boundary condition (3.3) is
satisfied at a certain value of £. If a value &, of ¢ is found such that the condition
(3.3) holds there, 62 = o is one of the eigenvalues to equation (2.20). A similar
precedure was used by Ebert (1957) in his stability analysis of infinitely large
isothermal gas spheres. On the other hand if no value of ¢ is found for which the
condition (3.3) is satisfied, the gas sphere is thoroughly stable.

4. NUMERICAL RESULT

The eigenvalue problem posed by equation (2.20) with o2 put equal to zero
contain two independent parameters, namely ¢ and . The value of &, where the
condition (3.3) first is satisfied will depend upon the values of the two parameters.
When ¢ is small, the pulsational stability will be almost identical to the stability
within the framework of Newtonian theory. Therefore we shall carry out numerical
computations for the cases ¢ = 0.1, ¢ = 1/3 and ¢ = 1.

TaBLE I

The value of &v such that a gas sphere with the boundary at &b is marginally stable.
The spheres with boundaries with values of ¢ greater than ¢y are pulsationally unstable

g=o0'1 g=1/3 g=1-0
y=1'0 2-82 190 116
I°X 3-05 2-01 122
12 3:30 212 128
13 3-58 223 1°31
14 38 234 1-39
15 423 2°44 145
16 464 254 1°50
17 51X 265 1-56
1:8 573 276 1-62

In Table I we give the values of ¢, at which the boundary condition (3.3) is
satisfied. For given values of ¢ and y, gas spheres with the boundary value of ¢
greater than ¢y are pulsationally unstable. In Fig. 1, we plot the perturbation of
energy-density, §p which corresponds to the eigenvalue o2 = o.
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F16. 1. Perturbation 3p of energy-density. ¢ = 1/3 and v = 1+6. 8p for other values of q
and vy are similar to the case shown here.

5. DISCUSSIONS

We now come to discuss the implications of the result given in Table I. As
has been explained in the preceding paper (Yabushita 1973), the greater is the
value of £y at the boundary of the gas sphere, the greater is the compression toward
the centre.

It may be seen from Table I that for given values of g, the degree of compression
toward the centre required to make the sphere pulsationally unstable increases with
the value of y. This feature is common to the isothermal gas spheres in Newtonian
theory. It should also be noted that for given value of v, the degree of compression
needed to make the sphere dynamically unstable decreases with increasing g.
This feature is understandable because in general relativity pressure also contri-
butes to gravity and owing to the equation of state p = gp, the role of pressure
increases with increasing g. '

In order to discuss some qualitative feature of the eigenvalue equation (2.21),
let us first note that the equations (2.8) admit a particular solution

eV = Q€ Q = 2(1+9)/[(x+9)> +44] (5-1)

that has been found by Chandrasekhar (1972). This particular solution has a
singularity at the centre ¢ = o. However, in order to make comparison with the
classical case, let us adopt it and insert it to the eigenvalue equation (2.20). One
then readily obtains the following form of the eigenvalue problem;

y d2f+_y_ 2q 1df [1+q—y 6—2q +2(1+5q)]

1+qde2 1+qitgédE | 1+q (1+92 (1+9)p2

f 0264 eAO—VO

o= lrc o o VA
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If g is sufficiently small so that only the first power in ¢ need be retained, the above
equation reduces to

d>f 1 df Ay
Y d§2+yzq g2t [8—6y+ I4qy] =G of.
By writing f = g£79, the above equation reduces to
d’

0%t ,
d£2+(8 6y+14yq+g) 477_6'-” 0 g.

Since e*o0 is every where positive, one easily finds that when &, = co positive
eigenvalues o2 cannot exist if the inequality

8—6y+14yg+g<o, ory>§ (1+4i88 q), (5-3)

is satisfied. This inequality is not the necessary condition for the stability of the
spheres, but a sufficient condition for the stability. It clearly shows an effect of
general relativity upon the stability of isothermal gas spheres. As ¢ — o, the inequal-
ity (5.3) reduces to the corresponding one in classical theory, namely y > 4/3.
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