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ABSTRACT

Recent stellar evolution models show consistently that very massive metal-free stars evolve into red supergiants shortly before they
explode. We argue that the envelopes of these stars, which will form pair-instability supernovae, become pulsationally unstable and
that this will lead to extreme mass-loss rates despite the tiny metal content of the envelopes. We investigate the pulsational properties
of such models and derive pulsationally induced mass-loss rates, which take the damping effects of the mass loss on the pulsations
selfconsistently into account. We find that the pulsations may induce mass-loss rates of ∼10−4−10−2 M⊙ yr−1 shortly before the
explosions, which may create a dense circumstellar medium. Our results show that very massive stars with dense circumstellar media
may stem from a wider initial mass range than pulsational-pair instability supernovae. The extreme mass loss will cease when so
much of the hydrogen-rich envelope is lost that the star becomes more compact and stops pulsating. The helium core of these stars
therefore remains unaffected, and their fate as pair-instability supernovae remains unaltered. The existence of dense circumstellar
media around metal-free pair-instability supernovae can make them brighter and bluer, and they may be easier to detect at high
redshifts than previously expected. We argue that the mass-loss enhancement in pair-instability supernova progenitors can naturally
explain some observational properties of superluminous supernovae: the energetic explosions of stars within hydrogen-rich dense
circumstellar media with little 56Ni production and the lack of a hydrogen-rich envelope in pair-instability supernova candidates with
large 56Ni production.
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1. Introduction

Pair-instability supernovae (PISNe) are theoretically predicted
explosions of very massive stars that are triggered by the creation
of electron-positron pairs in their cores (e.g., Rakavy & Shaviv
1967; Barkat et al. 1967). The pair creation makes very massive
stars dynamically unstable and leads to their collapse. The col-
lapse triggers explosive nuclear burning, thereby unbinding the
entire star. PISNe can be very bright because of their huge explo-
sion energy and large 56Ni production (e.g., Kasen et al. 2011;
Dessart et al. 2013; Whalen et al. 2013; Kozyreva et al. 2014).
PISNe have long remained a theoretical prediction, but several
possible observational candidates have been discovered recently
(e.g., Gal-Yam et al. 2009). The predicted characteristic chemi-
cal signatures of PISNe (e.g., Heger & Woosley 2002) have not
yet been observed in metal-poor stars (e.g., Yong et al. 2013),
although a potential candidate metal-poor star showing such a
signature has been reported recently (Aoki et al. 2014).

Strong mass loss on the main sequence or thereafter may
lead to lower core masses, thereby preventing very massive stars
developing the pair instability. Thus, PISNe are likely to occur
where the mass-loss rates can be low (e.g., Heger & Woosley
2002; Umeda & Nomoto 2002; Langer et al. 2007; Yoon et al.
2012; Yusof et al. 2013; Yoshida et al. 2014), i.e., at low metal-
licity. Especially, the first zero-metallicity stars are said to form
very massive stars primarily, possibly producing PISNe due to
the lack of radiation-driven mass loss (e.g., Hirano et al. 2014;
Susa et al. 2014). Despite their low metallicity, stars that are

slightly less massive than PISN progenitors are able to experi-
ence a large amount of mass loss very late in their evolution
(e.g., Woosley et al. 2007; Ohkubo et al. 2009; Chatzopoulos
& Wheeler 2012a,b). This is because the pair instability occurs
in these stars, but it is so weak that they are only partially dis-
rupted. The successive eruptions of these stars may produce a
dense circumstellar medium (CSM), which may explain the high
luminosities in some superluminous SNe (SLSNe, Woosley et al.
2007; Whalen et al. 2014; Chen et al. 2014). Even though these
luminous transients are likely not accompanied by SNe since the
stars eventually collapse to form a black hole, they are called
pulsational pair-instability SNe.

An interesting property of PISN progenitors displayed by
stellar evolution models is that many of them are red supergiants
(RSGs) when they explode (e.g., Langer et al. 2007; Yoon et al.
2012; Dessart et al. 2013). An important property of RSGs that
has not been taken into account in the PISN progenitor model-
ing is that hydrogen-rich envelopes of RSGs are pulsationally
unstable when their L/M-ratio is high, where L is the stellar lu-
minosity and M the stellar mass (Li & Gong 1994; Heger et al.
1997; Yoon & Cantiello 2010). The fundamental mode of the ra-
dial pulsations is said to grow in RSGs due to the κ mechanism
working at the hydrogen ionization zones in the RSG envelopes.

Pulsational properties of metal-free very massive stars have
been investigated by Baraffe et al. (2001). While they were found
to be pulsationally unstable on the main sequence, Baraffe et al.
(2001) conclude from the tiny growth rates of the pulsations that
any effect on the mass-loss rates would be negligible (see also
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Table 1. Properties of our stellar models.

ε Mini Mfin Menv
fin

Mcore
fin

Rfin Teff,fin Lfin

(M⊙) (M⊙) (M⊙) (M⊙) (103 R⊙) (103 K) (106 L⊙)

150 147 73 74 3.14 4.63 4.09
0a 200 190 87 103 3.78 4.71 6.31

250 236 111 126 4.16 4.72 7.73

150 104 30 74 2.70 4.99 4.13

0.1b 200 136 32 104 3.44 4.94 6.34
250 164 40 124 3.81 4.94 7.82

150 104 31 73 2.75 4.97 4.13

0.3b 200 129 25 104 3.52 4.90 6.40
250 170 45 125 3.90 4.89 7.78

Notes. Columns: conversion efficiency, initial mass, final mass, final hydrogen-rich envelope mass, final helium core mass, final radius, final
effective temperature, and final luminosity. (a) Models with radiation-driven wind only. (b) Models in which pulsation-driven mass loss with the
indicated value of ε is considered.

Sonoi & Umeda 2012). Their most massive models (300 and
500 M⊙) evolved into RSGs at the end of their evolution, and
while they noted that the models became more violently pulsa-
tionally unstable during that stage, they did not investigate this
any further.

Various authors suggested that for large enough ampli-
tudes, pulsations may induce stellar mass loss (e.g., Appenzeller
1970a,b; Bowen 1988; Höfner et al. 2003; Neilson & Lester
2008). For example, pulsations are known to be an essential
driver of the mass loss in carbon-rich asymptotic giant-branch
stars. The pulsations create high-density regions above the stel-
lar photosphere in which dust can be formed. Thanks to the high
opacity of the formed dust, their mass-loss rates are enhanced
significantly (e.g., Höfner et al. 2003; Höfner 2008; Wood 1979).
The large mass loss induced by pulsations in the RSG stage
was said to influence the final fates of massive stars (e.g., Heger
et al. 1997; Yoon & Cantiello 2010; Moriya et al. 2011; Georgy
2012). Previous studies of RSG pulsations focussed on core-
collapse SN progenitors below 40 M⊙ (Heger et al. 1997; Yoon
& Cantiello 2010).

In this paper, we investigate the pulsational properties of
massive metal-free PISN progenitors (150−250 M⊙) during their
RSG stage. After introducing our methods to follow the stellar
evolution in Sect. 2, we show that these stars are pulsationally
unstable, discuss their pulsational properties, and derive their
pulsation-induced mass-loss rates in Sect. 3. The effect of the
induced mass loss on the evolution and explosions of PISN pro-
genitors are discussed in Sect. 4. We conclude this paper in
Sect. 5.

2. Stellar evolution

We follow evolution of stellar structure by using a public stel-
lar evolution code MESAstar version 6208 (Paxton et al. 2011,
2013). We use the hydrodynamic mode of the code throughout
this paper. We follow the evolution of three PISN progenitors
whose initial masses are 150, 200, and 250 M⊙. The initial metal-
licity is Z = 0. MESAstar is demonstrated to be able to follow
the RSG pulsations that we investigate in this paper (Paxton et al.
2013). An example of input parameters for MESAstar used in
this study is shown in Appendix A.

The mixing-length theory is adopted to treat convection us-
ing the Schwarzschild criterion. The mixing-length parameter
is set as 1.6. Overshooting and semi-convection are not taken
into account. We use the “approx21” nuclear network which
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Fig. 1. Evolution of central density and temperature of our PISN pro-
genitor models. In the “pair-unstable region”, the stars become dynam-
ically unstable.

covers the major important nuclear reactions (Timmes 1999).
Although our stars are metal-free at the beginning, the stellar
surface metallicity slightly increases as the stars evolve. As a re-
sult, the stellar mass is reduced due to the radiation-driven wind,
especially during the post-main-sequence. When the stellar ef-
fective temperature is higher than 104 K, we use the mass-loss
rates formulated by Vink et al. (2001). For the cooler stars, we
use the mass-loss rates of de Jager et al. (1988) with the metal-
licity dependence of Z0.5 (Kudritzki et al. 1987).

The stars are evolved from the pre-main-sequence stage. The
calculations are terminated soon after the stellar center starts to
contract as a consequence of the pair instability (Fig. 1). We
first follow the stellar evolution without taking the effect of the
RSG pulsations into account. The stellar properties at the end of
these calculations are listed in Table 1 (the ε = 0 models). The
evolution of our stars in the Hertzsprung-Russell (HR) diagram
is presented in Fig. 2. All the stars evolve into RSGs and ex-
plode during the RSG stage as PISNe. The evolutionary tracks
of our PISN progenitors are consistent with those obtained in
previous studies (e.g., Yoon et al. 2012). The Kippenhahn dia-
grams for our models are shown in Fig. 3. Our models without
mass-loss enhancement have large convective hydrogen-rich en-
velopes during the late stages when they are RSGs. We investi-
gate the pulsational properties of the stars at the RSG stage in
the next section.
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Fig. 2. Evolution of our PISN progenitor models in the HR diagram.
Those models marked with the symbols are used to examin their pulsa-
tional properties. We do not find unstable pulsations in models marked
by open circles. The models indicated with squares have the pulsational
pattern A, those with triangles have the pattern B, and those with filled
squares have the pattern C. See Fig. 4 for the definitions of the patterns.

3. Pulsations and mass loss

3.1. Pulsation properties

To investigate the pulsational properties of the PISN progenitors
during the RSG stage, we use the stellar models that are indi-
cated in Fig. 2. We restart the calculations from these models by
forcing the time steps to be less than 0.001 years to follow the
pulsations of the stars. The pulsational periods of RSGs were
found to be of the order of 1000 days in the previous studies
(Heger et al. 1997; Yoon & Cantiello 2010, see also Fig. 5) and
we choose small enough time steps to resolve such presumed
periods.

We follow the evolution with the small time steps for at least
100 years to check whether pulsations develop and if so, whether
the pulsational amplitude grows. The models in which we do
not find pulsations with a growing amplitude are indicated with
open circles in Fig. 2. These models are either pulsationally sta-
ble, or they are unstable but with such a small growth rates that
the pulations are damped numerically. In either case, we assume
that pulsationally induced mass loss may be neglected in these
models.

For the models marked with filled symbols in Fig. 2, we find
pulsations with growing amplitudes, as in previous studies of
less massive RSGs (e.g., Heger et al. 1997; Yoon & Cantiello
2010). We assume the convective flux to adjust instantly during
the pulsations, as Heger et al. (1997); Yoon & Cantiello (2010),
even though the convective and the pulsation timescales are com-
parable. However, note that Heger et al. (1997) found that the
pulsational growth rates in their non-linear numerical calcula-
tions to be consistent with those computed from linear stabil-
ity analysis, where the convective flux is assumed to be frozen
in. Since Heger et al. (1997) found that two different extreme
assumptions on the behavior of the convective flux during the
pulsation lead to very similar results, and also Langer (1971)
found that the growth rate of the pulsations does not depend on
the phase-lag parameter in the simple time-dependent convec-
tion model of Arnett (1969), we are confident in the main fea-
tures of our pulsational analysis. Still, a physically more correct
treatment of the coupling between convection and pulsations is

desirable, which proves to be difficult to be set up in a parameter-
free way (Gastine & Dintrans 2011; Sonoi & Shibahashi 2014).

We find three different patterns in the way how the ampli-
tudes grow (Fig. 4). In the first pattern named A, the pulsational
amplitude grows exponentially at first. Then, the pulsation sat-
urates and the stars continue to pulsate with a constant ampli-
tude. The pulsational amplitudes of the stars with the second
pattern B grow exponentially at first but the amplitudes are sud-
denly damped. Then, the amplitudes start to grow exponentially
again until they are damped again. The exponential growth and
the sudden damping of the pulsational amplitudes are repeated.
The likely reason for the sudden damping is the increase of the
radiation-driven mass loss (Fig. 4c). When the pulsational ampli-
tude gets sufficiently large, the radiation-driven mass-loss rates
become large because the stars get cooler as they expand. When
the amplitude is damped, the mass-loss rates become small again
and pulsations can grow again. In the final pattern C, the pul-
sational amplitudes grow exponentially until the stellar surface
reaches the escape velocity. The time steps of our calculations
become very small when this happens and we stop the calcula-
tions at that moment. The pulsational patterns we obtained for
each models are indicated with different symbols in Fig. 2.

In the unstable models, we can find the exponential growth
of pulsational amplitudes at least initially in all the patterns. We
evaluate the period P and the growth rate η during the initial
exponential growth phase for these unstable models. If the ex-
ponential growth of the pulsations is proportional to exp(iσt),
the growth rate is defined as η ≡ −ℑσ/ℜσ where ℑσ is the
imaginary part of σ and ℜσ is the real part of σ. ℜσ and ℑσ
can be estimated from P and the exponential growth of the sur-
face radius, respectively. The periods in our pulsating models
are summarized in Fig. 5. The periods of the pulsations in con-
vective stars are expected to follow P ∝ R2/M (Gough et al.
1965) as we find in our models, where R is the stellar radius.
The growth rates η are presented in Fig. 6. We find the following
strong correlation between η and the effective temperature Teff :

η = (−8.30 ± 0.59) × 10−4Teff + (4.15 ± 0.29), (1)

where Teff is in K and the error is the standard error. The ob-
tained relation indicates that the stars with Teff � 4992 K are
pulsationally unstable in our models.

3.2. Pulsation-induced mass loss

We have investigated the pulsational properties of the PISN pro-
genitors during their RSG stage. So far, we have not related the
pulsations to stellar mass loss. As we introduced in Sect. 1, stel-
lar pulsations may be able to induce mass loss. In this section,
we relate the pulsational properties of RSGs to the stellar mass-
loss rates. The consequences of pulsation-driven mass loss are
investigated in the next section.

We relate the kinetic energy gain of the growing pulsations
to mass loss. We assume that a fraction ε of the gained kinetic
energy ∆Ekin at each time step is used to induce mass loss. We
estimate the mass-loss rate Ṁkin induced by the pulsations as

Ṁkin =
2ε∆Ekin

v2esc∆t
, (2)

where vesc is the escape velocity from the stellar surface and ∆t
is the time step (cf. Appenzeller 1970b; Baraffe et al. 2001).
In the following stellar evolution calculations, we account of
the pulsation-induced mass loss (Eq. (2)) in addition to the
radiation-driven mass loss. The kinetic energy does not always
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Fig. 3. Kippenhahn diagrams for our stellar evolution models. Models in the left column are computed without pulsation-driven mass loss (ε = 0)
and those in the right column include pulsation-driven mass loss with ε = 0.1. The initial masses of the models are 150 (top), 200 (middle), and
250 M⊙ (bottom).

increase even if the pulsational amplitude is exponentially grow-
ing (cf. Fig. 4b). When ∆Ekin < 0, Ṁkin is set to 0.

When Ṁkin > 0, a fraction of the kinetic energy in the star is
supposed to initiate mass loss and the corresponding amount of
the kinetic energy needs to be reduced from the pulsations. When
the star with the kinetic energy Ekin gains ∆Ekin, then ε∆Ekin is
supposed to initiate mass loss and the same amount of the kinetic
energy in the star needs to be reduced. We reduce the kinetic

energy in the stars by reducing the velocities of all the mesh
points in the stars as

vnew = vold

√

Ekin + ∆Ekin − ε∆Ekin

Ekin + ∆Ekin

, (3)

where vnew and vold are the new and old velocities, respectively.
By adopting vnew, the kinetic energy which is supposed to induce
mass loss is actually removed from the stellar models.
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Fig. 4. Examples of the pulsations of the PISN progenitors during the RSG stage. Three representative 200 M⊙ models are shown. No pulsation-
induced mass-loss enhancement is taken into account in the models of this figure. Evolution of a) relative surface radii; b) total kinetic energy in
the star; c) mass-loss rates; and d) total stellar masses is shown.

We obtain Ekin, and thus ∆Ekin, by integrating the kinetic en-
ergy of all the mass shells in the stars. Then, we reduce the ve-
locities inside the entire star by Eq. (3). However, the pulsating
layers gaining the kinetic energy are only located near the sur-
face, as can be seen in the velocity structure of an unstable star
presented in Fig. 7. Although we obtain and reduce the kinetic
energy in the entire star, only the outer layers which induce the
mass loss have an essential effect on the determination of Ekin

and the reduction of the velocities.

3.3. Pulsation-induced mass-loss rates

Using the mass-loss prescription with the kinetic energy reduc-
tion explained in the previous section, we perform evolution-
ary calculations with small time steps (∆t ≤ 0.001 years) as in
Sect. 3.1 to investigate the effect of the pulsation-driven mass
loss on the evolution of the stars. For this purpose, we select
some pulsationally unstable models obtained in Sect. 3.1 and
calculate the stellar evolution with ε = 0.1, 0.3, 0.5, and 0.8.

Figure 8 shows examples of the results with the mass-loss
enhancement. All the models presented in Fig. 8 are evolved
starting from the 250 M⊙ model with log Teff/K = 3.680 and
log L/L⊙ = 6.872. The model with ε = 0 is the original model
without the extra mass loss. The original model has the pulsation
pattern C. The models with mass-loss enhancement are indicated
with the adopted ε. Since a fraction of the gained kinetic energy
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is taken out for the mass loss in the new models, their growth
rates are smaller than those without the mass-loss enhancement.
This can be clearly seen in Fig. 8b where the total stellar kinetic
energy of the models is shown. The changes in the growth rates
result in changes of the pulsation patterns. While the original
model (ε = 0) and the model with ε = 0.1 have the pattern C,
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and log L/L⊙ = 6.872 with ε = 0. The model is the same as that with
ε = 0 presented in Fig. 8.

the enhanced models with ε = 0.3 and 0.5 show the pattern B.
In the ε = 0.8 model, the exponential growth of the pulsational
amplitude is terminated early on and the pulsational pattern be-
comes A. This is because most of the gained kinetic energy is
used for the mass loss and the amplitude cannot grow much.

The mass-loss rates of our models are presented in Fig. 8c.
The pulsation-driven mass loss is activated only when kinetic
energy is gained by the pulsations, making the mass-loss rates
strongly time dependent. The resulting mass evolution is shown
in Fig. 8d. As the pulsation grows, the mass-loss rates increase
due to the increase of the energy gain of the pulsations. A sig-
nificant amount of mass is lost when the mass-loss rates become
large enough. In the cases with ε = 0.3 and 0.5, the large mass
ejection results in damping of the pulsation. The pulsation am-
plitude grows again after the damping and large mass ejections
occur intermittently. In the case of ε = 0.8, the amplitude growth
stops at early time because a large amount of the gained kinetic
energy is used for the mass loss, making the growth less efficient.
In this case, the kinetic energy induced mass loss also saturates.

Based on the pulsational calculations with the enhanced
mass loss, we estimate the average mass-loss rates of each
models. If the pulsational pattern is A, we obtain the average

mass-loss rate when the pulsation is saturated. For instance, for
the model with ε = 0.8 in Fig. 8, the estimated mass-loss rate
is 3 × 10−3 M⊙ yr−1. For the pattern B, the representative mass-
loss rates are obtained based on the mass lost after the first large
mass ejection. For example, in the model with ε = 0.3 in Fig. 8,
we take the mass just after the large mass ejection at 50 years
and we obtain the average mass-loss rate in 50 years, namely,
2 × 10−2 M⊙ yr−1. For the pattern C, we evaluate the mass dif-
ference between the initial and final models and divide it by the
time that we could follow the model to obtain the average mass-
loss rates. These ways to estimate the average mass-loss rates
are not free of arbitrariness and the estimated mass-loss rates
can change by a small factor depending on the adopted ways.

The average mass-loss rates we obtained are shown as a
function of the growth rate in Fig. 9. The growth rates are
those obtained in the models without the mass-loss enhance-
ment (ε = 0). We use the growth rate without the mass-loss
enhancement so that we can relate the enhanced mass-loss rates
to Teff with Eq. (1), as is applied in the next section. We find that
the mass-loss rates with the pulsations generally increase as the
growth rates increase. We find substantial mass-loss rates in the
models with ε = 0.1, 0.3, and 0.5, especially when η is large. For
the models with ε = 0.8, the mass-loss rates are not as large as
those in other enhanced models. This is presumably because of
the large reduction of the pulsational amplitudes due to the large
loss of the kinetic energy. Note that for ε = 1, the pulsational
mass loss must vanish.

By fitting the mass-loss rates in Fig. 9 with exponential func-
tions, we find the following pulsation-induced mass-loss rates:

log10 Ṁkin =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(10.38 ± 1.58)η − (3.94 ± 0.21) (ε = 0.1),
(15.51 ± 2.92)η − (4.77 ± 0.33) (ε = 0.3),
(12.55 ± 2.88)η − (4.69 ± 0.39) (ε = 0.5),
(5.08 ± 2.87)η − (4.14 ± 0.33) (ε = 0.8),

(4)

where Ṁkin is in the unit of M⊙ yr−1.

4. Consequences of the mass-loss enhancement

4.1. Stellar evolution

In the previous section, we have selfconsistently evaluated the
effect of pulsationally induced mass loss on the pulsations and on
the evolution of the stars. However, these calculations are time
consuming and hard to be conducted over more than a few hun-
dred pulsation cycles. To investigate the effect of the enhanced
mass loss on the entire evolution and final fates of PISN pro-
genitors, we calculate the evolution of the 150, 200, and 250 M⊙
stars with large time steps such that pulsations cannot develop,
and we add the pulsation-induced mass-loss rate Ṁkin by apply-
ing Eq. (4). The growth rate η is evaluated based on Teff through
Eq. (1). When η ≤ 0, we set Ṁkin = 0. We investigate the cases
of ε = 0.1 and 0.3.

The results of these calculations are summarized in Table 1.
We find that the stellar masses at oxygen core collapse are sig-
nificantly reduced compared to the models without pulsationally
induced mass loss. The mass-loss histories of these models are
presented in Fig. 10. The Kippenhahn diagrams for the models
with ε = 0.1 are compared with those without mass-loss en-
hancement in Fig. 3. The mass-loss rates start to be enhanced
when hydrogen-rich envelopes become convective and stars en-
ter the RSG stage, as shown in the Kippenhahn diagrams. During
the final 103−104 years, they are factors of∼10 larger than the ra-
diation driven mass-loss rates, and amount to ∼3×10−4 M⊙ yr−1.
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Fig. 8. Examples of the evolution of the RSG pulsations in which the mass-loss enhancement by the pulsations is taken into account. A fraction ε
of the gained kinetic energy is assumed to be used to induce mass loss. All the models are started from the 250 M⊙ model at log Teff/K = 3.680
and log L/L⊙ = 6.872. The model with ε = 0 is calculated without mass-loss enhancement. Evolution of a) surface radii; b) total kinetic energy in
the star; c) mass-loss rates; and d) total stellar masses is shown.

The large differences in the mass-loss rates may cause drastic
changes in the circumstellar environment of PISN progenitors.
In most models with the mass-loss enhancement, the CSM den-
sity becomes more than one order of magnitude higher. The
higher density CSM will affect the observational properties of
PISNe, as we discuss in the next section.

The high pulsational mass-loss rates of PISN progenitors
do not prevent them from exploding as PISNe. This is be-
cause the mass-loss enhancement is caused by the pulsations
of the hydrogen-rich envelope after the core hydrogen burning
and the mass-loss enhancement will terminate before the entire
hydrogen-rich envelope is ejected. At this stage, the stars are not
predicted to be pulsationally unstable. Hence, the helium core
mass is not reduced as can be clearly seen in the Kippenhahn
diagrams in Fig. 3. The pulsational mass loss only results in
the significant reduction in the hydrogen-rich envelope mass in
PISN progenitors.

Although we focus on the PISN progenitor mass range in
this paper, the pulsational amplitude growth is not limited to this
mass range. For example, Yoon et al. (2012) show that the non-
rotating zero-metallicity stars with initial masses higher than
250 M⊙ also evolve into RSGs. Baraffe et al. (2001) also found
that those higher mass stars evolve to RSGs and become pulsa-
tionally unstable. Thus, very massive stars can experience large

mass loss as RSGs even if they are metal-free. The enhanced
mass loss in these very massive stars may lead to dust produc-
tion in the early Universe even if they do not explode eventually
(Nozawa et al. 2014).

4.2. Metal-free pair-instability supernovae

The high mass-loss rates in PISN progenitors are expected to
have significant influence on the observational properties of
PISNe. First, the extra mass loss significantly reduces the ejecta
mass of PISNe. The hydrogen-rich envelopes of 40−70 M⊙ are
reduced in our models with the mass-loss enhancement com-
pared to those without. The mass of the hydrogen-rich envelopes
affect the light-curve properties of PISNe like the duration of the
plateau phase (e.g., Kasen et al. 2011).

The mass which is ejected from the PISN progenitors
forms their CSM. They can sustain their high mass-loss rates
(�10−4 M⊙ yr−1 with ∼100 km s−1) until the time of the ex-
plosion (Fig. 10). Thus, they are embedded into a dense CSM
when they explode. The CSM density can be similar to that es-
timated in Type IIn SNe (e.g., Kiewe et al. 2012; Taddia et al.
2013; Moriya et al. 2014) and the PISN observational proper-
ties are likely to be strongly affected by the dense CSM. For
example, our 150 M⊙ PISN progenitor has a 74 M⊙ helium core.
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Fig. 9. Average mass-loss rates of the stars with the pulsation-induced
mass loss. The mass-loss rates depend on the growth rate η. Exponential
fits to the estimated mass-loss rates (Eq. (4)) are shown with lines.

It is expected to explode as a PISN, but a small amount of 56Ni
(∼0.1 M⊙) is expected to be produced by the explosion (Heger &
Woosley 2002). Thus, the SN does not get bright by 56Ni heating
and it can only be as bright as ≃−18 mag in the optical due to
shock heating (e.g., Kasen et al. 2011; Kozyreva et al. 2014).
However, if they have a dense CSM, the interaction between
the SN ejecta and the dense CSM can provide an extra heat-
ing source to make them brighter. Since the explosion energy
of PISNe is very high (∼1052 erg, Heger & Woosley 2002), the
very energetic SN ejecta clashing into the dense CSM can actu-
ally make even 56Ni-poor PISN very bright. The corresponding
PISNe can be observed as bright Type IIn SNe with little 56Ni.

The only suggested way to have dense CSM around the very
massive stars so far is related to the (core) pulsational pair in-
stability (e.g., Woosley et al. 2007). This mechanism can work
in massive stars which are slightly lighter than those which ex-
plode as PISNe, and they can lose a large amount of mass by
the central pair instability causing a partial ejection of the stellar
material. However, the stellar mass range to cause the pulsational
pair instability is limited (e.g., Heger et al. 2003; Chatzopoulos
& Wheeler 2012a). We find that higher mass stars can also lose a
large amount of mass due to (envelope) pulsations. The progen-
itor mass range for very massive stars exploding within a dense
CSM is therefore wider than previously thought.

A critical difference between pulsational pair-instability SNe
and PISNe is whether they are actually accompanied by the
explosions of the star. Pulsational pair-instability SNe become
bright due to the collision of two or more massive shells ejected
by the progenitor and they might not be accompanied by actual
SN explosions. Conversely, PISNe are actual explosions which
destroy the entire star without leaving any remnant. If the mass-
loss rates of PISN progenitors are enhanced by the pulsations,
actual SN explosions occur within a dense CSM.

High mass-loss rates of PISN progenitors may also end up
with the formation of a dense photoionization-confined shell if
they are born in an environment with a large ionizing-photon flux
like massive star clusters (Mackey et al. 2014). Collision to such
massive shell may result in rebrightening of PISN light curves
as discussed by Mackey et al. (2014). The confined shells may
also make PISNe very bright X-ray and/or radio transients even
if they are not dense enough to affect the optical luminosity (e.g.,
Pan et al. 2013).
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Fig. 10. Comparisons of the mass-loss rates between the models with
and without the mass-loss enhancement. The mass-loss rates of Eq. (4)
with the indicated ε are added in the enhanced models.

Our finding that PISNe may have high mass-loss rates and
explode within a dense CSM even if they are metal-free al-
ters our expectation of the observational properties of the first
SNe in the Universe. It has long been believed that the first
SN progenitors do not suffer much mass loss and the first SNe
were considered to explode in a sparse CSM. However, they
may actually have a dense CSM environment and not contain
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massive hydrogen-rich envelopes. Especially, the existence of a
dense CSM can make PISNe brighter and bluer than previously
expected and they may be easier to find at very high redshifts
than previously thought (e.g., Scannapieco et al. 2005; Tanaka
et al. 2012, 2013; Pan et al. 2012; Hummel et al. 2012; de Souza
et al. 2013). Cooke et al. (2009, 2012) may have already detected
this kind of SNe up to z = 3.90. Many PISNe from the first stars
can be SLSNe with Type IIn SN spectra and they can be easier
to identify. We investigate the detailed observational properties
of PISNe exploding within a dense CSM in a forthcoming paper.

4.3. Superluminous supernovae and finite-metallicity
pair-instability supernovae

Type IIn SLSNe like SN 2006gy are estimated to have both
dense CSM (∼0.1 M⊙ yr−1 with 100 km s−1) and very high ex-
plosion energy [∼(5−10) × 1051 erg, e.g., Smith & McCray
2007; Chevalier & Irwin 2011; Ginzburg & Balberg 2012;
Moriya et al. 2013; Chatzopoulos et al. 2013; Moriya & Maeda
2014]. Energetic explosions with little 56Ni and a dense CSM
are qualitatively expected from our 150 M⊙ models. However,
the maximum mass-loss rate we obtained is 2.5 × 10−2 M⊙ yr−1

(Fig. 9), which is still one order of magnitude lower than those
estimated for SLSNe of Type IIn. To obtain mass-loss rates as
high as 0.1 M⊙ yr−1, η needs to be 0.24−0.28 depending on ε
(Fig. 9). The required η and the η-Teff relation (Eq. (1)) indi-
cate that corresponding RSG PISN progenitors have lower ef-
fective temperature than Teff ≃ 4600−4700 K to have the mass-
loss rates higher than 0.1 M⊙ yr−1. Although none of our models
have effective temperature as low as 4600−4700 K because of
the extremely low metallicity, higher-metallicity RSG PISN pro-
genitors can be cooler than 4600−4700 K (Langer et al. 2007)
and they are therefore likely to have mass-loss rates as high as
0.1 M⊙ yr−1. Thus, they are a strong candidate for the progenitor
of Type IIn SLSNe.

Another interesting feature of observed SLSNe is that those
that have slowly declining light curves which are consistent with
large production of 56Ni are all Type Ic (e.g., Gal-Yam 2012).
This indicates that PISNe with massive cores producing a large
amount of 56Ni may not explode with their hydrogen-rich enve-
lope. Although none of our models lose all of their hydrogen-
rich envelope, the hydrogen-rich envelopes may be removed
more easily with the help of the larger radiation-driven mass-
loss rates in higher metallicity PISN models (Langer et al. 2007).
Thus, the local PISNe may tend to have little or no hydrogen
left when they explode because of the pulsational mass-loss en-
hancement with radiation-driven mass loss, making them pri-
marily Type Ic. If their cores are massive enough to have large
56Ni, they are observed as Type Ic SLSNe with large 56Ni mass.
If PISN progenitors with low-mass cores succeed in losing their
hydrogen-rich envelopes, they do not produce much 56Ni but
they can still be observed as relatively faint Type Ic SNe because
of shock heating (Herzig et al. 1990).

Some Type Ic SLSNe have rapidly declining light curves
which are not consistent with 56Ni heating (e.g., Quimby et al.
2011; Pastorello et al. 2010; Chomiuk et al. 2011). There are
several mechanisms said to explain their high luminosities with-
out 56Ni heating (e.g., Kasen & Bildsten 2010; Dessart et al.
2012; Inserra et al. 2013; Nicholl et al. 2013; Metzger et al.
2014). One possibility is that SLSN progenitors are surrounded
by a hydrogen-free dense CSM (e.g., Blinnikov & Sorokina
2010; Leloudas et al. 2012; Moriya & Maeda 2012; Ginzburg
& Balberg 2012; Benetti et al. 2014). Pulsational pair-instability
SNe from large hydrogen-free cores have been argued to make

such a hydrogen-free dense CSM (e.g., Chatzopoulos & Wheeler
2012b, see also Chevalier 2012 for another suggested way).
Hydrogen-free cores massive enough to induce pulsational in-
stability SNe may be created by rapidly-rotating stars (e.g., Yoon
et al. 2012; Chatzopoulos & Wheeler 2012a, see also Yoon et al.
2006). As discussed previously, we argue that hydrogen-free
cores may also come from non-rotating stars with the pulsation-
driven mass-loss enhancement. Very massive stars causing pul-
sational pair-instability SNe also evolve to RSGs (e.g., Yoon
et al. 2012; Chatzopoulos & Wheeler 2012a) and they can lose
a significant amount of their hydrogen-rich envelope during the
RSG stage. The subsequent core pulsational instability may end
up with the creation of a massive hydrogen-free CSM which is
said to account for rapidly declining Type Ic SLSNe.

5. Conclusions

We have shown that PISN progenitors during the RSG stage are
pulsationally unstable. A growing pulsational amplitude may in-
duce mass loss and even metal-free PISN progenitors can have
high mass-loss rates.

We find that metal-free PISN progenitors can be pulsation-
ally unstable when their effective temperature is lower than
≃5000 K. The growth rate of the pulsations is found to strongly
correlate with Teff (Eq. (1)). If part of the kinetic energy gain of
the pulsation is used to initiate mass loss, the mass-loss rate can
be very high even if stars are metal-free and the radiation-driven
mass loss is inefficient (Eq. (4) and Fig. (9)).

The mass-loss rates of our PISN progenitor models
within ∼103 years before the explosions become higher than
10−4 M⊙ yr−1 when the pulsation-driven mass loss is taken into
account (Fig. 10). Because the mass-loss enhancement by the
pulsations is initiated in the hydrogen-rich envelope after the hy-
drogen burning, the mass-loss enhancement stops before the en-
tire hydrogen-rich envelope is lost. Thus, the helium core mass
is not reduced by the pulsation-driven mass loss and the stars can
still explode as PISNe (Fig. 3).

The pulsation-driven mass loss significantly reduces the
masses of PISN progenitors at the time of their explosions
(Table 1). Moreover, it forms a dense CSM around PISN pro-
genitors, which can significantly affect the observational prop-
erties of the SNe. The existence of a dense CSM around PISNe
can make them brighter and bluer, making them easier to ob-
serve at high redshifts than previously thought. Our results also
show that metal-free very massive stars do not need to be within
a limited mass range of pulsational pair-instability SNe to have
a dense CSM.

Type IIn SLSNe are estimated to have dense CSM
(∼0.1 M⊙ yr−1 with 100 km s−1), high explosion energy
∼(5−10) × 1051 erg, and little 56Ni production. If we account for
the pulsation-driven mass loss, these features are expected from
low-mass PISN progenitors around 150 M⊙. Although our metal-
free PISN progenitors do not become cool enough to make the
mass-loss rate as high as ∼0.1 M⊙ yr−1, the higher-metallicity
PISN progenitors are likely to be cool enough to obtain such
high mass-loss rates. PISN candidates with a large 56Ni produc-
tion found so far are all Type Ic SNe and they do not have hydro-
gen at all. They may not have hydrogen because the hydrogen-
rich envelope is taken away by the pulsation-driven mass loss.
Pulsational pair-instability SNe in such hydrogen-free cores may
end up with rapidly declining Type Ic SLSNe. Detailed proper-
ties of PISNe within a dense CSM from pulsation-driven mass
enhancement will be presented in our forthcoming paper.
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Appendix A: Input parameters for MESAstar

An example of the input parameters for MESAstar used in this
study is shown. Note that the code needs to be modified to incor-
porate, e.g., the metallicity dependence of the radiation-driven
mass-loss rates below Teff = 104 K.

&star_job

create_pre_main_sequence_model = .true.

change_v_flag = .true.

new_v_flag = .true.

change_net = .true.

new_net_name = ’approx21.net’

kappa_file_prefix = ’gs98’

/ ! end of star_job namelist

&controls

initial_mass = 150

initial_z = 0.00

RGB_wind_scheme = ’Dutch’

AGB_wind_scheme = ’Dutch’

Dutch_wind_lowT_scheme = ’de Jager’

RGB_to_AGB_wind_switch = 1d-4

Dutch_wind_eta = 1.0

de_Jager_wind_eta = 1.0

MLT_option = ’Henyey’

mixing_length_alpha = 1.6

use_Ledoux_criterion = .false.

alpha_semiconvection = 0.0

use_Type2_opacities = .true.

Zbase = 0.00

which_atm_option = ’Eddington_grey’

max_years_for_timestep = 1d4 !1d-3

min_timestep_limit = 1d-12

min_timestep_factor = 0.7d0

max_timestep_factor = 1.2d0

!use_artificial_viscosity = .true.

!l1_coef = 0.

!l2_coef = 2.

varcontrol_target = 1d-4

dX_nuc_drop_limit = 1d-2

he_core_boundary_h1_fraction = 1d-4

mesh_delta_coeff = 1.00

mesh_dlog_pp_dlogP_extra = 0.21

mesh_dlog_cno_dlogP_extra = 0.21

mesh_dlog_3alf_dlogP_extra = 0.21

mesh_dlog_burn_c_dlogP_extra = 0.21

mesh_dlog_burn_n_dlogP_extra = 0.21

mesh_dlog_burn_o_dlogP_extra = 0.21

mesh_dlog_burn_ne_dlogP_extra = 0.21

mesh_dlog_burn_na_dlogP_extra = 0.21

mesh_dlog_burn_mg_dlogP_extra = 0.21

mesh_dlog_cc_dlogP_extra = 0.21

mesh_dlog_co_dlogP_extra = 0.21

mesh_dlog_oo_dlogP_extra = 0.21

mesh_dlog_burn_si_dlogP_extra = 0.21

mesh_dlog_burn_s_dlogP_extra = 0.21

mesh_dlog_burn_ar_dlogP_extra = 0.21

mesh_dlog_burn_ca_dlogP_extra = 0.21

mesh_dlog_burn_ti_dlogP_extra = 0.21

mesh_dlog_burn_cr_dlogP_extra = 0.21

mesh_dlog_burn_fe_dlogP_extra = 0.21

mesh_dlog_pnhe4_dlogP_extra = 0.21

mesh_dlog_other_dlogP_extra = 0.21

mesh_dlog_photo_dlogP_extra = 0.21

/ ! end of controls namelist
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