
PuLSE: A Methodology to Develop Software Product Lines

Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua,
Dirk Muthig, Klaus Schmid, Tanya Widen

Fraunhofer Institute for Experimental Software Engineering
(IESE)

Sauerwiesen 6
D-67661 Kaiserslautern, Germany

+49 (0) 6301 707 251
{bayer, flege, knauber, laqua, muthig, schmid, widen}@iese.fhg.de

Jean-Marc DeBaud1

Lucent Technologies Software
Product Line Engineering

Laboratories
263 Shuman Boulevard

Naperville, IL 60563, USA
+1 (630) 224 0383

debaud@research.bell-labs.com

re
ilt

as
ree
ck
on

n
n

in
m
any
ise.
or
lar

d).
y
cts
et
s.
eds

to
ve
al
e

ith

ble
r
e,

We
his
an
e
ot
pt

e
eir

This paper received the Best Paper Award at the
Symposium on Software Reusability ‘99 (SSR’99),
Los Angeles, May 1999
ABSTRACT
Software product lines have recently been introduced as one
of the most promising advances for efficient software
development. Yet upon close examination, there are few
guidelines or methodologies available to develop and deploy
product lines beyond existing domain engineering
approaches. The latter have had mixed success within
commercial enterprises because of their deployment
complexity, lack of customizability, and especially their
misplaced focus, that is ondomains as opposed toproducts.

To tackle these problems we developed the PuLSETM

(Product Line SoftwareEngineering) methodology for the
purpose of enabling the conception and deployment of
software product lines within a large variety of enterprise
contexts. This is achieved via product-centric focus
throughout the phases of PuLSETM, customizability of its
components, incremental introduction capability, maturity
scale for structured evolution, and adaptations to a few main
product development situations.

PuLSETM is the result of a bottom-up effort: the
methodology captures and leverages the results (the lessons
learned) from our technology transfer activities with our
industrial customers. We present in this paper the main ideas
behind PuLSETM and illustrate the methodology with a
running example taken from our transfer experience.

Keywords
software product line, domain engineering, domain-specific
software architecture

1 Introduction

Problem
Domain engineering has been expected to improve the
efficiency of software development because of the notion of
economics of scope. Focussing on an area, or domain, where
applications significantly overlap enables leveraging the

similarities through reuse. Building a reusable infrastructu
once for the domain allows multiple applications to be bu
more efficiently than building them in isolation.

Yet, domain engineering methods have not proved
effective as expected. We believe there are basically th
reasons for this: misguided scoping of application area, la
of operational guidance, and overstressed focus
organizational issues.

Domain engineering relies on the notion of an applicatio
domainto scope the reusable infrastructure. An applicatio
domain spans all possible applications in that doma.
Domains have proved difficult to scope and engineer fro
an enterprise stand point because a domain captures m
extraneous elements that are of no interest to an enterpr
Hence, the domain view provides little economic basis f
scoping decisions. Instead, enterprises focus on particu
products (existing, under development, and anticipate
This difference in focus is essential for practicall
supporting the product-driven needs of enterprises. Produ
span, as well as, integrate multiple application domains, y
most often only cover a fraction of these whole domain
Therefore, product lines scope based on the economic ne
of enterprises.

Existing methods have been either not flexible enough
meet the needs of various industrial situations, or they ha
been too vague, not applicable without strong addition
interpretation and support. A flexible method that can b
customized to support various enterprise situations w
enough guidance and support is needed.

A lot of work in the literature has focused on the
organizational aspect and context for setting up a reusa
infrastructure [5,6]. This body of work often takes fo
granted that the technological problems of how to scop
model and architect the infrastructure have been solved.
do not think this is the case and hence feel strongly that t
is the wrong approach. While some general guidelines c
be provided, the technology specifics must drive th
organization simply because today, the technology is n
understood well enough to make it flexible enough to ada
to all sorts of environment contexts.

Context and Approach
The mission of the IESE is to transfer innovativ
technologies to our customers to help them improve th

1. This work was done while the author was with the IESE.

e

ct

te

re

As
ent
the

to

e

s
y

re

e
as

nd
ed

ct
be

tly
hat

th

nd
g

ner
y.
in
l

ly
we

ts.
ent
e
nd
ed
in
ts
to
rt
software engineering and organization practices. Within that
context, we have attempted to transition domain engineering
know-how. Our initial approach was to use documented
methods, such as Commonality Analysis [2], Feature-
oriented Domain Analysis [14], or Synthesis [16]. As we
used some of their components, problems immediately
surfaced. These problems forced us to find solutions
throughout the logical phases of the domain engineering life-
cycle. Slowly, these solutions together evolved towards an
integrated approach of its own: PuLSE (Product Line
Software Engineering). PuLSE is the result of a typical
bottom-up effort: the methodology captures and leverages
the lessons learned from our technology transfer activities
with our industrial customers.

This paper is structured as follows. The next section presents
a succinct overview of PuLSE and a discussion of related
work. Section three presents the PuLSE process in detail
using a running example. Section four presents an analysis
of PuLSE and the experience we have had using it.

2 PuLSE Overview

Structural Overview
The PuLSE methodology enables the conception and
deployment of software product lines within a large variety
of enterprise contexts. This is achieved via a strong product-
centric focus throughout the phases of PuLSE, the
customizability of its components, an incremental
introduction capability, a maturity scale for structured
enterprise evolution, and adaptations to a few main product
development situations.

Figure 1 presents a decomposition of the PuLSE components
and phases. PuLSE is articulated around three main
elements: the deployment phases, the technical components,
and the support components.

Thedeployment phasesare logical stages a product line goes
through. They describe the activities performed to set up and
use the product line. The phases are:

• Initialization: baseline the enterprise and customiz
PuLSE as a result

• Infrastructure Construction: scope, model and archite
the product line infrastructure

• Infrastructure Usage: use the infrastructure to crea
product line members

• Evolution and Management: evolve the infrastructu
over time and manage it

The technical componentsprovide the technical know-how
needed to operationalize the product line development.
Figure 1 denotes, they are used throughout the Deploym
Phases. A different facet of each is often used in each of
phases – though some components directly correspond
phases. The technical components are:

• Customizing: how to perform the Initialization Phase

• Scoping: how to effectively scope the infrastructur
focussing on product definitions

• Modeling: how to model the product characteristic
found within the scope of the product line and explicitl
denote the product family members

• Architecting: how to develop the reference architectu
while maintaining the traceability to the model

• Instantiating: how to perform the Usage Phase

• Evolving and managing: how to integrate misfits in th
line, and deal with configuration management issues
products accrue over time

The support componentsare packages of information, or
guidelines, which enable a better adaptation, evolution, a
deployment of the product line. These components are us
by the other elements. They are:

• Project Entry Points: customize PuLSE to major proje
types. For instance, whether there are legacy assets to
reused or whether multiple projects are independen
running and need to be integrated after one realized t
much was shareable among them

• Maturity Scale: provide an integration and evolution pa
for product line adoption to enterprises using PuLSE

• Organization Issues: provide guidelines to set up a
maintain the right organization structure for developin
and managing product lines

We found it necessary to decompose PuLSE in this man
for a number of reasons, which we motivate historicall
First, we developed some of the technical components,
particular Eco, CDA, and DSSA, to tackle the technica
difficulties presented by our product emphasis. We quick
realized that a notion of phases was necessary because
faced too much phase overload for most of the componen
That is, too many aspects of each technology compon
were used in different logical stages. This lead to th
deployment phase element. There, the contribution a
responsibility of each of the technical components is defin
while we can preserve the clarity of their technical essence
their canonical definition. Yet, there were additional aspec
that had to be taken into consideration, all of them relating
a notion of enterprise context. Hence, the suppo
components were developed.

Customizing (BC)

PL
Infrastructure

Evolution
&

M
anagem

ent

PuLSE Initialization

PL

Infrastructure

Construction

PL Infrastructure
Usage

Scoping (Eco)

Modeling (CDA)

Architecting (DSSA)

Evolving & Mgmt. (EM)

Project Entry Points Maturity Scale Organization Issues

Support Components

Deployment Phases Technical Components

Instantiating (I)

Figure 1. PuLSE Overview

y
00
to

ing
ms
t
le

E
se

o
).
.

e
t
f
ing
e

he
are

ors
se
the
he
Related Work
To our knowledge, no product line engineering methods are
currently available that are comparable to PuLSE. However,
there is much work related to parts of the PuLSE
methodology.

Domain engineering methods cover most of the same aspects
as PuLSE. However, their focus is different, they lack
customizability and they are complex to deploy. Domain
engineering methods include Model-Based Software
Engineering (MBSE) [14], Organizational Domain
Modeling (ODM) [17], Synthesis [16], the Domain-Specific
Software Architecture (DSSA) program [18], and the
Evolutionary Domain Life-Cycle (EDLC) [7].

Some domain engineering methods include an enterprise/
project baselining step. The related PuLSE component (BC)
is grounded in work done on the CMM [11], the Reuse
Adoption Guidebook [15], and Experience Factory packages
[3]. This work is used in the BC component to support the
baselining of an enterprise and customizing, or packaging,
an appropriate process for the situation.

PuLSE-Eco is a new approach for defining the economic
scope of a product line that draws upon existing work.
Conceptually, the closest is the work by Whitey [19]. Also
work on economic models for reuse[9], as well as, domain
engineering scoping approaches have influenced this
component. The major difference of PuLSE-Eco is its
emphasis on explicitly grounding the scope definition in
business objectives.

Domain analysis, requirements engineering, and knowledge
engineering are areas that are related to the PuLSE-CDA
component. There are many domain analysis methods, most
stemming from the work of Arango and Prieto-Diaz [1].
However, the models are either too specific or they are meant
to be tailorable, but lack support. CDA aims to improve upon
these methods by providing a flexible domain analysis
approach with adequate support. Requirements engineering
has also provided input into the modeling workproducts,
such as use-cases or state transition diagrams [12].

Work related to PuLSE-DSSA includes the Software
Architecture Analysis Method (SAAM) [8]. However, this
method focuses only on analysis of existing architectures,
while PuLSE-DSSA provides a framework for incrementally
creating architectures. There is other work on software
architectures that had a strong impact on PuLSE-DSSA
[4,13].

3 The PULSE Process
In this section we present PuLSE in detail. This is done by
describing the four Deployment Phases. Each phase is
described by the relevant Technical Components involved
and their interactions within the phase and with other phases.
Following the phase descriptions, a section on the Support
Components and how they relate to the Deployment Phases
is presented.

Each PuLSE phase is illustrated by examples taken from one
of the projects in which we started to apply PuLSE. Our
partner in this particular project is developing a product line

of merchandise information systems. Their primar
customer is an enterprise that distributes goods to over 4
supermarkets. Each system within the product line has
support processes related to buying, storing, and sell
supermarket goods. Among the main variants are syste
for different kinds of points of sale and systems for differen
kinds of distribution centers (e.g., conventional wholesa
stock, cross-docking stock).

Initialization
In the Initialization Phase an instance of the PuLS
methodology is produced that is tailored to the enterpri
context in which it will be applied.

As shown in Figure 2, the Initialization Phase is split int
three parts within the Customizing component (PuLSE-BC
These parts are baselining, evaluation, and customization

During baselining, information used for tailoring PuLSE is
gathered. The information required is defined by th
customization factors. These are characteristics of a produc
line situation (e.g., type of application or amount o
resources) that have an impact on the process for develop
the product line. Baselining is done by first selecting th
relevant customization factors, using the PuLSEsupport
components. Then, using thebaselining strategiesof the
selected factors, which provide guidelines for gathering t
necessary information, values for the selected factors
determined. The current profile records the values
determined for the enterprise.

The factors, however, are not independent, some fact
influence others. A decision tree of factors captures the
dependencies and helps to determine the effects on
components of PuLSE. The factors are analyzed in t

Figure 2. PuLSE Initialization Phase

Pu
LS

E-
EM

PuLSE-BC

support
components

elicit customization
factors

relevant
cust. factors

assign values wrt.
baselining strategies

current
profile

evaluate impact on
process parts

raw instantiation
profile

(partial) PuLSE
process definition

define processes,
products, attributes

consolidate
process definition final process

definition

current profile
matches existing one

?
N Y

reuse existing
customization

project plan
information

Ba
se

lin
in

g
Ev

al
ua

tio
n

C
us

to
m

iz
at

io
n

ba
se

lin
e

pr
ofi

le
lib

ra
ry

Legend process

product

control flow

data flow

optional elements are
indicated by a dotted line

the
ed
cal
ic

to
ir
a

ss
cal
ss

e.

e.
e

he
e
e

n
re
re

d.
ith

4).
he
st
to

ic
p.

to
on
ns.
in
a
r

ve
an

nd
e

p
ts
n”
g
for
be
d

evaluation part. The output of this part is theraw
instantiation profile,which contains the decisions made for
the customization (e.g., the type of workproducts for CDA).
When existing baselining profilesmatch the current profile
of the enterprise, information from the previous experience
can bereused for evaluating and also for customizing.

Customizationentails deriving a complete process, including
the definition of workproducts used, their relations, and their
representations, based on the decisions made during
evaluation. At this point, information is available that is
helpful for project planning, such as the expected number of
iterations. This information as well as thefinal process
definition are passed to PuLSE-EM.

Example: In the merchandise information system example,
baselining and evaluation determined that business processes
captured as workflows were needed. To support the
workflows, business rules, rationales, and a glossary were
also identified as required workproducts. This decision is
used in customization to tailor the process and notations used
during the elicitation of storyboards during domain analysis.

Construction
The purpose of the Construction Phase is to construct
product line infrastructure. This complex task is decompos
into three subtasks, each of them performed by a techni
component: PuLSE-Eco helps to determine an econom
viable scope for the product line, PuLSE-CDA is used
elicit and articulate product line concepts and the
interrelationships, and PuLSE-DSSA is applied to define
software reference architecture for the product line.

Figure 3 presents a high-level overview of the proce
models of the Construction Phase (i.e., its three techni
components). The following subsections explain the proce
models and illustrate them continuing the running exampl

PuLSE-Eco
PuLSE-Eco is used to identify the scope of the product lin
The first step is to determine anticipated product lin
members and map out their characteristics (map out product
candidates). The anticipated members are used to focus t
identification of characteristics and validate them. Th
product and characteristic information is compiled in th
form of a product map(see Figure 4). Acharacteristics list
is developed that describes the characteristics in detail.

A core idea of PuLSE-Eco is to explicitly base the definitio
of the product line scope on business objectives that a
identified by product line stakeholders. These objectives a
insufficient for scoping, they need to be operationalize
Consequently, PuLSE-Eco augments these objectives w
evaluation functions (develop evaluation functions), which
include characterization and benefit functions (see Figure
The former evaluate characteristics for each product. T
latter use the results of the former to determine the be
characteristics and best products for the product line
cover.

In the step characterize productsthe characterization
functions are applied on the product/characterist
combinations. The information is added to the product ma

The following step,benefit analysis,is the core step of
PuLSE-Eco. At this point the gathered information is used
identify the scope. First the values of the characterizati
functions are used to assign values to the benefit functio
Then the different benefit functions need to be balanced
order to come up with a single scope definition. This is
classical multi-objective decision problem. A large numbe
of techniques for addressing this type of problem ha
already been described in the literature (e.g., [10]) and c
be used directly.

The information about the products, their characteristics, a
constraints among them is supplied in the form of th
product line plan to the PuLSE-EM component.

Example: The table in Figure 4 is a simplified product ma
for the domain of merchandise information systems. In i
rows it shows two top-level subdomains (“Goods Receptio
and “Ordering”) with some subtasks. Many rows containin
subtasks and further subdomains have been omitted
reasons of space, but the hierarchical structure can
identified. The columns present existing, future, an

map out product
candidates

system
information

stakeholder
information

business
objectives

Baselining &
Customization

characterize
products

documented
product mapbenefit analysis

scope definition
(product map)

develop evalu-
ation functions

P
uL

S
E

-E
co

P
uL

S
E

-C
D

A
P

uL
S

E
-D

S
S

A

characteristics
list

product
line plan

develop product
line plan

product
map

refine economic scope &
decompose domain into tasks

build storyboards
for each task

populate other
workproducts

build generic
storyboards

construct
decision model

generic
storyboards

decision
model

other domain
workproducts

develop & sort
generic scenarios

apply scenario(s) to
architecture candidate

rank candidate architectures,
select best one(s)

reference
architecture

architecture
prototype

build architecture
prototype

decision & con-
figuration model

PuLSE-I

lib
ra

ry
 o

f
pr

op
er

ty
-

re
la

te
d

sc
en

ar
io

s

Pu
LS

E-
EM

Figure 3. PuLSE Construction Phase

y.

ct

o a
e
e

nd
nd

ng
the
e

is
at

c
re
ct
tal
In

r
t
m
in

of
to
potential products within the product line. These products
are analyzed according to the characterization functions. The
rows at the bottom summarize the columns and thus enable
an evaluation of the products under certain points of view.
The rightmost columns provide an analysis of the
significance of the different characteristics. These
summaries are determined by the benefit functions. The
characteristics in gray table areas have been evaluated to be
part of the product line scope.

PuLSE-CDA
In PuLSE-CDA, the product line concepts and their
interrelationships are elicited, structured, and documented.
This is done using the customized process set up in the
Initialization Phase.

PuLSE-CDA initially refines theeconomic scopeproduced
by PuLSE-Eco to specify the boundaries of the product line.
The models used (e.g., context diagrams) and the level to
which the scope is refined are determined by PuLSE-BC.

Scoping is followed by modeling, in which product line
information is elicited and modeled using the workproducts
defined by PuLSE-BC. We distinguish betweenstoryboards
and other domain workproducts. Storyboards are used to
capture relevant types of action sequences in the domain.
These types vary for different domains. Examples are
workflow diagrams and message sequence charts. Other
workproducts capture additional views on the product line.
For example, a data model may be used to capture the data
structure common to all systems and varying among them.

Populating the models combines eliciting information about
single systems in raw storyboards and other workproducts,
and then consolidating this knowledge into generic

storyboards and other workproducts that capture variabilit

To derive product line member specifications from a produ
line model, adecision modelis created that contains a
structured set of decisions. Each decision corresponds t
variability in a workproduct together with the set of possibl
resolutions. To build the specification of a product lin
member, the decisions are resolved.

The generic storyboards, all additional workproducts, a
the decision model are passed to PuLSE-DSSA a
PuLSE-EM.

Example: Figure 5 shows a generic storyboard representi
the task “Process Goods Reception” that models one of
key areas identified in the product map in Figure 4. Th
storyboard is captured in DIVERSITY/CDA, a tool we
developed to support PuLSE-CDA. Automated support
necessary for managing the large amount of information th
exists for industrial applications.

PuLSE-DSSA
PuLSE-DSSA supports the definition of a domain-specifi
software architecture, which covers current and futu
applications of the product line as described by a produ
line model. The basic idea of the process is incremen
development of the architecture guided by scenarios.
PuLSE-DSSA scenarios are categorized as eithergeneric
scenarios (representing functional requirements) o
property-related scenarios(describing domain-independen
quality aspects). The generic scenarios are derived fro
generic storyboards and the other workproducts created
PuLSE-CDA. Each of them is augmented with a number
property-related scenarios and ranked with respect
architectural importance.

C
h

ar
ac

te
ri

za
ti

o
n

 F
u

n
ct

io
n

s

s1: Need to be present

s2: Competitor products

s3: Market-share gainer

e1: Conceptual complexity (1–4)

e2: Cost estimate (1–4)

X = yes / completely

O = maybe / partially

= no

B
en

efi
t

Fu
n

ct
io

n
s

1 :

2 :

3 : (1–8)

4 : (1–8)

5 : (1-8)

e2 c p,() s1 c p,()⋅
p
∑
pmax e2 c p,()max⋅

-- 10⋅ 1–

s3 c p,()
p
∑ 

  pmax⁄

s1 c() s2 c() s3 c()∨ ∨
c
∑

s2 c() s3 c()∨
c
∑

e2 c()
c scope∈

∑ 
  e2 c()

c
∑ 

 ⁄

Figure 4. Example - Simplified Product Map

Existing Applications Future Applications Potential
Applications

Char.-
based

Product 1 Product 2 Product 3 Product 4
…

Product 5 …

Effo
rt

Savin
g

1

M
arket

ad
van

tag
e

2

...

s1 s2 s3 e1 e2 s1 s2 s3 e1 e2 s1 s2 s3 e1 e2 s1 s2 s3 e1 e2 … s1 s2 s3 e1 e2 …

G
o

o
d

s
R

ecep
tio

n

Central storage reception X X 3 3 X X 3 3 X X 3 2 X X 2 2 X X 2 3 8 1
Branch local reception X 2 2 X 2 2 X 1 2 X 2 3 X X 1 2 5 3
Acceptance of non-ordered goods X X O 2 3 X X O 2 3 X X 1 2 X X O 2 3 X X O 2 3 6 6

...

O
rd

erin
g

Reclamation
strategy

write
reclamation

X X 2 3 X X 2 2 X X 2 2 X X 3 3 X X 2 3 7 2

charge certain
percentage

X 3 2 X 3 4 X O 3 2 O O 3 2 6 3

Ordering
strategy

order at
point of sale

X X 3 3 X 1 2 X X O 3 3 X X 3 3 7 2

order at
central storage

X X 0 2 2 X X 2 1 2 0

…
...

Pro
d

u
ct-

b
ased

 b
.a.

Contribution to domain coverage3 5 7 4 7 7

Competitive Advantage4 3 4 6 3 3

Reference Arch. Effort Saving5 7 6 6 6 7

…

Products

Characteristics

of

g
ry

e,
ill
se
the

rt
on
o
are

ng,
is
nd
of

he
s
de

the
re

The
to

ent
r’s
ct
The architecture development starts with an initial set of
generic scenarios that is used to create the initial
architecture.

In each of the following iterations, a set of generic scenarios
is chosen according to their ranking and thenapplied to the
current architecture candidate. The architecture is refined
and extended until the reference architecture supports all
generic scenarios and has evolved to its final state.

The application of generic scenarios may result in more than
one architecture. In this case, the property-related scenarios
attached to the currently used generic scenarios are applied

to evaluate andrank the candidate architectures. The result
of this ranking is an architecture candidate (or a small set
candidates) that is further evolved.

An optional prototype can be built to just support the rankin
or it can be created as a structural and evolutiona
prototype.

During the creation of the reference architectur
implementation-specific decisions are collected that w
have to be resolved during reference instantiation. The
decisions and their possible resolutions are captured in
configuration model that extends the decision model.

Example: Figure 6 presents a high-level logical view on pa
of the reference architecture for merchandise informati
systems. The component “Goods Reception”, tw
subcomponents of it, and some neighboring components
shown.

Usage
The Usage Phase of PuLSE aims at specifying, instantiati
and validating one member of the product line. Th
encompasses the instantiation of the product line model a
the reference architecture, the creation and/or reuse
products that constitute the instance, and validation of t
resulting product. No modifications of the product line (it
map, its model, its architecture, or its other assets) are ma
within the Usage Phase. If changes or extensions to
product line are necessary to build an instance, they a
passed as change requests to PuLSE-EM.

Figure 7 shows the process model for the Usage Phase.
initial step in creating a new instance of the product line is
plan for new product line instance. In this step, the
customer’s requirements are used to plan the developm
process for the instance. The application of the custome
requirements to the product map together with the produ

Figure 5. Example - Generic Storyboard

reclaim

reception

goods reception

goods
incoming
goods

stock

bookingordering
control flow

reclamation

ordering

storage

control flow

check(deliveryNote)

resultOfCheck
reject(…)

storeTemp

store

throwAway(…)

book(goods)

book(orderValue)

reclaim

book(orderValue-3%)

checkOrder
(deliveryNote)

2 3 41

21

A:

B:

1

2

3

4

1
2

opt. A:1-3

opt. A:1-3

M

M

M

M

goodsArrive
(deliveryNote)

1-3

1-3

21C:

1

resultOfCheck

Figure 6. Example - Partial Reference Architecture

control flow
control flow variation

component
logical component group

Metacondition
comp. variations 1-2 exist

M
21

Legend

n

t
he
ct
e
ry.

e
d

re
ee
e
are

ve
lity
the
ct
g to
by

he
nd

se

nd
h
n

line history enables an estimate about the portion of the new
instance that is covered by already existing assets. This
estimate is used to set up plans for budget and resources as
well as a time table for the instantiation.

In the first instantiation step, theproduct line model is
instantiated and validated. Driven by the decision model, the
new instance is specified. This specification of the new
product is then validated against the customer’s
requirements. The validated specification is part of the
product and is entered into the product configuration history.

Example: Figure 9 shows one specific instance of the
generic storyboard in Figure 5 which defines the workflow
for a specific product. It is defined using the decision model
shown in Figure 8. The particular decision presented there is

to support “direct delivery”. These are captured i
DIVERSITY/CDA.

In the next step, theDSSA is instantiated and validated.
Driven by the configuration model and the produc
specification, the architecture for the instance is defined. T
architecture is then validated against the produ
specification. The validated architecture is part of th
product and is entered into the product configuration histo

Example: Figure 10 shows an instance of the referenc
architecture in Figure 6 which supports the workflow define
by the storyboard in Figure 10.

In the following step, the low-level design and the code a
developed. Each component stems from one of thr
sources. The first possibility is that existing product lin
assets are reused. The second possibility is that assets
created that are within the scope of the product line but ha
not been designed and implemented yet. The last possibi
is that assets are created to fulfill specific requirements of
current instance, and will not be integrated into the produ
line assets. Requests to change the product line accordin
these specific requirements have been rejected
PuLSE-EM.

The design and code is then validated against t
architecture. The validated code completes the product a
is entered into the product configuration history.

Finally, the complete product has to pass anacceptance test,
which is performed by the customer. This test may cau
another iteration of the Usage Phase.

Evolution
The purpose of the PuLSE Evolution Phase is to monitor a
control the evolution of the product line infrastructure whic
is built in the Construction Phase, over time. The Evolutio

P
uL

S
E

-I

PuLSE-DSSA

PuLSE-CDA

PuLSE-Eco

ch
an

ge
re

qu
es

ts
pr

od
uc

t
co

nfi
g.

hi
st

or
y

pr
od

uc
t

lin
e

hi
st

or
y

instantiate & validate
DSSA

implement

instantiate & validate
product line model

plan for new
product line instance

customer
requirements

product

acceptance
test

Pu
LS

E-
EM

DSSA
results

CDA
results

Eco
results

Figure 7. PuLSE Usage Phase

Figure 8. Example - Instance of the Decision Model

Decision Model

Figure 9. Example - Instantiated Storyboard

ll
e-

f
n-

be
SE

he
nd
Phase applies an instance of the technical component
PuLSE-EM (Evolution and Management) customized to the
needs of the specific enterprise where PuLSE is applied.
Facets of PuLSE-EM also contribute to the Initialization,
Construction, and Usage phases (once they have been
started).

PuLSE-EM coordinates the activities of the other PuLSE
components. It gets various workproducts from the different
components, consolidates them, and takes care of their
evolution and maintenance. This section highlights the
evolutionary aspect of PuLSE-EM. Managing and
organizational issues are addressed in section 2 and section .

Figure 11 presents a high-level overview of PuLSE-EM
activities and the workproducts involved.

Based on the information provided by PuLSE-BC, PuLSE-
EM plans and guides the development of the product line
infrastructure.

In all components of the Construction and Usage Phases
problems may arise that cause changes to the specifications
from previous components. These changes have
ramifications, not necessarily limited to the preceeding
phase(s) as the following examples demonstrate:

Example: During the application of PuLSE-DSSA problems
to adapt to required COTS components may turn up. These
problems may affect the scope (handled by PuLSE-Eco),
which in turn may cause changes to the generic storyboards
or other CDA workproducts.

PuLSE-EM takes care of all these kinds ofchange requests,
consolidates and evaluatesthem,determinestheir (potential)
ramifications, andrestarts the appropriate stepsof the
respective components where they are handled.

Supporting PuLSE
As described in Section 2.1, the support components provide
guidelines to help transitioning PuLSE into an enterprise and
to lead the enterprise towards a product line development
organization.

The PuLSEproject entry pointsdescribe standard situations
where PuLSE can be applied. Thus, they help transition
PuLSE into a specific enterprise context. Three entry points
we already used are:

• Pure PuLSE: It characterizes the situation where a new

product line is set up in an enterprise. In that context, a
PuLSE components can be established with full trac
ability among them.

• Evolutionary PuLSE: The different components o
PuLSE can be integrated one by one in a currently ru
ning development process.

• Reengineering-driven PuLSE: Existing assets can
reused to seed, enrich, or augment the different PuL
component deliverables.

The PuLSEmaturity scaleis designed to help an enterprise
adopt the methodology step by step. It drives towards t
usage and integration of the different PuLSE phases a

reclaim

reception

goods reception

goods

stock

ordering
control flow

reclamation

ordering

storage

control flow

book(orderValue)

reclaim

checkOrder
(deliveryNote)

2 3 41

21

A:

B:

4

M

M
goodsArrive
(deliveryNote)

Figure 10. Example - Instantiated DSSA

21C:

store

book(goods)

4

2

Pu
LS

E-
Ec

o

Figure 11. PuLSE Evolution Phase

Pu
LS

E-
C

D
A

Pu
LS

E-
D

SS
A

Pu
LS

E-
I

PuLSE-EM

identify change effects
& restart PuLSE-Eco

identify change effects
& restart PuLSE-CDA

identify change effects
& restart PuLSE-DSSA

identify change effects
& restart PuLSE-I

enhance
library

consolidate

product map
& p.l. plan

consolidate

consolidate

consolidate

evaluate
change request

determine
change effect

scope definition
history

p. l. model
history

product line
model

library of property-
related scenarios

architecture
history

architecture &
configuration

product line
history

product config.
history

change
request

change
request

change
request

Pu
LS

E-
BC

consolidate

baselining
profile library

final process

project plan
definition

information

enhance
library

e
d,
’

als
ed
ns

sed
ed
ed
nt
d to
e
re
lan
is

he
on
f

ith
an
s
th
D

are
ur

s
ed
,
E
e is
the
n
to

it
ct

e
ins
nt
is
nd
e

l
de
ls

e
hat
components so as to help an enterprise ultimately function
fully according to a product line mode. Hence, it measures
the level of the product line life-cycle adoption within an
enterprise. It was inspired by another reuse-driven maturity
scale [15]. We have found four levels to be sufficient so far.
Each is documented via key elements, which describe
fundamental properties that must be exhibited by the current
product line process. The levels are:

• Initial: Single PuLSE technology components can be
applied independently of one another -- mainly Eco,
CDA, DSSA after the necessary customization.

• Full: All components participating to the Construction
Phase are used, yet their degree of integration can vary
substantially. Partial product instantiation can start.

• Controlled: PuLSE is applied as a complete development
life-cycle. Traceability (integration) among the different
phases is established and maintained.

• Optimizing: The PuLSE development life-cycle is
refined over a number of instances using optimization
techniques.

The scale reflects reality as we have experienced it so far.
One can rarely expect an enterprise to adopt a complete
product line life-cycle immediately from the start. Most
would start (have started in our case) small, one component
at a time within pilot projects, and then expand the realm of
the PuLSE application. Our portfolio today includes four
enterprises at the Initial Level, two at the Full Level and one
about to reach the Controlled Level (for a few of their large
subdomains).

The main PuLSEorganization issueguidelines span both the
development and project organization areas. Both are
intertwined. The guidelines are the result of what we have
seen work so far. For the development organization, they
are:

• Subdivision of the application domain into areas of spe-
cialization according to separation of concerns

• Vertical layering decomposition of the development into
the application area analysis, architecture, implementa-
tion and deployment

• Assignment of permanent personnel to these areas of
specialization within the layered decomposition when-
ever possible

• Supervision and enforcement of the process rules, archi-
tecture soundness and evolution

For the project organization the guidelines are:

• Dynamic assignment of personnel to projects according
to their responsibility area, that is, developers belong to
the development organization, not to the projects.

• Very small project leadership. Project leaders coordinate
the project development with the product line.

• A developer assignment ratio of 70% to current project
development and 30% on the evolution of the reusable
infrastructure seems to be appropriate -- though our data
points so far are still limited.

This combination of development and project structure has

the following advantages: The personnel identifies with th
product line environment, experience reuse is maximize
and there is a minimization of line managers’ ‘stove-pipe
attitude.

4 Analysis and Experience
As shown in the running example our biggest customer de
with merchandise information systems. We have gain
complementary experience from some other cooperatio
with industrial customers. One of them produces case ba
reasoning (CBR) tools for various purposes. Target
towards a complete redesign of their software, we appli
PuLSE-CDA to describe the application situations of curre
and anticipated future products. Based on these we starte
apply PuLSE-DSSA to derive a common referenc
architecture for all of these. As the developed infrastructu
seems to be promising PuLSE-Eco was introduced to p
more reliably for approaching new markets, thus PuLSE
applied on the Full Level.

Another customer whose civil engineering software leads t
german market in the area of composite construction is
the Full Level too. We use PuLSE there with the final goal o
leveraging their currently separate products dealing w
different yet overlapping aspects of the same domain into
integrated solution with a CAD frontend. Other domain
where we are applying single PuLSE components wi
industrial partners are stock market data evaluation, CA
systems, human comfort simulations and layout systems.

The experience we have made so far and our progresses
very promising. The following sections analyze some of o
most interesting experience:

The contexts of product lines vary greatly. The difference
affect how a product line should be established and us
(i.e., not all methods will work in all contexts). Therefore
PuLSE-BC uses the context to tailor the other PuLS
components to the needs of the enterprise. However, ther
still much human decision support needed to determine
most appropriate fit. To overcome this, we are working o
packages of PuLSE customizations that are pretailored
general situations, such as information systems.

PuLSE-Eco provides a good basis for communication and
is easy to use. The only limitation is the size of the produ
maps: very large maps are hard to handle.

Customizations play a key role in PuLSE-CDA. We hav
observed that universal models are not appropriate. Doma
have different concerns and therefore, require differe
models to capture their key concepts. PuLSE-CDA
customizable to the relevant domain abstractions a
notations. An additional advantage of PuLSE-CDA is th
decision model, which aggregates all of the variability from
a product line model. This allows for higher-level variability
modeling as well as facilitates instantiation of individua
systems. Our experience does not yet allow us to provi
guidance on customizing the level of detail to which mode
are captured.

PuLSE-DSSA provides a framework for doing referenc
architecture development. Even though it can be argued t

i-

t -

,

-

e-

e

-

/

.
-

e

r-
PuLSE-DSSA provides only low guidance on the actual
design, we claim this one of the major advantages of the
component. PuLSE-DSSA does neither require a specific
design methodology nor a special architecture description
language or technique. It can use whatever is present and
established in the enterprise. Another strong point is the
clear separation of domain-related and implementation-
related decisions; the implementation-related decisions are
clearly separated in the configuration model.

The major benefit of PuLSE-I is that it does not require all
product line assets to be implemented before the first product
can be built. Implementation of assets takes place just as
they are needed for a specific product. Therefore using this
approach means that there has to be strong supervision to
make sure that assets are developed considering the product
line context (i.e., not only the current project). PuLSE-I
supports this by using the workproducts from the previous
Construction Phase and reuses already existing assets
systematically.

Our experience shows that PuLSE-EM provides an effective
mechanism to propagate change requests that turn up during
the Construction and Usage Phases to the responsible
components. Even though that approach seems to introduce
some overhead and PuLSE-EM needs to be customized
carefully to the specific environment, it proves to be a good
way to make sure that those components handle the request
that are competent for them. Moreover, we expect that when
an enterprise applies PuLSE at the Optimizing Level, over
time, PuLSE-EM will enable reasoning about the kinds of
changes that occur and be able to more effectively evolve the
product line infrastructure to future needs.

5 Conclusions
In this paper, we presented PuLSE, a customizable
methodology for the conception and deployment of software
product lines.

An application of the methodology was shown by presenting
an example from our experience. We are currently preparing
a technical report on PuLSE, which will describe PuLSE and
its application in more detail.

The experience and results of applying PuLSE encourage us
to do further research. This involves research in three
different directions. First, we want to learn more about the
application of PuLSE in practice. Therefore, we try to
establish more projects in different domains where we can
apply PuLSE. The second direction is process related, where
we want to prepare a guidebook that enables enterprises to
deploy PuLSE. The last direction is tool support; our aim is
to support the complete methodology with an integrated tool
suite that encompasses the currently developed domain
analysis tool, DIVERSITY/CDA.

References
1. Arango, G. and Prieto-Diaz, R. (eds.) Domain Analysis

Concepts and Research Directions. InDomain Analysis
and Software Systems Modeling, pp. 9-31, IEEE Com-
puter Society Press, 1991.

2. Ardis, M. and Weiss, D. Defining Families: The Com-
monality Analysis.Proceedings of the Nineteenth Inter-
national Conference on Software Engineering, pp. 649-

650, IEEE Computer Society Press, May 1997.

3. Basili, V., Caldiera, G., and Rombach, D. Experience
Factory.Encyclopedia of Software Engineering Volume
1:469-476, Marciniak, J. ed. John Wiley & Sons, 1994.

4. Bass, L., Clements, P., and Kazman, R. Software Arch
tecture in Practice. Addison-Wesley, 1998

5. Bergey, J. et. al. DoD Product Line Practice Workshop
Report.Technical Report CMU/SEI-98-TR-07, Carnegie
Mellon, May 1998.

6. Foreman, J. Product Line Based Software Developmen
Significant Results, Future Challenges.Proceedings of
the Software Technology Conference. April 1996.

7. Gomaa, H., Kerschberg, L., Sugumaran, V., Bosch, C.
Tavakoli, I. and O’Hara. L. A knowledge-based software
engineering environment for reusable software require
ments and architectures.Automated Software Engineer-
ing, 3(3,4), pp. 285–307, August 1996.

8. Kazman, R., Abowd, L., Bass, R., and Clements, P. Sc
nario-Based Analysis of Software Architecture,IEEE
Software, 11/1996.

9. Lim, W. Reuse economics: A comparison of seventeen
models and directions for future research.Proceedings of
the Fourth International Conference on Software Reus,
pp. 41–50, 1996.

10. Mollaghasemi, M. and Pet-Edwards, J.Making Multiple-
Objective Decisions. IEEE Computer Society, 1997.

11. Paulk, M., Curtis, B., Chrissis, M., and Weber, C. Capa
bility Maturity Model for Software (Version 1.1).Tech-
nical Report CMU/SEI-93-TR-024, February 1993.

12. Potts, C., Takahashi, K., and Anton, A. Inquiry-Based
Requirments Analysis.IEEE Software, pp. 21-32, March
1994

13. Shaw, M. and Garlan, D. Software Architecture: Per-
spectives on an Emerging Discipline. Prentice Hall,
1996.

14. Software Engineering Institute, Model-Based Software
Engineering. http://www.sei.cmu.edu/technology/mbse
is.html, April 25, 1998.

15. Software Productivity Consortium Services Corporation
Reuse Adoption Guidebook, Version 02.00.05, Novem
ber 1993.

16. Software Productivity Consortium. Reuse-Driven Soft-
ware Processes Guidebook, Version 02.00.03.Technical
Report SPC-92019-CMC, Software Productivity Consor-
tium, November 1993.

17. Software Technology for Adaptable Reliable Systems.
Organization Domain Modeling (ODM) Guidebook,
Version 2.0.Unisys STARS Technical Report STARS-
VC-A025/001/00, Reston VA, June 1996.

18. Tracz, W. and Coglianese, L. Domain-Specific Softwar
Architecture Engineering Process Guidelines,Technical
Report ADAGE-IBM-92-02, Loral Federal Systems,
1992.

19. J. Whitey. Investment analysis of software assets for
product lines.Technical Report CMU/SEI-96-TR010,
Software Engineering Institute, Carnegie Mellon Unive
sity, 1996.

	PuLSE: A Methodology to Develop Software Product Lines
	Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig, Klaus Schmid, Tanya Widen
	Fraunhofer Institute for Experimental Software Engineering (IESE)
	Sauerwiesen 6
	D-67661 Kaiserslautern, Germany +49 (0) 6301 707 251 {bayer, flege, knauber, laqua, muthig, schmi...

	Jean-Marc DeBaud1
	Lucent Technologies Software Product Line Engineering Laboratories
	263 Shuman Boulevard
	Naperville, IL 60563, USA
	+1 (630) 224 0383
	ABSTRACT
	Keywords
	1 Introduction
	Problem
	Context and Approach

	2 PuLSE Overview
	Structural Overview
	Figure 1. PuLSE Overview

	Related Work

	3 The PULSE Process
	Initialization
	Figure 2. PuLSE Initialization Phase
	Figure 3. PuLSE Construction Phase
	Figure 4. Example - Simplified Product Map

	Construction
	PuLSE-Eco
	PuLSE-CDA
	Figure 5. Example - Generic Storyboard

	PuLSE-DSSA
	Figure 6. Example - Partial Reference Architecture

	Usage
	Figure 7. PuLSE Usage Phase
	Figure 8. Example - Instance of the Decision Model
	Figure 9. Example - Instantiated Storyboard
	Figure 10. Example - Instantiated DSSA

	Evolution
	Figure 11. PuLSE Evolution Phase

	Supporting PuLSE

	4 Analysis and Experience
	5 Conclusions
	References
	1. Arango, G. and Prieto-Diaz, R. (eds.) Domain Analysis Concepts and Research Directions. In Dom...
	2. Ardis, M. and Weiss, D. Defining Families: The Commonality Analysis. Proceedings of the Ninete...
	3. Basili, V., Caldiera, G., and Rombach, D. Experience Factory. Encyclopedia of Software Enginee...
	4. Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice. Addison-Wesley, 1998
	5. Bergey, J. et. al. DoD Product Line Practice Workshop Report. Technical Report CMU/SEI-98-TR-0...
	6. Foreman, J. Product Line Based Software Development - Significant Results, Future Challenges. ...
	7. Gomaa, H., Kerschberg, L., Sugumaran, V., Bosch, C., Tavakoli, I. and O’Hara. L. A knowledge-b...
	8. Kazman, R., Abowd, L., Bass, R., and Clements, P. Scenario-Based Analysis of Software Architec...
	9. Lim, W. Reuse economics: A comparison of seventeen models and directions for future research. ...
	10. Mollaghasemi, M. and Pet-Edwards, J. Making Multiple- Objective Decisions. IEEE Computer Soci...
	11. Paulk, M., Curtis, B., Chrissis, M., and Weber, C. Capability Maturity Model for Software (Ve...
	12. Potts, C., Takahashi, K., and Anton, A. Inquiry-Based Requirments Analysis. IEEE Software, pp...
	13. Shaw, M. and Garlan, D. Software Architecture: Perspectives on an Emerging Discipline. Prenti...
	14. Software Engineering Institute, Model-Based Software Engineering. http://www.sei.cmu.edu/tech...
	15. Software Productivity Consortium Services Corporation. Reuse Adoption Guidebook, Version 02.0...
	16. Software Productivity Consortium. Reuse-Driven Software Processes Guidebook, Version 02.00.03...
	17. Software Technology for Adaptable Reliable Systems. Organization Domain Modeling (ODM) Guideb...
	18. Tracz, W. and Coglianese, L. Domain-Specific Software Architecture Engineering Process Guidel...
	19. J. Whitey. Investment analysis of software assets for product lines. Technical Report CMU/SEI...

