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SUMMARY

It has been observed that the pulses received from pulsats are broadened at low
frequencies, and this effect is thought to be due to multipath propagation in
the interstellar medium. In this paper the pulse broadening is investigated in
the limit of strong multiple scattering, in which ray optics is applicable.
Two cases are considered: the scattering medium is assumed either to be
concentrated in a small fraction of the line of sight near the pulsar, or to extend
over the whole line of sight. Analytical solutions for the probability density
function are found for these two cases, with the aid of the theory of Wiener
integrals of Kac and Blanc-Lapierre & Fortet. Both solutions are charac-
terized by a slow rise to a decay which rapidly becomes exponential. The
relation between this exponential decay time constant and the r.m.s. broadening
of the angular size of the source is found, and compared with that expected
on the basis of the ‘ thin-slab’ model in which the scattering medium is
effectively confined to a plane approximately midway between source and
observer.

I. INTRODUCTION

It has been suspected that irregularities in the interstellar medium cause the
radiation emitted by a pulsar to travel along a variety of paths, of differing length,
between source and observer (Scheuer 1968; Salpeter 1969). Even intrinsically
sharp pulses will then be observed stretched out in time, and this asymmetrical
broadening has indeed been observed in pulses from the Crab Nebula pulsar
NP o532 (Staelin & Sutton 1970; Rankin et al. 1970), from the Vela pulsar
PSR 083345 (Ables, Komesaroff & Hamilton 1970), and from five more pulsars
(Lang 1971a, b). This broadening becomes much more pronounced at lower
frequencies, and follows generally the A4 law predicted by theory (Lang 1971a, b).

The observations of pulsar amplitude variation show clearly that the phase
changes in the scattering medium are very large at these low frequencies, and in
these conditions the angular spectrum of the scattered radiation is gaussian (Fejer
1953; Uscinski 1968). For a medium in which the electron density fluctuates with
r.m.s. amplitude AN with characteristic scale size a, the mean square angular
scatter per unit length D, suffered by the radiation is given by

D TON(ANY

a

(1)

where 7 is the classical electron radius 2-82 x 10715 m and A the wavelength of the
radiation.
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Source Observer

F1G. 1. Scattering by a thin slab of fluctuating electron density.

If the scattering occurs in a physically thin screen approximately midway
between source and observer (Fig. 1), it is well known that an intrinsically sharp
pulse is broadened into a pulse having a sharp rise followed by exponential decay
with time constant (Cronyn 1970).

s @

fo being the r.m.s. angle over which scattered radiation from the pulsar is
received by the observer.

Ables et al. (1970) and Lang (1971a, b) find that the high frequency pulse-
shape convolved with an exponential distribution gives a reasonably good fit to
their observations. The distribution function for the Crab pulse NP 0532 seems
to be more complex. Rankin et al. (1970) found initially that a function of the form
xe~® gave a better fit to their observations than a straightforward exponential, and
this was confirmed by Counselman & Rankin (1971), who subsequently discovered
however (note added in proof to latter paper) that the scattering probability distri-
bution function varies with time.

It is of interest to discover what form the scattering p.d.f. would take in a more
realistic model of the interstellar medium, when the fluctuating electron density
is not confined to a small region between source and observer; and in particular
what effect this would have on the rise time of the pulse. An absolutely sharp rise
is not to be expected in any model in which the scattering medium is distributed
throughout space, because even radiation reaching the observer exactly from the
source direction has suffered some deviation on the way, and the proportion of
photons which suffer no deviation is small.

The purpose of the work here described is to discover, on a purely theoretical
basis, what pulse shapes are to be expected when the scattering medium is distri-
buted throughout space. In addition to the model, already described, in which the
scattering medium is confined to a thin slab (model (i)), we discuss two main
models.

(if) The medium is confined to a region surrounding the source, the observer
being a great deal further away.
(iii) The medium occupies the whole of space between source and observer.

It should be emphasized that the pulse shapes derived are mean pulse shapes
of an ensemble of systems which differ only statistically and in which the mean
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electron density is constant in space and time in those regions in which it is taken
as non-zero.

The following approximations are made throughout.

(1) Ray optics. Although the individual diffracting irregularities are phase thin,
a small fraction of the line of sight already constitutes a phase thick screen and
behaves as if geometrical optics were valid.

(2) Uniform speed of radiation. Although the basic cause of the phenomenon is
the irregular distribution of refractive index, the delays due directly to changes in
group velocity are of order

22
—— (La)2ANrg
2mC

and are therefore small compared to the delays due to increased geometrical path
length, of order

DL? _ rg?X{AN)2L?

provided that

where L is the extent of the medium.

This condition is similar to condition (ii) derived by Scheuer (1968) for rays
from the source to reach the observer by more than one path. If the electron density
fluctuations responsible for multipath broadening are also those responsible for
scintillations this condition is valid and will be assumed here.

(3) Small angle approximation. It will be assumed that all the angular deviations
are small compared to one radian—this is certainly an excellent approximation.

2. FORMULATION OF THE MATHEMATICAL PROBLEM

Two cases will be considered.

(1) The scattering medium extends uniformly from the source to some distance
L, small compared with the distance to the observer; we require the distribution
of the path lengths from the source of rays which emerge as one parallel beam
(Fig. 2).

By reversing the paths and shifting them appropriately in the x and y directions,
it is clear that the required distribution is the same as that of rays which start in the
2 direction and reach the plane 2 = L at any angle (Fig. 3).

. e
e :

Source To observer

e

Y

F1G. 2. Scattering by a thick slab of medium near the source but far from the observer.
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Fi1c. 3. Paths starting in z-direction and reaching plane at z = L at any angle.

It is also clear that the same distribution describes the situation when the
scattering medium, of dimension L, is about the observer rather than the source
(Fig. 2 but with directions of ray reversed).

Consider a particular ray path element at distance 2 from the source. Let the
angle between the z-axis and the projection of the element on the xz plane be
6(2); define ¢(z) similarly for the projection on to the yz plane (Fig. 4). The length
of the element is dr = dz(1+tan2 0+ tan2 ¢)1/2

- as (1+ 71

since 0, ¢ are assumed small.

S 4

/ 7

X

Ny

F1G. 4. Definition of angles 0, ¢.
The total length of the ray-path is

L 2
f (1+02+¢)dz
0 2

and the extra time, 7, that the ray takes compared with the  straight-through’
ray is

L02+¢2
T = — 7 d
fo % (3)

taking the speed of the radiation to be ¢. 6(2), §(2) perform independent one-
dimensional Brownian motions as z increases, i.e. the distribution of 6, ¢ at some 2
is the gaussian distribution

2
VED_z exp ( — l—(;—z;) and similarly for ¢ (4)
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where D is the mean square angular scatter per unit length, already defined.
It is easy to calculate the mean value of T It is just

L 2
D2 4 = P (s)
0 2C 4¢
but the distribution of 7' cannot be so simply found, since the successive values of
6, for example, are correlated with each other.

A method of solving this problem has, however, been described by Kac (1949,
1951) and will be summarized in the next section.

(2) The scattering medium is distributed uniformly between the source and the
observer.

In this case we require the probability distribution of path lengths between two
fixed points distance L apart, or equivalently, the distribution of path lengths of
rays starting from the source in the +z direction and finishing anywhere on the
surface of a sphere of radius L with the source as centre.

F1c. 5. Paths starting in z-direction from o and reaching sphere radius L.
From Fig. 3, it is clear that we require the probability distribution of

e (e (e o

since 6, ¢ are small, and we may neglect powers of 6, ¢ greater than the second.
This problem is solved in Section 4.

3. PATHS BETWEEN A POINT AND A PLANE

As we have seen (equation (3)), we must find the probability function P(L, T')
of
L g2 2
T f 6 +¢

0, ¢ performing independent Brownian motions as z increases, as implied by (4).
As 6, ¢ are statistically independent, the distribution of the sum of

L
f-z-dz and f¢2dz

0 2C
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is the convolution of the distributions of each integral, which are, of course, the
same. Hence, using the convolution theorem, it will be enough to find the Laplace
transform of the distribution of

this will be the square root of the Laplace transform of the distribution of 7.
We thus require the L.T. of dF/dA where

L g2
F(4) = Pr [f — dz<A]
0 2C
6 having the distribution at given 2 of
vo5:°* (3
VaDz ¥ \” Dz)

We restate the problem in terms of the dimensionless variables, to conform with
the notation of Kac (1951)
Pl r=D% yo9 o= D4 )

and write

@) =F (%)

so that we now require the L. T. of df/dx where
t
f(x) = Pr [J x2 d'r<cx]
0
x(r) being the Wiener process, with distribution function for given = of
1 e ( xz)
Varr P\ 2]

This is one of the class of problems solved by Kac (1949, 1951). We find (Kac
1949)

f e~u* df = (sech y/2ut)l/2,
0
As noted above we must invert the square of this, for our problem. Now

Yt [2 5 (1’3“ E‘)] - 2
fo e 7 [ a1\ 5 22/ | do. = sech 4/2ut.

Where the theta function

91(z, 0) = 2 Y, (—1)*exp (— m(n+})20) sin (2n+1) 2
n=0
and also (Jacobi’s imaginary transformation)

%1(3, 0) = —io"1/2 exp (—22[mo) 1 (zf, l)
g g
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(For definition and properties of theta-functions, see Jeffreys & Jeffreys (1962).)
So we may write the inverse Laplace transform of sech 4/2ut in either of the
equivalent forms

© 1/2 242
Y (- 1)%(”‘1)(13) nt exp (—ﬁ)
T

n odd 2x
d nir n2m2o
= —1)i-1) = exp [ —=——).

Returning to our original variables (7), we find

P(L,T) = ( DL )1/2 Y (—1)}@Dpexp (_nzDLZ)

2m7c¢T3] . Sa 8cT
27C nemecT
= — 1)i(n-1) - F
pre, % (79 " exp ( 2DL? ) (8)

The effect of the scattering medium is also to increase the apparent angular
diameter of the source. If we assume, as we have done so far, that we are dealing
with effectively point sources, then all the observed angular diameter is due to
scattering. The width of the angular distribution is usually expressed in terms
of 63, the total half-intensity width, but it is more convenient for our purpose to
consider 6y, the r.m.s. angle. For a two-dimensional gaussian distribution the two
parameters are related by

042 = 4 loge2 602 (9)

We must now distinguish between the two cases, which, as we noted above,
both give (8) as the probability distribution function of arrival time of rays. The
first case is that of the medium extending from the source to a distance L, the
second is similar but the medium extends from the observer out to a distance L.

The second case is the easier; here we have, by definition of D

60 = DL. (10)

The case when the scattering medium is about the source is not so easily solved.
It can be shown (Appendix A) that

602 = BDL (11)
where B = 3(L/A)2. A is the distance from source to observer.
L<A so B<i1.

We may substitute (10) or (11) in (8) to obtain

P(r) = () T (-t nesp (~27) (12)

7 odd

4 —1\i@-1) ( — ”_211)
T n%a( 2 " exp T

il

where
_2_ L002
w2 Bc’

(13)

T =
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QSLP
45c

©
o
T

Normalized intensity

\

0 . !
° 4BcT ) 10 ) 20
> Time(in dimensionless units)
CHA

F16. 6. The probability distribution function for delay in time t for rays reaching observer
through thick slab of scattering medium. B = $(L/A)2 if medium near source, =1 for
medium near observer,

This function is plotted in Fig. 6. For large T, P approaches an exponential form
with time constant = whereas for 7 small

ar \1/2 e
P(L,T) ~ (4?3) exp (——I~6~T).

4. PATHS BETWEEN TWO FIXED POINTS

As we have seen (equation (6)), the problem is that of finding the distribution of

o2 Foan (o] ([

for the processes with distribution functions

1 HE) o ¢
Dz P ("‘Dz " oDz P (_Dz) ‘

Once again T breaks into two parts, one dependent on 6 only, one on ¢ alone,
so again we require only the Laplace Transform of dF/dA where

F(4) = Pr “ :’:ijdz—i_c (f:ﬂdz)2}<z4].

Introduce, as before, the dimensionless variables ¢, 7, x, « (equation (7)) so that

we require
(o]
f e~ux gf

0
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f(a) = Pr [{ f ; x%(7) dr— ti ( f ; x(7) d7>2} < cx]

for the Wiener process x(r) with distribution function

where

v (-5

To solve this problem we employ a variant of a method described by Blanc-
Lapierre & Fortet (1953). This method could also have been used for the problem
of the previous section. It consists of discretizing the integral, and then proceeding
to the limit.

Let
t N 2
I = f x2(7) dr— - (f %(7) d'r)
0 t 0
I t t
=7 f f [x(7) — x(7")]? d7’ dr.
0J 1
Consider
t m m
Im = — ; Z, (20— x)2 (14)
where

X1 =x+& X =0

and the ¢; are independent normal variables with zero mean and variance ¢/m.
In the limit m - o0

Im T
£ f ) > f(a)

where
f™(o) = Pr[I™ <a
(14) can be rewritten in terms of the §;
I = tAyéily (15)

where A4 is chosen to be the symmetric matrix of order m — 1 with elements

Ay = rrgr_lL(zg,L]‘)__z] (16)

m m2

where 7, j run from 1 to m—1.
Now

lIﬁ(m)(u) — f 00e—uac df(m)
0

= Elexp (—ul m)] (17)
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that is, the expectation value of exp (—ul (™) is also the Laplace transform of
daf m |do.

@ m—1 m 1/2 mfiz
= oo | exp (—utdyéidy) 11 ~—) exp ( - ——) déy...dém 1.
— =1 27t Zt
m—1 times
We now transform to the coordinate system whose base vectors are the ortho-
normal eigenvectors of A: let the components of the vector & in the new co-
ordinates be y1...%ym_1. The eigenvalues of A will be denoted by A1 ... Ap_1;
they are all positive, since 4 is positive definite. The Jacobian of the transformation

is 1, since the new base vectors are chosen orthonormal.

So
® é(m—l) m—1
[ @) oo [ ez o

m~1 2),\-1/2
(H_zut )\@) .
m

1

¥ (m)()

i

Il

1=1

By considering the inverse matrix A~1 which is, in fact, the matrix with ele-
ments

Aifl = 2m8¢j - m8@-, J+l1— m8¢, j-1

it is easy to see that 4 has eigenvectors, with components in the original co-

ordinate system,
ej(n) = /\/_2~ sin (]_ﬂ_ﬂ_)
m m

with corresponding eigenvalues

Ap = {2m(1 —Cos Z2—7—7) }—1
m

so the product (18) becomes

nﬁl (1 N ut? )—1/2

a=1 m2(1 — cos nw[m)

In the limit as m — o0, this becomes

® 2ut2 )—1/2
I+
I (

n2r?
which is the well-known infinite product expansion of
(sinh V4 2_ut) —1/2
\/ 2ut '
Therefore by (17)
© : ant\—1/2
—ue gf — (SDh YV 2ut) .
f 0 e df ( v/ 2ut
We require the convolution of dfda with itself, so we invert 4/2ut cosech +/2ut
rather than its square root.
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® —ua L 6_219 (ZD_C E)] d
foe th[axz S\ 27288 o

= +/2ut cosech \/2ut

Now

where

93(2, 0) = 1+2 ) cos 2nz exp (—wn2o)

n=1

and also
99(2, 0) = o112 exp (— 22/m0) B (? 3)
g O

(Jeffreys & Jeftreys (1962)) so that we may write the inverse Laplace transform of
+/2ut cosech +/2ut in either of the two equivalent forms

L S () 2k _ikzi‘)
5 k; (—1)*+1 72k2 exp ( v
_ [212\12 n22 o
= (7—7—&5> ”éd (—&— 1) exp (—n2t2[2q).
Returning to the variables L, D, T etc., we find from equations (7)
47 Nm a2 _n22772(:T)
P(L,T) = DL 21( 1)+l g exp( —Dir »
I
_ DL? (nZDLZ_ 1) o (_n2DL2) ?
= 2mcT® 54 \ 4cT P\78er )
In this case, the observed r.m.s. angular deviation is (Appendix A)
o2 = DL (20)
3
Substituting this in (19), we obtain
n2T
P(T) =2 3 (~apatexp (-F)
T n=1 T
(21)
_ (_2)1/2 y (nz'rrzr_ I) exp (_n27r2'r)
— \2T3 n'odd 2T 4T
where
3L00
272’

This function is plotted in Fig 7.
For large T P is an exponential function with decay time 7 and for small T

7573\ 1/2 wlr
*(57) "o (i)

Ut
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1-0Or
2
82Lp,
4c
>
2
(4]
=
=~ 05}
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[
N
©
£
S
=4
[0) : )
0O acT -0 20
02 Time (in dimensionless units)

F1G. 7. The probability distribution function for delays in time t for rays reaching observer
from source through a scattering medium filling the whole of space.

To provide a check on the mathematics and to see how effective the functions
(12), (21) are at describing the distribution of the quantities (3), (6) when a finite
number of rays reach the observer from the source, a Monte Carlo analysis using
the TITAN computer of the Cambridge University Computer Laboratory was
carried out. (3) and (6) were computed along 1000 ray-paths, each of 100 links, i.e.
0, ¢ were held constant over short lengths of ray-paths and given random gaussian

1-0r H—\
B3LP q—‘
4c
>
B
C
: |
= osl iy
el
g |
N
©
£
[¢]
z
0 = L S |
0 -0 4T 2:0

Time (in dimensionless units) QSL

F1G. 8. Histogram of results from a Monte Carlo simulation superimposed on the curve of
Fig. 7. 1000 ray-paths were simulated, each ray-path consisting of 100 short straight
lengths. The error bars extend approximately onme standard deviation (calculated for the
binomial distribution from the curve of Fig. %) in either direction.
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increments at the end of each link. This process then corresponds to the mathe-
matical analysis earlier in this section, except that 7 remains finite.

As an example of the results of this Monte Carlo analysis, the histogram of
values of (6), for paths between two points is shown in Fig. 8, superimposed on the
curve of Fig. 7: it is seen at once that there is good agreement.

Accordingly, (12) and (21) can be taken as good approximations to physical
reality provided that assumption (2) of Section 1 is satisfied, and that a large
number of rays reach the observer.

5. CONCLUSIONS

A summary of the results of the previous sections is presented in Table
I. Because the functions defined in (12), (21) and plotted in Figs 6 and 7 are
very shallow near the origin and for some distance along the time axis it is use-
ful to define a ‘ rise point > at which the function under consideration becomes
appreciable. This will be defined as the point of intersection, on the time axis, of
the tangent to the function at its first point of inflexion. The * rise time ’ of the pulse
is defined here as the time from this ‘ rise point’ to the maximum. Approximate
values, obtained graphically, are given in Table I.

TaBLE 1

A comparison of the properties of the pulse shapes predicted on the basis of the four models of the
interstellar medium discussed

(@)
Thin slab
approx. mid-
way between (iia) (iib) (iii)
source and Thick slab Thick slab Medium
Model observer near source  near observer unconfined
A~ 2l A>L A>L A=1L
Mean square size of DL3 DL
. —_ — DL ==
image 602 3A2 3
_ 2 2 0,2 2 2
Mean delay AA—L) bo? 3A2 6o L 6o L 6o
2L c 4L ¢ 4 ¢ 4 ¢
Time constant of A(A=L) 6® 6 A2 §o2 2L 6o? 3L 602
exponential decay 7 2L P 2 L ¢ 2 ¢ a2 ¢
Rise point (see o] o-og7T 0297
Section 5)
Time of maximum o 0417 0-goT
Rise time o 0°327 0-617

A is the distance from source to observer.
L is the extent of the medium, except in (i) where it is the source-medium distance.

Because the apparent angular diameter is known only for the Crab Nebula
pulsar NP 0532, and then not at all accurately (Bell & Hewish 1967), and it is the
exponential decay time constant which is more precisely known, Fig. 9 compares
the pulse shapes, predicted for the three models (1) (ii) (iii), which have the same
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@)
[63]

Normalized intensity

1 J
0 10 2:0
Time

Fi1c. 9. A comparison of the probability distribution functions predicted for the three
cases—(t) thin slab, (i1) thick slab, (i) medium unconfined, which have the same exponen-
tial decay at large times (=1 on this diagram).

time constant at large times. The maximum of intensityand the ensuing exponential
decay are displaced to later and later times as the region to which the scattering
medium is confined becomes more extensive. If the decay time constant is 7, the
exponential decay is delayed, relative to model (i), by 7 In (4/7) = o-247 for model
(ii), and by 7 In 2 = 0-697 for model (iii).

Counselman & Rankin (1971) express the probability density function observed
for the Crab pulsar NP 0532 as an expansion in terms of the Laguerre functions

ln(t) = (—:I)l (zp)llz [ex/z ‘%; (x” e—x)]

n r=2pt

and so it is of interest to do the same for our functions P(T) = (1/7)f (T/7), say.
If Cy is the coefficient of /, in the expansion of P, then since f and all its derivatives
vanish at o, co

Cp = f " P(0)lu(t) dt

= ppe O [ 1]

where
76 = [ e
0
which, as we have already seen,
= sech (m[24/5) for case (ii)
= a4/s cosech (w4/s) for case (iii).

The magnitudes of the first few coeflicients Cy, relative to Cy, for each function
are given in Table II.
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TaBLE II
The Laguerre coefficients Cu(Co = 1) of the functions (12), (21) assuming pr = 1
Model (i1) (iif)
Function Equation (12) Equation (21)

C1/Co 0441 1°153
C2/Co —0°319 —0°375
Cs3/Co 0-225 0-007

A comparison of the predictions of this theory with the results of experiments
will be made in a separate paper.
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APPENDIX
Apparent angular size of source due to scattering.
Case I

The scattering medium extends uniformly from the source to some distance L,
the distance between source and observer being much greater than L.
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Fi1c. A1. Scattering by a thick layer of uniformly fluctuating electrons about the source,
observed a great distance away.

From Fig. (A1)

R2
002 = AP (A1)
where 6 is the r.m.s. measure of the angular size. If A is large, so that rays reaching
the observer are nearly parallel

= ([ ) o)

with 0, ¢ defined as in Fig. 4, and with distribution at given z as implied by (4).

By treating the integral as the limit of a sum, and 6, ¢ as sums of independent
random increments (as in (23)) it is easy to show that the distributions of [0 dz
and [¢ dz are gaussian with mean zero and variance DL3/6.

Hence
(key = DL®
3
and from (Ar)
3
6o = §DA£2 - DL

as quoted in (2).

Case 2

The scattering medium fills uniformly all of the space between source and
observer.

Here we have to find the mean square of the angle at which a ray, travelling
initially in the + 2 direction cuts the sphere radius L about the source.

This angle is easily shown to be*

(o002 [ o)+ (sr-3 [ o)

* We take 6(L), $(L) at the plane rather than at the sphere itself, because the angular
dispersion occurring in the short distance ~ DL3/L between the sphere and plane is only of
order (D.DL3/L)1/2 = DL and therefore negligible compared with 0, ¢ which are of order
(DL)V/2,
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So
B2 = z<(e—% fje dz)2>

which by taking 6(z) as a sum of independent increments and proceeding to the
limit can easily be shown to be

as quoted in (29).
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