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Pulse compression during second-harmonic generation
in aperiodic quasi-phase-matching gratings
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We propose a simple means for compressing optical pulses with second-harmonic generation. Aperiodic quasi-
phase-matching gratings impart a frequency-dependent phase shift on the second-harmonic pulse relative to
the fundamental pulse and can be engineered to correct for arbitrary phase distortions. The mechanism is
discussed, and a detailed analysis of the compression of quadratic phase (linear frequency) chirped pulses is
presented.  1997 Optical Society of America
Optical pulse compression,1 used in many ultrafast
laser systems, has become increasingly important
since the development of chirped pulse amplifica-
tion.2 Several compression schemes3 utilizing dis-
persive linear systems and xs3d nonlinear effects are
in common use. Here we present a fundamentally
different method for compressing pulses by using
frequency conversion in media with aperiodic quasi-
phase-matching (QPM) gratings. In particular, we
discuss the generation of a transform-limited second
harmonic from chirped fundamental pulses.

Second-harmonic generation (SHG) is also widely
used with ultrafast laser systems. Phase matching is
usually required for efficient SHG but can be achieved
only for certain ranges of wavelengths, and with lim-
ited spectral bandwidths, in most nonlinear materials.
QPM4 permits the use of a material chosen for qualities
other than the possibility of phase matching and can
permit doubling of a wide range of wavelengths at high
conversion efficiencies. A theory for ultrashort-pulse
SHG in homogeneous materials was given early in the
development of nonlinear optics5,6 and was recently ex-
tended to SHG in periodic QPM structures.7 Efficient
SHG of picosecond8 and femtosecond9 pulses in periodic
QPM structures has also been demonstrated. Aperi-
odic QPM gratings have been studied with a view to
increasing the wavelength acceptance bandwidth in
continuous-wave SHG10; however, the important impli-
cations of the phase response of these aperiodic QPM
structures have not yet been addressed.

The compression process described in this Letter is
a result of the interplay of two phenomena: group-
velocity mismatch (GVM) between the fundamen-
tal and the second-harmonic pulses, intrinsic to
the nonlinear material, and spatial localization of
second-harmonic conversion of particular frequency
components, a property of aperiodic QPM grat-
ings. GVM causes walk-off of the fundamental
and second-harmonic pulses and therefore implies
that the second-harmonic field generated at each
spatial position in the nonlinear medium undergoes
a particular time delay relative to the fundamental
pulse, as observed at the output of the material.
For chirped fundamental (input) pulses, frequency
components correspond to temporal slices. These tem-
poral slices are frequency doubled at positions in the
material where the grating period quasi-phase
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matches the interaction. By choosing the location of
each spatial frequency component of the grating, one
determines the time delay each temporal slice of the
fundamental pulse experiences relative to the second
harmonic. If the chirp rate (aperiodicity) of the QPM
grating exactly matches the chirp of the input pulse,
then the generated output pulse has all its spectral
components coincident in time, as shown in Fig. 1. It
is therefore compressed.

The equations describing plane-wave undepleted-
pump SHG of ultrashort pulses with pulse lengths
short enough that GVM is a significant effect but for
which intrapulse group-velocity dispersion (GVD) can
be neglected can be expressed as6,7
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with G ­ 2ipdeffyl1n2. Amsz, td is the slowly varying
pulse envelope, lm is the vacuum center wavelength,
nm is the refractive index, and ngm is the group ve-
locity, with m ­ 1 for the fundamental and m ­ 2 for
the second-harmonic pulse. The k vector mismatch,
Dk0 ­ 4psn2 2 n1dyl1, in Eq. (2) is defined for re-
fractive indices evaluated at the center angular fre-
quency of the fundamental pulse v1 and the second
harmonic v2. The nonlinear coeff icient dszd is allowed
to vary in the direction of propagation, z, and is nor-
malized as dszd ­ dszdydeff , where deff is the maximum

Fig. 1. Time-domain representation of pulse compression
during SHG in aperiodic QPM gratings. Different shad-
ings correspond to the optical frequency of each temporal
slice of the fundamental pulse (dashed curve) and to the
optical frequency for which SHG is quasi-phase matched in
each spatial region of the aperiodic QPM grating.
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effective nonlinearity. dszd is zero outside the non-
linear crystal (i.e., for jzj . Ly2, where L is the crys-
tal length). The boundary conditions A1s0, td ; A1std
and A2s2Ly2, td ; 0 apply, where A1std is the funda-
mental pulse envelope at the center of the nonlinear
material. Substituting h1 ; t 2 zyng1 into Eq. (1), one
confirms that A1sz, td ­ A1sh1d. A change of variables
to h2 ; t 2 zyng2 and z ; zd, where d ; fng1

21 2 ng2
21g

is the GVM parameter, and integration of Eq. (2) yield
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where Dsz d ­ sGydddszyddexpsiDk0zydd. Equation (3)
is a convolution integral, and therefore its Fourier
transform can be written as

cA2sVd ­ bDsVd ? dA1
2sVd , (4)

where dA1
2sVd is the Fourier transform of the square

of the fundamental pulse and V ­ v 2 vm is the
transform variable of h2, with vm ­ v1 or vm ­ v2
for the fundamental or second-harmonic pulse, respec-
tively. Returning to the position coordinate z,
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We recognize Eq. (5) as the usual continuous-wave
SHG tuning curve implied by the spatial nonlinear
coeff icient distribution but with the effective phase
mismatch given by Dk ­ Dk0 1 Vd, as would have
been obtained with a Taylor expansion of Dk. Equa-
tions (4) and (5) indicate that the second harmonic
can be interpreted as resulting from the input (funda-
mental) pulse squared and then acted on by a linear
system with a transfer function related to the tun-
ing curve for continuous-wave SHG. With periodic
QPM gratings or homogeneous phase-matched mate-
rials, bDsVd ­ GL sinsVLdy2dysVLdy2d, a real func-
tion that does not affect chirp but can cause spectral
filtering, the frequency domain analog of temporal
walk-off. With aperiodic QPM gratings, bDsVd has
an engineerable phase response and can be used to
cancel the phase structure of an arbitrarily chirped
input pulse or to add any desired additional phase
structure.

We begin analyzing the aperiodic QPM grating by
assuming that it has a slowly varying spatial frequency
that satisfies quasi-phase matching at the center of
the nonlinear material for the center frequency of the
pulse. Then

dszd ­ expf2isDk0z 1 Dg2 z2 1 Dg3 z3 1 · · ·dgrectszyLd ,

(6)

where rectsxd ­ h1 if jxj # 1y2, 0 if jxj . 1y2j.
Linearly chirped pulses can be compressed by use
of only the first dispersive term. The local QPM
period, Llocal, is then given by Llocalszd ­ LQPMy
s1 1 LQPMDg2zypd, where LQPM ­ 2pyDk0. Higher-
order terms can correct the higher-order phase of the
input pulse. Substituting Eq. (6) into Eq. (5) and
taking only Dk0, Dg2 fi 0, we f ind that
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which is the well-known Fresnel integral. When the
bandwidth of bDsVd exceeds that of the pulse spectrum,bDsVd can be accurately approximated over the spec-
trum of the pulse by the result for an infinitely long
crystal,

bDsVd ­ G

q
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where we have neglected a constant phase factor.
From the form of Eq. (8), we f ind that for any input
pulse the second harmonic experiences an effective
GVD of d2y2Dg2 relative to the fundamental.

As an example, we discuss the effect of this transfer
function on a chirped Gaussian input pulse. We cre-
ate the input pulse by dispersing a transform-limited
pulse with 1ye power half-width t0 and real amplitude
A1 in a linear delay line with a GVD of Dp, resulting in
a temporal envelope of
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and thus a pulse length of t ­ ft0
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spectral envelope of the square of the pulse is

cA1
2sVd ­

p
p A1

2 t0

t

q
t0

2 2 iDp

3 exp
∑

2
1
4

st0
2 2 iDpdV2

∏
. (10)

Assuming that L . Lmin, where Lmin > 2jdyt0Dg2j,
so that the simplified Eq. (8) applies, substitution
of Eqs. (8) and (10) into Eq. (4) and inverse Fourier
transformation yield
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where DSH ­ Dpy2 1 d2y2Dg2. The length of this
second-harmonic pulse is tSH ­ fst0y

p
2 d2 1 s

p
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t0d2g1/2. If Dg2 ­ 2d2yDp ; Dg2, opt the chirp on the
input pulse is compensated, resulting in a second-
harmonic pulse, to within a constant phase factor, of
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Note that the minimum second-harmonic pulse length
is t0y

p
2, as is obtained with SHG of unchirped Gauss-

ian pulses in homogeneous materials. Figure 2(a)
shows fundamental and second-harmonic pulse lengths
versus fundamental pulse chirp for two values of Dg2 .

The energy conversion eff iciency for a plane-wave
input is the ratio of the time integrals of the square
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Fig. 2. Normalized input (dashed curve) and output (a)
pulse lengths and (b) conversion efficiencies plotted against
the chirp of the input pulse (expressed in terms of
normalized delay line GVD) for SHG in a chirped QPM
grating for Dg2 ­ 20.05sdyt0d2 (solid curve) and for Dg2 ­
20.033sdyt0d2 (dashed–dotted curve). Pulse lengths are
normalized to the minimum fundamental pulse length, t0.
Eff iciencies are normalized to that of the SHG of unchirped
pulses in homogeneous materials of optimum length, h0PW .

magnitudes of A2std and A1std, which can be written
with Eq. (11) as
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where

h0PW ­ 1.6G2sA1
2t0dt0yd (13b)

is the efficiency for SHG of unchirped pulses in a ho-
mogeneous (or periodic QPM) material of the maxi-
mum length allowed by GVM, Lmax ­ t0yd, as defined
in Ref. 9. The scaling of the eff iciency depends on
which experimental parameters are held constant. If
the chirp of the input pulse, tyt0, is varied while the
chirp of the QPM grating, Dg2 , is fixed, hPW scales with
the peak intensity of the stretched fundamental pulse,
as shown in Fig. 2(b). However, if Dg2 ­ Dg2,opt and
tyt0 .. 1, then hPW ­ 1.4h0PW , which no longer de-
pends on the amount of stretching, tyt0.

Most applications for pulse compression require
high efficiency and therefore confocal focusing of the
fundamental beam in the nonlinear material. In the
near-field limit, the confocal efficiency, hconf , is related
to the plane-wave efficiency when the effective area
of the beam is taken to be Lly2n1. Thus for f ixed
pulse energy and t0, A1

2 in Eqs. (13) is inversely
proportional to the crystal length. Because all other
factors dependent on focusing are identical for chirped
and unchirped QPM, it is convenient to express hconf
normalized to h0conf , the efficiency for SHG of unchirped
pulses in a homogeneous (or periodic QPM) material of
length Lmax. With definitions given above,

hconf yh0conf ­ shPW yh0PW d sLmaxyLmind ­ 0.7t0yt .

(14)

Because many laser systems that generate chirped
pulses are peak power limited and therefore produce
pulse energies roughly in proportion to the pulse
length, this t0yt scaling is not a signif icant limitation.
In particular, because SHG eff iciencies of ,100%ynJ
are available with unchirped QPM in the near infrared
in materials such as periodically poled lithium niobate9

and multinanojoule pulse energies are readily available
from several ultrafast laser systems, SHG in aperiodic
QPM gratings promises to be an eff icient means for
implementing ultrashort pulse compression.

This high efficiency implies that the undepleted-
pump approximation made in Eqs. (1) and (2) can
easily be violated, resulting in complications such as
efficiency saturation and cascading. The neglect of
intrapulse GVD is also an approximation; intrapulse
GVD may cause a shift in Dg2, opt but is unlikely to
cause pulse distortions that cannot be corrected with
optimized aperiod grating structures.

In conclusion, we have shown that aperiodic quasi-
phase-matching gratings can be used for simultaneous
second-harmonic generation and pulse compression.
Arbitrary high-order phase correction can be imple-
mented in a simple, compact, and eff icient device.
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