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Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that

a radically different type of solutions has been described theoretically, but has never been realized experimentally,

that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of

light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic

fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such

flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to

manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of

fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations

upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering

opportunities for telecommunications, sensing, and spectroscopy.

DOI: 10.1103/PhysRevB.97.201409

Electromagnetic waves propagating in free space are de-

scribed by the source-free Maxwells equations. Examples

include the vast majority of waveforms employed in optical

science, such as plane waves, Bessel beams, X-waves, Airy and

Gaussian pulses. The electromagnetic fields of such solutions

are typically transverse to the propagation direction, and they

can be written as a product of space- and time-dependent

functions. However, there is a very different family of exact

solutions to Maxwells equations, where the spatial and tem-

poral structure are inherently linked and cannot be separated.

Early work by Brittingham introduced the so-called focus wave

modes, pulses that propagate without diffraction but carry

infinite energy [1]. Soon after Richard Ziolkowski addressed

this issue by considering superpositions of the original focus

wave modes resulting in finite energy pulses, termed electro-

magnetic directed energy pulse trains (EDEPTs) [2,3]. This

family of pulses and its derivatives include a wide range of

exotic waveforms, such as the modified power spectrum pulse

[2], nondiffracting pulses with azimuthal dependence [4,5],

focused pancake pulses [6–8], and the flying doughnut (FD)

pulses [9].

Flying doughnuts are single-cycle pulses, distinguished by

a doughnutlike configuration of electric and magnetic fields,

which feature strong longitudinal field components parallel to

the pulse propagation direction [see Fig. 1(a)]. Importantly,

due to the unique spatiotemporal coupling, such pulses are

exceptionally broadband. Potential applications of FD pulses

include particle acceleration [9], while nontrivial interactions

with interfaces have been predicted [10]. In particular, owing

to the topological similarity with the toroidal dipolar excitation

and the presence of longitudinal field components, it has been

shown that FD pulses can excite strong toroidal modes in

dielectric particles, as well as anapoles, namely nonradiating

combinations of electric and toroidal dipoles [11].

However, due to the complexity of the electromagnetic

field configuration, broad bandwidth, and complex spatial

and temporal coupling, FD pulses have not been realized to

date. Early works have suggested various generation schemes

based on antenna arrays, where each element in the array is

considered to be driven by an electrical signal with different

amplitude and temporal shape [12,13]. In this case, the electro-

magnetic fields radiated by all antennas in the array combine

in the far-field forming the desired pulse. Nevertheless, such

approaches require active control of individual radiating ele-

ments at time scales comparable to the duration of the pulse.

Hence, they require complex configurations, particularly when

large numbers of radiating elements are required, and cannot

be translated to optical frequencies. Here, drawing on recent

advances in the field of metamaterials for dispersion [14,15]

and wavefront control [16–18], we introduce a method for

the generation of FDs. Our approach does not require active

control of individual radiating elements and can be readily

adapted for the generation of other types of exotic pulses with

complex spatiotemporal structure, such as localized waves

[19] or variants of the FD pulse possessing orbital angular

momentum [4,5].

The FD pulse exists in two different forms termed transverse

electric (TE) and transverse magnetic (TM). In the case of a TE

FD pulse propagating along the z axis and coming into focus

at z = 0, t = 0, the electric and magnetic fields are given by

(in the cylindrical coordinates ρ, θ , z) [9]:

Eθ = −4if0

√

μ0

ǫ0

ρ
q1 + q2 − 2ict

[ρ2 + (q1 + i(z − ct))(q2 − i(z + ct))]3

Hρ = 4if0ρ
−q1 + q2 − 2iz

[ρ2 + (q1 + i(z − ct))(q2 − i(z + ct))]3
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FIG. 1. (a) Schematic of a metamaterial generator of flying doughnut pulses. Concentric rings of azimuthally oriented linear dipole resonators

with spatially and frequency dependent scattering properties lead to the emission of a toroidal single-cycle flying doughnut pulse. The resonators

in different rings exhibit a different frequency dispersion (see insets). (b), (c) The temporal (b) and frequency (c) form of the single-cycle radially

polarized pulse driving the metamaterial generator. Inset to (b) shows the electric field intensity profile of the input pulse in thexy plane (transverse

to the propagation direction). Inset to (c) shows the spectral power of the input pulse at different distances from the pulse center.

Hz = −4f0

ρ2 − (q1 + i(z − ct))(q2 − i(z + ct))

[ρ2 + (q1 + i(z − ct))(q2 − i(z + ct))]3
, (1)

where f0 is an arbitrary normalization constant. The parame-

ters q1 and q2 have the dimensions of length and represent the

effective wavelength of the pulse and the focal region depth,

respectively. Beyond the focal region (z > q2), the FD diffracts

in the same manner as a Gaussian pulse with wavelength q1

and Rayleigh length q2/2. Owing to the duality of Maxwells

equations in free space, the TM solutions are readily obtained

by interchanging electric and magnetic field components. As is

evident from Eqs. (1), the FD pulse is a nonseparable solution

to Maxwells source-free equations meaning that it cannot be

written as a product of a space-dependent and a time-dependent

function. Here, we focus on the generation of TE FD pulses.

The generation of FD pulses presents a number of substan-

tial challenges. For example, the broad frequency spectrum of

the pulse requires a broadband source, while the frequency con-

tent of the pulse varies substantially along the radial direction

[Fig. 1(c)]. We address these challenges by introducing a new

class of gradient metamaterials that allow simultaneous spatial

and temporal wavefront manipulations and are based on low

Q-factor dipole resonators (see Supplemental Material [20]).

We employ a cylindrically symmetric metamaterial array [see

schematic representation in Fig. 1(a)], reflecting the symmetry

of the FD pulse. The array consists of azimuthally oriented

electric dipoles arranged in concentric rings. The spatiotem-

poral coupling is provided by varying the properties of the

metamaterial elements across the radial direction according to

the parameters of the targeted FD pulse (effective wavelength

q1 and Rayleigh length q2). We consider illumination by an

ultrashort Gaussian, azimuthally polarized pulse and calculate

numerically the electromagnetic fields emitted by the array.

Such azimuthally polarized pulses can be readily generated in

the optical range in a number of ways, including beam inter-

ference [21], segmented waveplates [22] and, more recently,

by dielectric metasurfaces [23]. They provide the required

field topology and bandwidth for the generation of FD pulses.

In contrast to the targeted FD pulses, they are space-time

separable and can be described approximately by [24]:

�Ein(ρ,θ,t) = θ̂E0P(ρ)T(t) (2)

with

P(ρ) =
ρe(−ρ/s)2

s
(3)

T(t) = sin(ωint)e
−

ln2(2t/τin)2

2 , (4)

where E0 is an arbitrary constant defining the energy of the

pulse, s is the waist, ωin is the carrier frequency, and τin is

the duration of the pulse. The waist of the pulse is defined

such that it is equal to that of the target FD pulse. The carrier

frequency is matched to the peak frequency of the target FD

pulse, while the time duration of the input pulse is chosen to

provide a single-cycle pulse with a bandwidth close to the FD

pulse bandwidth. The transverse profile of the input pulse is

shown in the inset to Fig. 1(b). In a frequency representation,

the input pulse can be written as:

�Ein(ρ,θ,ω) = θ̂E0P(ρ)�(ω) (5)

with

�(ω) =

∫

eiωtT(t)dt. (6)

The pulse generator for TE FD pulses consists of an array

of 217 azimuthally polarized point dipole scatterers, with pre-

scribed frequency dependent radiation patterns, arranged in ten

concentric rings [see schematic in Fig. 1(a)]. The metamaterial

structure is cylindrically symmetric with dipole scatterers in

the same ring being identical. In particular, dipoles in the ring

of radius ρi respond to an azimuthally polarized electric field

according to their frequency dependent complex polarizability

201409-2
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FIG. 2. Snapshots of the generated (a)–(c) and ideal (d)–(f) FD pulse at three different moments in time (t = 25q1/c, 100q1/c, and 200q1/c)

with q2 = 300q1. Color maps show the modulus squared of the azimuthal (normal to the xz plane) electric field. Electric field units are consistent

between (a)–(c) and between (d)–(f).

αi(ω). Here we are concerned with λ/2 resonators, hence their

spectral response can be described by a Lorentzian centered

at frequency ωo,i with a decay rate γi . These parameters can

be controlled by the length and width of the dipole resonators

(see Ref. [20], Fig. S1). The peak frequency and bandwidth of

the dipole scatterers vary radially following the profile of the

target FD pulse. As a result, the dipoles near the center emit

shorter pulses at higher frequencies [see top inset to Fig. 1(a)]

compared to the dipoles at the periphery of the array [see

bottom inset to Fig. 1(a)]. Our calculations are based on a point

dipole model, where each resonator in the array is replaced

by a point dipole scatterer with the same resonant polariz-

ability (obtained by COMSOL modeling, see Supplemental

Material [20]).

A dipole at position �ri = (ρi,θi,0) in the array (assuming the

array lies in the z = 0 plane) is excited by the electric field of the

input azimuthally polarized pulse at this site, �Ein(ρi,θi,ω) =
�Ein,i(ω). Taking into account the cylindrical symmetry of the

system and the fact that both the dipole resonators and the

incident electric field are oriented azimuthally, the induced

electric dipole moment is:

�pi(ω) = αi(ω) �Ein,i(ω). (7)

At each frequency, ω, the field scattered by dipole �pi at an

observation point ro is calculated by:

�Esc,i(�ro,ω) =
k2eik| �Ri |−iωt

4πǫ0| �Ri |3
�Ri × �pi(ω) × �Ri, (8)

where k = ω/c, c is the speed of light in vacuum, and
�Ri = �ro − �ri . The total field at point �ro scattered by all dipoles

in the array is:

�Esc(�ro,ω) =
∑

i

�Esc,i(�ro,ω). (9)

After a Fourier transform, we obtain the scattered pulse in

the time domain in the form:

�Esc(�ro,t) =
1

2π

∫

e−iωt �Esc(�ro,ω)dω. (10)

Following the procedure outlined above, we target a TE FD

pulse with effective wavelength q1, Rayleigh length q2 =
300q1, which is focused at z0 = 0 and t0 = 0. The results of

our calculations are presented in Fig. 2, where the azimuthally

polarized electric field is presented both for the ideal (target)

FD pulse and the metamaterial-generated pulse at three dif-

ferent moments in time. As shown in Fig. 2(a), shortly after

the excitation of the metamaterial surface with the radially

polarized pulse, a few-cycle pulse is emitted with a wavefront

that features strong side lobes and a tail close to the center of the

pulse. However, upon propagation these inhomogeneities of

the wavefront are rapidly damped due to diffraction [Fig. 2(b)],

and after a propagation distance of z = 200q1, the pulse

acquires a toroidal shape consisting of a single cycle [Fig. 2(c)].

Moreover, the values of the electric field intensity for prop-

agation distances between z = 100q1 and z = 200q1 remain

almost constant, indicating the weakly diffracting behavior of

the generated pulse. As the propagation distance increases, the

electric field profile of the generated pulse [Figs. 2(a)–2(c)]

converges to that of the target pulse [Figs. 2(d)–2(f)] with both

pulses diffracting in a similar way. An important difference

here, however, is that the ideal FD pulse experiences shape

changes due to Gouy phase shifts, with the pulse duration

increasing from 1 to 1 1/2 cycles. Such changes are much

less pronounced in the case of the generated pulse.

One of the fascinating properties of the FD pulse is its

space-time nonseparability, which leads to a spatially varying

frequency spectrum. This is in sharp contrast to the case of

the input driving pulse, which is space-time separable and its

frequency spectrum is uniform throughout the pulse wavefront.

In our approach, the space-time nonseparability is induced

by the gradient structure of the metamaterial generator. The

frequency spectra of the generated and target pulses are shown

in Fig. 3 at three different propagation distances. Close to

the metamaterial generator [Fig. 3(a)], the frequency spectrum

of the generated pulse deviates significantly from that of the

target pulse [Fig. 3(d)] due to the presence of strong near-field

contributions. However, the space-time nonseparability can

already be seen in the central part of its spectrum, which
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FIG. 3. Spatially varying spectra of the generated (a)–(c) and ideal (d)–(f) FD pulse at three different distances from the metamaterial

generator (z = 25q1, 100q1, and 200q1) with q2 = 300q1. Color maps show the modulus squared of the azimuthal (normal to the xz plane)

electric field.

begins to resemble the spectrum of the target FD. As the

pulses propagate further (z = 100q1), the similarity between

their spectra increases [Figs. 3(b) and 3(e)], although, due to

diffraction, the side lobes of the generated pulse can still be

clearly observed at the periphery. At a propagation distance of

z = 200q1, these side lobes are all but absent and the generated

pulse assumes a form very close to that of an FD pulse. Here,

the peak frequency, νmax, in the spectrum of the generated pulse

is strongly position dependent varying from νmax ≃ 0.35c/q1

close to the center of the pulse to νmax ≃ 0.2c/q1 at the outer

areas of the pulse. We would like to note that the metamaterial

FD generator does not introduce any changes in the topology

of the pulse: Both the input radially polarized pulse and the

output FD pulse exhibit a singularity at their respective centers.

Rather, the main role of the FD generator is to introduce

coupling of the spatial and temporal structure of the pulse.

To quantify the similarity of the generated FD pulse to its

target form, we introduce a frequency dependent figure of merit

(FOM) based on the spatial overlap of the azimuthal electric

fields of the two pulses:

FOM(ν) =

∣

∣

∣

∣

∣

∣

∫

Egen(ν)Eideal(ν)dr3

√

∫

|Egen(ν)|2dr3
∫

|Eideal(ν)|2dr3

∣

∣

∣

∣

∣

∣

. (11)

Owing to the normalization of FOM, values close to null

indicate low similarity between the pulses, whereas values

close to unity indicate good match between the pulses.

In Fig. 4(a), we present FOM at three different propaga-

tion distances, corresponding to the frequency spectra in

Figs. 3(a)–3(c). Close to the metamaterial generator [black

dashed line in Fig. 4(a)], the FOM exhibits strong spectral

mismatch, especially for high frequency components. This is a
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FIG. 4. (a) Frequency dependent figure of merit (FOM), defined as the spatial overlap of the generated pulse and the ideal (target) pulse

at each frequency [Eq. (11)]. Dashed black, dash-dot blue, and solid red lines correspond to three different propagation distances z = 25q1,

100q1, and 200q1, respectively. (b) FOM calculated and averaged over all frequencies for different q1 and q2 parameters of the ideal FD pulse.

The white circle marks the values of q1 and q2 parameters initially targeted in our study.

direct result of the appearance of side lobes, which significantly

distort the wavefront of the generated pulse. However, at longer

propagation distances [red solid line in Fig. 4(a)], the FOM

value exceeds 0.7, which indicates a high degree of similarity

between the generated and target pulses both in terms of

topology as well as spectral content. To further demonstrate

that the generated pulse resembles closely the target FD pulse

(rather than just an FD pulse), we performed a parametric scan,

calculating the spatial overlap between the two pulses while

varying the values of q1 and q2. As shown in Fig. 4(b), the

highest values of FOM occur close to the parameters of the

target FD, hence validating our approach.

In conclusion, we have introduced a type of metamaterials

that allows complex spatiotemporal manipulations of elec-

tromagnetic waves and have demonstrated numerically the

generation of flying doughnut pulses. Our approach is based

on metamaterial arrays of electric dipole resonators with orien-

tation, resonance frequency, and linewidth that vary spatially

throughout the array, and hence FD generators can be readily

realized with plasmonic or dielectric metasurfaces. In the latter

case, in particular, near unity transmittance and reflectance has

been recently observed [23,25], which enables the realization

of FD generators with high conversion efficiency. FD pulses

constitute a new type of broadband information carrier con-

fined both in time and space, and as such they can be employed

in telecommunications applications. Here, the nonseparability

of the FD pulse time and space dependence should allow

the transmission of information over FD-specific channels,

which can be distinguished from the conventional case of

space- and time-separable pulses. Moreover, the space-time
nonseparability property of FD pulses enables the encoding of

information about the spectral (or, equivalently, temporal) form

of the pulse, into its wavefront, and vice versa. This opens up

intriguing properties for the spectroscopy and characterization

of materials properties, where one could acquire spectral

information simply through imaging the pulse wavefront,

eliminating the need for spectrometers or monochromators.

Conversely, information about the spatial shape of the pulse

can be obtained through spectral measurements. Our approach

provides a route towards the generation of FD pulses at arbi-

trary frequency ranges (in particular THz/optical), which will

be crucial in enabling such spectroscopic applications. Finally,

such pulses can be considered as the propagating counterparts

of the recently observed localized toroidal excitations in matter

[26]. They have also been shown to excite toroidal dipole and

anapole modes in dielectric particles [10,11], providing thus

the basis for toroidal-specific forms of spectroscopy.
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