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Abstract

Pulse oximetry has been one of the most significant technological advances

in clinical monitoring in the last two decades. Pulse oximetry is a non-

invasive photometric technique that provides information about the arterial

blood oxygen saturation (SpO2) and heart rate, and has widespread clinical

applications. When peripheral perfusion is poor, as in states of hypovolaemia,

hypothermia and vasoconstriction, oxygenation readings become unreliable or

cease. The problem arises because conventional pulse oximetry sensors must

be attached to the most peripheral parts of the body, such as finger, ear or toe,

where pulsatile flow is most easily compromised. Since central blood flow

may be preferentially preserved, this review explores a new alternative site, the

oesophagus, for monitoring blood oxygen saturation by pulse oximetry. This

review article presents the basic physics, technology and applications of pulse

oximetry including photoplethysmography. The limitations of this technique

are also discussed leading to the proposed development of the oesophageal

pulse oximeter. In the majority, the report will be focused on the description of

a new oesophageal photoplethysmographic/SpO2 probe, which was developed

to investigate the suitability of the oesophagus as an alternative monitoring site

for the continuous measurement of SpO2 in cases of poor peripheral circulation.

The article concludes with a review of reported clinical investigations of the

oesophageal pulse oximeter.
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1. Introduction

Pulse oximetry has been one of the most significant technological advances in clinical

monitoring in the last two decades (Alexander et al 1989, Bowes et al 1989, Anonymous

2003, Tremper and Barker 1989, Welch 2005). Pulse oximetry is a non-invasive photometric

technique that provides information about the arterial blood oxygen saturation (SpO2) and
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heart rate, and has widespread clinical applications. The use of pulse oximeters has been

described in many settings: hospital, outpatient, domiciliary use and in veterinary clinics.

In the early 1990s pulse oximetry became a mandated international standard for monitoring

during anaesthesia following the publication in 1986 of the Harvard minimum standards for

monitoring. Kelleher (1989) reviewed 220 references in an article published in 1989. In a

follow-up review in 1992, Severinghaus and Kelleher (1992) found more than 500 new reports

between 1989 and October 1991. Nearly 5000 further reports on pulse oximetry have been

published since October 1991.

Although generally reliable, pulse oximeters do fail, in particular, in patients undergoing

prolonged procedures such as cardiac, vascular, reconstructive or neuro-surgery, at just the time

when the measurement of blood oxygen saturation would be clinically of most value (Ralston

et al 1991, Reich et al 1996). Many of their limitations, both physiological and technical,

will be discussed in this review. The hypothesis underlying this review is that a more central

site, such as the oesophagus, will remain adequately perfused in the above-mentioned clinical

situations, giving the possibility of monitoring SpO2 at the oesophagus when conventional

peripheral oximetry fails.

This review will first outline the basic physics, technology and applications of pulse

oximetry including photoplethysmography. The limitations of this technique are also discussed

leading to the proposed development of the oesophageal pulse oximeter. In the majority, the

report will be focused on the description of a new oesophageal photoplethysmographic/SpO2

probe, which was developed to investigate the suitability of the oesophagus as an alternative

monitoring site for the continuous measurement of SpO2 in cases of poor peripheral circulation.

The technological developments of such a pulse oximeter and the results from clinical

investigations will be presented.

2. Photoplethysmography and pulse oximetry

Photoplethysmography is a non-invasive optical technique widely used in the study and

monitoring of the pulsations associated with changes in blood volume in a peripheral vascular

bed (Roberts 1982, Dorlas and Nijboer 1985, Higgins and Fronek 1986, Lindberg and

Oberg 1991). Whether the term ‘plethysmography’ is a misnomer is a matter of debate,

yet the title has received general consent. Challoner (1979) made an excellent review of

photoplethysmography. As discussed in Challoner’s review, Hertzman in 1937 first coined

the term plethysmograph. It was pointed out above that there is not total agreement that this

is a strictly accurate name. An etymological definition would suggest that a plethysmograph

records volume; thus, volumetric changes are recorded in the blood vessels of an organ.

However, whether photoplethysmography measures only blood volume changes is open to

question. The origin of the photoplethysmographic (PPG) signal has been the subject of

continuing debate (Challoner 1979, Roberts 1982).

In photoplethysmography the emitted light, which is made to transverse the skin, is

reflected, absorbed and scattered in the tissue and blood. The modulated light level which

emerges, is measured using a suitable photodetector. It is possible for the hand or finger

to be directly transilluminated where the light source, usually in the region of 800 nm to

960 nm, is on one side of the skin and the detector on the other side. This method, also

called transmission mode, is limited to areas such as the finger, the ear lobe or the toe (Nijboer

et al 1981, Mendelson and Ochs 1988). However, when light is directed down into the skin a

proportion of this is backscattered so that it emerges from the skin adjacent to the light source.

The light source and the photodetector can be positioned side by side. This method, also

called the reflection mode, allows measurements on virtually any skin area (Nijboer et al 1981,



Figure 1. Photoplethysmographic (PPG) waveform as measured by transmission through tissue.

Mendelson and Ochs 1988). The intensity of the transmitted or reflected light which reaches

the photodetector is measured and the variations in the photodetector current are assumed

to be related to blood volume changes underneath the probe (Nijboer et al 1981, Roberts

1982). These variations are electronically amplified and recorded as a voltage signal called

the photoplethysmograph. The photoplethysmographic signal (figure 1) is divided into two

components:

(i) A dc PPG component, a relatively constant voltage offset of which the magnitude is

determined by the nature of the material through which the tissue passes (skin, cartilage,

venous blood, etc).

(ii) A pulsatile or ac PPG component synchronous with the heart rate is often assumed to

be related to the arterial blood volume pulse. The ac PPG pulse shapes are indicative of

vessel compliance and cardiac performance.

Pulse oximeters, as will be discussed in more detail in the following sections, estimate

arterial blood oxygen saturation by shining light at two different wavelengths, red and infrared,

through vascular tissue. In this method, the ac pulsatile PPG signal associated with cardiac

contraction is assumed attributable solely to the arterial blood component. The amplitudes

of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation

because of differences in the light absorption of oxygenated and deoxygenated haemoglobin

at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc

photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated.

Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial

pulsations, which are detected as photoplethysmographic signals (Mendelson and Ochs 1988,

Webster 1997).

3. Physics and technology of pulse oximetry

Theoretical descriptions of pulse oximetry often begin with a discussion of the Beer–Lambert

law of light absorption (Webster 1997). It is beyond the scope of this review to describe in

detail the Beer and Lambert approach, as it has been discussed and explained in detail in

the literature (Webster 1997). It will be useful though to note that by itself this approach is

incomplete, as it does not adequately account for the effects of a physical phenomenon called

light scattering present within the tissue region under investigation. Biological tissue is a

highly light-scattering medium and little information about its optical properties is available



Figure 2. Extinction coefficients (Lmmol−1 cm−1) of the four most common haemoglobin

species; oxyhaemoglobin (HbO2), deoxyhaemoglobin (Hb), carboxyhaemoglobin (COHb) and

methemoglobin (MetHb) at the wavelengths of interest in pulse oximetry.

(Shimada et al 1984, Delpy 1988, Wray et al 1988, Schmitt 1991, Shvartsman and Fine 2003,

Finlay and Foster 2004). In conventional practice, the effects of light scattering are accounted

for by empirically calibrating the sensor and oximeter, and this appears to work well, but only

up to a certain point (Fine and Weinreb 1995, Webster 1997). Assumptions inherently made

during an empirical calibration are valid only for a limited range of saturations, and become

invalid under extreme conditions. Nevertheless, the Beer–Lambert law approach helps to

develop an understanding of the absorbance of light as it passes through living tissue and why

and how pulse oximetry works.

3.1. Wavelengths for pulse oximetry

Pulse oximeters determine arterial blood oxygen saturation by measuring the light absorbance

of tissue at two different wavelengths and using the arterial blood pulsation to differentiate

between absorbance of arterial blood and other absorbers (skin, bone, venous blood). A

good choice of wavelength is where there are large differences in the extinction coefficients

of deoxyhaemoglobin and oxyhaemoglobin (Mannheimer et al 1997a) (figure 2). Another

criterion for the wavelength selection is the relative flatness of the absorption spectra around the

chosen wavelength (Moyle 1994, Mannheimer et al 1997b). The two conventional wavelengths

used in pulse oximetry are 660 nm (red) and 940 nm (near infrared).

3.2. Calibration of commercial pulse oximeters

It could be considered that accurate values of SpO2 can be obtained by application of

simultaneous equations describing the Beer–Lambert law, but this is not the case, and most

modern pulse oximeters apply the ‘red: infrared ratio’ (R) to a ‘look-up table’ (Moyle 1994).

R(ratio) =
ac660/dc660

ac940/dc940

. (1)



Figure 3. Empirical relationship between arterial saturation and ‘red:infrared’ ratio (R).

The manufacturers calibrate pulse oximeters empirically by correlating the measured ratio

(R) of ac/dc signals from the red and infrared photoplethysmographs obtained from a large

group of healthy volunteers with arterial oxygen saturation (SaO2) values generally greater

than 70%. Blood SaO2 values are obtained directly from a standard in vitro CO-oximeter. This

calibration procedure involves desaturating the subjects by asking them to breathe hypoxic

gas mixtures and collecting optical measurements of blood samples at different steady-state

oxygenation levels. Consequently, different brands of pulse oximeters may display slightly

different values, depending on the internal calibration of the oximeter. A typical relationship

between the ratio (R) and SpO2 is shown in figure 3.

One of the limitations of this traditional calibration method is the limited range of oxygen

saturation that can be acquired. Ethical issues prevent intentional desaturation of healthy

subjects below a certain point due to the risk of hypoxic brain damage.

3.3. Technical developments of commercial pulse oximeters

A typical commercial pulse oximeter consists of an opto-electronic probe that operates either

in reflectance or in transmittance mode and a microprocessor-controlled electronic system

(figure 4). The technology of pulse oximetry and the advancements in signal processing for

eliminating motion artefact or dealing with low amplitude PPGs is well reviewed (Pologe

1987, Wukitsch et al 1988, Severinghaus 1993, Webster 1997, Goldman et al 2000). This

section describes briefly the main blocks comprising the pulse oximeter system, such as the

analogue and digital processing, the microprocessor and the front display (figure 4).

The pulse oximeter probe has a single photodetector receiving signals from the infrared

(IR) and red (R) emitters. The currents through the emitters are controlled by the emitter driver,

which comprises a pair of current sources (R and IR) and a multiplexer. Emitter drive currents

may vary between 40 mA and 120 mA. The multiplexer turns the red and infrared emitters on

and off at a rate of approximately 325 Hz in sequence (but varies with different manufacturers)

(Webster 1997). The multiplexed PPG signals from the photodetector are received by a

transimpedance amplifier that converts the current output into a signal voltage. The mixed PPG

signals are separated into red and infrared with the use of a demultiplexer. The signals are then
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Figure 4. Basic block diagram of a commercial transmission mode pulse oximeter.

converted by an analogue-to-digital converter (ADC) into a form suitable for manipulation by

the microprocessor. The digitized information is processed by the microprocessor to compute

the blood oxygen saturation from the ratio (R) derived from the signal at the red wavelength

compared with the signal at the infrared wavelength. Pulse oximeters usually display blood

oxygen saturation (SpO2) in per cent together with heart rate, and photoplethysmograph.

4. Pulse oximeter probes and their applications

4.1. Pulse oximetry probes

The probe of the original pulse oximeter as described by Yoshiya et al (1980) was based on

a bulky fibre optic cable. The fibre optic cable in this implementation was used only as a

guide to conduct light from a quartz halogen lamp to the remote measurement side and to

conduct the light transmitted through the tissue back to the photodetector. The light source

and the photodetector were both housed inside the oximeter. Narrow-bandpass interference

optical filters were used in combination with a mechanical chopper to select properly the red

and infrared wavelengths (Mendelson 1992). An improved design of a non-invasive pulse

oximeter probe was introduced in the United States in the early 1980s (figure 5).

This much simpler design, which dominates most of the commercial pulse oximeters

nowadays, consists of a pair of small red and infrared emitters and a single highly sensitive

silicon photodetector mounted inside either a reusable spring loaded clip (figure 5), or a

disposable adhesive wrap (Mendelson 1992). A flexible cable connecting the probe and the

pulse oximeter unit carries electric power to the emitters and the signal from the photodetector.

A synopsis of different types of pulse oximetry probes used today in the clinical setting is

presented below.

4.1.1. MRI probes. When a pulse oximeter is used during magnetic resonance imaging

(MRI), the very high magnetic field strengths involved with this imaging modality may

give erroneous readings or no readings at all (Wahr et al 1995). To overcome the

problem manufacturers have produced pulse oximeters where all of the electronic and optical

components are in the housing of the main unit. The light energy is directed to and from the

patient by optical fibres. The complete pulse oximeter is kept beyond the influence of the

magnetic field (approximately 3 m) of the MRI scanner (Webster 1997).



Figure 5. Typical reusable spring loaded clip pulse oximetry probe.

4.1.2. Foetal probes. This is an area of continued research since no probe yet is used in

routine foetal monitoring (Dildy et al 1994, Dildy 2004). Several designs of foetal pulse

oximetry probes have been developed over the last few years. The probes are guided into the

cervix and must be placed beyond the presenting part and the transcervical region (just beyond

the cervix). The probe is placed on the temple of the foetus and therefore has less interference

from hair (Webster 1997).

4.1.3. Reusable probes. Generally, all probes with nonadhesive or disposable adhesive

sensors are reusable probes. The main advantage of reusable pulse oximetry probes is the low

use cost involved. However, reusable probes require cleaning between patients to minimize

the risk of cross contamination (Kelleher 1989).

4.1.4. Disposable probes. In the past few years, many pulse oximeter manufacturers have

produced disposable probes. One of the advantages of disposable probes is the elimination of

any form of cross contamination between patients since disposable probes are used on a single

patient.

4.2. Applications of pulse oximetry

Pulse oximeters, as has been discussed above, are non-invasive, easy to use and readily

available. Due to these characteristics, they have an abundance of clinical applications. This

may be seen as an overstatement, but as more and more pulse oximeters are coming in use,

more and more hypoxaemic events are being seen as precursors of pathological events. Some

of the main areas in which they are used are anaesthesia, patient transport, childbirth, neonatal

and paediatric care, dentistry and oral surgery, sleep studies and many other applications.

Some of them are described briefly.

4.2.1. Anaesthesia. The pulse oximeter is most often and most importantly used when

anaesthesia is given. Several studies have shown that desaturation is often a problem



during induction of anaesthesia (Drummond and Park 1984). This is the most critical

time of general anaesthetic because of the side effects of the induction agents, onset of

neuromuscular blockade, loss of protective reflexes, mechanical problems with the airway,

respiratory depression and problems with tracheal intubation.

4.2.2. Emergency medicine. Anaesthetists were quick to see the enormous benefit to the

safety of the patient of using pulse oximeters, and doctors, nurses and medical technicians

involved in emergency care soon recognized the advantage of pulse oximetry (Lambert and

Crinnion 1989). A retrospective study by Anderson et al (1988) showed that failure to

recognize hypoxaemia has been identified as one of the major avoidable causes of death

in trauma patients. Pulse oximeters are now regularly used in accident and emergency

departments and in the pre-hospital care of the sick and injured.

4.2.3. Postoperative recovery. The period between the end of surgery and when the patient

is fully conscious is often when hypoxaemia is most likely to go unnoticed. The greatest risk

during this period is respiratory failure. For these reasons the pulse oximeter must be used

regularly in the postoperative recovery phase (Tyler et al 1985, Pullerits et al 1987, Kelleher

1989, Moyle 1994).

4.2.4. Childbirth. The process of labour and delivery is a stressful time for both the mother

and the foetus. If the foetus does not have sufficient metabolic reserve to withstand this

ordeal, it is at risk of hypoxia and of sustaining subsequent brain damage (Minnich et al 1990).

Many difficulties have been encountered when attempting to monitor foetal pulse oximetry.

The obvious problem is that the foetus is not accessible. The potential application of pulse

oximetry to foetal monitoring during labour has been demonstrated by several groups (Gardosi

et al 1991, Klauser et al 2005).

4.2.5. Neonatal and paediatric care. Low and high arterial oxygen levels can both be

damaging to newborn infants. Infants who are hypoxic may develop organ damage, and

hypoxia may also cause pulmonary hypertension (Moyle 1996). The great concern of neonatal

paediatricians is to prevent retinopathy of prematurity, which is caused by high levels of retinal

oxygenation and may lead to blindness (Moyle 1994). It is, therefore, essential to monitor

accurately the oxygen levels of sick and premature newborn infants.

4.2.6. Dentistry and oral surgery. Many papers have recommended the use of pulse oximetry

during general anaesthesia for dental procedures, pointing out that pulse oximeters should be

applied to all patients even for short procedures (Hovagim et al 1989).

4.2.7. Sleep studies and exercise. Many people become desaturated during sleep or heavy

exercise. The cause of desaturation during sleep is due to a disorder known as sleep apnoea

(Webster 1997). Desaturation can occur during heavy exercise due to poor ventilation or

chronic obstructive pulmonary disease (COPD). The use of pulse oximetry during sleep and

exercise aids in the diagnosis of these respiratory problems (Trang et al 2004).

4.3. Future applications of pulse oximetry

Although pulse oximetry seems to be at the peak of its development, there is always room

for further improvement and optimization. Many of these improvements relate to specific



applications. Improvements, which will increase the performance of pulse oximetry during

transport, are to lengthen the battery life in portable units. Reducing the occurrence of false

alarms would be beneficial in all applications, but especially during long-term monitoring when

staff cannot always be in the room. The application of foetal pulse oximetry is an exciting

on-going research by many groups (Dildy 2001, Reuss 2004). In this unique application,

sensor attachment to the foetal scalp must be improved. Other potential applications of pulse

oximetry have been suggested for monitoring oxygen saturation via the retinal fundus in the

eye (De Kock et al 1993, Nelson et al 2005). The direct application of pulse oximetry to

an organ, such as the liver, the kidney, the gut or the colon, will be a very useful application

in determining organ SpO2, regardless if the patients SpO2 as measured from an extremity

(finger) is normal (Denobile et al 1990, Yilmaz et al 1999, Crerar-Gilbert et al 2002).

5. Limitations of pulse oximeters

5.1. Calibration assumptions

Initially, the conversion from absorbancy ratios to arterial oxygen saturation as described in

previous sections is based on experimentally derived calibration curves (figure 3). These

curves are based on measurements in healthy young volunteers after induction of hypoxaemia

(Moyle 1994, Sinex 1999). An unavoidable limitation is that pulse oximeters can only be

as accurate as their empirical calibration curves. Understandably, researchers were limited

in the degree of haemoxaemia inducible in these volunteers, to a SaO2 of approximately

75% to 80%. Therefore the shape of the curve (figure 3) below these levels (75% to 85%)

must be extrapolated, with obvious implications for the accuracy of pulse oximetry at low

saturation levels. Studies showed such great inaccuracy and bias at low oxygen saturation that

manufacturers revised early calibration curves and software (Severinghaus and Naifeh 1987).

More studies, however, continued to show significant bias, increasing as oxygen saturation

decreases, although it has been justifiably pointed out that few, if any, clinical treatment

decisions will hinge on whether the oxygen saturation is actually 50% or 60% (Kelleher

1989).

5.2. Dyshaemoglobinaemias

Many substances in the blood can interfere optically with pulse oximetry. This interference

generally takes the form of false absorbers, or components besides deoxyhaemoglobin or

oxyhaemoglobin that will absorb light within the red and near-infrared wavelengths used

in pulse oximetry. The most significant potential false absorbers in the circulation are

carboxyhaemoglobin (COHb) and methaemoglobin (MetHb) (Kelleher 1989, Richardson

2005). Being two-wavelength devices, pulse oximeters can only deal with two haemoglobin

species (deoxyhaemoglobin and oxyhaemoglobin). Therefore, both COHb and MetHb will

cause errors in the pulse oximeter readings (Barker and Tremper 1987, Barker et al 1989).

When the presence of these Hb species is suspected, pulse oximetry should be supplemented

by in vitro multiwavelength CO-oximetry.

5.3. Intravenous dyes

Intravenous dyes are known to have potentially profound effects on pulse oximetry readings,

resulting in falsely low measured oxygen saturations. Methylene blue, with very high

absorbance at 660 nm, causes spurious decrease in SpO2 (Kessler et al 1986, Scheller et al

1986, Sidi et al 1987).



5.4. Anaemia

Anaemia appears to adversely affect the accuracy of pulse oximetry, although the mechanism

is unclear, and it may do so only in the presence of hypoxia. In theory, anaemia should

not affect pulse oximetry at all, as the ratio of relative absorbances should be preserved and

unchanged by changes in total haemoglobin concentration within the sample (Severinghaus

and Koh 1990). A study of non-hypoxic human patients with acute anaemia showed good

accuracy with pulse oximetry (Jay et al 1994).

5.5. Skin pigmentation and nail polish

Skin pigmentation has shown variable effects on pulse oximetry (Volgyesi and Spahr-Schopfer

1991, Bickler et al 2005). Primarily, dark pigmentation appears to make adequate light

penetration more difficult, with significantly more signal detection failures. More concerning

are some studies of pigmentation effects which have shown overestimation of oxygen

saturation, both in models and in human subjects (Ries et al 1989). Similarly, there is

evidence for the effects of nail polish on pulse oximetry, but little consensus on occurrence or

degree (Kataria and Lampkins 1986, Cote et al 1988, Chan et al 2003).

5.6. Electromagnetic interference

Electromagnetic interference (EMI) can affect the accuracy of pulse oximeters and other

medical devices. It may be generated by many sources, mostly man made but it may also

result from atmospheric events.

5.7. Interference due to electrocautery

Electrocautery can interfere with pulse oximetry by artifactually decreasing SpO2 readings,

or by setting off false alarms (Wahr et al 1995). The cause is the wide spectrum of radio

frequency emissions picked up directly by the photodetector in the pulse oximeter probe

(Block and Detko 1986). New signal extraction technology (MASIMO) claims to be more

accurate in the presence of electrocautery (Wahr et al 1995).

5.8. Signal artefact

Most commonly, problems in pulse oximetry arise from signal artefact. Signal artefact

results from false sources of signal or from a low signal-to-noise ratio. False signal can

arise from detection of non-transmitted light (ambient sources or optical shunt) or from non-

arterial sources of alternating signal. A low signal-to-noise ratio results from inadequate

signal complicated by an excess of physiological or technical noise. The oximetry system

as outlined in the previous sections assumes that the sum of the light absorbed and the light

transmitted is equal to the incident light, with no other light loss or gain affecting the detector.

Ambient light, however, is potentially a major source of interference (Fluck et al 2003).

Recognizing this, designers of pulse oximeters divided the emitter and detector activities into

three sensing periods, cycling at hundreds of times per second. Two of these periods use light

emitted by the emitters at each of the two incident wavelengths. In the third period neither

emitter is activated and the photodiode detector measures only ambient light, the influence

of which is subsequently eliminated from the emitter-illuminated sensing periods. However,

cases of ambient light interference still occur (Hanowell et al 1987). Implicated sources

include fluorescent lighting, surgical lamps, fiber optic instruments and sunlight. Covering



the probe with an opaque shield offers a simple solution. Optical shunting occurs when light

from the emitters reaches the photodetector without passing through an arterial bed. This

occurs most commonly with inappropriate probe selection, as when a digit probe is placed

on the ear lobe, or with probe misplacement (Barker et al 1993, Webster 1997). In both

ambient light interference and optical shunt, the result is the addition of false signal to both

wavelengths emitted (Kelleher and Ruff 1989). Non-arterial sources of alternating signal

most commonly result from motion artefact. Motion artefacts, such as during shivering,

seizure activity or exercise, are usually recognized by false or erratic heart rate displays or

by distorted photoplethysmographic waveforms (Severinghaus and Kelleher 1992, Hanning

and Alexander-Williams 1995). When interference does occur from motion artefact it again

tends to be additive into both the red and infrared wavelength channels (Pologe 1987), with

a resultant absorbance ratio (R) becoming nearer to 1 and an SpO2 approaching 85% (see

figure 3).

Although different oximeter models employ different data processing, the saturation

values acquired per second are typically averaged over a period of 2–16 s before a reading

is given, serving in part to limit the impact of motion artefact (Kidd and Vickers 1989).

Newly developed signal processing algorithms by MASIMO technologies have demonstrated

successfully that can minimize or eliminate erroneous estimation of SpO2 due to movement

artefact (Goldman et al 2000).

5.9. Inadequate pulsatile signals

Apart from the physiological and technical limitations of pulse oximeters described in this

review, they have also been reported to fail in patients with compromised peripheral perfusion

(Severinghaus and Spellman 1990, Freund et al 1991, Moller et al 1993, Reich et al 1996).

Pulse oximetry is a pulse-dependent technique, and any significant reduction in the amplitude

of the pulsatile component of the photoplethysmographic signal can lead to dubious values for

blood oxygen saturation (SpO2) or complete failure. Hence, pulse oximeters require adequate

peripheral perfusion to operate accurately. When peripheral perfusion is poor, as in states

of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable

or cease (Palve and Vuori 1989, Palve 1992a, 1992b). Such clinical situations occur, for

example, after prolonged operations, especially hypothermic cardiopulmonary bypass surgery.

The problem arises because conventional pulse oximetry sensors must be attached to the most

peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily

compromised. Measurements at sites other than the finger or ear, such as the forehead and

nose, give no improvement in poorly perfused patients (Rosenberg and Pedersen 1990, Clayton

et al 1991). Thus, SpO2 readings are often unobtainable at just the time when they would be

most valuable.

Therefore, the question becomes what to do in such cases, particularly those in which

the oximeter is unable to find an adequate pulse at any of the available peripheral sites.

There is, therefore, a need to find a means of solving this frustrating and serious clinical

problem.

6. Oesophageal pulse oximetry

In an attempt to overcome the difficulties associated with conventional measurements of

arterial blood oxygen saturation during conditions of poor peripheral perfusion and pulsation,

the oesophagus has been proposed as a potential measurement site on the hypothesis that



Figure 6. The reflectance transoesophageal probe (oesophageal probe is an 18-gauge stethoscope

with a temperature sensor at the distal tip and an oximetry sensor approximately 7 cm proximally).

perfusion may be better preserved at this central site. The oesophagus is perfused directly by

main arteries. The cervical oesophagus is supplied mainly by branches of the inferior thyroid

artery. The chief blood supply of the thoracic oesophagus is either by branches of the bronchial

arteries, or direct from the aorta, and there are branches of the left gastric and inferior phrenic

arteries running along the surface of the lower oesophagus for 2–3 cm above the diaphragm

(Romanes 1972, Marieb 1992).

Atlee and Bratanow (1995) proposed to use the upper oesophagus as a measurement

site. They presented results of blood oxygen saturation measurements obtained at the

cricopharyngeus muscle in the upper oesophagus (14 ± 1 cm from incisors) using a reflectance

‘transoesophageal’ probe where the optical components of the oximetry sensor were

incorporated into a traditional anaesthesia oesophageal stethoscope (figure 6). Technical

details of the probe or processing system are not available in the literature.

Clinical studies using the ‘transoesophageal’ probe compared SpO2 measurements with

simultaneous SpO2 measurements from conventional pulse oximetry probes (Nellcor N-200:

N-200F) and arterial oxygen saturation (SaO2) measurements using an in vitro CO-oximeter

in 16 anaesthetized adult patients. The results showed that the ‘transoesophageal’ probe

underestimated or overestimated SpO2 values depending on the geometry of the sensor

(Prielipp et al 1996, Borum 1997). Another limitation of this design was the difficulty

in placing the probe accurately at the cricopharyngeus muscle, as the procedure required

considerable expertise. It was also found that electrocautery interference resulted in more

frequent signal dropout and delayed signal reacquisition than for a peripheral pulse oximetry

probe. The successful use of the ‘transoesophageal’ pulse oximeter has been demonstrated

in a single patient study in which peripheral oximetry was unobtainable (Borum 1997). A

more recent study (Prielipp et al 2000) used the upper oesophageal pulse oximeter in a

group of ten patients undergoing coronary bypass surgery and compared their results with

two commercial finger pulse oximeters (Criticare 504-US and Nellcor N-200). The study,

however, could not confirm that the upper oesophageal pulse oximeter was superior to

conventional peripheral pulse oximeters. Vicenzi et al (2000) used the same probe on a study

of 40 severely traumatized or diseased intensive care patients. They compared SpO2 values

from the upper oesophagus with those from a finger pulse oximeter (Hewlett-Packard). The



Figure 7. Reflectance oesophageal pulse oximetry probe.

authors concluded that assuming correct positioning of the ‘transoesophageal’ probe, readings

from the upper oesophagus were more consistent with SpO2 values from the finger pulse

oximeter.

All the studies using the ‘transoesophageal’ probe did not present any investigations into

the morphology or the quality of PPG signals at the cricopharyngeus muscle or at any other

depths within the oesophagus.

To overcome the drawbacks of the upper oesophageal pulse oximeter, and the difficulties

which are associated with attempts to measure arterial blood oxygen saturation in the poorly

perfused peripheral circulation, Kyriacou (2001) describes a new oesophageal pulse oximetry

system. This new system comprised a miniaturized oesophageal pulse oximeter probe and a

custom made processing unit which allows the detailed investigation of photoplethysmographic

signals and SpO2 values within the whole depth of the oesophagus in healthy and critically ill

patients, and this will be the subject of the following sections.

7. Technical developments of the oesophageal pulse oximeter

7.1. Oesophageal pulse oximeter probe

A new reflectance oesophageal pulse oximeter probe was constructed (Kyriacou et al 1999,

2002c). This new probe comprised two infrared and two red surface mount emitters and

a surface mount photodetector (figure 7). The peak emission wavelengths of the infrared

and red emitters used were 880 nm and 655 nm, respectively. The oesophageal probe with

attached cable was designed to fit into a plastic transparent disposable stomach/oesophageal

tube (Pennine Healthcare, Derby, UK). The oesophageal tube used was a size 20 French gauge

(external diameter: 6.66 mm, internal diameter: 4.66 mm, length: 780 mm, without x-ray

detectable line) mainly used for gastric lavage (washout) or other gastric surgical procedures.

A finger reflectance probe, optically and electronically identical to the oesophageal probe has

also been developed to facilitate comparisons between the two sites (oesophagus and finger)

(Kyriacou et al 2002c).



Figure 8. Main block diagram of the oesophageal processing system including the identical finger

channel.

7.2. Oesophageal processing system: hardware

A processing system was constructed to pre-process, record and display oesophageal and

finger PPG signals and estimate SpO2 values on a laptop personal computer (figure 8). Both

channels were identical and only the oesophageal will be described.

7.2.1. Pre-isolation circuitry of the processing system. The master clock and timing generator

circuit (figure 9) of the processing system was used to generate the timing signals for switching

(ON/OFF) the red (R) and infrared (IR) emitters. These timing control signals were also used

for synchronizing the demultiplexer that separated the mixed (red and infrared) PPG signals

at the output of the current-to-voltage (I–V ) amplifier circuit into red and infrared PPG

signals. The emitters were driven by a pair of identical constant current sources one for each

wavelength. Analogue switches were used to time multiplex the red and infrared emitters at

75 Hz (Kyriacou 2001, Kyriacou et al 2002c).

The mixed PPG signal from the output of the I–V amplifier was demultiplexed to separate

the PPG signals into two independent channels (red and infrared). Low-pass filters were used

to eliminate the high frequency switching noise from the demultiplexer. The red and infrared

PPG signals were then passed through the isolation barrier of the analogue isolation amplifier

to the post-isolation circuitry of the processing system.



Figure 9. Oesophageal pulse oximeter processing system.

7.2.2. Post-isolation circuitry of the processing system. Two analogue isolation amplifiers

were used (figure 9). The infrared and red PPG signals were split into independent channels

(infrared ac and dc and red ac and dc) using active filters (Kyriacou 2001, Kyriacou et al

2002c).

7.3. Oesophageal processing system: software

All PPG output signals were digitized (100 samples per second) by a 16-bit data acquisition

card on a laptop personal computer. The digitized PPG signals were analysed by a Virtual

Instrument (VI) implemented in LabVIEW (National Instruments Corporation, Austin, TX).

This VI read the oesophageal and finger PPG data, converted them into a spreadsheet format

and saved them into a file specified by the user and displayed the signals in real time on the

screen of the laptop computer (Kyriacou 2001, Kyriacou et al 2002c). Algorithms were also

developed in the VI for the online estimation of oesophageal SpO2. The algorithm used to

estimate oesophageal SpO2 calculated the ratio (R) (see equation (1)) of the quotients of the

ac and dc PPG amplitudes at the red (655 nm) and infrared (880 nm) wavelengths. The ratio

(R) was then used to compute the arterial oxygen saturation (SpO2) using the equation

SpO2 = 110 − 25R. (2)

This equation is a linear approximation to an empirical calibration curve established by

measurements on a large group of healthy volunteers with arterial blood oxygen saturation

(SaO2) values generally greater than 70% (Webster 1997). Figure 10 depicts a typical VI

screen of the developed oesophageal pulse oximeter processing system incorporating a finger

and an ECG channel.



Figure 10. Virtual instrument (VI) screen of the oesophageal pulse oximetry system.

The following sections will describe the various clinical investigations performed using

the above-described oesophageal pulse oximeter to investigate for the first time PPG signals

and SpO2 values from the whole length of the oesophagus from healthy and critically ill

patients.

8. Clinical investigation 1: comparison of oesophageal and finger PPGs in healthy

anaesthetized patients

8.1. Clinical method

Twenty consented healthy (ASA 1 or 2) adult patients who were to undergo tracheal intubation

as a routine part of general anaesthesia were studied (Kyriacou et al 1999, Kyriacou 2001).

Following induction of general anaesthesia the oesophageal probe was advanced under direct

vision into the oesophagus until the end of the probe was between 25 cm and 30 cm from the

upper incisors (figure 11). The identical reflectance finger probe was also placed on the index

finger of the patient.

8.2. Results

Figure 12 shows typical red and infrared ac PPG traces obtained from the middle third of

the oesophagus and the finger of an anaesthetized patient with the mechanical ventilator

temporarily switched off (Kyriacou et al 1999). When the ventilator was switched on, the



Figure 11. The oesophageal PPG probe contained within the stomach tube is seen placed in the

oesophagus via the mouth.

Figure 12. Typical PPG traces for the red and infrared wavelengths from the middle third of the

oesophagus and the finger of an anaesthetized patient with the mechanical ventilator temporarily

switched off.

oesophageal PPG traces were modulated by an artefact synchronous with the approximately

5 s period of the ventilator, as shown in figure 13.

Figure 14 shows the means, standard deviations (SD) of the peak-to-peak amplitudes of

the red and infrared ac PPGs from the oesophagus and the finger of the 20 patients studied

(Kyriacou et al 1999).

Statistically significant differences were found between the PPG amplitudes in the mid-

oesophagus and the PPG amplitudes at the finger at the infrared wavelength. There were



Figure 13. PPG traces for the red and infrared wavelengths from the middle third of the oesophagus

and the finger of an anaesthetized patient with the mechanical ventilator switched on.

Figure 14. Mean peak-to-peak PPG signals (±SD) at red and infrared wavelengths from the

mid-third of the oesophagus and the finger.

no significant differences between the PPG amplitudes in the mid-oesophagus and the PPG

amplitudes at the finger at the red wavelength. The amplitudes of the oesophageal PPGs were

on average approximately three times larger than those obtained simultaneously from a finger

for both wavelengths.



9. Clinical investigation 2: ‘PPG mapping of the oesophagus’

9.1. Clinical method

A new clinical study was performed by Kyriacou et al (2001) to investigate in more detail the

quality of PPG signals within the whole length of the oesophagus. The preliminary objective

of this study was to characterize PPGs in healthy (ASA 1) anaesthetized patients undergoing

low risk surgery and to determine whether there would be sufficient PPG amplitudes at red

and infrared wavelengths throughout the oesophagus to make pulse oximetry feasible.

Thirteen adult elective surgery patients were recruited for this study. In this group of

patients, the oesophageal probe was advanced into the oesophagus until the end of the probe

was 35 cm from the upper incisors. PPG traces from the oesophagus at both wavelengths were

recorded for approximately 5 min at this depth. Measurements were repeated at 30, 25, 20

and 15 cm from the upper incisors (Kyriacou et al 2001).

9.2. Results

Measurable ac PPG traces at both wavelengths were obtained in the oesophagus at all five

depths in all patients. Figure 15 depicts typical traces from one patient for the five depths.

Figure 16 gives the mean ±SE of the ac PPG amplitudes at both wavelengths at the

five oesophageal depths for the 13 patients. The ac PPGs in the mid to lower oesophagus

(depths of 20 cm or greater) have significantly larger mean amplitudes at both wavelengths

than those in the upper oesophagus (15 cm). The maximum mean oesophageal amplitude for

each wavelength occurs at the depth of 25 cm. The mean value of the ac PPG amplitude at

25 cm is a factor 4.8 higher than that at 15 cm at the infrared wavelength and a factor of 6.7

higher at the red wavelength.

Statistically significant differences between the PPG amplitudes in the upper oesophagus

(15 cm) and the amplitudes at all other depths at the infrared wavelength were found. This

was also true for the red wavelength except that there is no significant difference between the

amplitudes at the depths of 15 cm and 35 cm (Kyriacou et al 2001).

10. Clinical investigation 3: oesophageal PPG signals and blood oxygen saturation

measurements in cardiothoracic surgery patients

10.1. Clinical method

This study (Kyriacou et al 2002b, 2002c, 2003) investigated and compared oesophageal and

finger PPGs and SpO2s in patients undergoing high-risk operations, such as hypothermic

cardiothoracic bypass surgery, in whom conventional pulse oximetry might fail due to

poor peripheral circulation. Forty nine adult patients were recruited for this study

(Kyriacou et al 2003). Having previously found (Kyriacou et al 1999, 2001) that PPG

signals in the mid oesophagus (20–25 cm from the upper lip) are of large amplitude, the

oesophageal pulse oximeter probe was advanced into the oesophagus at 30 cm from the

lips. Photoplethysmographic signals were observed at various depths in the oesophagus

until the site that provided the highest amplitude PPG signals and small ventilator artefact

(synchronous modulation of the oesophageal PPG traces at the frequency of the ventilator)

was determined. During the oesophageal measurements, values of blood oxygen saturation

from a commercial transmission type finger pulse oximeter (Marquette, Tram 200A; Marquette

Electronics, Milwaukee, WI) were also recorded.



Figure 15. PPG signals at red and infrared wavelengths from five oesophageal depths. The infrared

PPG trace is at the top and has the larger amplitude in each case. The amplitudes of both red and

infrared signals increase as the depth increases from 15 cm reaching a maximum at 25 cm.

Monitoring with the oesophageal pulse oximeter was performed intermittently (Kyriacou

et al 2003) during the various periods of the operation (during induction of anaesthesia, prior

to commencing cardiopulmonary bypass, after bypass and postoperative in the intensive care

unit). During the above recording periods, samples of arterial blood were taken and analysed

by an Instrumentation Laboratories IL 482 CO-oximeter or an Instrumentation Laboratories IL

BG-1400 Blood Gas Analyser (BGA) (Instrumentation Laboratories, Lexington, MA, USA).
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Figure 16. Mean (std error) PPG peak-to-peak amplitudes at two wavelengths and five oesophageal

depths.

10.2. Results

10.2.1. Results from the investigation of PPG signals in cardiac patients. Measurable

PPG traces at red and infrared wavelengths were obtained in the oesophagus in all 49

patients (Kyriacou et al 2002b). Figure 17 depicts typical traces from one patient undergoing

cardiopulmonary bypass surgery during the various monitoring periods as described above

(probe depth 17 cm from the lips). Figure 17(a) shows oesophageal and finger ac PPGs,

obtained at both wavelengths, and ECG signals recorded prior to skin incision. The signals in

figure 17(b) were recorded just before sternotomy. In figure 17(c) the signals were recorded

after the chest was open. Figure 17(d) shows the transition from before bypass to being on

cardiopulmonary bypass. When the heart–lung machine was switched on (indicated in the

figure as ‘on bypass’) the pulsatile PPG signals disappeared within the next 20–25 s. The

ECG trace on bypass shows a variable high frequency activity as expected. Figures 17(e) and

(f) show PPG and ECG signals after bypass, during closing of the chest and postoperatively

in the intensive care unit, respectively.

The chosen oesophageal monitoring depths ranged from 14 cm to 28 cm, measured from

the upper lip (mean ± SD: 17.8 ± 3.3 cm). The optimal oesophageal monitoring depth for each

patient was considered the depth at which oesophageal PPGs with a good signal-to-noise ratio

and acceptable ventilator artefact (synchronous modulation in the form of a sinusoidal baseline

shift in time with the approximately 5 s period of the ventilatory cycle) could be obtained

(Kyriacou et al 1999, 2001). The mean ± SD of the ac PPG amplitudes at both wavelengths

at the different oesophageal monitoring depths for all cardiothoracic patients were within the

same ranges as those obtained in an earlier PPG amplitude study at five oesophageal depths

in healthy anaesthetized patients (Kyriacou et al, 2001, 2002b).
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Figure 17. Oesophageal, finger and ECG traces obtained from an anaesthetized patient undergoing

cardiopulmonary bypass surgery (probe depth 17 cm from lips): (a) prior to skin incision,

(b) in operating theatre before sternotomy, (c) after sternotomy, (d) during bypass transition (before

bypass, on bypass), (e) closing the chest, (f) in intensive care unit. O/IR/AC—oesophageal infrared

ac PPG, O/R/AC—oesophageal red ac PPG, F/IR/AC—finger infrared ac PPG, F/R/AC—finger

red ac PPG.



Blood Gas Analysis SaO
2
%

90 92 94 96 98 100

O
e

s
o

p
h

a
g

e
a

l 
S

p
O

2
%

90

92

94

96

98

100

Figure 18. Plot of SpO2 measurements obtained from the oesophageal pulse oximeter (OES SpO2)

against SaO2 from blood gas analysis (BGA SaO2) for 49 patients. The solid line represents the

best fit linear regression line: (OES SpO2) = 12.3 + 0.88 (BGA SaO2), r2
= 0.74, SEE = 0.86,

n = 155, p < 0.001. The dashed line represents identity.

10.2.2. Comparisons of blood oxygen saturation measurements from the oesophageal and

commercial finger pulse oximeters with those from blood gas analysis. A total of 155 sets of

data points from the 49 patients were used for the regression analysis (Kyriacou et al 200c). A

plot of SpO2 readings obtained from the reflectance oesophageal pulse oximeter (OES SpO2)

against the SaO2 values from the blood gas analyser (BGA SaO2) is shown in figure 18. The

equation of the best fit linear regression line is: (OES SpO2) = 12.3 + 0.88 (BGA SaO2)

(the solid line in figure 18); r2
= 0.74; standard error of estimate (SEE) = 0.86; p < 0.001.

The dashed line represents the line of identity. The median (interquartile range [range]) of

the differences between the blood oxygen saturation values obtained with the oesophageal

pulse oximeter and those obtained from blood gas analysis (OES SpO2 − BGA SaO2) is 0.00

(−0.30, 0.3 [7.07]).

Figure 19 shows a plot of SpO2 readings obtained from the commercial finger pulse

oximeter (CF SpO2) against the SaO2 values from the blood gas analyser. The equation of the

best fit linear regression line was: (CF SpO2) = 26.8 + 0.73 (BGA SaO2); r2
= 0.39; SEE =

1.48; p < 0.001. The dashed line represents the equal value line. The median (interquartile

range [range]) of the differences between the blood gas analyser and the commercial finger

pulse oximeter results (BGA SaO2 − CF SpO2) is 0.10 (−0.40, 1.07 [10.60]).

10.2.3. Comparisons of blood oxygen saturation measurements from the oesophageal and

commercial finger pulse oximeter with those from CO-oximetry. In a subset of 17 patients,

arterial blood was also analysed by CO-oximetry, providing 36 sets of data for regression

analysis.

A plot of oesophageal SpO2 readings against the SaO2 values from the CO-oximeter is

shown in figure 20. The equation of the best fit linear regression line is: (OES SpO2) = 10.1 +

1.1 (CO-ox SaO2) (the solid line in figure 20); r2
= 0.83; SEE = 0.71; p < 0.001. The

dashed line represents the equal value line. The mean (± SD) of the differences between the

oesophageal pulse oximeter SpO2 values and the corresponding CO-oximeter readings (OES

SpO2 − CO-ox SaO2) is 0.73 ± 0.72%.
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Figure 19. Plot of SpO2 measurements obtained from the commercial finger pulse oximeter

(CF SpO2) against SaO2 from blood gas analysis (BGA SaO2) for 49 patients. The solid line

represents the best fit linear regression line: (CF SpO2) = 26.8 + 0.73 (BGA SaO2), r2
= 0.39,

SEE = 1.48, n = 155, p < 0.001. The dashed line represents identity.
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Figure 20. Plot of SpO2 measurements obtained from the oesophageal pulse oximeter (OES SpO2)

against SaO2 from the CO-oximetry (CO-ox SaO2) for 17 patients. The solid line represents the

best fit linear regression line: (OES SpO2) = 10.1 + 1.1 (CO-ox SaO2), r2
= 0.83, SEE = 0.71,

n = 36, p < 0.001. The dashed line represents identity.

Figure 21 shows a plot of commercial finger SpO2 readings against the SaO2 values from

the CO-oximeter. The equation of the best fit linear regression line is: (CF SpO2) = 4.9 + 0.9

(CO-ox SaO2); r2
= 0.55; SEE = 1.26; p < 0.001. The dashed line represents the equal value

line. The mean and standard deviation of the differences between the commercial finger pulse

oximeter and the CO-oximeter readings (CF SpO2 − CO-ox SaO2) are 0.61 ± 1.23%.
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Figure 21. Plot of SpO2 measurements obtained from the commercial finger pulse oximeter

(CF SpO2) against SaO2 from the CO-oximetry (CO-ox SaO2) for 17 patients. The solid line

represents the best fit linear regression line: (CF SpO2) = 4.9 + 0.9 (CO-ox SaO2), r2
= 0.55,

SEE = 1.26, n = 36, p < 0.001. The dashed line represents identity.
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Figure 22. The difference between blood oxygen saturation values from the commercial finger

pulse oximeter (CF SpO2) and SpO2 readings obtained from the reflectance oesophageal pulse

oximeter (OES SpO2) plotted against their mean for 49 patients.

10.2.4. Comparisons of blood oxygen saturation measurements from the oesophageal and

commercial finger pulse oximeters. The 155 sets of blood oxygen saturation data points

from 49 patients were used to compare the oesophageal and the commercial finger pulse

oximeters. Since neither can be regarded as a ‘gold’ standard, the between-method differences

analysis as suggested by Bland and Altman (1986) was used to compare these two pulse

oximeters. Figure 22 is a plot of the difference between the commercial finger (CF) and

oesophageal (OES) SpO2 values against their mean. As no obvious relation between the

difference and the mean is revealed in figure 22, a calculation of the bias, estimated by the

mean difference (d) and the standard deviation of the differences (s) was performed to assess

the degree of agreement between the two methods. The bias (d) (commercial pulse oximeter

minus oesophageal pulse oximeter) was −0.3% and the standard deviation (s) was 1.5%. The



Table 1. Blood oxygen saturation measurements from the oesophageal pulse oximeter and blood

gas analysis in patients in whom peripheral pulse oximetry failed.

Patients BGA SaO2% Oesophageal SpO2% Finger SpO2%

1 97.0 97.1 Failed

2 97.7 97.0 Failed

3 98.7 98.5 Failed

99.0 99.0 Failed

4 97.9 97.9 Failed

5 98.9 98.8 Failed

98.0 98.9 Failed

limits of agreement for the SpO2 data (commercial finger and oesophageal) were

d − 2s = −0.3 − (2 × 1.5) = − 3.3%

d + 2s = −0.3 + (2 × 1.5) = 2.7%.

10.2.5. Failure of commercial pulse oximeter. Of the 49 patients included in the study, it was

found that five patients (10.2%) had one or more periods of at least ten consecutive minutes,

during which the commercial finger pulse oximeter failed to record pulsatile PPG signals and

display SpO2 values, despite being correctly positioned on the finger. The oesophageal pulse

oximeter operated successfully throughout these periods of finger monitoring failure. In four

of these patients, the finger pulse oximeter failed postoperatively in the intensive care unit

(within the first half hour after completion of the surgery), and in the fifth patient, the failure

occurred in the operating theatre before bypass. Results from arterial blood gas analysis

performed during these periods of failed finger pulse oximetry are shown in table 1, and

demonstrate good agreement (mean difference = 0.0%) between the oxygen saturation values

obtained from the oesophageal pulse oximeter and the blood gas analyser.

11. Clinical investigation 4: oesophageal blood oxygen saturation measurements in

burned patients

The oesophageal pulse oximeter developed by Kyriacou (2001) has also been used in a small

clinical study on burned patients (Pal et al 2005). In this group of patients, standard sites

for monitoring SpO2 such as fingers or toes may be affected by the burn or they might be

unsuitable due to the use of tourniquets during surgery. Seven patients with major burns were

recruited for the study. The total body surface area burnt ranged between 28% and 90%.

The oesophageal PPG signals recorded from this group of patients were of good quality

and large amplitude. A plot of SpO2 readings obtained from the reflectance oesophageal

pulse oximeter (OES SpO2) against the SaO2 values from the CO-oximeter is shown in figure

23. The equation of the best fit linear regression line is: (OES SpO2) = 33.278 + 0.666

(CO-ox SaO2) (the solid line in figure 23), r2
= 0.49, standard error of estimate (SEE) = 0.64,

p < 0.001. The dashed line represents the line of identity.

12. Clinical investigation 5: oesophageal pulse oximetry in neonatal and paediatric

patients

The oesophageal pulse oximeter probe developed by Kyriacou (2001) has been modified

(Kyriacou et al 2002a) to fit into a conventional disposable transparent stomach tube, 12

French gauge. Such a size stomach tube is used routinely in anaesthetized babies and children.
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Figure 23. Plot of SpO2 measurements obtained from the oesophageal pulse oximeter against SaO2

from the CO-oximetry for seven patients. The solid line represents the best fit linear regression

line: (OES SpO2) = 33.278 + 0.666 (CO-ox SaO2), r2
= 0.49, standard error of estimate

(SEE) = 0.64, p < 0.001. The dashed line represents the line of identity.

Figure 24. Typical PPG traces obtained from a neonatal human oesophagus at two wavelengths,

infrared (top trace) and red (bottom trace).

In this pilot study, five patients were studied in the intensive care unit (Kyriacou et al 2002a).

The oesophageal SpO2 probe was advanced through the mouth to a maximum depth of 15 cm

from the lips. During the oesophageal measurements, values of blood oxygen saturation from

a commercial foot pulse oximeter were also recorded.

Measurable PPG traces of good quality were obtained in the oesophagus in all patients.

Figure 24 depicts typical PPG signals from the oesophagus of a 3.2 kg, 5 day old neonate. An

Altman and Bland (1983) plot of the difference between blood oxygen saturation values from

the commercial pulse oximeter and those from the oesophageal pulse oximeter against their

mean showed that the bias and the limits of agreement between the oesophageal and toe pulse

oximeters were −0.3% and −1.7% to 1.0%.

13. Other applications of the oesophageal pulse oximeter

13.1. Introduction

The oesophageal pulse oximeter (Kyriacou 2001) has also been used to investigate

photoplethysmographic signals in human visceral organs (Crerar-Gilbert et al 2002). The



Figure 25. Reflectance oesophageal pulse oximeter probe placed on the surface of the human

bowel.

hypothesis underlying that investigation is that blood oxygen saturation from an extremity

such as the finger may not accurately reflect splanchnic oxygen saturation values. In many

critically ill patients, poor tissue oxygenation is due to disordered regional distribution of

blood flow, despite high global blood flow and oxygen delivery. Splanchnic ischaemia may

ultimately lead to cellular hypoxia and necrosis and may well contribute to the development

of multiple organ failure and increased mortality (Lemaire et al 1996). Rapid detection of a

significant change in tissue oxygenation could enable earlier and more successful intervention

and restoration of splanchnic blood flow and should improve survival in critically ill patients

(Lemaire et al 1996).

Techniques used to measure tissue oxygenation such as polarographic oxygen electrodes,

luminescent oxygen probes, magnetic resonance spectroscopy and positron emission

tomography remain research tools (Lemaire et al 1996). Manual fluid tonometry for estimating

intestinal hypoxia is expensive, intermittent, operator dependent and time consuming; the

recently introduced automatic device is more convenient but is even more expensive (Lemaire

et al 1996). Methods such as laser Doppler, Doppler ultrasound and intravenous fluorescein

have been previously explored to assess intestinal ischaemia in animals (Pearce et al 1987,

Ferrara et al 1988, Denobile et al 1990, Macdonald et al 1993). Many of these techniques

are complex and expensive and none of them directly measures oxygenation. Therefore, there

is a need for a simple, reliable and continuous method for estimating visceral organ SpO2.

Animal studies have also shown that pulse oximetry could be used to monitor intestinal oxygen

saturation (Macdonald et al 1993). The feasibility of estimating blood oxygen saturation in

humans has been demonstrated by a study using a commercial transmission pulse oximeter

on the colon (Ouriel et al 1988). However, there are difficulties in applying commercial pulse

oximeters to measurements in abdominal human organs because the probes are unsuitable and

are not easily sterilizable. Moreover, none of the currently available probes could be left in

the abdomen for prolonged postoperative monitoring.

As a preliminary to constructing a suitable pulse oximeter for monitoring abdominal organ

SpO2, the oesophageal pulse oximeter has been used for the measurement of PPG signals from

the surface of the bowel, liver and kidney. The aim was to develop techniques to facilitate



Figure 26. PPG traces from simultaneous measurements at various abdominal organs (bowel,

kidney and liver) and the finger.

measurements on patients with compromised splanchnic circulation, which will be useful both

intraoperatively and in intensive care.
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Figure 27. AC peak-to-peak amplitudes, mean (± SD), at two wavelengths from the three

abdominal organs and the finger.

13.2. Clinical method

Twelve adult patients undergoing elective laparotomy under general anaesthesia were studied

(Crerar-Gilbert et al 2002). The oesophageal probe was inserted into a sealed and sterilized

disposable size 20 French gauge gastric tube. The gastric tube containing the probe was then

applied gently to the surface of each abdominal organ so that the emitted light was reflected

from its surfaces (figure 25). The identical reflectance finger probe was placed on the finger of

the patient. Simultaneous PPG traces from each abdominal organ and the finger were recorded

for approximately 2 min.

13.3. Results

Crerar-Gilbert et al (2002) reported that measurable PPG signals were always obtained from

the surface of the bowel in all 12 patients, depending on intra-operative accessibility from the

liver (eight patients) and the kidney (six patients). PPG signals with similar amplitudes and

reasonably high signal-to-noise ratios were obtained from all investigated abdominal organs

(figure 26). The PPG amplitudes from both hollow and solid abdominal organs were, on

average, approximately the same as those obtained simultaneously from a finger for both

wavelengths, although there is considerable variability.

Figure 27 shows the mean peak-to-peak PPG amplitudes and standard deviations from

all investigated abdominal organs and the finger. Paired t-tests showed that there were no

statistically significant differences between the PPG amplitudes recorded from the abdominal

organs and those from the finger (Crerar-Gilbert et al 2002).

14. Conclusions

Pulse oximetry is a non-invasive photometric technique that provides information about

the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical



applications. Pulse oximeters estimate arterial oxygen saturation by shining light at two

different wavelengths, red and infrared, through vascular tissue. In this method, the ac

pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed

attributable solely to the arterial blood component. The amplitudes of the red and infrared ac

PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the

light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From

the ratios of these amplitudes, and the corresponding dc photoplethysmographic components,

arterial blood oxygen saturation (SpO2) is estimated.

Although generally reliable, pulse oximeters do fail in patients with compromised

peripheral perfusion. Pulse oximetry is a pulse-dependent technique, and any significant

reduction in the amplitude of the pulsatile component of the photoplethysmographic signal

can lead to dubious values for blood oxygen saturation (SpO2) or complete failure. Hence,

pulse oximeters require adequate peripheral perfusion to operate accurately. When peripheral

perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation

readings become unreliable or cease. Such clinical situations occur, for example, after

prolonged operations such as cardiac, vascular, reconstructive or neuro-surgery. The problem

arises because conventional pulse oximetry sensors must be attached to the most peripheral

parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised.

The introduction of the oesophageal pulse oximeter was found to be reliable and accurate in

cases of poor peripheral perfusion where peripheral pulse oximeters failed to estimate oxygen

saturation. These results show that in general the arterial blood circulation to the oesophagus

is less subject to peripheral vasoconstriction and decreased PPG amplitudes than are the

peripheral sites used for pulse oximetry such as the finger. Therefore, the human oesophagus

not only can be used as an alternative SpO2 monitoring site but also can be used as a possible

SpO2 monitoring site in cases of poor peripheral circulation where peripheral pulse oximeters

fail. This novel monitoring site, the oesophagus, can also find applications in patients who

have burns or other serious injuries where the oesophagus may be the only available site for

pulse oximetry monitoring. In addition, the application of the oesophageal pulse oximeter in

hollow and solid abdominal organs supported the hypothesis that pulse oximetry may be used

as a blood oxygen saturation monitoring technique for abdominal organs for intraoperative

and prolonged postoperative monitoring.

In summary, the use of this novel pulse oximeter has proven for the first time that the

whole of the oesophagus is a reliable and accurate monitoring site for blood oxygen saturation

in healthy patients and in sick patients in whom conventional pulse oximetry might fail due to

poor peripheral circulation.
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