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A statistical theory of broadband single pulse propagation in a random ocean is presented. The mutual 
coherence function of the received signal is derived using an analysis based upon coupled mode theory. As 
propagation range increases, the combined effects of modal dispersion and random fluctuations spread the 
pulse and decompose it into a series of multiple arrivals. 
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INTRODUCTION 

Theories of acoustic signal propagation that view the 
ocean as a randomly perturbed medium are becoming 
increasingly successful in accounting for experimental 
observations, •'7 with the work of Flatte, Dashen, Munk, 
and Zachariasen • being particularly notable. Most of 
the work to date has dealt with cw propagation. How- 
ever, pulse propagation has also been studied and the 
basic physical mechanisms underlying both problems 
are well understood. 

The aim of this paper is to analyze the problem of 
pulse propagation in a random ocean using a normal 
mode decomposition. The approach combines features 
of the work of Porter and Leslie 8'9 who have used nor- 

mal mode theory to study pulse propagation in a non- 
random channel with the work of Dozier, Tappert, 6'? 
and others 4 who have used normal mode analysis and 

the ensuing coupled mode equations to study cw pro- 
pagation in a random ocean. The use of Fourier trans- 
forms and normal mode decomposition introduces the 
effect of the sound speed profile (including bottom ef- 
fects if relevant) into the analysis in a direct and sys- 
tematic way. 

Sections I and II will be devoted to formulating the 
problem and deriving an asymptotic expression for the 
mutual coherence function for the complex pressure. 
Only a brief outline of the stochastic analysis will be 
given since the theory is well documented else- 
where. •ø'•2 Section III will develop some physical im- 
plications of the results. 

I. PROBLEM FORMULATION 

Let c(r,z) denote the ocean sound speed profile at 
range r and depth z. Consideration will be restricted 
to single pulse statistics. Therefore, in adopting a 
time-independent profile model, we have tacitly as- 
sumed that the ocean remains "frozen" during the tran- 
sit time of the pulse. In particular, we shall adopt the 
representation 

c'2(r,z) = c•'[•:(z) +½•(r,z)], (1) 

where c o is the channel axis sound speed, •;(z) is the 
term arising from the deterministic profile variation, 
½ is a small real parameter, and •(r,z) is a zero mean, 
unit-variance random field modeling the sound speed 
fluctuations. 

A point source is assumed to be located at r =0, 
z =z s, and is assumed to emit a signal having time de- 
pendence rs(t). Typically, rs(t)=exp[-t2/(2T•o) +/COot] , 
where coo = 2•rfo denotes the radian carrier frequency. 
The wave equation for the complex pressure p(r,z,t) 
then becomes 

0 2 a 0 2 0 2 6(r) 
or 2 p +r '• -- p + p - c '2 = - 6½ - zs)fs. or 2rr (2) 

In addition to (2), an outgoing wave condition as r-oo 
as well as suitable boundary conditions at the ocean 
surface and bottom must be imposed. However, the 
precise form of these constraints will not be impor- 
tant for the discussion that follows. 

Let co denote radian frequency and k =co/c o represent 
wavenumber relative to the axis sound speed. Let • 
andes denote Fourier transforms, e.g., 

•(r,z,k)-- (2•r) 't/2/•p(r,z,t)e'inCotdt. (3) . 

Then, the transformed version of (2) becomes 

0 2 a a •' 6(r) 
or 2 • +r '• --• + • +k•(• +(•)3 =- 6(z or ' 

(4) 

We shall first consider (4) for r>0 and, subsequently, 
account for the source by a matching procedure. If the 
cylindrical spreading factor is removed by defining 
•(r,z,k)•r•/•(r,z,k), and if the near-field term •/ 
(4•) is neglected, the equation for • is 

a 2 a 2 

We sh•[[ now exp•nd • in the norm•[ modes of the un- 
perturbed depth-dependent problem. Let •,(•, h) •nd 
•(h) denote the (re•I-v•iued) •th ei•enfunction •nd 
ei•env•Iue of the depth-dependent problem. (We i•nore 
the possibility of r•di•tion modes •nd •ssoci•ted con- 
tinuous spectrum.) These "tr•pped-mode" ei•enfunc- 
tions s•tisfy the ei•env•Iue equation 

-•.•., •=•, , ..., • •.+•½)•.- • 2 (6) 
together with appropriate boundary conditions and an 
orthonormality relation, i.e., fck,k•dz =6m,. At any 
given frequency (or wavenumber), only a finite number 
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of the ft. are real, say 1 •< n •< N(k). These correspond 
to propagating modes, modes that transport acoustic 
energy. The remaining infinity of modes are evanes- 
cent or cut off. These modes decay exponentially with 
range; they do not transport energy and will be ig- 
nored. 

Use of the representation •(r,z , k) =>--• ,c,(r,k)½,(z, k) 
in (5) leads to the following set of coupled mode equa- 
tions: 

d 2 2 

dr •. cm(r,k) +•mc•(r,k) 
N(•) 

k)c.r,k), m (7) 

where modal orthonormality has been exploited, and the 
evanescent modes have been discarded. The rapid 

phase variation is now eliminated by transforming to 
"slowly varying" modal coefficients as follows- 

cm--i•/2(Ame -•mr +Bme i$m•) , m=l,... ,N. 
(8) 

e -i• m r d___ A + e i• m r d dr m •rr B m = 0 , 
When Eqs. (8) are used in (7), a complex 2N-dimen- 
sional first order linear system of ordinary differential 
equations is obtained, the dependent variables being 
Am(r,k) andB•(r,k), 1 •<rn•<N(k). Note thatA m and Bin 
correspond, respectively, to slowly varying forward 
and backward propagating modal coefficients; they are 
constant in range if ½ =0 (i.e., no random sound speed 
fluctuations). We shall now assume that backscattering 
is negligible and set B •(r, k)--0. This forward scat- 
tering approximation is commonly adopted; it can be 
justified for the particular problem of interest. •' The 
resulting system of equations for the forward-propa- 
gating A • modal coefficients then becomes 

dAm(r,k) =-i½ exp{i[/a•(k) -/•.(k)]r} dr 

x qm•r,k)A•r,k), 

•1 •(r, k) = k•-/{2•(k )[J•(k) ]• 

x •.(r, k) , m = l, . . . , N(k) . 

(9) 

To complete the specification of (9), initial conditions 
A•(O,k) must be specified. These conditions, dictated 
by the source, will be obtained by a matching proce- 
dure. The basic underlying assumption will be that the 
transmitted acoustic field reaches a farfield confi- 

guration before the random inhomogeneities can exert 
a significant effect. 

In the absence of random pe•rturbations (i.e., ½ =0), 
an outgoing wave solution for ½ can be obtained by 
separation of variables. The resulting series solution 

$(r,z,k)= • a,k)r•/•'Ho(•"[•,(k)r]½,z,k). (10) 

The orthonormality of the mode functions ½, and the 
fact that •3 

(d •' d }) 4 Hø 27rr ' (11) 

imply that a,(k)=-(i/4)O,(zs, k)f s(k),n=l,2 , .... Use 
of the farfield form of the Hankel function, 
-•(2/•r) •/•' exp[- i([•r - •/4)], and neglect of the 
evanescent modes lead to the asymptotic representa- 
tion 

$(r,z,k) •- - • e ½,, (zs,k) 

x • ,(k)] e '•,½,z, k). (12) 
On the other hand, the outgoing farfield approximate 
solution in the presence of random inhomogeneities was 
found to be 

n(k)A.r,k) -i•"½.(z k) (13) i(r,z,k)- • (•,)•,• e , . 
The matching will simply consist of requiring t•t (12) 
and (13) •ree for "small r", i.e., in the farfmld, but 
•fore stochastic effects appreciably develop. • par- 
ticular, we shall demand that 

.(0, = - •('/4• 
x 

Equations (9) and (14) defoe the initial value problem 
for the forward prop•ating modal coefficients A,(r, k). 
The quantity of uRimate interest is the mutml 
herence function for the complex pressure 

' ' = ' k')> <p(r,z,t)p*(r ,z , 2•r(rr,),l•. _• <A,r,k)A•*,(r , 

x ½,z, k)ck,(z', k t) exp{i[cø(kt - k't5 - ([•,k)r - •, (k')r')]} dk dk' . (15) 

We shall extend the summations in (15) to infinity by setting rk,(z,k)=O for n>N(k). Since (15) will be evaluated in 
the asymptotic limit of long ranges and weak random inhomogeneities, the variables r and r' (hence, also Cot and 
Cot') will be assumed to be large. Even at such long ranges, however, the second moment of the modal coefficients 
<A•r,k)A•*,(r',k')> undergoes relatively slow variation [c.f. (9)]. Therefore the Method of Stationary Phase TM can 
be used to evaluate (15); the result is 
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exp {/[c o (g.t - K., t') - (•.(g.)r - •., (•.,)r ')]} 
X , (16) 

where •. denotes the stationary wavenumber [i.e., 
(a/dk)l•.(g.) =Cot/r] and •.--(a•'/ak•')•.. In principle, an 
explicit dispersion relation can be obtained by expres- 
sing the wavenumber g. as a function of Cotit. There- 
fore, as (16) indicates, we must determine the 
asymptotic behavior of the second moment 

<A.(r, g,)A*,,(r',k.,)), where g, = g.(Cot/r). 
Equation (16) has the ostensible structure of a single 

eigenray expansion, expressed in terms of normal 
modes. In Sec. II, however, we shall show that (16) 
is best viewed as a sum of two terms or expansions, 
since the second moments appearing in that equation 
will evolve with range very differently in the two cases 
n =n' and n •n' [c.f.(22)]. One of these terms will cor- 
respond to the random spreading and attenuation of an 
underlying deterministic eigenray structure; individual 
contributions arising from this term will spread and 
decay in strength as range increases. The second 
term, however, will initially be zero and will grow 
due to the random fluctuations, reaching an eventual 
limiting configuration as range (and hence the cumula- 
tive impact of the small random perturbations) con- 
tinues to increase. 

II. ASYMPTOTIC BEHAVIOR OF THE SECOND 

MOMENTS 

Since the asymptotic limit of interest involves long 
propagation ranges, the sum variables R --«(r +r ') and 
CoT = (Co/2)(t +t') are large. On the other hand, the dif- 
ference variables r - r' and Co(t - t') remain relatively 
small since they are constrained essentially by the 
space-time extent of the propagating pulse. Recall that 
½•' is a small parameter scaling the variance of the 
relative sound speed fluctuations. The particular 
asymptotic limit to be considered will entail O(½ -•') 
ranges; therefore let p_-(2j• and 

Note that the large "center-of-mass" range R will 
play the dominant role in determining the asymptotic 
behavior of <A.(r,•.)A.*,(r',•.,)>, i.e., the relative 
range offsets are negligible. Therefore , 

<A.(r, •.)A .*, (r ', •.,)> •- <A .(•, •.)A .*, (•, •.,) >. 

Note further that Cot/r • Cot'/r' • Cor/P. Therefore the 
dependence of the stationary wavenumber •. upon range 
and time involves a slowly varying (quasi-static) ra- 
tio. 

Consider first the case where the dependence of sta- 
tionary wavenumber upon range and time is assumed 
to be truly quasi-static, i.e., K. and •., are treated as 
fixed constants. In this ease, the asymptotic analysis 
has already been developed. 'ø-'2 As (--0 and R-- 
with p =(•'R remaining O(1), the second moment 
<A ,,([3/( 2; Kn)A n' ( p/(2; K..)> converges to a correspon- 

I 

ding second moment of a Markov diffusion process. 
The principal underlying physical assumptions are 
that the random field • possess a mixing or asymptotic 
independence property and be wide-sense stationary 
in range. Both of these assumptions are compatible 
with models of ocean sound speed fluctuations. 

The importance of this asymptotic result lies in the 
fact that expectations of functions of a Markov diffusion 
process can be evaluated by solving partial differential 
equations (Kolmogorov equations). Moreover, in this 
case where the functions involved are polynomials 
(i.e., moments) and the original stochastic Eqs. (9) are 
linear, the computations further simplify to the level 
of linear ordinary differential equations. 

In order to describe the asymptotic behavior of the 
second moments, the following two cases must be dis- 
tinguished: 

(a) n= n': 

In this ease, 

<A .p/• •' , •.)A.*(p/• •' , •.)> = < IA.p/• •, K.) 1•> 
essentially represents the expected power in the nth 
mode at wave number •. and range 9/( 2. Let the 
asymptotic behavior of this second moment be de- 

noted by w.(p,•.); more generally, let w,(p,K.) denote 
the asymptotic behavior of the expected power in the 

/th mode at wavenumber g,. Then, the set of functions 
{w,(p •.) x •(•") , J•=z obeys the following coupled power equa- 
tions 6, ". 

•) d •.)=2 a (•.[w (p •.)-w,(o •.)] 

(1•) 

[cf.(14)], 1 •< 1 •< N(g.) 

where 

x - 
(18) 

and r/,• is defined by (9). 

(b ) nan': 

Let the asymptotic behavior of 

<•..(p/• •', •.)•..*, (p/• •', •.)> 
be denoted by w.,,(p,•.,•.,). One can show that 
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d ._ dp w.., (p, K., K.0) A (K., •.0)wnn0 (p, •., •.0) , 

x 
where 

) A (•., K.,) -- a*•., m.(•.) 

-- 

+n..., (r, g.))ar. 

Thus as a consequence of (19) we obtain the explicit 
representation w,,,( p, g,, g,,): w.,,(0, g,, K,,) 
x exp[-pA(•., •.,)]. 

(19) 

(20) 

With regard to Eqs. (17)-(21), the following points 
should be noted. Range dependence enters into the 
asymptotic description solely through the scaled range 
p :½2. Since ½2 is a small parameter, the actual pro- 
pagation range R must become large before significant 
probabilistic effects emerge. The coupling coefficients 
a,•(•,) are basically cosine transforms of correlation 
functions (i.e., power spectrum evaluations) and thus 
are nonnegative. One can show that Re [A (•,, K,,)] >• 0 so 
that w,,, is an exponentially decaying function of scaled 
range. On the other hand, the functions w,(p, •,) do not 
undergo such decay. As a consequence of (17) and the 
fact that a, m =a •,, we obtain the conservation relation 

=0. 
dp 

Moreover, as scaled range p becomes large the solu- 
tions of (17) tend toward equipartition, i.e., 

- win(0, •.). (21) limw,(p,•.) N(•.) ..: 
In terms of the functions w, and w..ß, we can express 

the mutual coherence function of interest as 

<p(r,z , t)p*(r ',z', t')) -• Z Z w..'(P , •:., •:.')ck.(z , •:. )ck.'(z', •:.') n=l n•l 

exp[i[Co(•,t-K ,, )-(/3,(•,)r-t3,,(•,,)r')]• +• [w,(p,•,)-w.,(p,•, K,)] 

x 4p.(z, •.)dp.(z', •.) exp{i[cø•"(t - t') -/3.(•.)(r - r ')]}. 
/3.(K.) I •.(•.) I 

Recall that the w..ß terms appearing in (22) consist es- 
sentially of the transmitted signal weighted by an ex- 
ponential factor arising from the random field. In the 
next section, we shall consider a specific example and 
show, using the Poisson Sum Formula, that the double 
sum in (22) accounts for an initial spreading of the 
transmitted pulse. The double sum, therefore, will 
prove to be particularly important in describing the 
behavior of the propagating signal at relatively small 
values of scaled range p. As p continues to increase, 
however, the single sum term in (22) becomes in- 
creasingly important. 

The factor (w.-w..) vanishes when p =0. Moreover, 
one can show that (w.- w..)>• 0 for all values of p. As 
scaled range increases, this factor increases from an 
initial value of zero and approaches the value N't(•.) 
X•N(K")W.(0 •.) as p--oo. The single sum in (22) con- 
sequently plays an important role in modeling the be- 
havior of the propagating signal at large values of 
scaled range. As we shall observe in the next section, 
this term will evolve to a multiple arrival structure 
with an algebraically varying envelope. 

Th•s far the discussion has been based upon the as- 
sumption that the stationary wavenumber •. is a fixed 
constant. In fact, as was previously noted, K. is a 
function of Co'rip. However, we shall now show that 

.(22) 

I 

accounting for this dependence does not change the 
essential features of the prior discussion. Consider 

first the case n-n •. The modal power w•(p, •) is now 
a function of p and Co•'/p; we denote this dependence 
by w,[p, (Co•'/p) ]. Then 

- (Co/p " (2s) 
•p 

where 3•,32denote partial differentiation with respect 
to the first and second arguments, respectively. How- 

N(K")• ,-- ) [c.f. (17)] and (Co/O) ever, •)•w,=2•:• u,..(•.)(w 
x •,, =(O/O•)w,. Therefore the counterpart of (17) be- 
comes 

Op w, w • = 2 a lm(Kn)(Wm -- W l)' (24) 

Similarly, for the case n.n' we view •. and •., as func- 
tions of Co'r/p and obtain the following counterpart of 
(19), 

a (•) a A(K., •.,)w.., (25) ap w.., + • w..,:- ß 
Equations (24) and (25) must be viewed as outer equa- 
tions, valid away from p =0. This is consistent with 
our prior use of the Method of Stationary Phase, which 
requires that p and t be both nonzero. In principle, 
then, a matching procedure would be needed to connect 
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(24) and (25) to the initial data at p=0. Perhaps the 
simplest such procedure would be to impose the data 
at some small positive value of scaled range (i.e., neg- 
lect the effect of random fluctuations on some small in- 

itial interval of scaled range). The particular cases to 
be considered in the next section, however, will not 
require us to specifically address this point. 

The quantity of interest, the mutual coherence func- 
tion of the complex pressure, is thus given by (22), 
where w, and w•, are now solutions of (24) and (25), 
respectively. Note, however, that along the character- 
istics of these first order equations, the ratio Cot/p 
remains constant. Therefore the prior discussion ap- 
plies along the characteristics since wavenumber re- 
mains constant along these space-time paths. For ex- 
ample, we can again conclude that 

= {[ ? 
x exp[-pA(K•, K•,)]. 

Now, however, modal dispersion is accounted for by 
the fact that g,is a function of Cor/p. 

III. INTERPRETATION OF THE RESULTS 

Since the theory developed is based upon a coupled 
mode analysis, it will be most useful in modeling ex- 
periments where the number of modes involved is small 
(e.g., volume scattering of low-frequency pulses or con- 
figurations where the interaction of bottom-bounce 
modes through rough surface or sediment scattering is 
dominant). Note in particular that if bottom effects are 
dominant and volume scattering can be ignored, the ran- 
dom coupling problem will involve only that subset of 
modes which interact significantly with the bottom. 

For the present discussion, however, to illustrate the 
content of (22), we shall consider the volume scattering 
of a short pulse in the two limiting cases where only the 
double or single sums in (22) are important. We shall 
adopt a model deterministic profile of the type discussed 
by Hirsch and Carter•5; referring to (1), we set 

•(z)=l- 1 < •<2 (26) 
where the channel axis is assumed to lie at z =0. Re- 

stricting • to values between i and 2 leads to the more 
realistic situation where off-axis arrivals will precede 
the direct arrival if source and receiver lie on the chan- 

nel axis. Note that one could, with virtually no added 
difficulty, assume a piecewise profile of the type given 
by (26), i.e., adopt different values of c• for positive and 
negative values of •. 

I 

Using the WKB approximation for the normal modes, 
we obtainS: 

cos(O,(z,k) - 7r/4) <z < z (27) c).(z,k) • 2[Y"(z'k)v"(k)]•/•' ' z, 
0, otherwise, 

where z, and z. denote the turning points. (The angle 0. 
and the product y.v. are specified in (28).) The quantit- 
ies appearing in (27), as well as the others appearing 
in (22), must be evaluated at the stationary wavenumber 
•.. For the profile defined by (26), we can conveniently 
express the quantities of interest in terms of an angle 
½ as follows: 

•. = (n + •)[otb7r/2B(b '• •)](csc•) •+2/• 

sgn(z) fo •X•/•(1 -1 3 • , 

(28) 

•,.z, •.v.•.) • I/u(6-', «)/a6](sin½)2/•(1 - 

I I = [tan2½/(6 + 2)2]l 62 - 28 cos•½ I, 

where B(z w)• f•X•'•(1-X)•'•dX is the beta function •6 • '"0 
and the dispersion relation is implicitly given by the 
equation 

(Cot/9) = see½{1 - [2/(8+ 2)] sin2½}. (29) 

As previously noted, we shall assume a transmitted 
signal of the form 

f (t) = exp(-t 2/2T• +icoot), 
so that 

f •(•,) = T O exp[-(Tõ/2)(Cog, - COo)Z ] . 
For simplicity, we shall restrict consideration to the 
case r=r' =R,, t=t' =T, z=z', i.e., to a consideration 
of < 

Consider the double sum in (22); recall that 

x exp[-pA(•,, •,,)]. 

If co o T O is sufficiently large (e.g., WoTo>2) ,bot, h sum- 
mations can be extended to _oo with negligible error. 
The tota! dependence upon the indices n and n' occurs 
in the product 

/s(•.)fs*(•., )cos[O.(z•, •.)- •r/4]cos[O.(z, K.) - •r/4]cos[O.,(zs, •., ) - •r/4] 

x cos [0., (z, •., ) - •r/4] exp[-pA (K., •., )] exp[i(•. - •., )(Cot - r cos½)], 

[cf. (27), (28)]. Noting (28), let O,(z, •,)--•,•2(•). Then, if the fourfold product of cosines is written in terms of ex- 
ponentials, the double sum in (22) decomposes into 16 double sums, each having the form 

$=[c•6(6+2'CøToCøS•b]•' (csc•b'•'+4/•exp[-i(?r/4'('x+(z-(s-(•'] • • exp[_(T•/2,(Cog•_Wo, •- '32RB(6", «) 2•r(1- •)(1 - •)l 5•'--25cos•'•l ' .=.• •,=.• 

-(To2/2)(Co•. - 000) 2- oA(•. •.)] exp{i•.[Cot- rcos½ +½x•2(•)+½2g(•)]- ig.[Cot- rcos½+½•2(•) + •4["•(•S)]}, (30) 
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where ½i = +1, i = 1,..., 4, and the 24 possibilities gen- 
erate the 16 terms.- 

To complete the specification of (30), one must deter- 
mine A(K, K,). This requires a specification of the 
sound speed fluctuation correlation function 
(e(r,z)½(r',z')) [cf. (1)]. For parameters typical of the 
ocean regime (i.e., horizontal and vertical correlation 
lengths on the order of 6 km and 240 m, respectively), 
A has the approximate form 

•' )A +(•.•.)•'•, (31) + - 

where A •d • are real positive functions of csc• •d 
the correlation len•hs. • (31), the imaginary part of 
A(•, •,) has been ignored since one can argue t•t its 
relative effect is weak. 

Having specified A(•, •,) by (31), we c• use the 
Poisson Sum Formula • to recast (30) into • equivalent 
double sum having a more direct physical interpretation 
in terms of ray arrivals. Specifically, we use the re- 
lation 

• • •(n + •, n' + •)exp(i[(n + •)X - (n' + •)X']) 

g(x, x')-- )e' x, 
Applying (32) to (30), with A given by (31), enables us 
to rewrite (30) in the form 

S=K E Z (-1)='=' exp (7 +7') •' _ (7- 7') •' =__.• = .... 4• 4• i 

+ i[acoocoTõ _ \ 
where 

i , a =- •,/(n + •) = [a6•r/•.B(6", ])](csc½) 

7 = 2•m +a[cot - rcos½ + gz•(•) +g2•(•)], 

7' •2•m' +a[cot - rcos½ + •3•(•) +•(•)], 
, 

[(Coro) + 

a[(coTo) + 2½ + 

{B(6 '•, •) cos½ )2 exp[-i(•/4)((• +(•- (a- (4)] • -1 1 K klOeRB(6 , •) (1 - •)(1 - •,)162- 26c0s2½1 

(33) 

exp{-2Ap(cooTo)2/[(coTo) •' + 2Ap]} 
x {[1 + 2Ap/(coTo)2][1 + 2(A + 2B)p/(CoTo)2]} •/2 

Consider now a single eigenray •s associated with (33). 

Let t o (as well as ½o, •o, •so, and ao) denote the arrival 
time of this ray. Thus for a particular range, source, 
and receiver configuration, we assume that there exist 
values of m, ½• and ½2 such that 2•rrn +ao[Coto - rcOS½o 
+½•2(•o) +½2•(•so)] =0. The contribution to 
due to this eigenray then becomes 

K exp(-1/4(r•{a[cot - rcos½ +½•(•) 

-ao[Coto - rcøs½o + ½1•(•o) + ½2•( •so •)' (34) 

If we neglect dispersion (i.e., set ½= ½o, so that a =ao, 
• = •o, and •s = •), (34) reduces to K o exp{-(t - to)2/ 
[T•o+ 2(A o + 2Bo)P?C•]}, where Ko, Ao, and B o denote the 
evaluation of these terms at ½ =½o. In this case, the 
contribution reduces to a Gaussian envelope centered at 
the ray arrival time and spread by the random inhomo- 
geneities. As one would expect, the spreading increases 
as range increases. In general, however, as (34) indi- 
cates, the interplay of the deterministic profile and the 
random inhomogeneities is more involved. For contri- 
butions arising from small-angle eigenrays, the ap- 
proximation 

[cf. (29)] can be used to recast (34) as an explicit func- 
tion of time. 

As range increases, the random inhomogeneities tend 
to diffuse or flatten the contribution from any given eig- 
enray. At the same time, however, the number of rays 
contributing to the total acoustic field at the receiver 
will generally increase. Thus the ultimate contribution 
to (IP(r,z,t)12) by the double sum in (22)will depend 
upon how this tradeoff evolves as range increases. 

With increasing range, the single sum in (22) assumes 
increasing importance. We shall consider this term for 
large values of scaled range p; in that case, noting (21), 
(27), and (28), 

- (35) 

64rr7,(z s, •)•,(K•) 

In arriving at (35), we have assumed that scaled range 
is sufficiently large that w• has attenuated to a neglig- 
ible level and that equipartition among the w, has been 
essentially achieved. The WKB mode functions have 
been used; note in particular that 7=•= is independent of 
rn Lastly, we have assumed that ß /---/•n=! 

xsin20• [<< 1. Using (35) and assuming that source and 
receiver lie on the channel axis, the single sum in (22) 
(with r=r ' =R, t=t' =T, z =z' =0) becomes [cf. (28) and 
(33)], 

= [coTo(6 + 2)B(6 -•, «) )•' 1 Sz k8rrRB(6_x,«)se.c½ •1 6 •'- 26cos2½1 

x •.. a 2 exp[-T•o((n + «)Coa - COo)e]. ' (36) 

Consider the term a •' exp[-T•[(n + -} )c o a - CO o]•'}. It ac•eves 
a ma•mum value proportion• to (n +•)e at a value of 
a--call it a,--that is proportion• to (n +•)-•. •c•l 
that a- (cse½) •+•/• and that for small values of ½, the 
dispersion rela•on (29) can be appro•mated by 

r +0 •' 

Therefore the larger values of n correspond to the ear- 
lier arrivals (since 1 <'6 <2). 

Using these ideas, the following crude physical inter- 
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FIG. 1. Normalized envelope of S t (dB) versus time (s). 

pretation can be given to S•. It consists of a set of ar- 
rivals (finite in number since csc•>• 1), with the ear- 
liest being the weakest. As time increases (i.e., n de- 
creases), the arrivals have an envelope that grows al- 
gebraically, achieving the largest value at the last ar- 
rival. Figure 1 shows the envelope of the sum S• (nor- 
malized to 0 dB) for a representative set of parameter 
values. To obtain the total received signal, one would 
have to superpose the ray arrivals corresponding to the 
double sum term in (22). In that case, a picture would 
emerge that is consistent with experimental observa- 
tions of the signal received from a SOFAR bomb at long 
range .•5 

IV. CONCLUSIONS 

An asymptotic expression for the mutual coherence 
function of the complex pressure has been derived for 
the case of single pulse propagation [c.f. (22)]. The 
physical content of this expression has been assessed 
for volume scattering in two limiting cases; in these 
cases the predictions of the theory seem compatible 
with experimental observations. However, for the im- 
portant intermediate case where both terms in (22) are 
important and many modes are involved, the result in 
its present form is unwieldy and additional simplifica- 
tion will be necessary to make the expression tractable. 

In its present form (22) seems most suited for analy- 
zing pulse propagation experiments wherein the number 
of randomly coupled modes is moderate (e.g., the vol- 
ume scattering of low-frequency pulses and/or the sedi- 
ment scattering of bottom-pene[rating modes). Recent 

experiments •8 involving sediment scattering have ob- 
served multimode arrivals with roughly equal energy 
content. 
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