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Abstract

It had been long believed that one-dimensional travelling pulses and the corresponding two-dimensional expanding rings
and spiral waves arising in excitable reaction–diffusion systems annihilate when they closely approach one another. However,
recently it has been numerically confirmed that if the velocity is very slow, expanding rings and spiral do not necessarily
annihilate. In particular, in some situation, two closely approaching pulses reflect, as if they were elastic like objects. By using
the center manifold theory, we show that if there are travelling pulses which primarily and super-critically bifurcate from a
standing pulse when some parameter is varied, they possess reflection mechanism if the velocity is very slow. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

A variety of regular and irregular complex spatio-temporal patterns have been observed in biological, physiological
and chemical systems. Among these systems, it is well known that excitable reaction–diffusion systems generate
travelling pulses in one dimension and expanding rings and spiral waves in two dimensions. It is a typical feature
that these patterns exhibit annihilation on collision. However, even in such excitable systems, it has been recently
reported that annihilation of travelling pulses does not necessarily occur but either reflection or extinction appears
before collision in some parameter regime [7]. As an example, the authors considered in the previous paper [6] the
following two-component excitable reaction–diffusion system:

∂u

∂t
−�u = 1

ε
(−au+ k(u)v) ≡ 1

ε
f (u, v),

∂v

∂t
− d�v = h(v∗ − v)− k(u)v ≡ g(u, v) in Ω, t > 0, (1.1)
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Fig. 1.1. Nulclines off andg in (1.1) wherea = 2.0, c = 5.0,h = 45.0 andv∗ = 1.0.

whered is the ratio of the diffusion rates ofu andv, ε the time constant between the dynamics ofu andv. a, h
andv∗ are some positive constants. Ifk(u) = u2, (1.1) is called the Gray–Scott model which describes a cubic
autocatalytic reaction process [2]. Ifk(u) = exp(u/(1+u/c)) with positive constantc, (1.1) describes the first step
exothermic reaction, whereu is the temperature andv the concentration of chemical reactant [6]. Let us consider
here the latter case for (1.1). Whena = 2.0, c = 5.0,h = 45.0 andv∗ = 1.0 for instance, the nulclines off andg
are drawn in Fig. 1.1 where there is only one critical point, sayO = (ū, v̄).

For the diffusionless system of (1.1), one finds thatO is globally stable and that ifε is suitably small, the
system possesses excitability mechanism. Under this situation, we consider (1.1) for different values ofd. We first
taked = 0.5 so that there is a stable travelling pulse in one dimension, as in Fig. 1.2(a). Correspondingly, we
consider the situation where three stimuli are initially given to the constant stateO in a rectangular domain with
zero-flux boundary condition. Then three rings are uniformly expanding and annihilate when they collide or hit the
boundary, as in Fig. 1.2(b). We next taked = 4.5 where a travelling pulse still exists, as in Fig. 1.3(a). A different
feature from the previous pulse in Fig. 1.2(a) is that the velocity is much slower. Though the initial condition is the
same as the one in Fig. 1.2(b), the resulting patterns are totally changed, as in Fig. 1.3(b). Some features can be

Fig. 1.2. (a) Travelling pulse; (b) annihilation of expanding rings wherea = 2.0, c = 5.0,h = 45.0, v∗ = 1.0, d = 0.5 andε = 0.001.
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Fig. 1.3. (a) Travelling pulse; (b) breakdown of three ring patterns where the parameters exceptd = 4.5 are the same as those in Fig. 1.2.

observed: (i) Expanding rings do not necessarily annihilate when they approach closely, that is, they either repel
each other or fade out before collision. (ii) Some part of the expanding rings shrinks after repulsion so that the ring
splits into several pieces. (iii) After large time, there appear very dynamic spot-patterns which never decay at all.
It is numerically shown that such complex spatio-temporal patterns occur under the situation where very slowly
travelling pulses stably exist in one dimension, which will be discussed in Section 2. The results in this paper are as
follows: (i) The bifurcation structure of travelling pulse solutions is made clear in a general framework. Very slowly
travelling pulse solutions can be constructed as primarily and super-critically bifurcation from a standing pulse
when some parameter is varied. The dynamics of a pulse-like solution near the bifurcation point can be described
by some specific system of ODEs (Sections 3 and 4). (ii) By using the reduced ODEs, the interaction of two very
slowly travelling-like pulses is discussed and then the reflection of two travelling-like pulse solutions can be shown
(Sections 5–7). The tool, which we use here, is the center manifold theory and complementarily numerical methods.
Finally, in Section 8 we give concluding remarks on our results.

2. Interaction of two expanding rings

We first numerically consider the interaction of two expanding completely circular rings. For the same values of
parameters as in Fig. 1.3, we take specific initial conditions such that two point stimuli ofu are given to the constant
state O where the distance between the two stimuli, sayL, is varied. ForL = 1.4, the resulting rings annihilate when
they collide (Fig. 2.1(a)). ForL = 2.8, the parts of two rings where they closely approach fade out before collision
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Fig. 2.1. Collision of two expanding rings where the parameters are the same as the ones in Fig. 1.3: (a)L = 1.4; (b)L = 2.8; (c)L = 4.0.

(Fig. 2.1(b)). ForL = 4.0, the expanding rings never annihilate and some parts exhibit reflection (Fig. 2.1(c)). We
thus find that the interaction of expanding rings sensitively depend on the magnitude (or radius) of the expanding
rings when they closely approach.

We next consider the dependency of the radius of a single completely circular ring on the expanding velocity. It is
demonstrated in Fig. 2.2 that the velocity of the ring monotonously decreases with its radius and that, as the radius

Fig. 2.2. RadiusR(t) dependence on velocityV (t) of an expanding ring, whereV0 is the velocity of one-dimensional travelling pulse and the
parameters are the same as the ones in Fig. 1.3.
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Fig. 2.3. Repulsion of two travelling pulses where the parameters are the same as the ones in Fig. 1.3.

becomes very large, the velocity converges to some constant value, which gives the velocity of the one-dimensional
travelling pulse. These results clearly indicate that either annihilation or non-annihilation of rings depends on
expanding velocity of rings. Roughly speaking, if the velocity is relatively fast, expanding rings annihilate, while if
it is very slow, they reflect. The limiting situation where the radius tends to infinity, suggests us that one-dimensional
travelling pulses reflect one another when they approach, as in Fig. 2.3.

We finally consider the dependency of the velocity of one-dimensional travelling pulses on annihilation or
non-annihilation properties. In order to change the velocity of travelling pulses, we taked as a free parame-
ter by fixing the other parameters. Whend is small, the velocity is relatively fast so that two travelling pulses
annihilate as one can expect (Fig. 2.4(a)). Ifd increases slightly, the velocity becomes slow so that two approach-
ing pulses fade out before collision (Fig. 2.4) and ifd increases slightly further where the values ofd is the
same as in Fig. 2.3, the velocity is very slow so that the pulses reflect one another. Thus numerical results in-
dicate that the dependency of velocity on the interaction of two travelling pulses is qualitatively similar to that
of expanding rings shown in Fig. 2.1. We thus conjecture that spatio-temporal complex patterns as in Fig. 1.3(b)
appear in two dimensions, if there is the situation where one-dimensional travelling pulses possess reflection
property.

Fig. 2.4. (a) Annihilation of two travelling pulses whered = 2.0; (b) fading out of two travelling pulses whered = 3.1. The parameters except
the value ofd are the same as those in Fig. 1.3.



S.-I. Ei et al. / Physica D 165 (2002) 176–198 181

3. Bifurcation of a standing pulse

In this section, we consider the reason why such very slowly traveling pulses possibly appear in the system (1.1).
We rely on numerical method to study the existence and stability of standing pulse solutions of (1.1) whend andε are
both free parameters fixing other parameters to be the same as in Fig. 1.3. Takingd as a bifurcation parameter with
fixedε = 1.025× 10−3, we find that there coexist four standing (equilibrium) pulses in certain interval ofd where
the solutions of types (B)–(D) are always unstable, while the solution of type (A) changes its stability, depending on
values ofd (Fig. 3.1(a) and (b)). Fig. 3.2(a) demonstrates the existence and stability regions of the standing pulse
solutions of type (A) in(d, ε)-space. We should remark that there are two bifurcation curves in this region; one is
the Hopf bifurcation curve OB and other is the translational one TB where two curves intersect at one point. This
structure indicates that withε = 1.025× 10−3, there is the critical valuedTB(ε) which is larger thandOB(ε) so
that there appear travelling pulse solutions which bifurcate primarily and super-critically from the standing pulse

Fig. 3.1. (a) Global structure of standing pulses with the parameterd whereε = 0.001; (b) spatial profiles of standing pulses whereε = 0.001,
d = 3.0.
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Fig. 3.2. (a) Existence region of standing pulses in the(d, ε)-plane where the solid line is the curve of TB and dotted line the curve of OB. Stable
standing pulses are in the hatched region. (b) Schematic bifurcation diagram of standing and travelling pulses when the parameterd is varied,
where the vertical axis indicates the velocity of travelling pulses.

solution of type (A) (Fig. 3.2(b)). This implies that very slowly stable travelling pulses can be arbitrarily obtained
if d is taken to be suitably close todTB(ε).

4. Construction of very slowly travelling pulses

In this section, we consider the theoretical basis on the bifurcation problem where travelling pulse solutions
appear as the destabilization of the standing pulse solution.

Let us consider the following general form of anN -component reaction–diffusion system with a bifurcation
parameterk:

U t = D�U + F(U; k) = L(U; k), t > 0, x ∈ R, (4.1)

whereU = (u1, u2, . . . , uN), D is a diagonal matrix with elements{dj } (j = 1,2, . . . , N). We suppose there
existskc such that (4.1) has a standing symmetric pulse solutionP(x), where there exist a positive constantα and
a non-zero vectora ∈ RN such that

P(x)→ e−α|x| a as x → ±∞.

Simply write the linearized operatorL′(P (x); kc)with respect toP(x) asL. It is obvious to see thatLPx = 0 holds.
We suppose thatL has Jordan block atk = kc, namely:

(H1) There exists a functionΨ (x) such thatLΨ = −Px . LetΣc be the spectrum ofL.
(H2) Σc consists of two setsΣ0 = {0} andΣ1 ⊂ {z ∈ C;Re(z) < −γ0} for some positive constantγ0. The

generalized eigenspace associated to 0 is spend byPx andΨ .

We consider (4.1) in a neighborhood ofk = kc. In order to do it, we introduce a new parameterη such that
k = kc + η and rewrite (4.1) simply as

U t = L(U)+ ηg(U), (4.2)

whereL(U) = L(U; kc), g(U) = g(U; η) andηg(U; η) = L(U; kc + η) − L(U). Let S(x; r) = P(x) + rΨ (x).
Define the translation operatorτ by (τ (l)U)(x) = U(x − l) and putM(r∗) = {τ(l)S(·; r); l ∈ R, |r| < r∗}.
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Theorem 4.1. LetU(t) be a solution of(4.2).There exist positive constantsC0, r∗, η∗ and a neighborhoodUN of
M(r∗) such that if the initial dataU(0) ∈ UN , then there exist functionsl(t) andr(t) such that

‖U(t)− τ(l(t))S(·; r(t))‖∞ ≤ C0(|r(t)|2 + |η|) (4.3)

holds as long as|r(t)| < r∗ and|η| < η∗, wherel(t) andr(t) are estimated as

l̇ = r + O(|r|2 + |η|2), ṙ = O(|r|2 + |η|2). (4.4)

Proof will be given in Section 7.
Theorem 4.1 indicates that the movement of a single pulse-like solutionU(t, x) of (4.2) is essentially described

by l(t).
Next, we shall give the explicit form of the evolutional equations ofl(t) andr(t). LetL∗ be the adjoint operator

of L. Then,L∗ also has the same properties asL. Specially, there existΦ∗ andΨ ∗ such thatL∗ satisfiesL∗Φ∗ = 0
andL∗Ψ ∗ = −Φ∗, whereΦ∗ is exponentially decaying, that is, there is a non-zero vectora∗ ∈ R such that

Φ∗(x)→ ±e−α|x| a∗ as x → ±∞. (4.5)

We show the following proposition without proof.

Proposition 4.1. Ψ ,Φ∗ andΨ ∗ are uniquely determined by the normalization

〈Ψ,Px〉L2 = 0, 〈Px, Ψ ∗〉L2 = 1, 〈Ψ,Ψ ∗〉L2 = 0.

We note that

〈Ψ,Φ∗〉L2 = 1, 〈Px,Φ∗〉L2 = 0

are automatically satisfied.
In addition to (H1) and (H2), we assume:

(H3) Ψ (x),Φ∗(x), Ψ ∗(x) are all odd functions with respect tox = 0.

This hypothesis is numerically confirmed for the specific system (1.1), as in Fig. 4.1.

Proposition 4.2. Ψ (x) andΨ ∗(x) satisfy

Ψ (x)→ e−αx{(β1x + β2)a+ b},
and

Ψ ∗(x)→ e−αx{(−β1x + β∗2)a
∗ + b∗}

asx → ∞, whereβ1 = −(〈a, a∗〉/2〈Da, a∗〉), andβ2, β∗2 are some constants, andb, b∗ are vectors satisfying
〈b, a∗〉 = 〈b∗, a〉 = 0.

Proof. See Appendix A. �

LetE = span{Px, Ψ } andE⊥ = {U; 〈U, Φ∗〉L2 = 〈U, Ψ ∗〉L2 = 0}. Let functionsζ1 andζ2 inE⊥ be the unique
solutions of the equations

Lζ1 + 1
2F

′′(P (x))Ψ · Ψ + Ψx = 0 and Lζ2 + g(P (x)) = 0,
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Fig. 4.1. Eigenfunctions of the linearized operator for (1.1) whereε = 0.001075,a = 2.0, c = 5.0, v∗ = 1.0 and d = 5.0: (a)
Ψ (x) = (ψu(x), ψv(x)); (b)Φ∗(x) = (φ∗u(x), φ∗v (x)); (c)Ψ ∗(x) = (ψ∗

u (x), ψ
∗
v (x)).

respectively, whereF(U, kc) is simply rewritten asF(U). By using these functions, we define two constantsM1

andM2 by

M1 =−{〈∂xζ1, Φ∗〉L2 + 〈F ′′(P )ψ · ζ1, Φ∗〉L2 + 1
6〈F ′′′(P )Ψ 3, Φ∗〉L2},

M2 = {〈∂xζ2, Φ∗〉L2 + 〈F ′′(P )Ψ · ζ2, Φ∗〉L2 + 〈g′(P )Ψ,Φ∗〉L2}.
Then we obtain the following theorem.

Theorem 4.2. Let l(t) andr(t) be the functions defined inTheorem 4.1.Then

l̇ = r + O(|r|3 + |η|3/2), (4.6)
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Fig. 4.2. Bifurcation diagram of (4.7) for the exothermic reaction–diffusion system (1.1) whereM1 ≈ 0.729577,M2 ≈ 0.110267 where the
parameters exceptd = 5.0 andε = 0.001075 are the same as those in Fig. 1.2.

ṙ = K(r; η)+ O(|r|4 + |η|2) (4.7)

hold as long as|r(t)| < r∗ and|η| < η∗, whereK(r; η) = −M1r
3 +M2ηr.

Proofs of Theorems 4.1 and 4.2 are stated in Section 7.
By (4.6),r can be regarded as the velocity of the pulseP , becausel denotes the position of the pulse.
In the following, we consider the bifurcation structure of travelling pulses in the neighborhood ofk = kc. Suppose

there exist trivial solutionsP(x; η) for sufficiently smallη, which satisfyL(P (x; η); kc + η) ≡ 0,P(x;0) = P(x)

andP(x; η) is symmetric forx = 0. LetL(η) = L′(P (x; η); kc + η). Note that 0 is always an eigenvalue ofL(η)
with the associated eigenfunctionPx(x; η). Then it is expected that there is another eigenvalue, sayλ(η) near 0
(critical eigenvalue) approaching 0 asη → 0. In fact, it is true and the movement of the critical eigenvalue ofL(η)

with respect to sufficiently smallη is clearly known by Theorem 4.2 as in the following corollary.

Corollary 4.1. Suppose there exist trivial solutionsP(x; η) represented byP(x; η) = P(x)+ηP1(x)+η2P2(x; η)
such thatP1(x) andP2(x; η) are symmetric forx = 0. ThenL(η) has a critical eigenvalueλ(η) = M2η + O(η2)

with the associated eigenfunctionΦ(η) = (1+ O(|η|))Px + λ(η)Ψ + O(|η|2).

This corollary means that the constantM2 is positive if and only if the critical eigenvalueλ(η) crosses 0 atη = 0
from negative to positive with non-zero speed forη.

On the other hand, Theorem 4.2 means that the constantM1 determines the direction of the bifurcation of travelling
pulses. SupposeM2 is positive, thenM1 is positive if and only if the bifurcation diagram neark = kc is super-critical
with no degeneracy as in Fig. 4.2. If the constantsM1 andM2 are both positive (in fact, this situation holds for the
exothermic reaction–diffusion system (1.1)), the velocities of bifurcating travelling pulses forη > 0 are approxi-
mately given by±√

M2η/M1. We can thus choose the velocity to be small arbitrarily ifη is positive but very small.

5. Interaction of very slowly travelling pulses

In this section, we consider the interaction of two very slowly travelling pulses.
Let P(x;h) = P(x) + P(x − h), ξ(x;h, r) = r1Ψ (x) + r2Ψ (x − h) with r = (r1, r2) andS(x;h, r) =

P(x;h)+ ξ(x;h, r). Define a set

M(h∗, r∗) = {τ(l)S(·;h, r); l ∈ R, h > h∗, |rj | < r∗}
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for positive constantsh∗ andr∗ and define a quantity

δ = δ(h) = sup
x∈R

|L(P (x;h))|.

Here we note thatδ(h) = O(e−αh).

Theorem 5.1. Let ∆1 = ∆1(h, r, η) = δ(h) + |r|2 + |η|, ∆2 = ∆2(h, r, η) = δ(h) + |r| + |η|2 and∆3 =
∆3(h, r, η) = δ2(h)+|r|2+|η|2. There exist positive constantsC0, h∗, r∗, η∗ and a neighborhood U ofM(h∗, r∗)
such that if the initial dataU(0) ∈ U , then there exist functionsl(t), h(t) ∈ R andr(t) ∈ R2 such that

‖U(t)− τ(l(t))S(h(t), r(t))‖∞ ≤ C0∆1(h(t), r(t), η) (5.1)

holds as long ash(t) > h∗, |r(t)| < r∗ and |η| < η∗, whereU(t) is a solution of(4.2). l(t), h(t) and r(t) are
estimated by

l̇, ḣ = O(∆2), ṙ = O(∆3). (5.2)

Theorem 5.2. A time evolutional system ofl(t), h(t) andr(t) in Theorem 5.1is described by the following ODEs:

l̇ = r1 − H̃1(h)+ O(δ2 + |r|3 + |η|3/2), (5.3)

ṙ1 = K(r1; η)+H1(h)+ O(δ2 + |r|4 + |η|2), (5.4)

ṙ2 = K(r2; η)+H2(h)+ O(δ2 + |r|4 + |η|2), (5.5)

ḣ = r2 − r1 + H̃1(h)− H̃2(h)+ O(δ2 + |r|3 + |η|3/2) (5.6)

as long ash(t) > h∗ and|r(t)| < r∗ hold, whereδ = δ(h) = supx∈R|L(P (x;h))|,
Hj(h) = 〈L(P (· + hj ;h)),Φ∗〉L2, H̃ (h) = 〈L(P (· + hj ;h)), Ψ ∗〉L2,

andh1 = 0,h2 = h.

The functionsHj(h) andH̃j (h) in the above theorems are explicitly represented.

Theorem 5.3. The functionsH(h) andH̃ (h) are represented by

H1(h) = M0 e−αh(1+ O(e−γ1h)), (5.7)

H2(h) = −M0 e−αh(1+ O(e−γ1h)), (5.8)

H̃1(h) = M̃0 e−αh(1+ O(e−γ1h)), (5.9)

H̃2(h) = −M̃0 e−αh(1+ O(e−γ1h)) (5.10)

for a constantγ1 > 0 and the constantsM0, M̃0 given by

M0 = 2α〈Da, a∗〉, M̃0 =
∫
R

eαx〈{F ′(P (x))− F ′(0)}a, Ψ ∗(x)〉dx.

If two travelling pulses are located in symmetric position atx = 0, for instance, the four-dimensional system of
ODEs (5.3)–(5.6) simply reduces to a two-dimensional one as follows.
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Corollary 5.1. If the initial dataU(0) is given byP(l0)+ P(−l0) with any fixedl0 > 0, then

‖U(t)− τ(−l(t))S(2l(t), r(t),−r(t))‖∞ ≤ C0∆1(2l(t), r(t), η),

and the dynamics ofl(t) andr(t) is described by solutions of

l̇ = r + H̃1(2l)+ O(δ2(2l)+ |r|3 + |η|3/2), ṙ = K(r; η)+H1(2l)+ O(δ2(2l)+ |r|4 + |η|2).

6. The reduced system of ODEs

We consider the interaction of two travelling pulses which locate symmetric withx = 0, assuming all constants
M1,M2,M0 andM̃0 are positive, which holds for (1.1). The resulting system is reduced to the following ODEs for
the unknownsl(t) andr(t) by Corollary 5.1 and Theorem 5.3:

l̇ = r + M̃0 exp(−2αl), ṙ = −M1r
3 +M2ηr +M0 exp(−2αl). (6.1)

We impose the following initial conditions:

l(0) = l0 � 1 and r(0) = −
√
M2η

M1
= −v(η), (6.2)

which indicates the situation where there is initially a travelling pulse propagating to the left direction. Putting
z = exp(−2αl), then (6.1) can be rewritten as

ż = −2αz(r + M̃0z) ≡ f (z, r), ṙ = −M1r
3 +M2ηr +M0z ≡ g(z, r), (6.3)

and the corresponding initial conditions as

z(0) = exp(−2αl0)� 1 and r(0) = −v(η). (6.4)

It is obvious to see that the critical points of (6.3) in(r, z)-plane are(−v(η),0), (v(η),0) and(0,0). The first two
ones correspond to the velocities of travelling pulses of the original RD system, while the last does to the standing
one. Whenη is positive and suitably small, the phase plane analysis on the(r, z)-plane reveals that the solution
(r(t), z(t)) of (6.3) and (6.4) tends to(v(η),0) for large time, as shown in Fig. 5.1(a). The corresponding solution
l(t) is drawn in Fig. 5.1(b), which clearly shows that a pulse propagating with the velocity−v(η) to the left direction
reflects nearx = 0 and then moves to the right direction, as if it rebounds near the wallx = 0 and the velocity
becomesv(η). This situation is similar to the reflection of two travelling pulses as was seen in Fig. 2.3.

We next consider the movement of a single travelling pulse in a finite interval(0, L) whereL is very large. By
(6.1), the system which we are treating is

l̇ = r + M̃0 exp(−2αl)− exp(−2α(L− l)),

ṙ =−M1r
3 +M2ηr +M0 exp(−2αl)− exp(−2α(L− l)). (6.5)

Puttingz = exp(−2αl) again, we have

ż=−2αz

(
r + M̃0

(
z− exp(−2αL)

z

))
≡ F(z, r),

ṙ =−M1r
3 +M2ηr +M0

(
z− exp(−2αL)

z

)
≡ G(z, r). (6.6)
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Fig. 5.1. Reflection dynamics of ODEs (6.3) wherea = 0.35,M1 = 0.5,M2 = 0.0225,K = 0.1,H = 0.2, η = 0.5: (a) trajectory of (6.3) in
the(r, z)-plane; (b) trajectory of (6.2) in the(l, r)-plane.

Fig. 5.2. Oscillatory solution of ODEs (6.6) where the parameters exceptη = 1.0,L = 10.0 are the same as those in Fig. 5.1: (a) trajectory of
(6.6) in the(r, z)-plane; (b) time evolution ofl(t) of (6.5).

The nulclines ofF andG are drawn in Fig. 5.2(a). We find that the critical point of (6.6) is(r, z) = (exp(−αL),0)
which indicate the standing pulse locating on the center of the interval(0, L). It should be noted that the nonlinearities
F andG are qualitatively similar to the ones of the Van der Pol equations. By using the Poincare–Bendixon theorem,
we found that there is a limit cycle in the(r, z)-plane, ifL is large, as in Fig. 5.2(a). The corresponding trajectory
of l(t) is drawn in Fig. 5.2(b). Fig. 5.3 demonstrates the rebounding behavior of a travelling pulse of the RD system
(1.1) with two walls.

7. Proof of the theorems

In this section, letC denote a positive constant independent of sufficiently largeh > h∗ and sufficiently smallη
with |η| < η∗ where we take suitably largeh∗ and smallη∗.
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Fig. 5.3. Rebounding of travelling pulse of the RD system (1.1) where the parameters are the same as the ones in Fig. 1.3.

7.1. Proof of Theorem 4.1

LetX = {L2(R)}N . We start the following proposition without showing the proof, because it is quite similar to
Ei [1].

Proposition 7.1. There exists a neighborhoodUN ⊂ X ofM(r∗) such that anyU ∈ UN is represented as

U = τ(l){S(x; r)+W}
by uniquely determinedl ∈ R, r with |r| < r∗ andW ∈ E⊥.

We transform Eq. (4.2) ofU to that of(W, l, r) by

U(t, x) = τ(l){S(x; r)+W}
for l ∈ R, |r| < r∗ andW ∈ E⊥. Sinceτ ′(l) = −τ(l)(∂/∂x) holds, we have

U t = l̇τ ′(l){S(x; r)+W} + τ(l){ṙΨ +W t } = τ(l){−l̇(Sx +Wx)+ ṙΨ +W t }
= τ(l){−l̇(Px + rΨx +Wx)+ ṙΨ +W t },

and

L(U)+ ηg(U) = τ(l){L(S(x; r)+W)+ ηg(S(x; r)+W)}.
Hence

−l̇(Px + rΨx +Wx)+ ṙΨ +W t = L(S(x; r)+W)+ ηg(S(x; r)+W) (7.1)

holds. LetQ andR be the projections fromX to E andE⊥, respectively. By the normalization of eigenfunctions
of L andL∗ as in Proposition 4.1, it follows that

QV = 〈V , Ψ ∗〉L2Px + 〈V , Φ∗〉L2Ψ.

Therefore operatingQ on (7.1), we obtain

−l̇(1+ 〈Wx, Ψ
∗〉L2) = 〈L(S(x; r)+W)+ ηg(S(x; r)+W), Ψ ∗〉L2, (7.2)

−l̇〈Wx,Φ
∗〉L2 + ṙ = 〈L(S(x; r)+W)+ ηg(S(x; r)+W),Φ∗〉L2. (7.3)
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Let Xω be the fractional powered space ofX with respect toL such thatXω is imbedded intoBU1(R), where
BU1(R) is the functional space of uniformly continuous and bounded functions onR up to their first derivative.
Then, it follows:

L(S(x; r)+W)+ ηg(S(x; r)+W)

= LW − rPx + 1
2r

2F ′′(P )Ψ 2 + 1
6r

3F ′′′(P )Ψ 3

+ rF′′(P )Ψ ·W + 1
2F

′′(P )W2 + ηg(P )+ ηrg′(P )Ψ + ηg′(P )W + O(|r|2‖W‖ω
+ |r| · ‖W‖2

ω + ‖W‖3
ω + |r|4 + |η| · |r|2 + |η| · ‖W‖2

ω). (7.4)

Put

W(D1,D2, η)= {W ∈ C((−r∗, r∗);E⊥); ‖W(r)‖ω ≤ D1(|r|2 + |η|), ‖W(r)
−W(r ′)‖ω ≤ D2(|r| + |r ′| + |η|)|r − r ′|},

and supposeW ∈ W(D1,D2, η). Then, from (7.4) and the oddness of eigenfunctions, we obtain

〈L(S(x; r)+W)+ ηg(S(x; r)+W), Ψ ∗〉L2 =−r + O(|r|2 + ‖W‖2
ω + |η|2) = −r + O(|r|2 + |η|2),

〈L(S(x; r)+W)+ ηg(S(x; r)+W),Φ∗〉L2 = O(|r|2 + ‖W‖2
ω + |η|2) = O(|r|2 + |η|2).

Therefore, it follows from (7.2) and (7.3) that

l̇ = J (r,W) = r + O(|r|2 + |η|2), ṙ = K̃(r,W) = O(|r|2 + |η|2).
Thus, we have the equations of(r,W) andl as

ṙ = K̃(r,W), W t = LW + G̃(r,W), l̇ = J (r,W), (7.5)

where by (7.1) and (7.4)̃G is given as

G̃(r,W)=R(L(S(x; r)+W)+ ηg(S(x; r)+W)+ l̇(Px + rΨx +Wx)− ṙΨ )− LW

= O(|r|2 + ‖W‖2
ω + |η|)+ J (r,W)R(rΨx +Wx) = O(|r|2 + |η|),

‖G̃(r,W)− G̃(r ′,W ′)‖ ≤ O(|r| + |r ′| + |η|)(|r − r ′| + ‖W −W ′‖ω).
Then, in a quite similar way to Ei [1], we can show the existence of a functionσ(r; η) ∈ W(D1,D2, η) for
appropriate constantsD1 andD2 such that(r, σ (r; η)) is a positively and exponentially attractive local invariant
manifold for Eq. (7.5). Since the solutionU is represented asU = τ(l){S(x; r) +W} by the solution(r,W, l) of
(7.5), we have

‖U(t)− τ(l(t))S(·; r(t))‖ ≤ C‖W‖ω ≤ C(|r(t)|2 + |η|).

7.2. Proof of Theorem 4.2

Define the functionζ†(r; η)(·) ∈ E⊥ by the unique solution of

0 = Lζ† + 1
2r

2F ′′(P )Ψ 2 + ηg(P )+ r2Ψx. (7.6)

NoteΨx ∈ E⊥ because of the symmetry ofΨx . It is easily seen thatζ† is given byζ† = r2ζ1 + ηζ2, whereζj
(j = 1,2) are functions defined in Section 4. In a similar way to the proof of Theorem 4.1, we have the following
proposition.
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Proposition 7.2. There exists a neighborhoodU ⊂ X ofM(r∗) such that anyU ∈ U is represented as

U = τ(l){S(x; r)+ ζ†(r; η)+W}
by uniquely determinedl ∈ R, r with |r| < r∗ andW ∈ E⊥.

SubstitutingU = τ(l){S(x; r)+ ζ†(r, η)+W} into (4.2), we have similar to (7.1)

−l̇(Px + rΨx + ζ†
x +Wx)+ ṙ(Ψ + ζ†

r )+W t

= LW − rPx + Lζ† + 1
2r

2F ′′(P )Ψ 2 + rF′′(P )Ψ · ζ† + 1
6r

3F ′′′(P )Ψ 3 + ηg(P )ηrg′(P )Ψ

+O(|ζ†|2 + |r|4 + |η|(|ζ†| + |W |)+ |r||W | + |W |2).
The estimates (4.4) oṅl, ṙ and (7.6) with the estimate‖ζ†(r, η)‖ω ≤ O(|r|2 + |η|) show

W t =LW − rPx + rF′′(P )Ψ · ζ† + 1
6r

3F ′′′(P )Ψ 3 + ηrg′(P )Ψ − r2Ψx + l̇(Px + rΨx + ζ†
x +Wx)

− ṙ(Ψ + ζ†
r )+ O(|ζ†|2 + |r|4 + |η|(|ζ†| + |W |)+ |r||W | + |W |2)

=LW + O(|r|2 + |η|2)Px + O(|r|(|r|2 + |η|2))Ψx + l̇Wx − ṙΨ + rF′′(P )Ψ · ζ† + 1
6r

3F ′′′(P )Ψ 3

+ ηrg′(P )Ψ + rζ†
x + O(|r|4 + |η|2 + |η|(|ζ†| + |W |)+ |r||W | + |W |2)

=LW + O(|r|2 + |η|2)Px + O(|r|(|r|2 + |η|2))Ψx + l̇Wx − ṙΨ + O(|r|3 + |η|3/2 + |r||W | + |W |2).
(7.7)

Operating the projectionR on the above equation, we see

W t = LW + l̇RWx + O(|r|3 + |η|3/2 + |r||W | + |W |2). (7.8)

Following the proof of Theorem 4.1, we can show the existence of an exponentially attractive local invariant
manifold given byW = σ†(r; η) with ‖σ†(r; η)‖ω ≤ O(|r|3 + |η|3/2). Hence by taking the inner product of (7.7)
andΨ ∗ in X with the estimateW = σ† = O(|r|3 + |η|3/2), we obtain (4.6).

On the other hand, by taking the inner product of (7.7) andΦ∗, we have

ṙ = r〈F ′′(P )Ψ · ζ†, Φ∗〉L2 + 1
6r

3〈F ′′′(P )Ψ 3, Φ∗〉L2+ηr〈g′(P )Ψ,Φ∗〉L2+r〈ζ†
x ,Φ

∗〉L2+O(|r|4 + |η|2).
(7.9)

Substituting the representationζ† = r2ζ1 + ηζ2 into (7.9), we obtain the theorem.

7.3. Proof of Corollary 4.1

Quite similar to the previous subsections, one finds that there exists a neighborhoodU ⊂ X of M(r∗) such that
for anyU ∈ U is represented as

U = τ(l){P(x; η)+ rΨ (x)+ r2ζ1 +W}
by uniquely determinedl ∈ R, |r| < r∗ andW ∈ E⊥. SinceP(x; η) = P(x) + ηP1(x) + η2P2(x; η) satisfy
L(P (x; η)) + ηg(P (x; η)) ≡ 0 for any smallη andP1 ∈ E⊥, P1 = ζ2 holds. Therefore, we also see similarly
that there exists an exponentially attractive local invariant manifold given byW = σ ∗(r; η) with ‖σ ∗(r; η)‖ω ≤
O(|r|3 + |η|3/2) andσ ∗(0; η)(x) ≡ 0. Furthermore,σ ∗(·; η) is belonging toW(D1,D2, η) as in the proof of
Theorem 4.1, which leads toσ ∗

r (0; η) ≤ O(|η|). Thus, we find thatσ ∗(r; η) = Cηrp(x) + O(r2) for a constant
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C and a functionp(x). Hence, there exist functionsσ l(r; η) andσ r(r; η) with |σ l(r; η)| ≤ O(|r|3 + |η|3/2) and
|σ r(r; η)| ≤ O(|r|4 + |η|2) such thatσ l(0; η) = σ r(0; η) = 0 andσ lr (0; η) = O(|η|), σ rr (0; η) = O(|η|2) and they
give the equation along the local invariant manifold by

l̇ = r + σ l(r; η) ≡ Ĥ (r; η), ṙ = K(r; η)+ σ r(r; η) ≡ K̂(r; η). (7.10)

Here, we used

σ l(r; η)= 〈O(ζ† + σ ∗)+ O((rΨ + ζ† + σ ∗)2),Φ∗〉L2 and

σ r(r; η)= 〈O((ζ† + σ ∗)2)+ O((rΨ + ζ† + σ ∗)2), Ψ ∗〉L2

for the estimates ofσ l andσ r . Noter = 0 is an equilibrium of (7.10), which corresponds to the standing pulse
solutionP(x; η). Hence, the linearized stability ofP(x; η) is determined byK̂ ′(0; η) = M2η+O(η2) ≡ λ(η) and
the solutionU(t) is also represented by

U(t, x) = P(x − l(t); η)+ r(t)Ψ (x − l(t))+ r2(t)ζ1(x − l(t))+ σ ∗(r(t); η)(x − l(t)).

This is expanded for smalll(t) andr(t) as

P(x; η)− l(t)Px(x; η)+ r(t)Ψ (x)+ r(t)σ ∗
r (0; η)(x)+ O(|l(t)|2 + |r(t)|2) (7.11)

by using the estimate‖σ ∗(r; η)‖ω ≤ O(|rη|).
Now, let us linearize (7.10) with respect tor = 0 as(

l̇

ṙ

)
=
(

0 1+ σ lr (0; η)
0 M2η + σ rr (0; η)

)(
l

r

)
. (7.12)

Let

A =
(

0 1+ λ̂1(η)

0 λ̂2(η)

)
,

whereλ̂1(η) = 1+ σ lr (0; η) = 1+ O(|η|) andλ̂2(η) = λ(η) = M2η + σ rr (0; η) = M2η + O(|η|2). Eigenvalues
of A are 0 andλ(η) with associated eigenvectorsφ1 = (1,0) andφ2 = (λ̂1(η), λ̂2(η)), respectively. Hence, one of
the solutions of (7.10) is given by(

l(t)

r(t)

)
= ε eλ(η)t φ2 + O(ε2)

for sufficiently smallε > 0. Substituting abovel(t) andr(t) into (7.11), we have

U(t, x)= P(x; η)− ελ̂1(η)eλ(η)t Px(x; η)+ ελ̂2(η)eλ(η)t Ψ (x)+ ελ̂2(η)eλ(η)t σ ∗
r (0; η)(x)+ O(ε2)

= P(x; η)− ε eλ(η)t {λ̂1(η)Px(x; η)− λ̂2(η)Ψ (x)− λ̂2(η)σ
∗
r (0; η)(x)} + O(|ε|2). (7.13)

SinceU(t, x) of (7.13) satisfiesU t = L(U)+ηg(U) = ε eλ(η)t L(η){λ̂1(η)Px(x; η)− λ̂2(η)Ψ (x)− λ̂2(η)σ
∗
r (0; η)

(x)} + O(ε2), which leads to asε ↓ 0

λ(η){λ̂1(η)Px(x; η)− λ̂2(η)Ψ (x)− λ̂2(η)σ
∗
r (0; η)(x)}

= L(η){λ̂1(η)Px(x; η)− λ̂2(η)Ψ (x)− λ̂2(η)σ
∗
r (0; η)(x)}.

Thus, the proof is completed.
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7.4. Proof of Theorem 5.1

The proof of Theorem 5.1 is quite similar to the proof of Theorem 2.1 in [1]. Hence, we just give the outline of
the proof.

LetX = {L2(R)}N andL(h) = L′(P (x;h)), and letL∗(h) be the adjoint operator ofL(h). Then, we have the
following two propositions which can be proved in a quite similar manner to [1], so we omit the details.

Proposition 7.3. There exist positive constants C andh∗ such that for h withh > h∗, the operatorL(h) has
four eigenvalues{λj (h)}j=1,...,4 with |λj (h)| ≤ Cδ(h). Eigenvalues with geometrical multiplicities are repeated as
many times as their multiplicities indicate. Other spectra ofL(h) are in the left-hand side ofz = −ρ0 for a positive
constantρ0.

LetE(h) be the generalized eigenspace corresponding to eigenvalues{λj (h)}j=1,...,4. Note that dimE(h) = 4.
The adjoint operatorL∗(h) has also similar four eigenvalues{λ∗j (h)}j=1,...,4 with |λ∗j (h)| ≤ Cδ(h). LetE∗(h) be
the generalized eigenspace corresponding to eigenvalues{λ∗j (h)}j=1,...,4.

Proposition 7.4. E(h) andE∗(h) are spanned by four functions{φj (h)(·)}, {ψj (h)(·)} and{φ∗j (h)(·)}, {ψ∗
j (h)(·)}

(j = 1,2), respectively, such that forj = 1,2,

φj (h)(x) = Px(x − hj )+ O(δ), (7.14)

ψj (h)(x) = Ψ (x − hj )+ O(δ), (7.15)

φ∗j (h)(x) = Φ∗(x − hj )+ O(δ), (7.16)

ψ∗
j (h)(x) = Ψ ∗(x − hj )+ O(δ), (7.17)

〈φj (h),φ∗k(h)〉L2 = 0, j  = k, (7.18)

〈φj (h),φ∗j (h)〉L2 = 1 (7.19)

hold, whereδ = δ(h), h1 = 0 andh2 = h, andO(δ) means here‖O(δ)‖H2 ≤ Cδ.

Now, we fixh∗ > 0 large enough such that Propositions 7.3 and 7.4 hold.
Let operatorsQ(h) andR(h) be the projections fromX toE(h) andR(h) = Id −Q(h), respectively, where Id

is the identity onX. LetE⊥(h) = R(h)X. Note thatE⊥(h) is characterized by

E⊥(h) = {U ∈ X; 〈U,φ∗j (h)〉L2 = 〈U,ψ∗
j (h)〉L2 = 0 (j = 1,2)}.

Fix ĥ with ĥ > h∗ arbitrarily and putδ∗ = δ(h∗), δ̂ = δ(ĥ). Then, we can show that there exists a mapΠ(h)

homeomorphic fromE⊥(ĥ) toE⊥(h) for h > ĥ similar to [1].
Fix ρ1 > 0 and defineH(ĥ, ρ1) = {h; ĥ < h < ĥ + ρ1}, M = M(ĥ, ρ1) = {τ(l)S(·, h, r); l ∈ R, h ∈

H(ĥ, ρ1), |r| < r∗}. Then we note [1] that there exist a positive constantC1 depending only onρ1 and independent
of ĥ with ĥ > h∗ for sufficiently largeh∗ such that for anyh ∈ H(ĥ, ρ1) the mapΠ(h) satisfies

‖Π(h)‖, ‖Π−1(h)‖,
∥∥∥∥ ∂∂hΠ(h)

∥∥∥∥ ≤ C1, ‖Π(h)‖∞, ‖Π−1(h)‖∞,
∥∥∥∥ ∂∂hΠ(h)

∥∥∥∥∞ ≤ C1,

where‖ · ‖∞ is an operator norm with respect to the sup-norm‖ · ‖∞ onR1.
LetA = L(ĥ) andXω be the space with the norm‖ · ‖ω defined by the fractional powerAω of A for ω ∈ [0,1).

Hereafter, we fixω in 3/4< ω < 1 such thatXω is imbedded intoBU1(R) [3].
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We have the following proposition (e.g. [1]).

Proposition 7.5. There exists a neighborhoodU = U(ĥ, ρ1) ofM(ĥ, ρ1) inXω such that anyU ∈ U is represented
by

U = τ(l){S(x;h, r)+Π(h)W}
for l ∈ R, h ∈ H(ĥ, ρ1) andW ∈ E⊥(ĥ).

We transform Eq. (4.2) ofU to that of(W, l, h, r) by

W(t, x) = τ(l){S(x;h, r)+Π(h)W}
for l ∈ R, h ∈ H(ĥ, ρ1), |r| < r∗ andW ∈ E⊥(ĥ). Sinceτ ′(l) = −τ(l)(∂/∂x) holds, we have

U t = l̇τ ′(l){S(x;h, r)+Π(h)W} + τ(l)

(
∂

∂(h, r)
{S(x;h, r)+Π(h)W}(ḣ, ṙ)+Π(h)W t

)

= τ(l)
(
−l̇ ∂
∂x

{S(x;h, r)+Π(h)W} + ∂

∂(h, r)
{S(x;h, r)+Π(h)W}(ḣ, ṙ)+Π(h)W t

)
and

L(U)+ ηg(U) = L(τ (l)V )+ ηg(τ(l)V ) = τ(l)(L(V )+ ηg(V )),

whereV = S(x;h, r)+Π(h)W . Hence, it follows that

−l̇ ∂
∂x

{S(x;h, r)+Π(h)W} + ∂

∂(h, r)
{S(x;h, r)+Π(h)W}(ḣ, ṙ)+Π(h)W t = L(V )+ ηg(V ),

and that

Q(h)

[
−l̇ ∂
∂x

{S(x;h, r)+Π(h)W} + ∂

∂(h, r)
{S(x;h, r)+Π(h)W}(ḣ, ṙ)

]
= Q(h)L(S(x;h, r)+Π(h)W)+ ηQ(h)g(S(x;h, r)+Π(h)W), (7.20)

Π−1(h)R(h)

[
−l̇ ∂
∂x

{S(x;h, r)+Π(h)W} + ∂

∂(h, r)
{S(x;h, r)+Π(h)W}(ḣ, ṙ)

]
+W t

= Π−1(h)R(h){L(S(x;h, r)+Π(h)W)+ ηg(S(x;h, r)+Π(h)W)}. (7.21)

Let ρ2 > 0 andC2 > 0 be constants such that if|r| < r∗, ‖W‖ω < ρ2 andh ∈ H(ĥ, ρ1), then

|L(S(x;h, r)+Π(h)W)− L(P (x;h))− L(h)Π(h)W | ≤ C2(|r|2 + |W |2) (7.22)

holds. We note thatρ2 is taken to be independent ofĥ and depending only onρ1.
Put

W(ĥ, ρ1,D1,D2, η)= {W(·) ∈ C(H(ĥ, ρ1)× (−r∗, r∗);E⊥(ĥ) ∩Xω); ‖W(h, r)‖ω
≤ D1∆1(h, r, η), ‖W(h, r)−W(h′, r′)‖ ≤ D2(δ(h)+ δ(h′)
+ |r| + |r′| + |η|)(|h− h′| + |r − r′|)},

where∆1(h, r, η) = δ(h) + |r|2 + |η|. We determineD1, D2 later but supposeh∗ is large enough andr∗, |η| are
small enough so as toD1∆1(h, r, η) < ρ2 for h ∈ H(ĥ, ρ1)with ĥ > h∗ and|r| < r∗. If W ∈ W(ĥ, ρ1,D1,D2, η),
then (7.20) yields

l̇ = J ∗(h, r,W) = r1 − H̃1(h)+ O(δ2 + |r|2 + |η|2), (7.23)
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ḣ = H ∗(h, r,W) = r2 − r1 + H̃1(h)− H̃2(h)+ O(δ2 + |r|2 + |η|2), (7.24)

ṙj = K∗
j (h, rj ,W) = K(rj ; η)+Hj(h)+ O(δ2 + |r|2 + |η|2), j = 1,2, (7.25)

whereδ = δ(h) andH̃j (h) = 〈L(P (· + hj ;h)), Ψ ∗〉L2, Hj(h) = 〈L(P (· + hj ;h)),Φ∗〉L2 andh1 = 0, h2 = h.
Especially,

l̇, ḣj = O(∆2), ṙj = O(∆3). (7.26)

Hence, it follows from (7.21) and (7.22) that

W t = A(h)W +G∗(h, r,W) (7.27)

with ‖G∗‖ = O(∆1) for h ∈ H(ĥ, ρ1, ) andW ∈ W(ĥ, ρ1,D1,D2, η), where

A(h) = Π−1(h)L(h)Π(h),

G∗(h, r,W) = Π−1(h)R(h)

[
L(S(x;h, r))+ L2(W,W)+ ηg(S(x;h, r)+Π(h)W)

+ J ∗ ∂
∂x

{S(x;h, r)+Π(h)W} − ∂

∂(h, r)
{S(x;h, r)+Π(h)W}(H ∗,K∗)

]
,

L2(W,W) = L2(h, r,W)(W,W) = L(S(x;h, r)+Π(h)W)− L(S(x;h, r))− L(h)Π(h)W,

K∗ = K∗(h, r,W) = (K∗
1(h, r1,W),K

∗
2(h, r1,W)).

Then, in quite a similar way to [1], we can show the existence of a functionσ(h, r; η) ∈ W(ĥ, ρ1,D1,D2, η)

for appropriate constantsD1 andD2 such that the set{(h, r, σ (h, r; η));h ∈ H(ĥ, ρ1), |r| < r∗} is a positively
attractive local invariant manifold for the solution(h, r,W) of (7.24), (7.25) and (7.27). Hence, by using the similar
discussions to the proof of Theorem 2.1 in [1], we can show that there exists a neighborhoodU of⋃

ĥ>h∗
{(h, r,0);h ∈ H(ĥ, ρ1), |r| < r∗} = {(h, r,0);h > h∗}

such that if(h(0), r(0),W(0)) ∈ U , then the solution of (7.24), (7.25) and (7.27) is attracted exponentially and
remains in∆1 neighborhood of the set as long ash > h∗ and|r| < r∗, that is,‖W(t)‖ ≤ C∆1(h(t), r(t), η). Since
the solutionU of (4.2) is given byU = τ(l){S(h, r) +Π(h)W} by using the solution(h, r,W) of (7.24), (7.25)
and (7.27), this reads

‖U(t)− τ(l){S(h(t), r(t))}‖ ≤ ‖Π(h)W‖ ≤ C∆1(h(t), r(t), η),

and the proof is complete.

7.5. Proof of Theorems 5.2 and 5.3 and Corollary 5.1

The proof of Theorem 5.2 is quite similar to the proof of Theorem 4.2 because we have already got the estimates
of l̇, ḣ andṙj by (7.23)–(7.25).

Theorem 5.3 can be also proved following the proof of Theorem 2.3 in [1]. Especially, the expression of the
constantM̃0 is given by Proposition 4.5 in [1].

Corollary 5.1 is directly obtained by Theorems 5.2 and 5.3 by takingr2 = −r1 ≡ r andh = 2l.
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8. Discussion

We have first numerically shown that if there is the situation where very slowly one-dimensional travelling pulse
solutions exist, very complex spatio-temporal patterns possibly appear in two dimensions. The reason is that such
very slowly travelling pulses possess reflection mechanism by which expanding rings split into several pieces when
they approach one another. From mathematical viewpoints, we have proven that any travelling pulses bifurcating
primarily and super-critically from a standing pulse always reflect when they approach, if their velocity is very slow.
The center manifold theory reveals that the interaction of two travelling pulses can be described by four-dimensional
system of ODEs. The analysis of the system enables to explain that very slowly travelling pulses reflect one another,
as if they were elastic-like particles. Furthermore, the interval(0, L) with the zero-flux boundary conditions is very
long, it is shown that the pulse-like solution reflect nearx = 0 andL as if it were rebounding with two walls
(Fig. 5.3). The method which we used here is also applicable to higher dimensional problems. For instance, if there
exist travelling spots that move very slowly in two dimensions, they possess the property of reflection [4,5,8]. This
will be proved in a forthcoming paper.
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Appendix A. Proof of Proposition 4.2

We will only show the proof forΨ (x). SinceLΨ = −Px holds,Ψ (x) satisfies the ODE

DΨxx + F ′(P (x); kc)Ψ = −Px.
PuttingG(x) = F ′(P (x); kc),Φ(x) = Px(x) andW = DΨx , we have the equivalent ODE

Ψx = D−1W, Wx = −G(x)Ψ −Φ. (A.1)

SinceG(x)→ F ′(0; kc)+ F ′′(0; kc)e−αx a andΦ(x)→ −α e−αx a asx → +∞, (A.1) becomes asymptotically

Ψx = D−1W, Wx = −G0Ψ + α e−αx a, (A.2)

whereG0 = F ′(0; kc). The solution of (A.2) gives the asymptotic form ofΨ and the proof is finished.
In order to obtain the solution of (A.2), we put(Ψ,W) = e−αx V and then (A.2) is written by

V x = Ĝ0V + e−αx â,

where

Ĝ0 =
(

0 D−1

−G0 0

)

andâ = t (0, αa). Transforming this equation byV = e−αx v, we have

vx = Av+ â, (A.3)
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where

A =
(
αIN D−1

−G0 αIN

)

andIN is the unit matrix of degreeN . Clearly,Φ̂ = t (a,−αDa) satisfiesAΦ̂ = 0 and kerA = span{Φ̂}.
On the other hand,̂Φ∗ = t (−αDa∗, a∗) satisfiestAΦ̂∗ = 0 and kertA = span{Φ̂∗} becausea∗ satisfies

α2Da∗ + tG0a
∗ = 0. Therefore, the projection̂Q fromR2N to kerA is given by

Q̂v = 〈v, Φ̂∗〉
〈Φ̂, Φ̂∗〉 Φ̂ = − 〈v, Φ̂∗〉

2α〈a,Da∗〉 Φ̂.

Let R̂ = I2N − Q̂. Since the eigenvalues ofA except 0 are in the left-hand side of imaginary axis, the solutionv of
(A.3) is given by

v(x) = xQ̂â+ β2Φ̂ + O(e−γ1x)− A−1R̂â = − 〈a, a∗〉
2〈a,Da∗〉xΦ̂ + β2Φ̂ + O(e−γ1x)− A−1R̂â

for a constantβ and a positive constantγ1. Hence, we may take

v(x) = − 〈a, a∗〉
2〈a,Da∗〉xΦ̂ + βΦ̂ − A−1R̂â

as the asymptotic form ofv(x). Let t (b, c) = −A−1R̂â. Picking up the first component ofv, we have

v1(x) = − 〈a, a∗〉
2〈a,Da∗〉xa+ βa+ b,

wherev = t (v1, v2). Now,Ψ (x) = e−αx v1(x) and henceW(x) = DΨx(x) = e−αx D{∂xv1(x) − αv1(x)} holds,
which means

v2(x)=D{∂xv1(x)− αv1(x)} = α〈a, a∗〉
2〈a,Da∗〉xDa−

( 〈a, a∗〉
2〈a,Da∗〉 + αβ

)
Da− αDb

= α〈a, a∗〉
2〈a,Da∗〉xDa− αβDa−

( 〈a, a∗〉
2〈a,Da∗〉Da+ αDb

)
.

Comparing with the componentv2, we have

c = −
( 〈a, a∗〉

2〈a,Da∗〉Da+ αDb

)
.

Substituting this into the equationAt(b, c) = −R̂â, we see

G0b+ α2Db = α

(
a− 〈a, a∗〉

〈a,Da∗〉Da
)

(A.4)

holds. The matrix(G0 + α2D) has 0 eigenvalue with the associated eigenvectora and the transposed matrix
(tG0 + α2D) has also 0 eigenvalue with the associated eigenvectora∗. Since the right-hand side of (A.4) is clearly
orthogonal toa∗, there exist a vectorb satisfying (A.4). The vectorb is uniquely determined by the orthogonal
condition〈t (b, c), Φ̂∗〉 = 0 asb = β ′a+ b′ with 〈b′, a∗〉 = 0. Thus, the proof is completed.
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