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Abstract

It had been long believed that one-dimensional travelling pulses and the corresponding two-dimensional expanding rings
and spiral waves arising in excitable reaction—diffusion systems annihilate when they closely approach one another. However,
recently it has been numerically confirmed that if the velocity is very slow, expanding rings and spiral do not necessarily
annihilate. In particular, in some situation, two closely approaching pulses reflect, as if they were elastic like objects. By using
the center manifold theory, we show that if there are travelling pulses which primarily and super-critically bifurcate from a
standing pulse when some parameter is varied, they possess reflection mechanism if the velocity is very slow. © 2002 Elseviel
Science B.V. All rights reserved.
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1. Introduction

Avariety of regular and irregular complex spatio-temporal patterns have been observed in biological, physiological
and chemical systems. Among these systems, it is well known that excitable reaction—diffusion systems generate
travelling pulses in one dimension and expanding rings and spiral waves in two dimensions. It is a typical feature
that these patterns exhibit annihilation on collision. However, even in such excitable systems, it has been recently
reported that annihilation of travelling pulses does not necessarily occur but either reflection or extinction appears
before collision in some parameter regime [7]. As an example, the authors considered in the previous paper [6] the
following two-component excitable reaction—diffusion system:
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— — Au = —(—au+k@)v) = - f(u, v),
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8—’; —dAv = h(v* —v) —k(u)v = g(u,v) in 2,10, (1.1)
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Fig. 1.1. Nulclines off andg in (1.1) wherea = 2.0, ¢ = 5.0, h = 45.0 andv* = 1.0.

whered is the ratio of the diffusion rates af andv, ¢ the time constant between the dynamicsi@ndv. a, 1
andv* are some positive constants.klfu) = 2, (1.1) is called the Gray—Scott model which describes a cubic
autocatalytic reaction process [2]kfu) = exp(u /(14 u/c)) with positive constant, (1.1) describes the first step
exothermic reaction, wheteis the temperature andthe concentration of chemical reactant [6]. Let us consider
here the latter case for (1.1). When= 2.0, ¢ = 5.0, = 45.0 andv* = 1.0 for instance, the nulclines gf andg
are drawn in Fig. 1.1 where there is only one critical point, ay (i, v).

For the diffusionless system of (1.1), one finds tibais globally stable and that if is suitably small, the
system possesses excitability mechanism. Under this situation, we consider (1.1) for different valu&fe €ifst
taked = 0.5 so that there is a stable travelling pulse in one dimension, as in Fig. 1.2(a). Correspondingly, we
consider the situation where three stimuli are initially given to the constant@tétea rectangular domain with
zero-flux boundary condition. Then three rings are uniformly expanding and annihilate when they collide or hit the
boundary, as in Fig. 1.2(b). We next take= 4.5 where a travelling pulse still exists, as in Fig. 1.3(a). A different
feature from the previous pulse in Fig. 1.2(a) is that the velocity is much slower. Though the initial condition is the
same as the one in Fig. 1.2(b), the resulting patterns are totally changed, as in Fig. 1.3(b). Some features can be
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Fig. 1.2. (a) Travelling pulse; (b) annihilation of expanding rings whese 2.0, ¢ = 5.0, h = 45.0,v* = 1.0,d = 0.5 ande = 0.001.
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Fig. 1.3. (a) Travelling pulse; (b) breakdown of three ring patterns where the parametersdexcéfi are the same as those in Fig. 1.2.

observed: (i) Expanding rings do not necessarily annihilate when they approach closely, that is, they either repel
each other or fade out before collision. (i) Some part of the expanding rings shrinks after repulsion so that the ring
splits into several pieces. (iii) After large time, there appear very dynamic spot-patterns which never decay at all.
It is numerically shown that such complex spatio-temporal patterns occur under the situation where very slowly
travelling pulses stably exist in one dimension, which will be discussed in Section 2. The results in this paper are as
follows: (i) The bifurcation structure of travelling pulse solutions is made clear in a general framework. Very slowly
travelling pulse solutions can be constructed as primarily and super-critically bifurcation from a standing pulse
when some parameter is varied. The dynamics of a pulse-like solution near the bifurcation point can be described
by some specific system of ODEs (Sections 3 and 4). (ii) By using the reduced ODEs, the interaction of two very
slowly travelling-like pulses is discussed and then the reflection of two travelling-like pulse solutions can be shown
(Sections 5-7). The tool, which we use here, is the center manifold theory and complementarily numerical methods.
Finally, in Section 8 we give concluding remarks on our results.

2. Interaction of two expanding rings

We first numerically consider the interaction of two expanding completely circular rings. For the same values of
parameters as in Fig. 1.3, we take specific initial conditions such that two point stimdrefgiven to the constant
state O where the distance between the two stimuli/sé&yvaried. Fol. = 1.4, the resulting rings annihilate when
they collide (Fig. 2.1(a)). Fot = 2.8, the parts of two rings where they closely approach fade out before collision
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Fig. 2.1. Collision of two expanding rings where the parameters are the same as the ones in FigL1=31(4) (b) L = 2.8; (c) L = 4.0.

(Fig. 2.1(b)). ForL = 4.0, the expanding rings never annihilate and some parts exhibit reflection (Fig. 2.1(c)). We
thus find that the interaction of expanding rings sensitively depend on the magnitude (or radius) of the expanding
rings when they closely approach.

We next consider the dependency of the radius of a single completely circular ring on the expanding velocity. Itis
demonstrated in Fig. 2.2 that the velocity of the ring monotonously decreases with its radius and that, as the radius

V(t)
30

Vol
0

0 R(t) 50

Fig. 2.2. Radiusk () dependence on velocifi () of an expanding ring, wherg, is the velocity of one-dimensional travelling pulse and the
parameters are the same as the ones in Fig. 1.3.
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Fig. 2.3. Repulsion of two travelling pulses where the parameters are the same as the ones in Fig. 1.3.

becomes very large, the velocity converges to some constant value, which gives the velocity of the one-dimensional
travelling pulse. These results clearly indicate that either annihilation or non-annihilation of rings depends on
expanding velocity of rings. Roughly speaking, if the velocity is relatively fast, expanding rings annihilate, while if
itis very slow, they reflect. The limiting situation where the radius tends to infinity, suggests us that one-dimensional
travelling pulses reflect one another when they approach, as in Fig. 2.3.

We finally consider the dependency of the velocity of one-dimensional travelling pulses on annihilation or
non-annihilation properties. In order to change the velocity of travelling pulses, wedtalkea free parame-
ter by fixing the other parameters. Wheris small, the velocity is relatively fast so that two travelling pulses
annihilate as one can expect (Fig. 2.4(a)}! Ihcreases slightly, the velocity becomes slow so that two approach-
ing pulses fade out before collision (Fig. 2.4) and/iincreases slightly further where the valuesdofs the
same as in Fig. 2.3, the velocity is very slow so that the pulses reflect one another. Thus numerical results in-
dicate that the dependency of velocity on the interaction of two travelling pulses is qualitatively similar to that
of expanding rings shown in Fig. 2.1. We thus conjecture that spatio-temporal complex patterns as in Fig. 1.3(b)
appear in two dimensions, if there is the situation where one-dimensional travelling pulses possess reflection
property.

Fig. 2.4. (a) Annihilation of two travelling pulses whefe= 2.0; (b) fading out of two travelling pulses whete= 3.1. The parameters except
the value o are the same as those in Fig. 1.3.
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3. Bifurcation of a standing pulse

In this section, we consider the reason why such very slowly traveling pulses possibly appear in the system (1.1).
We rely on numerical method to study the existence and stability of standing pulse solutions of (1.4)amderare
both free parameters fixing other parameters to be the same as in Fig. 1.3.dakiagifurcation parameter with
fixede = 1.025x 10-3, we find that there coexist four standing (equilibrium) pulses in certain intervahdfere
the solutions of types (B)—(D) are always unstable, while the solution of type (A) changes its stability, depending on
values ofd (Fig. 3.1(a) and (b)). Fig. 3.2(a) demonstrates the existence and stability regions of the standing pulse
solutions of type (A) in(d, ¢)-space. We should remark that there are two bifurcation curves in this region; one is
the Hopf bifurcation curve OB and other is the translational one TB where two curves intersect at one point. This
structure indicates that with = 1.025 x 103, there is the critical valuérg(¢) which is larger thariog(e) so
that there appear travelling pulse solutions which bifurcate primarily and super-critically from the standing pulse
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Fig. 3.1. (a) Global structure of standing pulses with the parardetdreres = 0.001; (b) spatial profiles of standing pulses wheee 0.001,
d =3.0.
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Fig. 3.2. (a) Existence region of standing pulses in(the)-plane where the solid line is the curve of TB and dotted line the curve of OB. Stable
standing pulses are in the hatched region. (b) Schematic bifurcation diagram of standing and travelling pulses when thederaaretdr
where the vertical axis indicates the velocity of travelling pulses.

solution of type (A) (Fig. 3.2(b)). This implies that very slowly stable travelling pulses can be arbitrarily obtained
if d is taken to be suitably close thg(e).

4. Construction of very dowly travelling pulses

In this section, we consider the theoretical basis on the bifurcation problem where travelling pulse solutions
appear as the destabilization of the standing pulse solution.

Let us consider the following general form of arrcomponent reaction—diffusion system with a bifurcation
parametek:

U,=DAU + F(U;k) = LWU;k), t>0, xeR, (4.1)

whereU = (uy,uz,...,uy), D is a diagonal matrix with elementd;} (j = 1,2,..., N). We suppose there
existskc such that (4.1) has a standing symmetric pulse soluRior), where there exist a positive constanand
a non-zero vectae € R" such that

P(x) > e g asx — +oo.

Simply write the linearized operatdY (P (x); kc) with respect taP (x) asL. Itis obvious to see thatP, = 0 holds.
We suppose that has Jordan block &t= k¢, namely:

(H1) There exists a functiow (x) such tha_. ¥ = — P,. Let X be the spectrum of.
(H2) X consists of two set&y = {0} and¥; C {z € C;Re(z) < —yp} for some positive constani. The
generalized eigenspace associated to 0 is sperit} bypdy .

We consider (4.1) in a neighborhood lof= k¢. In order to do it, we introduce a new paramegesuch that
k = k¢ + n and rewrite (4.1) simply as

U, = LWU) +ng), (4.2)

whereL(U) = L(U; ke), g(U) = g(U; n) andng(U; n) = L(U; k¢ +n) — LWU). LetS(x;r) = P(x) + r¥ (x).
Define the translation operaterby (t(/)U)(x) = U(x — 1) and putM(*) = {t()S(-;r); 1 € R, |r| < r*}.
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Theorem 4.1. LetU(¢) be a solution of4.2). There exist positive constanty, »*, n* and a neighborhood/, of
M(r*) such that if the initial datd/(0) € Uy, then there exist functiorigr) andr(¢) such that

1U@) = rd@)SC:r ) oo < Collr®)? + Inl) (4.3)
holds as long a$(¢)| < r* and|n| < n*, wherel(¢) andr(¢) are estimated as
[=r+0(r?+ P,  #=00rP+nf. (4.4)
Proof will be given in Section 7.
Theorem 4.1 indicates that the movement of a single pulse-like solltion) of (4.2) is essentially described
byl(t).
Next, we shall give the explicit form of the evolutional equations(of andr (). Let L* be the adjoint operator

of L. Then,L* also has the same propertiedasSpecially, there exisb* and¥* such thatl.* satisfies.*®@* = 0
andL*¥* = —@* whered* is exponentially decaying, that is, there is a non-zero vecia R such that

@*(x) > e Mlg* asx — +oo. (4.5)

We show the following proposition without proof.

Proposition 4.1. ¥, @* and¥* are uniquely determined by the normalization
(W, Py)2 =0, (P, ¥") 2 =1, (W, ™) 2=0.

We note that
(W, ®*),2 = 1, (Py,@*);2=0

are automatically satisfied.
In addition to (H1) and (H2), we assume:

(H3) ¥ (x), @*(x), ¥*(x) are all odd functions with respect to= 0.
This hypothesis is numerically confirmed for the specific system (1.1), as in Fig. 4.1.
Proposition 4.2. ¥ (x) and¥*(x) satisfy
W (x) - e “{(B1x + B2)a + b},
and
P (x) - e *{(—pux + By)a* + b*}

asx — oo, wherepy = —((a, a*)/2(Da, a*)), and B2, 5 are some constantandb, b* are vectors satisfying
(b, a*) = (b*,a) = 0.

Proof. See Appendix A. |

Let E = spar{P,, ¥} andE+ = {U; (U, ®*),. = (U, ¥*),2 = 0}. Letfunctions;; andz, in E+ be the unique
solutions of the equations

Lii+ 3F"(P)W - ¥ + ¥, =0 and L+ g(P(x) =0,
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Fig. 4.1. Eigenfunctions of the linearized operator for (1.1) where- 0.001075,a = 2.0, ¢ = 5.0, v* = 1.0 andd = 5.0: (a)
Y (x) = (Yu(x), Y (x)); (b) D*(x) = (¢ (x), ¢ (x)); (C) ¥* (x) = (Y (%), ¥y (x)).
respectively, wherd” (U, k¢) is simply rewritten as¥(U). By using these functions, we define two constavts
andM> by
My =—{{(d:01. @) 2 + (F"(P)yr - (1. @) 2 + §(F"(P)&3, &%) 2},
Mz = {(3x52, %) 2 + (F(P)¥ - L2, @*) 12 + (¢ (P)W, @F) 2}

Then we obtain the following theorem.

Theorem 4.2. Let!(r) andr(¢) be the functions defined Ttheorem 4.1Then
I =r+0(r+ n*2), (4.6)
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Fig. 4.2. Bifurcation diagram of (4.7) for the exothermic reaction—diffusion system (1.1) witere 0.729577,M, ~ 0.110267 where the
parameters except= 5.0 ande = 0.001075 are the same as those in Fig. 1.2.

F=K(r:n) +O(r|* + n?) (4.7)
hold as long asr(t)| < r* and|n| < n*, whereK (r; n) = —M1r3 + Monr.

Proofs of Theorems 4.1 and 4.2 are stated in Section 7.

By (4.6),r can be regarded as the velocity of the pubsdecausé denotes the position of the pulse.

In the following, we consider the bifurcation structure of travelling pulses in the neighborhécd &f. Suppose
there exist trivial solution® (x; n) for sufficiently smally, which satisfyL(P (x; n); kc+n) =0, P(x; 0) = P(x)
and P (x; n) is symmetric forx = 0. LetL(n) = £L'(P(x; n); kc + n). Note that 0 is always an eigenvaluelofi)
with the associated eigenfunctid® (x; ). Then it is expected that there is another eigenvaluei¢gynear 0
(critical eigenvalue) approaching 0 as— 0. In fact, it is true and the movement of the critical eigenvalug @f)
with respect to sufficiently smat is clearly known by Theorem 4.2 as in the following corollary.

Corollary 4.1. Suppose there exist trivial solutio®Sx; n) represented by (x; ) = P(x)+nP1(x)+n2Pa(x; 1)
such thatPy(x) and P»(x; i) are symmetric fox = 0. ThenL () has a critical eigenvalue () = Mon + O(n%)
with the associated eigenfunctidn(n) = (14 O(|n])) Py + A(m¥ + O(|n|?).

This corollary means that the constaufi is positive if and only if the critical eigenvalugn) crosses 0 aj = 0
from negative to positive with non-zero speed for

Onthe other hand, Theorem 4.2 means that the conitadetermines the direction of the bifurcation of travelling
pulses. SupposH is positive, therM is positive if and only if the bifurcation diagram néas k. is super-critical
with no degeneracy as in Fig. 4.2. If the constaWtsand M> are both positive (in fact, this situation holds for the
exothermic reaction—diffusion system (1.1)), the velocities of bifurcating travelling pulses=fo® are approxi-
mately given byt./M>n/M7. We can thus choose the velocity to be small arbitrarilyig positive but very small.

5. Interaction of very dowly travelling pulses

In this section, we consider the interaction of two very slowly travelling pulses.
Let P(x;h) = P(x) + P(x — h), E(x; h,r) = n¥P(x) + ¥ (x —h) with r = (r1,r2) andS(x; h,r) =
P(x; h) + &(x; h, r). Define a set

MG*r*) ={t()SC¢; h,r);l € Roh > h*, |rj| <r*)
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for positive constants* andr* and define a quantity

8 = 8(h) = SUpL(P(x; h))|.
xeR

Here we note that(h) = O(e~*").
Theorem 5.1. Let Ay = Ay(h,r,n) = 8(h) + |r|? + |nl, A2 = Az(h,r,n) = 8(h) + |r| + [n° and Az =

Az(h, r, n) = 82(h) + |r|?+ |n|?. There exist positive constar®s, 1*, r*, n* and a neighborhood U of (h*, r*)
such that if the initial datd/(0) € U, then there exist functior$t), i(t) € R andr(t) € R? such that

[U@) — @) S (), r@t)lloo < ColA1(h(t), r(t), n) (5.1

holds as long a%(z) > h*, |r(t)| < r* and|n| < n*, whereU(z) is a solution of(4.2).1(¢), h(¢) and r(¢) are
estimated by

I,h =0(Ay), i = O(A3). (5.2)

Theorem 5.2. A time evolutional system &), 2(¢) andr(¢) in Theorem 5.1s described by the following ODEs

[ =r1— Hi(h) + 0% + r* + n¥?), (5.3)
1= K (ri; ) + Hi(h) + O@2 + [r|* + /%), (5.4)
F2 = K(r2; n) + Ha(h) + 0% + |r|* + |n]?), (5.5)
h=ra—r1+ Hi(h) — Ha(h) + 0% + |r + 5]*/?) (5.6)

as long asi(¢) > h* and|r(¢)| < r* hold, wheres = §(h) = sup.cg|L(P(x; h))|,
Hj(h) = (L(P(-+ hj; b)), %) 2, H(h) = (L(P(-+hj: 1), ¥*) 2,

andhl =0,hy = h.
The functionsH ; (1) andI:Ij (h) in the above theorems are explicitly represented.

Theorem 5.3. The functions (k) and H (h) are represented by

Hy(h) = Moe " (14 O(e™""), (5.7)
Ha(h) = —Moe " (14 O(e™""), (5.8)
Hy(h) = Moe " (1+ O(e™"""), (5.9)
Ho(h) = —Moe " (1 + O ")) (5.10)

for a constant/; > 0 and the constanta/g, Moy given by

Mo = 2a{Da, a*), Mo = f e ({F'(P(x)) — F'(0)}a, ¥*(x)) dx.
R

If two travelling pulses are located in symmetric position at 0, for instance, the four-dimensional system of
ODEs (5.3)—(5.6) simply reduces to a two-dimensional one as follows.
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Corollary 5.1. If the initial dataU (0) is given byP (lp) + P (—Ip) with any fixedp > 0, then

1U@) — T (=1@)S@2(1), r (1), =r())lloo = CoA1(2U(2), (), 1),
and the dynamics df¢) andr(¢) is described by solutions of

[=r+Hi@)+0@*@) +rP+n¥?, i =K(:n)+ Hi@)+ 062D + Irl* + ).

6. Thereduced system of ODEs

We consider the interaction of two travelling pulses which locate symmetricxdth), assuming all constants
M1, M>, My and Mg are positive, which holds for (1.1). The resulting system is reduced to the following ODEs for
the unknowng(r) andr(¢) by Corollary 5.1 and Theorem 5.3:

I=r+ My exp(—2al), 7= —er3 + Monr + Mo exp(—2al). (6.1)
We impose the following initial conditions:
M
[0)=Ilp>»1 and r(0) =-— s —v(n), (6.2)
1

which indicates the situation where there is initially a travelling pulse propagating to the left direction. Putting
7z = exp(—2al), then (6.1) can be rewritten as

i=—20z(r+Moz) = f(z,r), i =—Mir®+ Manr + Moz = g(z. 1), (6.3)
and the corresponding initial conditions as
z(0) = exp(—2alp) « 1 and r(0) = —v(n). (6.4)

Itis obvious to see that the critical points of (6.3)inz)-plane arg—v(n), 0), (v(n), 0) and(0, 0). The first two
ones correspond to the velocities of travelling pulses of the original RD system, while the last does to the standing
one. Whery is positive and suitably small, the phase plane analysis ofirthe-plane reveals that the solution
(r(t), z(r)) of (6.3) and (6.4) tends t(n), 0) for large time, as shown in Fig. 5.1(a). The corresponding solution
1(r) isdrawn in Fig. 5.1(b), which clearly shows that a pulse propagating with the veleeity) to the left direction
reflects nearx = 0 and then moves to the right direction, as if it rebounds near thexnall0 and the velocity
becomes (). This situation is similar to the reflection of two travelling pulses as was seen in Fig. 2.3.
We next consider the movement of a single travelling pulse in a finite intébyal) whereL is very large. By
(6.1), the system which we are treating is

[ =r 4+ Moexp(—2al) — exp(—2a(L — 1)),
F=—M1r3 + Monr + Moexp(—2al) — exp(—2a (L — 1)). (6.5)

Puttingz = exp(—2«!/) again, we have
- —exp(—2«L
7=—20z <r + Mo (M)) = F(z,71),

Z

— exp(—2aL
f:—M1r3+M2nr+Mo<—Z F: a ))

=G(z,r). (6.6)
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Fig. 5.1. Reflection dynamics of ODEs (6.3) where- 0.35, M1 = 0.5, M, = 0.0225,K = 0.1, H = 0.2, n = 0.5: (a) trajectory of (6.3) in
the (r, z)-plane; (b) trajectory of (6.2) in the, r)-plane.
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Fig. 5.2. Oscillatory solution of ODEs (6.6) where the parameters excepl.0, L = 10.0 are the same as those in Fig. 5.1: (a) trajectory of
(6.6) in the(r, z)-plane; (b) time evolution af(r) of (6.5).

The nuiclines ofF andG are drawn in Fig. 5.2(a). We find that the critical point of (6.6)ix) = (exp(—a L), 0)

which indicate the standing pulse locating on the center of the int@va). It should be noted that the nonlinearities

F andG are qualitatively similar to the ones of the Van der Pol equations. By using the Poincare—Bendixon theorem,
we found that there is a limit cycle in the, z)-plane, if L is large, as in Fig. 5.2(a). The corresponding trajectory
of I(¢) is drawn in Fig. 5.2(b). Fig. 5.3 demonstrates the rebounding behavior of a travelling pulse of the RD system
(2.1) with two walls.

7. Proof of thetheorems

In this section, leC denote a positive constant independent of sufficiently largeh* and sufficiently smalh
with |n| < n* where we take suitably large’ and smally*.



S.-l. Ei et al./Physica D 165 (2002) 176-198 189

10.0 =1/

Fig. 5.3. Rebounding of travelling pulse of the RD system (1.1) where the parameters are the same as the ones in Fig. 1.3.

7.1. Proof of Theorem 4.1

Let X = {L2(R)}". We start the following proposition without showing the proof, because it is quite similar to
Ei [1].
Proposition 7.1. There exists a neighborhoddy c X of M (r*) such that anyU € Uy is represented as
U=t\){Skx;r)+ W}

by uniquely determinedde R, r with || < r* andW e E*L.

We transform Eq. (4.2) o/ to that of (W, [, r) by
U@, x) =t(Df{S(x; r) + W}
fori € R, |r| < r*andW e EL. Sincer’(l) = —z(1)(3/dx) holds, we have
Uy =1t/ (D{SCe r) + WY+ T DY + Wi} = t(D{=1(Sx + W) + - + Wy}
=t(D{=I(Py + 1% + W) +7¥ + W},
and
LWU) +ngU) = t(D{LSxsr) + W) +ng(S(x; r) + W)
Hence
—I(Py + ¥ + W) + i + W, = LG ) + W)+ ng(SGs r) + W) (7.1)

holds. LetQ andR be the projections fronX to E and E+, respectively. By the normalization of eigenfunctions
of L andL* as in Proposition 4.1, it follows that

QV = (V,W*) 2P + (V, ") 2W.
Therefore operating on (7.1), we obtain
—[(A+ (W, W*),2) = (LS(x; ) + W) 4+ 1g(S(x; r) + W), ¥¥) 2, (7.2)

Wy, @) 2 +7F = (LSO 1)+ W) +ng(Sx;7) + W), %), 2. (7.3)



190 S.-l. Ei et al./Physica D 165 (2002) 176-198

Let X be the fractional powered space ¥fwith respect tol such thatX® is imbedded intdBUY(R), where
BUL(R) is the functional space of uniformly continuous and bounded function® ap to their first derivative.
Then, it follows:

LSx;r)+W)+ng(Skx;r)+ W)
= LW — P, + 3r°F"(P)W? + r3F" (P)&?
+IF(PYW - W+ 3F"(PYW? + ng(P) + nrg' (P)W + ng' (PYW + O(|r |*[|W |,
1L IWIZ + IS+ 11+ [0l - 1712+ Il - TWIG). (7.4)
Put
W(D1, D2, ) ={W € C((=r*,r); EY); IW(@)llw < D17+ [n]), [W(r)
— W)l < D2l + IF'] + [nDIr — |},

and suppos& € W (D1, D2, n). Then, from (7.4) and the oddness of eigenfunctions, we obtain
(L(SCes 7) + W)+ 0g(SC; 1) + W), W) 2 = —r + O(r P + WG, + 1) = —r + O(Ir 1 + 0],
(L(SCes ) + W)+ ng(SCes 1) + W), @%) 2 = O(r|? + W12 + In|?) = O(r|? + Inf?).
Therefore, it follows from (7.2) and (7.3) that
[=J0W)=r+0(r>+n?,  7=K(@ W) =0(r?+nP.
Thus, we have the equations@f W) and! as
P=K@r W), W, =LW+G@r, W), =7 W), (7.5)
where by (7.1) and (7.45 is given as
G(r, W)= R(L(S(x; 1) + W) +ng(SCx; ) + W) +[(Py +rW + W,) — W) — LW

=O(r|> + W2 + [n) + J (r, W)RG¥, + W) = O(r|? + |n)),
IG(r, W) — G, WHII < O(r| 4 1r'| + InD(Ir — '] + [ W — W/||,,).

Then, in a quite similar way to Ei [1], we can show the existence of a funetionn) € W(D1, D2, n) for
appropriate constant®; and D, such that(r, o (r; n)) is a positively and exponentially attractive local invariant
manifold for Eq. (7.5). Since the solutidi is represented & = t(/){S(x; r) + W} by the solution(r, W, ) of
(7.5), we have

U@ —td@)SC; r@)l < ClIW |y < C>r )12 + In)).
7.2. Proof of Theorem 4.2
Define the functiorzT(r; n)(-) € E+ by the unique solution of
0=LeT + 32F"(P)W? 4 ng(P) + r2w,. (7.6)

Note ¥, € E' because of the symmetry gf,. It is easily seen tha;tJr is given byg“T = r2¢1 + gy, whereg;
(j = 1, 2) are functions defined in Section 4. In a similar way to the proof of Theorem 4.1, we have the following
proposition.
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Proposition 7.2. There exists a neighborhodd C X of M (r*) such that anyU € U is represented as
U=t{SC:n +¢Terim+ W)

by uniquely determinedde R, r with |r| < r* andW e E*L.
SubstitutinglU = t(\){S(x; r) + ;T(r, n) + W}into (4.2), we have similar to (7.1)

QP e e wo i ch e w,
= LW =P, + Lc T+ L2F (P2 4 1P (Pyw - ¢ T L3F7(PYWB 4 ng(PYrg (PYW
+OUe TR+ 11+ 1l T+ W) + 1 W+ (W2,

The estimates (4.4) a7 and (7.6) with the estimauecT(r, Mo < O(r|% + |n]) show

W,=LW —tP, +rF"(P)w -1 + L3F"(PYW3 + g (PYW — r?Wy + [(Py + 1, + ;XT + W)
— i+ N+ 03 T2+ 1t + e+ 1w + 1rw + WD)
— LW + O(r 2 + [1[2) Py + O(r|(1r % + |2 W + Wy —iw + tF" (P - ¢ T + L3P (Pyw3
+rg (PYW + r&] + O(F1* + I + In1(e T + W) + 1| W] + W)
= LW +O(r2 + 1) Py + O(r|(r1? + PN, + W, —i® + O(Ir |2 + [n|%2 + |r||W] + |W]?).
(7.7)
Operating the projectio® on the above equation, we see
W, = LW +iRW, +0O(rPP+ n¥? + |r||W| + |W]?). (7.8)

Following the proof of Theorem 4.1, we can show the existence of an exponentially attractive local invariant
manifold given byW = o T (r; n) with |l T(: )l < O(r|2 + |71%/2). Hence by taking the inner product of (7.7)

andw* in X with the estimata¥ = o T = O(|r|3 + |1/¥/2), we obtain (4.6).
On the other hand, by taking the inner product of (7.7) @ridwe have

F=r(F"(PYW - T, @%) 0+ L3(F"(PYWS, &%) o tnr(g (P, ¢*>L2+r<;;f, @*), 240(r|* + n1?).
(7.9)

Substituting the representati@ﬁ = r2¢1 + ngz into (7.9), we obtain the theorem.
7.3. Proof of Corollary 4.1

Quite similar to the previous subsections, one finds that there exists a neighbéftoad of M (r*) such that
foranyU € U is represented as

U =t(O{P(x;n) +r¥(x) +rie + W)

by uniquely determined € R, |r| < r* andW € EL. SinceP(x;n) = P(x) + nPi(x) + n?Pa(x; n) satisfy
L(P(x;n)) + ng(P(x;n)) = 0 for any smally and Py € EL, P; = ¢, holds. Therefore, we also see similarly
that there exists an exponentially attractive local invariant manifold giveWby o*(r; n) with ||o*(r; n)]lo <
O(r® + |7¥?) ando*(0; n)(x) = 0. Furthermoreg*(-; n) is belonging toW (D1, D, n) as in the proof of
Theorem 4.1, which leads tg*(0; n) < O(|n|). Thus, we find that*(r; n) = Cnrp(x) + O(r?) for a constant
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C and a functionp(x). Hence, there exist functior€ (r; n) ando” (r; n) with |o'(r; n)| < O(|r|® + |n¥/?) and
0" (r; M| < O(Ir|* + |n1?) such that (0; n) = ¢” (0; ) = 0 ando (0; ) = O(|]), o/ (0; n) = O(|n|?) and they
give the equation along the local invariant manifold by

i:r+01(r;n) Eﬁ(r; n), F=K@r;n) +o' (r; n)z[%(r;n). (7.10)
Here, we used

olr;m =0T +0% + 0w +¢T+06%9),0%,2 and

" (i) = (O T+ %D + 0¥ + ¢ T +06%2), ¥%) 2

for the estimates o/ ando”. Noter = 0 is an equilibrium of (7.10), which corresponds to the standing pulse
solution P (x; n). Hence, the linearized stability ¢f(x; n) is determined by’ (0; ) = M>n + O(n?) = A(n) and
the solutionU (¢) is also represented by

Ut,x) = P(x —1(1); ) + r(O¥ (x — (1)) + r2(Oca(x — 1(1) + o*(r(1); ) (x — 1(1)).
This is expanded for smal(z) andr(¢) as
P(x;n) — (1) Pe(x; n) + r(OW (x) 4+ r(1)o) (0; n)(x) + (L)1 + Ir(1)]?) (7.11)

by using the estimatio*(r; n)ll, < O(|rn)).
Now, let us linearize (7.10) with respectito= 0 as

' 1o
(z>:<o 1+01(0; 1) )(z) 7.12)
12 0 Man+0o/(0;n) r

Let
0 1+4
A TM(T}) ’
0 a(m

where1(n) = 1+ 0/(0; n) = 1+ O(nl) andia(n) = A(n) = Man + o/ (0; ) = Man + O(In|?). Eigenvalues
of A are 0 andi.(n) with associated eigenvectaps = (1, 0) andg, = (A1(n), 12(n)), respectively. Hence, one of
the solutions of (7.10) is given by

l
( (t)) — gé\(n)[ ¢2 + 0(82)
r (1)
for sufficiently smalle > 0. Substituting abovAt) andr(¢) into (7.11), we have
U(t,x) = P(x; ) — eh1(n) € D" Po(x; ) + eho(n) €0 W (x) + eha(n) € 6%(0; n)(x) + Oe?)
= P(x; 1) — e @D () Py (x5 1) — A2 (x) — ha(m)o (0; 1) (x)} + O(le]?). (7.13)

SinceU (1, x) of (7.13) satisfie®/, = L(U) +ng(U) = & €MD" L) {A1(n) Py (x; n) — k2()¥ (x) — A2(n)a;* (0; 1)
(x)} + O(¢?), which leads to as | 0

A A1) Py (x; ) — AW (x) — Aa(m)a, (0; 1) (x)}
= L {h1(n) Pe (x5 ) — oW (x) — A2()0;(0; ) (x)}.

Thus, the proof is completed.
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7.4. Proof of Theorem 5.1

The proof of Theorem 5.1 is quite similar to the proof of Theorem 2.1 in [1]. Hence, we just give the outline of
the proof.

Let X = {L?(R)}" andL(h) = £'(P(x; h)), and letL*(h) be the adjoint operator df(k). Then, we have the
following two propositions which can be proved in a quite similar manner to [1], so we omit the details.

Proposition 7.3. There exist positive constants C ahatl such that for h withh > h*, the operatorL (k) has
four eigenvalues ;(h)} =14 With |x; (k)| < Cé(h). Eigenvalues with geometrical multiplicities are repeated as
many times as their multiplicities indicate. Other spectrd ¢t) are in the left-hand side af = — pg for a positive
constantpo.

Let E(h) be the generalized eigenspace corresponding to eigenvalp@s} j—1
The adjoint operatof.* () has also similar four eigenvalues’;(h)}jzl
the generalized eigenspace corresponding to eigenvalyds)}j:lm‘;.

,,,,, 4. Note that dimE () = 4.
awith [A5(h)| < C8(h). Let E*(h) be

yaeey

Proposition 7.4. E(h) and £*(h) are spanned by four functioré ; (7))}, {¥; ()} and{df} ()}, {wjf h) ()}
(j =1, 2), respectivelysuch that forj = 1, 2,

é;(h)(x) = Px(x — hj) + O®), (7.14)
¥i(h)(x) =¥ (x —hj)+ O®), (7.15)
¢ (h)(x) = &*(x — hj) + O(9), (7.16)
Yi()(x) = ¥*(x — hj) + O(), (7.17)
(@;(h), dp(h) 2 =0, j#Kk, (7.18)
(@;j(h), ¢j(h))2=1 (7.19)

hold, where§ = §(h), h1 = 0andhy = h, andO(8) means herd O(8)|| 2 < C3.

Now, we fixh* > 0 large enough such that Propositions 7.3 and 7.4 hold.
Let operatorg) (k) and R (k) be the projections fronX to E(h) andR(h) = Id — Q(h), respectively, where Id
is the identity onX. Let E+(h) = R(h)X. Note thatE-(h) is characterized by

E*(h) = (U € X; (U, ¢5(h) 12 = (U ¥5() 12 =0 (j = 1.2)}.

Fix i with A > h* arbitrarily and puts* = §(h*), § = 8(h). Then, we can show that there exists a nfagh)
homeomorphic fronE~ (k) to EL(h) for h > h similar to [1].

Fix p1 > 0 and defineH (i, p1) = {h;h < h < h + p1}, M = M(h, p1) = {t)SC, h,r);l € R h €
H(h, p1), |r| < r*}. Then we note [1] that there exist a positive const@ntlepending only op; and independent
of i with i > h* for sufficiently largeh* such that for anys € H (i, p1) the maplT (k) satisfies

in(h)

TG, 1T, o

<C1,  ITMllsos IHT M) lloos

a
—I(h)| =Cy,
oh 0

where| - ||« is an operator norm with respect to the sup-ndirmii. on RL.
Let A = L(h) andX® be the space with the norfn |, defined by the fractional powet® of A for w € [0, 1).
Hereafter, we fixo in 3/4 < < 1 such thatX® is imbedded intdU(R) [3].
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We have the following proposition (e.g. [1]).
Proposition 7.5. There exists a neighborhoéd = U(fz, 1) ofM(fz, p1) in X® suchthatany/ € U isrepresented
by
U=tDO{Sx;h,r)+ ()W}
forl € R,h € H(h, p1) andW € EL(h).
We transform Eq. (4.2) d/ to that of (W, [, h, r) by
W, x) =tD{Sx; h,r) + IT(H)W}
forl € R,h € H(h, p1), |r| < r* andW € EL(h). Sincet’(l) = —7(1)(3/dx) holds, we have

U, =it O{S(x; b, r) + T(R)WY + () ( {(SCx; b, r) + T (W)W)(h, ) + n(h>wz>

0
a(h,r)

=7() <—i%{S(x; h,r)+ IT(HW} + (SCes by 7)) + (W)W, F) + 17(h)W,> and

0
a(h,r)
LWO) +ngU) = LEDV) +ngx()V) = t(DHLV) +ng(V)),

whereV = S(x; h, r) + IT(h)W. Hence, it follows that

{S(x; b, 1) + T ()WY(h, #) + TT()W, = L(V) + ng(V),

.0
—la{S(x, h,ry+TI(h)W} + )

and that

O(h) [—l’i{S(x; h,r)+ I (HW} + 0 {(SGx; h,r) + T (W)W (h, f)]
dx d(h, r)

= QW L(S(x; h, 1) + TT(WW) +nQ(h)g(S(x; h, r) + T ()W), (7.20)
~Yh)R(h) [—ia%{S(x; h,r) + ()W} + %{S(x; h,r) + I (h)W)(h, i)} + W,
= O Y () RMW{L(S(x; h, r) + T ()W) + ng(S(x; h, r) + ()W)}, (7.21)
Let p» > 0 andC > O be constants such thatiiff < r*, ||[W|l, < p2 andh € H(h, p1), then
IL(SCx; b, r) + TT(RYW) — L(P(x; ) — LINIT ()W < Ca(Ir|? + W) (7.22)

holds. We note that; is taken to be independent bfand depending only opy.
Put
W (h, p1. D1, D2, ) ={W(-) € C(H(h, p1) x (—r*,r*); EX(h) N X*); [W(h, 7)o
< D1Ay(h,r,n), |W(h,r) — W', r)|| < D2(8(h) + 8(h)
+1rl+1F'1 4+ InD(h = K|+ |r — D},
whereAq(h, r, n) = 8(h) + |r|? + |n|. We determineD,, D> later but supposg* is large enough and, || are

small enoughsoas 1 A1(h, r, ) < poforh € H(h, p1)withih > h* and|r| < r*.1f W € W(h, p1, D1, D2, ),
then (7.20) yields

[ = J*(h,r, W) =r1 — Hi(h) + OG% + |r)? + In]?), (7.23)
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h=H*(h,r, W) = ra — r1 + Hi(h) — Ha(h) + 02 + |r|* + |n/?), (7.24)
Fj=Ki(hrj, W) = K(rjsm) + Hj(h) + O@® + IrP + >, j =12, (7.25)

wheres = §(h) ande(h) = (L(P(-+hj; 1), ¥*) 2, Hi(h) = (L(P(- + hj; h), @*) ;2 andhy = 0, hp = h.
Especially,

I,hj =0(A2), ;= O(A3). (7.26)
Hence, it follows from (7.21) and (7.22) that

W, = A(WW + G*(h,r, W) (7.27)
with [|G*|| = O(Ay) for h € H(h, p1,) andW € W (h, p1, D1, D2, n), where

A(hy = T~ () L) (),

G*(h,r, W) = T~ Y(W)R(h) [C(S(x; h,r)) + La(W, W) +ng(S(x; h,r) + IT(h)W)

+ J*ai{S(x; h,ry+IT(h)W} — {SCe; h,r) + TT(W)WHHT, K*)} ,
X

d(h,r)
Lo(W, W) = Lo(h,r, W) (W, W) = L(S(x; h,r)+ TT(h)W) — L(S(x; h,r)) — L(h)[T(h)W,
K*=K*(h,r,W) = (Kj(h,r1, W), K5 (h, r1, W)).

Then, in quite a similar way to [1], we can show the existence of a funeti@nr; n) € W(h, p1, D1, D2, 1)

for appropriate constant®; and D, such that the seft(h, r, o (h, r; n)); h € H(h, p1), |r| < r*}is a positively
attractive local invariant manifold for the solutioh, r, W) of (7.24), (7.25) and (7.27). Hence, by using the similar
discussions to the proof of Theorem 2.1 in [1], we can show that there exists a neighbbdriodod

U {h,r, 08 € Hh, p1), Irl < r*} = (G, 7, 00 > ¥}

h>h*
such that if(k(0), r(0), W(0)) € U, then the solution of (7.24), (7.25) and (7.27) is attracted exponentially and
remains inA1 neighborhood of the set as longlas- #* and|r| < r*, thatis,|W(t)|| < CA1(h(t), r(1), n). Since

the solutionU of (4.2) is given byU = t([){S(h, r) + I1(h) W} by using the solutioriz, r, W) of (7.24), (7.25)
and (7.27), this reads

1U @) = DS (), rN} = [T (W)W < CA(h (1), r(1), ),

and the proof is complete.

7.5. Proof of Theorems 5.2 and 5.3 and Corollary 5.1

The proof of Theorem 5.2 is quite similar to the proof of Theorem 4.2 because we have already got the estimates
of i, h andr; by (7.23)—(7.25).

Theorem 5.3 can be also proved following the proof of Theorem 2.3 in [1]. Especially, the expression of the
constantM is given by Proposition 4.5 in [1].

Corollary 5.1 is directly obtained by Theorems 5.2 and 5.3 by taking —r1 = r andh = 2/.
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8. Discussion

We have first numerically shown that if there is the situation where very slowly one-dimensional travelling pulse
solutions exist, very complex spatio-temporal patterns possibly appear in two dimensions. The reason is that suct
very slowly travelling pulses possess reflection mechanism by which expanding rings split into several pieces when
they approach one another. From mathematical viewpoints, we have proven that any travelling pulses bifurcating
primarily and super-critically from a standing pulse always reflect when they approach, if their velocity is very slow.
The center manifold theory reveals that the interaction of two travelling pulses can be described by four-dimensional
system of ODESs. The analysis of the system enables to explain that very slowly travelling pulses reflect one another,
as if they were elastic-like particles. Furthermore, the intei®al.) with the zero-flux boundary conditions is very
long, it is shown that the pulse-like solution reflect nea= 0 andL as if it were rebounding with two walls
(Fig. 5.3). The method which we used here is also applicable to higher dimensional problems. For instance, if there
exist travelling spots that move very slowly in two dimensions, they possess the property of reflection [4,5,8]. This
will be proved in a forthcoming paper.
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Appendix A. Proof of Proposition 4.2

We will only show the proof for (x). SinceL¥ = — P, holds,¥ (x) satisfies the ODE
DWyx+ F'(P(x); ke)¥ = —Py.
PuttingG (x) = F/(P(x); k¢), @ (x) = Py (x) andW = DV, we have the equivalent ODE
v, = D1w, Wy = —G(x)¥ — &. (A.1)
SinceG(x) — F'(0; ko) + F”(0; ko) € ** a and® (x) — —a € % a asx — +00, (A.1) becomes asymptotically
v, = Dlw, W, = —Go¥ +ae “a, (A.2)

whereGg = F'(0; k¢). The solution of (A.2) gives the asymptotic forméfand the proof is finished.
In order to obtain the solution of (A.2), we p@#, W) = e ** V and then (A.2) is written by

V,=GoV+e*a,

where

. 0 b»p1?
Go =
—Go 0

anda = (0, aa). Transforming this equation by = e~%* », we have

v, = Av+a, (A.3)
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where
aly D1
A=
—Go oaly
andly is the unit matrix of degre®. Clearly,® = ’(a, —a Da) satisfiesA® = 0 and kerA = spar{®}.

On the other handp* = ’(—aDa*, a*) satisfies’ A¢* = 0 and kef A = spar{®*} becauser* satisfies
a?Da* +'Goa* = 0. Therefore, the projectio@ from R?" to kerA is given by

Ov= ¥ b 5 _ w7
" (b,8*)  2ala, Da¥)

Let R = Ly — Q. Since the eigenvalues dfexcept 0 are in the left-hand side of imaginary axis, the solutioh
(A.3) is given by

(@, a”)

' _xd @ +0(e ") — A 'Ra
2@ Da) + B2® + O( ) a

v(x) = x0a + pod + O ") — A~ 1Ra = —

for a constanp and a positive constapt. Hence, we may take

v(x) @) $+pd—ARa
X)=——"—x -
2(a, Da*)

as the asymptotic form af(x). Let’(b, ¢) = —A~1Ra. Picking up the first component of we have

___flaa)
v1(x) = 2. Da*)xa + Ba+ b,

wherev = (v, v2). Now, ¥ (x) = € %" v1(x) and hencéV (x) = DY, (x) = € %" D{d,v1(x) — av1(x)} holds,
which means

v2(x) = D{0xv1(x) — avi(x)} = MxDa — ( fa,a’)

+ aﬁ) Da — aDb

2(a, Da*) 2(a, Da*)
ola, a¥) (a,a*)
=" ¥Da—afDa—(————"_D Db).
2. Da*)x a — oS Da (Z(a, Da*) a+ o >

Comparing with the component, we have

__( faa)
c= (2(& Da) Da +an> .

Substituting this into the equatiotf (b, ¢) = —Ra, we see

21 _ (a,a”)
Gob+a“Db =« (a — @ Da") Da) (A.4)
holds. The matrixGo + «2D) has 0 eigenvalue with the associated eigenvegtand the transposed matrix
('Go + D) has also 0 eigenvalue with the associated eigenvett@ince the right-hand side of (A.4) is clearly
orthogonal toa*, there exist a vectab satisfying (A.4). The vectob is uniquely determined by the orthogonal
condition(’ (b, ¢), ®*) = 0 asb = p'a + b’ with (b', a*) = 0. Thus, the proof is completed.



198 S.-l. Ei et al./Physica D 165 (2002) 176-198

References

[1] S.-I. Ei, The motion of weakly interacting pulses in reaction—diffusion systems, J. Dyn. Diff. Egs. 14 (1) (2002) 85-137.

[2] P. Gray, S.K. Scott, Autocatalytic reaction in the isothermal continuous stirred tank reactor, Chem. Eng. Sci. 39 (1984) 1087-1097.

[3] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer, Berlin, 1981.

[4] S. Kawaguchi, M. Mimura, Collision of travelling waves in a reaction—diffusion system with global coupling effect, SIAM J. Appl. Math.
59 (1998) 920-941.

[5] K. Krisher, A. Mikhailov, Bifurcation to travelling spots in reaction—diffusion systems, Phys. Rev. Lett. 73 (1994) 3165-3168.

[6] M. Mimura, M. Nagayama, Nonannihilation dynamics in an exothermic reaction—diffusion system with mono-stable excitability, Chaos
7 (4) (1997) 817-826.

[7] V. Petrov, S.K. Scott, K. Showalter, Excitability, wave reflection, and wave splitting in a cubic autocatalysis reaction—diffusion systems,
Philos. Trans. R. Soc. London A 347 (1994) 631-642.

[8] C.P. Schenk, M. Or-Guil, M. Bode, H.-G. Purwins, Interacting pulses in three-component reaction—diffusion systems on two-dimensional
domains, Phys. Rev. Lett. 78 (1997) 3781-3784.



	Pulse-pulse interaction in reaction-diffusion systems
	Introduction
	Interaction of two expanding rings
	Bifurcation of a standing pulse
	Construction of very slowly travelling pulses
	Interaction of very slowly travelling pulses
	The reduced system of ODEs
	Proof of the theorems
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Corollary 4.1
	Proof of Theorem 5.1
	Proof of Theorems 5.2 and 5.3 and Corollary 5.1

	Discussion
	Acknowledgements
	Proof of Proposition 4.2

	References


