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Abstract

Orthogonal Frequency Division Multiplexing (OFDM) is well known as an ef-
ficient technology for wireless communications and is widely used in many of the
current and upcoming wireless and wireline communication standards. However, it
has some intrinsic drawbacks, e.g., sensitivity to the inter-carrier interference (ICI)
and high peak-to-average power ratio (PAPR). Additionally, the cyclic prefix (CP)
is not spectrum efficient and fails when the channel delay spread exceeds the length
of CP, which will result in inter-symbol interference (ISI). In order to combat or
alleviate these drawbacks various techniques have been proposed, which can be cat-
egorised into two main classes: techniques that keep the structure of OFDM and
meanwhile increase the system robustness or re-organise the symbol streams on
each sub-carrier, and techniques that increase the ISI/ICI immunity by adopting
well designed pulse shapes and/or resorting to general system lattices. The latter
class are coined as Generalised FDM (GFDM) throughout this thesis to distinguish
with the former class.

To enable seamless handover and efficient usage of spectrum and energy, GFDM
is expected to dynamically adopt pulse shapes that are optimal in doubly (time
and frequency) dispersive fading channels. This is however not an easy task as
the method of optimal pulse shape adaptation is still unclear, let alone efficient
implementation methods. Besides, performance of GFDM highly depends on the
channel estimation quality, which is not straightforward in GFDM systems.

This thesis addresses, among many other aspects of GFDM systems, measures
of the time frequency localisation (TFL) property, pulse shape adaptation strategy,
performance evaluation and channel estimation. We first provide a comparative
study of state-of-the-art GFDM technologies and a brief overview of the TFL func-
tions and parameters which will be used frequently in later analysis and discussion.
A framework for GFDM pulse shape optimisation is formulated targeting at min-
imising the combined ISI/ICI over doubly dispersive channels. We also propose a
practical adaptation strategy utilising the extended Gaussian functions (EGF) and
discuss the trade-off between performance and complexity. One realisation under
the umbrella of GFDM, namely OFDM/OQAM, is intensively studied and an effi-
cient implementation method by direct discretisation of the continuous time model
has been proposed. Besides, a theoretical framework for a novel preamble-based
channel estimation method has been presented and a new preamble sequence with
higher gain is identified. Under the framework, an optimal pulse shape dependent
preamble structure together with a suboptimal but pulse shape independent pream-
ble structure have been proposed and evaluated in the context of OFDM/OQAM.

Keywords: OFDM, GFDM, OQAM, pulse shaping, adaptation, channel esti-
mation.
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Chapter 1

Introduction

1.1 Background

Motivation

The fast development in wireless communications for the past two decades has been
driven by service demands for higher and higher data rates. For instance, the re-
quired peak data rate for IMT-advanced, will reach 100Mbit/s for high mobility
applications and 1Gbit/s for low mobility applications. Stringent requirement has
been put on spectral efficiency and the problem is further aggravated by scarce
bandwidth. On the other hand, it is becoming more and more necessary to pro-
vide “ubiquitous” connectivity to end users so that they can always get connected
via heterogeneous access techniques. Therefore, it is desirable to develop technolo-
gies with affordable complexity that facilitates seamless handover among different
standards in various radio environments: indoor or outdoor, in urban- sub-urban
or rural areas. In this thesis we study essential parts of a system that have the
potential to fulfill these requirements.

As a key technology, Orthogonal Frequency Division Multiplexing (OFDM) has
been shown to be very efficient in wireless and wireline communication over broad-
band channels. By partitioning the wideband channel into a large number of parallel
narrow band sub-channels, the task of high data rate transmission over a frequency
selective channel has been transformed into number of parallel low data rate trans-
missions which do not require complicated equalization techniques. The efficient
OFDM implementation method based on FFT and the rapid evolution in the sili-
con industry has promoted OFDM to be adopted in many current applications and
upcoming standards, e.g., VDSL, power-line communication (PLC), DAB, DVB-
T/H, WLAN (IEEE 802.11a/g), WRAN (IEEE 802.22), WiMAX (IEEE 802.16),
3G LTE and others as well as the 4G wireless standards, since next generation
wireless systems will be fully or partially OFDM-based.

By using a cyclic prefix (CP), OFDM is very robust against inter-symbol in-
terference (ISI) which is caused by the multipath propagation. With a varying

1
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channel characteristic, however, this approach is not optimal. For example the CP
approach is effective only for channels with smaller delay spread than the duration
of CP. When delay spread exceeds the length of the CP, considerable ISI will be
introduced. Actually, the classic FFT-based OFDM receiver can be treated as a
matched filter bank, matched to the transmitter waveforms derived from the IFFT,
which in the frequency domain is a sinc function (sin(x)/x). The sinc function, how-
ever, is only optimal in AWGN channels and therefore makes OFDM very sensitive
to inter-carrier interference (ICI) which mainly arises from frequency dispersion.
Besides, the high peak-to-average power ratio (PAPR) OFDM signal demands high
linearity of the power amplifier and therefore causes an increase of the hardware
cost and power consumption. An extra cost in power and spectrum is incurred by
using the CP. Therefore new schemes which can inherit the advantage of OFDM
but avoid the inherent drawbacks will be of great interest.

The joint ISI/ICI interference within an FDM system over dispersive channels
depends on two factors:

A Decay property of out-of-band energy for signal pulses

B Distance between adjacent symbols in time and frequency

Here a lattice point (m,n) on the time-frequency plane indicates a place where
a data symbol is transmitted on the mth frequency carrier during the nth time
slot. Signal pulses with faster decay of out-of-band energy means smaller side lobe
amplitude and hence smaller power/interference leakage. Larger distance among
neighbouring time-frequency lattice points also means smaller interference from
and to adjacent symbols. A natural solution is therefore to utilise well designed
pulse shapes will fast decay property and advanced lattice structure to increase the
distance among adjacent lattice points, as we will see later.

Previous work

On one hand, some improvements for OFDM have been reported to combat fre-
quency dispersion sensitivity by exploiting ICI self-cancellation methods [1] or to
explore space and time diversity in dispersive channels through fractional sam-
pling [2]. And numerous research efforts have been spent on PAPR reduction
techniques1. The usage of CP, however, is retained to combat ISI in such tech-
niques which aim to enhance OFDM. All the above techniques will be categorised
as CP-OFDM in the following.

On the other hand, Various pulse shapes [3–8] well localised in the time fre-
quency plane have been studied in the past few years. A frame work of orthogonal-
ization methods has been proposed to construct orthogonal functions based on the
Gaussian function [5, 6] and a combination of Hermite functions [8], respectively.

1Too many contributions on PAPR reduction to be listed here
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Such orthogonalised pulse shapes, with a smaller lattice density (σ =
1

TF
< 1), en-

sure orthogonality among analysis basis and among synthesis basis and therefore
enable simple signal detection and optimal in AWGN channel. As the orthogonality
among different pair of analysis-synthesis basis is sufficient for perfect reconstruc-
tion in AWGN channels, more degrees of freedom in pulse shapes design have been
introduced by using different analysis and synthesis prototype functions, as reported
in) [9–11]. OFDM with offset QAM (OFDM/OQAM) [12,13] which transmits real
symbols with double lattice density has shown some advantages over OFDM, but
faces difficulties of channel estimation and equalization. General system lattice
grids rather than the rectangular one used in OFDM have also been proposed [14],
which increases the distance between neighbouring lattice points without reducing
the lattice density. Further improvements [15], at the cost of detection complexity,
can be achieved by using Gaussian pulses and a hexagonal lattice which is composed
by superposition of two rectangular lattices.

The class of the aforementioned multi-carrier techniques which utilise well de-
signed pulse shapes and/or general time-frequency lattice, are coined with all other
alike methods as Generalised FDM (GFDM) in the remaining part of this thesis to
distinguish with techniques that support or enhance CP-OFDM.

GFDM and pulse shape adaptation

GFDM is of great interest as it has shown promising advantages over CP-OFDM on
robustness to both time and frequency dispersion. The CP is avoided in GFDM by
using optimally time-frequency localised (TFL) pulse shapes, and hence a theoret-
ically higher power and spectrum efficiency can be achieved. Techniques designed
for enhancing CP-OFDM can also be extended to GFDM without difficulties. Fur-
thermore, it is advantageous to design a multiple access technology based on GFDM
technology since GFDMA would be able to support heterogeneous access networks
that are OFDM-based, e.g. 3G-LTE, WRAN, WiMAX, etc., due to the similarities
between GFDM and OFDM.

Unlike OFDM that uses rectangular pulse shapes, which is only optimal with
respect to an AWGN channel, GFDM is expected to dynamically adopt channel-
dependent pulse shapes that are optimal in doubly dispersive fading channels. The
idea of the optimal pulse-shaping is to tailor the well designed signal waveforms
for transmitter and receiver to fit the current channel condition. For example,
in indoor situations where time dispersion is usually small, a vertically stretched
time-frequency pulse is suitable and where the frequency dispersion is small, a
horizontally stretched pulse is suitable. This enables a very efficient packing of time-
frequency symbols maximizing e.g. the throughput or the interference robustness
in the communication link.

Adapting the transmitter and receiver pulse shapes dynamically to the cur-
rent channel conditions and interference environments will consequently provide
the possibility to move seamlessly between different channels like indoor, outdoor,
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rural, suburban, urban, etc. It also achieves a higher spectral efficiency with lower
transmit power by avoiding CP. In addition, the reduced out-of-band energy (i.e.,
lower side lobes) promotes higher ICI robustness and allows a larger number of sub-
carriers to be used while still respecting a prescribed spectral mask. This lower
side lobe in GFDM also allows a more efficient usage of the spectrum
compared with OFDM, which usually needs a 10% guard band to meet
the spectrum mask [16]. Besides, the high PAPR problem in OFDM can also be
alleviated to some extend in GFDM systems. These advantages of GFDM implies
the potential to utilise energy and spectrum in a more efficient way.

However, there are only a few research activities in the area of GFDM up to now.
Most of the aforementioned work just emphasize the extreme of one requirement
while ignoring all the others, which undermines their claimed benefits and usually
sets themselves far away from practical implementation. Therefore it is necessary
to find a balanced solution. Channel estimation, which is assumed to be perfect at
least on the receiver side in most of the previous work, turns to be not an easy task
in some GFDM systems [9, 13, 15] where intrinsic interference was introduced to
allow more design freedom. The goal of this thesis project is to design energy and
spectrum efficient GFDM systems with better interference immunity at the cost of
small additional complexity. We believe that new progress in GFDM technologies
will be an enabler for “intelligent” systems [17] and a potential contribution to the
evolution of the next generation wireless communication technologies.

1.2 Contributions and outline

This thesis addresses, among many other aspects of GFDM systems, the measures
of time frequency localisation (TFL) property, pulse shape adaptation strategy,
performance evaluation and channel estimation. Our research results have been re-
ported in several (published and submitted) conference papers, non-reviewed con-
ference papers, a technical report, as well as invited presentations in a few places.
A journal paper is being prepared for submission. This dissertation is divided into
six chapters, with detailed description of contributions in each chapter listed as
follows.

Chapter 2

In this chapter we first present the baseband signal models as well as the channel
models for both OFDM and GFDM systems. Then a comprehensive review of
OFDM and a comparative study of state-of-the-art GFDM technologies is carried
out, followed by a brief overview of the TFL functions and parameters which will
be used frequently in later analysis and discussion. Various prototype functions,
such as rectangular, half cosine, root raised cosine (RRC), Isotropic Orthogonal
Transfer Algorithm (IOTA) function and Extended Gaussian Functions (EGF) are
discussed and simulation results are provided to illustrate the TFL properties by
the ambiguity function and the interference function.
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Part of the material was summarised in

Jinfeng Du and Svante Signell, “Classic OFDM Systems and Pulse Shaping
OFDM/OQAM Systems,” Technical Report of the NGFDM Project, Royal
Institute of Technology, Stockholm, Sweden, February 2007.

Chapter 3

This chapter formulates a general framework for pulse shape optimisation targeting
at minimising the combined ISI/ICI over doubly dispersive channels. A practical
adaptation strategy with focus on the EGF function, which is shown to have very
nice TFL properties suitable for pulse shape adaptation has been proposed and the
trade-off between performance and complexity has been discussed.

The results on pulse shape adaptation in OFDM/OQAM systems was published
in

Jinfeng Du and Svante Signell, “Pulse Shape Adaptivity in OFDM/OQAM
Systems over Dispersive Channels,” in Proc. of ACM International Confer-
ence on Advanced Infocom Technology (ICAIT), Shenzhen, China, July 2008.

The nice TFL property of EGF functions was summarised in

Jinfeng Du and Svante Signell, “Time Frequency Localisation Properties of
the Extended Gaussian Functions,” manuscript, in preparation for submission
as a short letter.

Chapter 4

In this chapter an intensive study of OFDM/OQAM is presented and efficient
implementation of OFDM/OQAM with aforementioned pulse shapes are done in the
Matlab/Octave simulation workbench for software defined radio (SDR-WB) [18,19]
by direct discretisation of the continuous time model, which achieves near perfect
reconstruction in the absence of a channel for well designed pulse shapes.

The contribution on efficient implementation and reconstruction evaluation was
published in

Jinfeng Du and Svante Signell, “Time Frequency Localization of Pulse Shap-
ing Filters in OFDM/OQAM Systems,” in Proc. of IEEE International
Conference on Information, Communications and Signal Processing (ICICS),
Singapore, December 2007.

The comparison of CP-OFDM and OFDM/OQAM performance in dispersive
channels, by investigating the signal reconstruction perfectness, time and frequency
dispersion robustness, and sensitivity to frequency offset, was published in

Jinfeng Du and Svante Signell, “Comparison of CP-OFDM and OFDM/OQAM
in Doubly Dispersive Channels,” in Proc. of IEEE Future Generation Com-
munication and Networking (FGCN), volume 2, Jeju Island, Korea, December
2007.
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Chapter 5

Based on previous work, a theoretical framework for novel preamble-based chan-
nel estimation methods has been presented in this chapter and a new preamble
sequence with higher gain has been proposed based on this framework. Most of the
contributions were submitted to

Jinfeng Du and Svante Signell, “Novel Preamble-Based Channel Estimation
for OFDM/OQAM Systems,” submitted to IEEE International Conference
on Communication (ICC) 2009.

Under the framework, an optimal pulse shape dependent preamble structure has
been derived and a suboptimal but pulse shape independent preamble structure has
been proposed and evaluated. Contributions in this chapter were summarised in

Jinfeng Du and Svante Signell, “Optimal Preamble Design for Channel Esti-
mation in OFDM/OQAM Systems,” manuscript, in preparation for submis-
sion to a journal.

Chapter 6

The concluding chapter summarises this dissertation and points out several open
topics for future work.

1.3 Notations

Throughout this thesis the following notational conventions are used:
x lowercase letters denote random variables.
X uppercase letters denote matrices.
xn The nth realization of the random variable x.
xm,n, x(m,n) The (i, j)th element of the matrix X.
j j = sqrt(-1).
Eb energy per bit.
Es energy per symbol.
N0 mono-lateral noise density.
h(τ, t) channel impulse response at time slot t.
H(f, t) channel frequency response at time slot t.
H(τ, ν) channel Doppler spectrum.
Sh(τ, ν) channel scattering function.
Td channel delay spread.
τrms channel RMS delay spread.
Bd channel Doppler spread.
fD maximum Doppler shift.
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ξ Heisenberg parameter.
κ Direction parameter.
Fs sampling frequency.
Ts sampling interval (Ts = 1/Fs).
F OFDM sub-carrier frequency separation.
T OFDM symbol duration without CP.
Tcp duration of CP.
E[x] the expected value of random variable x.
ℜ(·) take the real part of a complex number.
ℑ(·) take the imaginary part of a complex number.
δ(·) the Dirac delta function.
log(·) the log operator.
log2(·) the log operator with base 2.
sin(·) the sine function.
cos(·) the cosine function.
tan(·) the tangent function.
cot(·) the cotangent function.
atan(·) the inverse tangent function.
acot(·) the inverse cotangent function.





Chapter 2

Overview of GFDM and Time
Frequency Localization

2.1 System- and channel model

In FDM systems, as shown in Fig. 2.1, the information bit stream (bit rate

Rb =
1

Tb
) is first modulated in baseband using M -QAM modulation (with symbol

duration Ts = Tb log2 M) and then divided into N parallel symbol streams which
are multiplied by a pulse shape function gm,n(t). These N parallel signals are then
summed up and transmitted. On the receiver side, the received signal is first passed
through N parallel correlator demodulators (multiplication, integration and sam-
pling) and merged together via parallel-to-serial converter followed by a detector
and decoder.

The equivalent lowpass representation of the transmitted signal can be written
in the following analytic form

s(t) =

N−1∑

m=0

∞∑

n=−∞
am,ngm,n(t) (2.1)

where am,n(m = 0, 1, ..., N−1, n ∈ Z) denotes the baseband modulated information
symbol conveyed by the sub-carrier of index m during the symbol time of index n,
and gm,n(t) represents the pulse shape of index (m,n) in the synthesis basis which
is derived by the time-frequency translated version of the prototype function g(t)
in the way defined by different FDM schemes.

After passing through a doubly dispersive channel, the received signal can be
written as

r(t) =

∫

h(τ, t)s(t − τ)dτ + w(t) (2.2)

where h(τ, t) is the impulse response of the linear time-variant channel, and w(t)
is noise which in the rest of this thesis is assumed to be additive white Gaussian

9
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Figure 2.1: Block diagram of an FDM system (equivalent lowpass).

noise (AWGN) with mono-lateral noise density N0. Note that the wireless channel
can also be modeled as a linear device [20] whose input-output relation is defined
by

r(t) =

∫

~(τ, t)s(τ)dτ + w(t) (2.3)

By comparing (2.2) with (2.3), one can easily figure out that h(τ, t) = ~(t − τ, t).
From a physical point of view ~(τ, t) is the channel response at time t to a unit
impulse input at time τ , and h(τ, t) on the other hand can be interpreted as the
response at time t to a unit impulse response which arrives τ seconds earlier. 1

By taking the Fourier transform of h(τ, t) with respect to t, we can get

H(τ, ν) ,

∫

h(τ, t)e−j2πνtdt and h(τ, t) =

∫

H(τ, ν)ej2πνtdν (2.4)

where j =
√
−1. Then (2.2) can be rewritten as

r(t) =

∫∫

H(τ, ν)s(t − τ)ej2πνtdνdτ + w(t)

=

N−1∑

m=0

∞∑

n=−∞

∫∫

H(τ, ν)am,ngm,n(t − τ)ej2πνtdνdτ + w(t) (2.5)

The doubly dispersive channel is assumed to be wide sense stationary uncorre-
lated scattering (WSSUS) and therefore can be implemented by a tapped-delay-line
Monte Carlo-based WSSUS channel model [21] with generic channel parameters.
Apart from h(τ, t) itself and its Fourier transform H(τ, ν), two other functions of

1For a more detailed discussion, please refer to [20].
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the channel will be frequently used in our analysis and therefore listed in below.
Following the similar notations as in [22], the two dimensional auto-correlation
function of the impulse response (with respect to τ and ν) is defined as

φh(τ1, τ2, t1, t2) , E[h(τ1, t1)h
∗(τ2, t2)] = φh(τ1, t1 − t2)δ(τ1 − τ2) (2.6)

where δ(x) is the Dirac delta function and the the second equality comes from the
property of the WSSUS channel: wide sense stationary ensures the auto-correlation
is stationary (only depends on the time difference t1 − t2) and uncorrelated scat-
tering indicates that one of the components of the received signal with delay τ1 is
uncorrelated with all other signal components with different delays (bring in the
term δ(τ1 − τ2)). By taking the Fourier transform of φh(τ,∆t) with respect to ∆t,
we can get the famous scattering function

Sh(τ, ν) ,

∫

φh(τ,∆t)e−j2πν∆td∆t (2.7)

One important observation of the relationship between H(τ, ν) and Sh(τ, ν) shall
be highlighted here. By taking the two dimensional autocorrelation function of
H(τ, ν), we get

E[H(τ1, ν1)H
∗(τ2, ν2)] = Sh(τ1, ν1)δ(τ1 − τ2)δ(ν1 − ν2) (2.8)

The proof can be found in Appendix 2.6 A.
One of the most used WSSUS doubly dispersive channel, in which an exponential

delay power profile and a U-shaped Doppler power spectrum [23] is assumed and
therefore denoted exp-U in the following, is defined by its scattering function in the
following way

Sh(τ, ν) =
e−

|τ|
τrms

τrms

1

πfD

√

1 − ( ν
fD

)2

τ ∈ [0, Td]
ν ∈ [−fD, fD]

(2.9)

where τrms is the RMS delay spread and fD is the maximum Doppler shift. In

this case it can be confirmed that the RMS Doppler spread frms =
√

2
2 fD, see

Appendix 2.6 B.

2.2 Overview of OFDM

The main idea behind OFDM is to partition the frequency selective fading channel
(delay spread Td is larger than symbol duration Ts) into a large number (say N) of
parallel and mutually orthogonal sub-channels which are flat fading (Td << NTs)

and thereafter transform a very high data rate (
1

Ts
) transmission into a set of

parallel transmissions with very low data rates (
1

NTs
). With this structure the
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problem of high data rate transmission over frequency selective channels has been
transformed into a set of simple problems which do not require complicated time
domain equalization. Therefore OFDM plays an important role in modern wireless
communication where high data rate transmission is commonly required.

Principles

In OFDM systems, am,n(m = 0, 1, ..., N − 1, n ∈ Z) denotes the complex-valued
baseband modulated information symbol conveyed by the sub-carrier of index m
during the symbol time of index n, and gm,n(t) represents the pulse shape of index
(m,n) in the synthesis basis which is derived by the time-frequency translated
version of the prototype function g(t) in the following way

gm,n(t) , ej2πmFtg(t − nT ) (2.10)

where F represents the inter-carrier frequency spacing and T is the OFDM symbol
duration. Therefore gm,n(t) forms an infinite set of time shifted pulses spaced
at multiples of T and frequency modulated by multiples of F . Consequently the
density of an OFDM system lattice is

σ =
1

TF
(2.11)

In an OFDM system, the frequency spacing F and the time shift T are choose as
follows to satisfy the orthogonality requirement

F =
1

NTs
T = NTs (2.12)

The prototype function g(t) is defined as follows

g(t) =

{ 1√
T

, 0 ≤ t < T

0, elsewhere
(2.13)

Orthogonality of the synthesis basis can be demonstrated from the inner product
between different elements

〈gm,n, gm′,n′〉 =

∫

R

g∗m,n(t)gm′,n′(t)dt

=

∫

R

ej2π(m′−m)Ftg∗(t − nT )g(t − n′T )dt

=
1√
T

∫ (n+1)T

nT

ej2π(m′−m)Ftg(t − n′T )dt

= δm,m′δn,n′

(2.14)
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where the last equality comes from the fact that TF = 1 which is a requirement in
OFDM system, and δm,n is the Kronecker delta function defined by

δm,n =

{
1, m = n
0, otherwise

At the receiver side, the received signal r(t) can be written as

r(t) = h ∗ s(t) + n(t) =

+∞∑

n=−∞

N−1∑

m=0

hm,nam,ngm,n(t) + w(t) (2.15)

where h is the wireless channel impulse response, hm,n represents the complex-
valued channel realization at the lattice point (mF,nT ) which is assumed to be
known by the receiver, and w(t) is the AWGN noise. Passing r(t) through N
parallel correlator demodulators with analysis basis which is identical2 with the
synthesis basis defined by (2.10), the output of the lth branch during time interval
nT ≤ t < (n + 1)T is

ãn(l) = 〈gl,n, r〉 =

+∞∑

k=−∞

N−1∑

m=0

hm,kam,k 〈gl,n, gm,k〉 + 〈gl,n, w〉

=

+∞∑

k=−∞

N−1∑

m=0

hm,kam,kδl,mδn,k + wn(l)

=

N−1∑

m=0

hm,nam,nδl,m + wn(l)

= hl,nal,n + wn(l)

(2.16)

In the detector this output is multiplied by a factor
1

hl,n
(nothing but channel

inversion) and therefore the transmitted symbol is recovered after demodulation
with only presence of AWGN noise.

The spectral efficiency η in this OFDM system can be expressed as

η = σ log2 M =
log2 M

TF
= log2 M [bit/s/Hz] (2.17)

where log2 M is the number of bits per symbol and σ =
1

TF
= 1 is the lattice

density of OFDM system.

2not necessary, see OFDM with cyclic prefix in Sec. 2.2
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Implementation

If we sample the transmitted signal s(t) at rate 1/Ts during time interval nT ≤ t <
(n + 1)T and normalize it by

√
T , we obtain

sn(k) , s(nT + kTs) =

N−1∑

m=0

am,nej2πmFkTs

/apply (2.12)/ =

N−1∑

m=0

am,nej2π mk
N

,
k = 0, 1, ..., N − 1
n ∈ Z

(2.18)

This sampled transmitted signal sn(k)(n ∈ Z, k = 0, 1, ..., N − 1) is the Inverse
Discrete Fourier Transform (IDFT)3 of the modulated baseband symbols am,n(n ∈
Z,m = 0, 1, ..., N − 1) during the same time interval. Therefore the OFDM modu-
lator at the transmitter side can be replaced by an IDFT block.

Equivalently, at the receiver side, we sample the received signal r(t) at the same
sampling rate 1/Ts, normalize it by factor

√
T , and rewrite (2.16) as follows

ãm,n = 〈gm,n, r〉 =

∫ (n+1)T

nT

g∗m,n(t)r(t)dt

≃
N−1∑

k=0

r(nT + kTs)e
−j2π mk

N =

N−1∑

k=0

rn(k)e−j2π mk
N

The demodulated symbol ãm,n(m = 0, 1, ..., N − 1), n ∈ Z is the Discrete Fourier
Transform (DFT) of the received signal rn(k)(k = 0, 1, ..., N − 1, n ∈ Z).

Let sn = [sn(0), sn(1), ..., sn(N − 1)]T , an = [a0,n, a1,n, ..., aN−1,n]T , rn =
[rn(0), rn(1), ..., rn(N − 1)]T , then

sn = IDFT(an)
rn = Hsn + wn

ãn = DFT(rn)

where H is the channel matrix and wn is the noise components. Consequently, the
whole system of OFDM can be efficiently implemented by the FFT/IFFT module
and this makes OFDM an attractive option in high data rate applications.

Guard interval and cyclic prefix

When there is multipath propagation, subsequent OFDM symbols overlap with each
other and hence cause serve ISI which degrades the performance of OFDM system
by introducing an error floor for the Bit Error Rate (BER). That is, the BER will
converge to a constant value with increasing SNR. A simple and straightforward

3except for a scaling factor N
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approach which is standardized in OFDM applications is to add a guard interval 4

into the prototype function for synthesis basis and meanwhile keeps the prototype
function for analysis basis unchanged. When the duration of the guard interval Tg

is longer than the time dispersion Td, ISI can be totally removed. With a guard
interval added, the prototype function

q(t) =

{ 1√
T

, −Tg ≤ t < T

0, elsewhere
(2.19)

is used at the transmitter side and the synthesis basis (2.10) becomes

qm,n(t) = ej2πmFtq(t − nT0) (2.20)

where T0 = Tg + T . On the receiver side the analysis basis prototype function
remains the same as defined in (2.13) with time shift T0 and integration region
nT0 ≤ t < nT0 + T . The orthogonality condition (2.14) between synthesis basis
and analysis basis therefore becomes

〈gm,n, qm′,n′〉 =
∫

R
ej2π(m′−m)Ftg∗(t − nT0)q(t − n′T0)dt

= 1√
F

∫ nT0+T

nT0
ej2π(m′−m)Ftq(t − n′T0)dt =

{
1, m = m′ and n = n′

0, otherwise
(2.21)

Now, assuming that the guard interval Tg = GTs, G ∈ N, if we sample the signal
s(t) at the same sampling rate 1/Ts during the time interval nT0−Tg ≤ t < nT0+T

and normalize it by
√

T

cn(k) , s(nT0 + kTs) =

N−1∑

m=0

am,nej2π mk
N ,

k = −G,−G + 1, ..., 0, ..., N − 1
n ∈ Z

(2.22)

Rewriting the above expression in vector format, we get

cn = [sn(−G), sn(1 − G), ..., sn(−1), sn(0), ..., sn(N − 1)]T

= [sn(N − G), sn(N − G + 1), ..., sn(N − 1)
︸ ︷︷ ︸

the LAST G elements of sn

, sn(0), ..., sn(N − 1)
︸ ︷︷ ︸

sn

]T (2.23)

where the second equality comes from the periodic property of DFT function and
the first G elements are referred as the Cyclic Prefix (CP). That is, to add a guard
interval into the pulse shape prototype function is equivalent to add a cyclic prefix
into the transmitted stream after OFDM modulation (IFFT). At the receiver side,
the first G samples which contain ISI are just ignored. The system diagram of
OFDM with cyclic prefix is shown in Fig. 2.2.

4There is another term “guard space” used in the early stage of OFDM development [27]
which means to add zeros at the transmitter side. The “guard interval” used in this thesis means
the usage of signals defined in the way in (2.19).
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Figure 2.2: OFDM system with cyclic prefix.

After adding cyclic prefix, the spectral efficiency η in (2.17) becomes

η =
log2 M

T0F
=

T

T0
log2 M =

T0 − Tg

T0
log2 M = (1 − Tg

T0
) log2 M [bit/s/Hz] (2.24)

that is, the cyclic prefix costs a loss of spectral efficiency by
Tg

T0
.

Summary

OFDM is now well known as an efficient technology for wireless communications.
However, it takes about 30 years before OFDM being accepted as the candidate
solution for high data rate transmission through wireless channels. Dr. Robert
Wu-lin Chang first demonstrated in his 1966 paper [25] the principle of free ISI/ICI
parallel data transmission over linear band-limit channel, which forms the concept
we today call OFDM. In 1967, B.R. Saltzberg [26] evaluated the performance and
pointed out the key factor is to reduce crosstalk between sub-channels (ICI). Im-
plementation of OFDM via DFT/IDFT was proposed by Weinstein and Ebert [27]
in 1971, where the “guard space” (zeros) in time domain was introduced to remove
ISI but cost a loss of orthogonality. Until 1980 the concept of cyclic prefix was
introduced by Peled and Ruiz [28], which brought the theoretical development of
OFDM to a new stage. However, OFDM is lack of interest until the middle of
1990s when the fast development of digital signal processor chips makes FFT based
OFDM implementation practical.

If there is no frequency dispersion present, ISI/ICI can be fully eliminated by
adding a sufficiently long CP. The wireless channel, however, often contains both
time and frequency dispersion which eventually destroys the orthogonality between
the perturbed synthesis basis functions and the analysis basis functions. Further-
more, CP is not for free: It costs increased power consumption and reduces spectral
efficiency.
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One way to solve this problem is to adopt a proper pulse shape prototype filter
(rather than the rectangular function) which is well localized in time and frequency
domain so that the combined ISI/ICI can be combated efficiently without utilizing
any CP. Unfortunately, the Balian-Low theorem [24] implies that the construction
of a well time-frequency localized orthogonal basis is impossible for unitary time

frequency density (σ =
1

TF
= 1). Therefore orthogonal basis and well localised

pulse shapes cannot be achieved simultaneously for OFDM unless extra symbol
duration (e.g. guard interval) or extra frequency bandwidth is introduced. On the
other hand, orthogonality which ensures low demodulation complexity, cannot be
simply given up as it plays an important role in the cost calculation. This dilemma
brings GFDM into sight.

2.3 Overview of GFDM

GFDM is of great interest as it has shown promising advantages over OFDM on
robustness to both time and frequency dispersion. The CP is avoided in GFDM
at the price of a more complicated design of well localised pulse shapes [3]- [8],
where orthogonality over ideal channels is ensured with a smaller lattice density
(σ < 1). The optimally localised Gaussian function is used for pulse shaping in [15]
where a powerful detector is used to combat its non-orthogonality. A frame work
of orthogonalisation, named as Isotropic Orthogonal Transform Algorithm (IOTA),
has been proposed in [5] to orthogonalise the Gaussian function. The IOTA method
turns out to be identical with the orthogonalisation method used in [14] for certain
pulses. As a generalisation of the IOTA method, a closed-form expression for the
class of the resulting functions has been proposed in [6]. As the resulting functions
inherit the localisation property of the Gaussian function, they are named Extended
Gaussian Functions (EGF). In [29] it is shown that EGF functions can also be
derived based on the Zak Transform. Motivated by the fact that the Gaussian
function is just the first Hermite function, a linear combination of several Hermite
functions whose frequency transforms are the same as themselves is proposed in [8]
to form a new mother function which is subject to optimisation. Some alternative
approaches are proposed to find prototype functions that only extend to one OFDM
symbol duration, which will cause smaller detection delay and lower complexity.
In [12] the half-cosine function is proposed as the pulse shape prototype and its dual
function square root raised cosine (RRC) function and its self-multiplied versions
are proposed in [7]. Optimisation methods aiming at maximising the time frequency
localisation measures of the truncated EGF functions are proposed in [30,31], and
the resulting functions are therefore named by TFL1.

More degrees of freedom in pulse shape design are introduced by using different
prototype functions at the transmitter and receiver side, as reported in [9]- [11],
and therefore yields stronger immunity to channel dispersion. OFDM with offset
QAM (OFDM/OQAM) [12, 13] which transmits real symbols with double lattice
density has shown advantages over CP-OFDM by stronger channel dispersion im-
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munity and higher spectrum efficiency, but faces difficulties of channel estimation
and equalization. All the aforementioned contributions demonstrate “zero toler-
ance” to ISI/ICI in AWGN channels and therefore ensure perfect reconstruction
in absence of a channel. In the doubly dispersive wireless channels, however, per-
fect reconstruction is destroyed and considerable ISI/ICI is introduced. Hence the
key focus should be put on the maximisation of spectral efficiency and meanwhile
keep the level of ISI/ICI to a certain level tolerated by the system requirements.
For example, general system lattice grids rather than the rectangular one used in
OFDM have also been proposed [14] and optimal system parameters are proposed
for channels with a uniform distributed scattering function to minimise the joint
ISI/ICI. In [15] it is shown that further improvements can be achieved by using
Gaussian pulses and a hexagonal lattice which is composed by superposition of two
rectangular lattices. The price to pay is higher complexity and longer detection
delay introduced by the sequential detector based on minimum mean-square-error
(MMSE) criterion. When the number of sub-carriers is very large, say N = 2048 as
proposed in WRAN standard, the detection delay can be extremely large and there-
fore hinders its application in wireless communications such as mobile telephony
and live streaming.

On the other hand, some enhancement techniques for OFDM can also be ex-
tended to GFDM without difficulties as GFDM inherits most of the properties of
OFDM due to the similarities between GFDM and OFDM in terms of using sub-
carriers. It is advantageous to design a multiple access technology based on GFDM
technology to support heterogeneous access networks that are OFDM-based, i.e.
3G-LTE, 802.16, 802.22, etc.

System model

A general system model for GFDM systems with different system lattices is formu-
lated in the following way.

Signal basis with rectangular lattice

Given a rectangular lattice Λ =

[
τ0 0
0 ν0

]

, the transmitted signal basis with

prototype g(t) can be written as

gm,n = g(t − nτ0)e
j2πmν0t

and the signal basis at the receiver side with prototype q(t) can be written as

qm,n = q(t − nτ0)e
j2πmν0t

where τ0 serves as the time separation and ν0 as the frequency separation. The
analysis-synthesis pair is called orthogonal or bi-orthogonal if < gm,n, qm′,n′ >=
δmm′,nn′ is ensured with the prototype functions g(t) and q(t) identical or different,
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Figure 2.3: Symbol positions at the time frequency plan for (a) rectangular and (b)
hexagonal system lattice.

respectively.

Signal basis with hexagonal lattice

Given a hexagonal lattice Λ =

[
τ0 pτ0

0 ν0

]

or Λ =

[
τ0 0
pν0 ν0

]

, p > 0,

the transmitted signal basis with prototype g(t) can be written as

gm,n = g(t − (n + pm)τ0)e
j2πmν0t or gm,n = g(t − nτ0)e

j2π(m+pn)ν0t

respectively and the signal basis at receiver side can be formulated accordingly.

Notice that all the lattices mentioned above have the same density for any value
of p

σ = 1/ det(Λ) =
1

τ0ν0

Symbol positions at the time-frequency plan are shown in Fig. 2.3 for the rectangu-
lar lattice (a) and the hexagonal lattice (b, with p = 1/2). Clearly, the hexagonal
lattice can be formulated by superposition of two rectangular lattices: (b) can be
generated by shifting all the lattice points indicated by white square in (a) along
the frequency axis by 0.5ν0 and keeping all the other lattice points unchanged. De-
fine the normalised minimum time-frequency distance between neighbouring lattice
points as

dΛ =

√

(
δt

τ0
)2 + (

δf

ν0
)2
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where δt and δf is the minimum distance in time and in frequency, respectively.
For the rectangular lattice shown in Fig. 2.3 a, we have

dΛ =

√

(
τ0

τ0
)2 + 0 =

√

0 + (
ν0

ν0
)2 = 1

For the hexagonal lattice shown in in Fig. 2.3 b, we have

dΛ =

√

(
τ0

τ0
)2 + (

0.5ν0

ν0
)2 =

√
1.25 ≈ 1.12

Therefore with the same lattice density, the hexagonal lattice provides larger nor-
malised minimum time-frequency distance than the rectangular lattice.

Principle of GFDM design

Pulse shapes design

The ideal pulse shape for wireless communication in a designer’s dream is expected
to have the following properties: it attenuates very sharply both in time and fre-
quency domain so that there will be no overlap with adjacent symbols and therefore
no ISI/ICI is introduced. Unfortunately such pulse shapes does not exist and a
compromise between attenuation property in time and frequency domain has to be
sought dependent on the channel characteristics. The idea of pulse shapes design
is to find an efficient transmitter and a corresponding receiver waveform for the
current channel condition [7, 10], so that the resulting ISI/ICI will be minimized.
Specifically, a good signal waveform should be compactly supported and well local-
ized in time and in frequency with the same time-frequency scale as the channel
itself:

∆t

∆τ
≈ ∆f

∆ν
(2.25)

where ∆t and ∆f are the time and frequency scale of the pulse shape itself and ∆τ
and ∆ν are the delay and frequency dispersion measure of the wireless channel. ∆τ
and ∆ν can be the root-mean-square (RMS) delay spread and frequency (Doppler)
spread, respectively, for continuous time channel model, or the maximum delay and
Doppler spread when a discrete time channel model is used. For example, in indoor
situations the time dispersion is usually small, see Fig 2.4, a vertically stretched
time-frequency pulse is suitable and where the frequency dispersion is small, a
horizontally stretched pulse is suitable. This enables a very efficient packing [14]
of time-frequency symbols and hence maximises the throughput or the interference
robustness in the communication link.
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Figure 2.4: Channel scattering function and corresponding pulse shape.

General system lattice

According to Graph theory, the regular5 hexagonal lattice structure (its elemen-
tary hexagon regular) is optimal in two dimensional space in the sense that it
can achieves the largest distances among lattice points and meanwhile maintains
the same lattice density. Compared with a rectangular lattice structure, a regular
hexagonal lattice with the same lattice density will increase the distance among
different lattice points and therefore decrease the joint ISI/ICI. However, as shown
in the pulse shape design part, the pulse shape itself may have different scale along
the time and frequency axes and therefore a regular hexagonal lattice will be im-
possible to achieve. Hence irregular hexagonal lattices which can be achieved by
superposition of two rectangular lattices are frequently used instead.

Joint optimisation of pulse shape and system lattice

A joint optimisation of the pulse shape and the system lattice should take all the
related parameters (τ0, ν0, p, ∆t, ∆f) into consideration and find the optimal
parameters so that a given object function will be maximised/minimised. However,
it is a very complicated task and the closed-form analytical solutions only exist for
very special cases. We will discuss this in detail in Chapter 3.

2.4 Time Frequency Localization (TFL)

The time-frequency translated versions of the prototype function, as shown in equa-
tions (2.10) and (2.20), form a lattice in the time-frequency plane, as shown in
Fig. 2.3. If the prototype function, which is assumed to be centered around the
origin, has nearly compact support along the time-frequency axes, the transmitted

5A hexagon with all sides and all angles equal is called a regular hexagon, otherwise irregular.
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signal composed by these basis functions will place a copy of the prototype function
on each lattice point in the time-frequency plane. This illustrates how the signal
from different carriers and different symbols are combined in the lattice. The lower
power the prototype function spreads to the neighboring lattice region, the better
reconstruction of the transmitted signal can be retrieved after demodulation.

TFL functions

Several TFL functions, the instantaneous correlation function, the ambiguity func-
tion and the interference function, are commonly used to demonstrate the TFL
property and are therefore discussed below.

Instantaneous correlation function

Two kinds of instantaneous6 correlation functions are usually used: the instan-
taneous cross-correlation function and the instantaneous autocorrelation function.
The instantaneous cross-correlation function between synthesis prototype function
q(t) and analysis prototype function g(t) is defined as

γg,q(τ, t) = g(t + τ/2)q∗(t − τ/2) = γ∗
g,q(−τ, t) (2.26)

and the instantaneous auto-correlation function is as follows

γg(τ, t) , γg,g(τ, t) = g(t + τ/2)g∗(t − τ/2) = γ∗
g (−τ, t) (2.27)

When g(t) is even, we get

γ∗
g (τ,−t) = g∗(−t + τ/2)g(−t − τ/2) = g∗(t − τ/2)g(t + τ/2) = γg(τ, t) (2.28)

which states that γg(τ, t) is even conjugate both with respect to τ and t.

Ambiguity function

The corresponding cross-ambiguity function of g(t) and q(t) is defined7 as the
Fourier transform of the cross-instantaneous correlation function along the time
axis t, i.e.,

Ag,q(τ, ν) ,

∫

R

γg,q(τ, t)e
−j2πνtdt =

∫

R

g(t + τ/2)q∗(t − τ/2)e−j2πνtdt

= e−jπτν

∫

R

g(t + τ)q∗(t)e−j2πνtdt = e−jπτν < q(t)ej2πνt, g(t + τ) >

(2.29)

6“Instantaneous” is used here to indicate that no expectation is taken compared to the common
correlation function.

7There is another definition for the ambiguity function, which differs by a phase shift.
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where the second equality comes from variable substitution. Similarly, the auto-
ambiguity function can be regarded as a special case of the cross-ambiguity function
when g(t) = q(t)

Ag(τ, ν) ,

∫

R

γg(τ, t)e
−j2πνtdt = e−jπτν < g(t)ej2πνt, g(t + τ) > (2.30)

As long as the prototype function is normalized (i.e. unity energy), the maximum
of the auto-ambiguity function is

max
τ,ν

|Ag(τ, ν)| = Ag(0, 0) = 1

On the other hand, the maximum value of the cross-ambiguity function |Ag,q(τ, ν)|
depends on the matching between g(t) and q(t) and hence is equal to or less than
unity. The ambiguity function can therefore be used as an indicator of the or-
thogonality/similarity between the prototype function and its time and frequency
translated version (e.g. |Ag(τ, ν)| = 0 means orthogonal and |Ag(τ, ν)| = 1 means
identical), or to show to what an extent the analysis basis is matched to the cor-
responding synthesis basis (the larger |Ag,q(τ, ν)| is, the better the demodulator
works).

Several important features of the ambiguity function need to be highlighted:

• It is a two dimensional (auto-)correlation function in the time-frequency plane.

• It is real valued in the case of an even prototype function, i.e. g(−t) = g(t).

• It illustrates the sensitivity to delay and frequency offset.

• It gives an intuitive demonstration of ICI/ISI robustness.

Interference function

To obtain a more clear image of how much interference (power) has been induced
to other symbols on the time frequency lattice, a so called interference function has
been introduced

I(τ, ν) = 1 − |A(τ, ν)|2 (2.31)

where A(τ, ν) = Ag(τ, ν) for the auto-ambiguity function case. In the case of cross-
ambiguity function, A(τ, ν) = Ag,q(τ, ν) has to be normalized so that I(τ, ν) = 0
when there is no interference.

TFL parameters

Heisenberg parameter ξ

The Heisenberg parameter ξ [5, 12] is frequently used to measure the TFL prop-
erties of a given function x(t) and its Fourier transform X(f). According to the
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Heisenberg Uncertainty Principle [24], the Heisenberg parameter is given by

ξ =
1

4π∆t∆f
≤ 1 (2.32)

where ∆t is the mass moment of inertia of the prototype function in time and ∆f
in frequency, which shows how the energy (mass) of the prototype function spreads
over the time and frequency plane. The larger ∆t (∆f), the more spread there
is concerning the time (frequency) support of the prototype function. These two
parameters can be calculated via the following set of equations







∆t2 = K

∫

R

(t − t̄)2|x(t)|2dt

∆f2 = K

∫

R

(f − f̄)2|X(f)|2df

t̄ = K

∫

R

t|x(t)|2dt

f̄ = K

∫

R

f |X(f)|2df

K−1 =

∫

R

|x(t)|2dt =

∫

R

|X(f)|2df

(2.33)

where E = K−1 is the energy of the prototype function, t̄ and f̄ are the center value
(center of gravity) of the time and frequency energy distribution and corresponding
to the coordinates of its lattice point in the time-frequency plane, i.e., for x(t) =
gm,n(t), it is easy to prove that t̄ = nτ0 and f̄ = mν0. Therefore, (t̄, f̄) indicates the
center position in the time-frequency plane of the prototype function and (∆t, ∆f)
describes how large area it occupies to accommodate most of its energy.

According to the Heisenberg uncertainty inequality, 0 ≤ ξ ≤ 1, where the upper
bound ξ = 1 is achieved by the Gaussian function and the lower band ξ = 0
is achieved by the rectangular function whose ∆f is infinite. The larger ξ is, the
better joint time-frequency localization the prototype function has (or alternatively
speaking, the less area it occupies). Although the Gaussian function enjoys he
minimum joint time-frequency localization (highest Heisenberg parameter), it is
always positive and therefore can not be orthogonal as stated before.

Direction parameter κ

In order to show quantitatively how the pulse shape spreads over the T-F plane,
we define the Direction parameter

κ =
∆t

∆f
.

κ can be any value between [0,∞) where the minimum is achieved by the rectan-
gular function whose ∆f = ∞. κ = 1 (e.g. the Gaussian function) means that
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Figure 2.5: Rectangular function g(t) and its Fourier transform, the sinc function.

the pulse shape has the same time and frequency scale in the time-frequency plane.
The larger κ is, the more stretched along the time axis the pulse shape is.

2.5 Pulse shape prototype functions and their TFL
properties

In this section, several different types of pulse shape functions are presented, namely
the rectangular function, the half cosine function, the Gaussian function, the IOTA
function, the EFG function, and the TFL1 function. All figures in this section are
drawn with normalised time and frequency axes by τ0 and ν0, respectively.

Rectangular function for OFDM

The rectangular prototype function is a possible choice and can be a benchmark for
comparison. A time shift has to be applied to ensure the even function property,
as shown in (2.34).

g(t) =

{ 1√
τ0

, |t| ≤ τ0

2

0, elsewhere
and G(f) =

sin(πτ0f)

πf
√

τ0
(2.34)

The Fourier transform G(f) is nothing but a sinc function8 which has the first
side lobe of −13dB and decades very slowly along the frequency axis, as shown in
Fig. 2.5 b.

8It is sometimes called the sampling interpolation function in some literature.
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By interchanging time and frequency axes, the dual of the rectangular function
becomes a natural extension, which is defined in the frequency domain as follows

G(f) =

{ 1√
ν0

, |f | ≤ ν0

2

0, elsewhere
and g(t) =

sin(πν0t)

πt
√

ν0
(2.35)

Its obvious advantage over rectangular function is that there is no overlapping in
the frequency domain and therefore causes less interference. On the other hand,
with a longer duration in the time domain, the implementation and equalization
complexity is considerable even after proper truncation.

For OFDM without CP, auto-correlation function (2.27), auto-ambiguity func-
tion (2.30) are used to get the TFL figures. Plots for there interference function
are obtained via (2.31) with attention paid to proper normalization for the cyclic
prefix case.

For the rectangular functions

g(t) =

{ 1√
T

, |t| ≤ T
2

0, elsewhere
and q(t) =

{ 1√
T

, |t| ≤ T0

2

0, elsewhere

where T0 = T + Tg is the duration of the pulse shape with CP added, as shown in
Appendix 2.6 C, the cross-ambiguity function (2.29) becomes

Ag,q(τ, ν) =







ejπντ sin πνT

πνT
, |τ | ≤ T0 − T

2

ejπν(T0−T )/2 sin
[
πν(T+T0

2 − τ)
]

πνT
,

T0 − T

2
< τ <

T0 + T

2

ejπν(T−T0)/2 sin
[
πν(T+T0

2 + τ)
]

πνT
, − T0 + T

2
< τ < −T0 − T

2

0, |τ | ≥ T0 + T

2

(2.36)

and the auto-ambiguity function (2.30) becomes

Ag(τ, ν) =







sin
[

πνT
(

1 − |τ |
T

)]

πνT
, |τ | < T

0 , |τ | ≥ T

(2.37)

Obviously Ag(τ, ν) in (2.37) is a sinc function along the frequency axis with its

amplitude (1 − |τ |
T ) decays symmetrically with increasing τ along the time axis.

Therefore when CP is added, as shown in (2.36), the amplitude of sinc function
keeps constant as long as |τ | ≤ T0−T

2 where Tg = T0−T is the length of the CP. Note
that both the prototype function g(t) and q(t) are time shifted here. Without the
time shift, the expression for the ambiguity function will still be the sinc function
with some time and phase shift.
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Figure 2.6: Correlation function of rectangular prototype for no-CP (dotted) and

CP (solid,
Tg

T0
= 1

5 ).

Fig. 2.6 shows how the correlation function of rectangular prototype function
looks like and demonstrates the difference for OFDM systems with and without
CP. The Sharp edge of the correlation function comes from the time limitation of
the rectangular function. Compared to the no-CP case, CP enlarges the coverage
of the correlation function and reduces the sensitivity to time spread. This “extra”
coverage can easily be found at the upper-right border and lower-left border of the
contour plots shown in Fig. 2.6(b).

Fig. 2.7 displays the ambiguity function which demonstrates how the mismatch
in time and frequency between the analysis basis and the corresponding synthesis
basis will affect the demodulation, or equivalently, how large the power leakage
of the prototype function is between neighboring lattice points after time and fre-
quency dispersion being added by the channel, where the role the cyclic prefix plays
is clearly shown. In no-CP case shown in Fig. 2.7(a), the demodulation gain will
fall sharply even with a minor time or frequency mismatch. After cyclic prefix is
added, as shown in Fig. 2.7(b) where the phase of Ag,q is omitted, the demodula-
tion gain will remain the same as long as the time mismatch is within the length of
cyclic prefix duration. This property is shown more clearly by their contour plots
in Fig. 2.7(c, d).

The sensitivity of OFDM system to time and frequency spread and the effect
of cyclic prefix have been intuitively demonstrated by the interference function
plotted in Fig. 2.8. The width of the flat bottom of the interference function for
cyclic prefix corresponds to the length of the cyclic prefix added into the synthesis
basis functions.
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Figure 2.9: Half cosine function and its Fourier transform.

Half-cosine function

The half cosine function is defined by

g(t) =

{ 1√
τ0

cos πt
2τ0

, |t| ≤ τ0

0, elsewhere
(2.38)

It has a compact support9 in the time domain and meanwhile a fast decay in the
frequency domain, as shown in Fig. 2.9, and therefore serves as a good prototype
function. Its ambiguity function, as shown in Appendix 2.6 C, is

Ag(τ, ν) =







sin π(1−2τ0ν)(1− |τ|
2τ0

)

2π(1−2τ0ν) +
sin π(1+2τ0ν)(1− |τ|

2τ0
)

2π(1+2τ0ν) +
cos πτ

2τ0
sin 2πτ0ν(1− |τ|

2τ0
)

2πτ0ν

, |τ | < 2τ0

0 , |τ | ≥ 2τ0

Therefore it is the superposition of three sinc functions with their amplitude de-
pendent on τ .

9A function x(t) is said to be compact support if there exists a constant ε > 0 so that x(t) = 0
for all |x| > ε.
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Figure 2.10: Half cosine prototype (contour, step=0.2).

Similarly, its dual form is instead defined by its Fourier transform as

G(f) =

{
1√
ν0

cos πf
2ν0

, |f | ≤ ν0

0, elsewhere
(2.39)

Actually (2.39) is a special case of the square-root raised-cosine pulse in the fre-
quency domain with the roll-off factor ρ = 1. Therefore it will be referred as RRC
from now on. This prototype function can be extended to any real even function
whose Fourier transform G(f) satisfies the following conditions:

{
|G(f)|2 + |G(f − ν0)|2 = 1/ν0 |f | ≤ ν0

G(f) = 0 otherwise
(2.40)

which corresponds to a half-Nyquist filter [12,32].

As half cosine prototype function and its dual form has the same orthogonality
and TFL property but has the time and frequency axes shifted, only the half cosine
function in the time domain described in (2.38) is treated here. The contour plots
which can provide a clearer image of the quantity aspects are used here for com-
parison between different schemes. It has a smaller power leakage along the time
axis than the frequency axis, as shown in Fig. 2.10. Its dual form will of course
have the opposite property as only the axes are interchanged.

Gaussian function

Gaussian function is very famous for that its Fourier transform has the same shape
as itself except for an axis scaling factor. For a Gaussian function

gα(t) = (2α)1/4e−παt2 , α > 0 (2.41)
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Figure 2.11: Gaussian function with α = 1 and its Fourier transform.

its Fourier transform is

Fgα(t) = (2α)1/4

∫ ∞

−∞
e−παt2e−j2πftdt = (2α)1/4

√
π

πα
e(−jπf)2/(πα)

= (2/α)1/4e−πf2/α = g1/α(f).

(2.42)

Here the second equality comes from the fact that [33]

∫ ∞

−∞
e2bt−at2dt =

√
π

a
eb2/a (a > 0) (2.43)

The ambiguity function for the Gaussian prototype, as shown in Appendix 2.6 C,
is

Agα(τ, ν) = e−
π
2 (ατ2+ 1

α ν2)

which means it decays at the second order of τ and ν simultaneously. As the
Gaussian prototype function is perfectly isotropic (invariant under rotation) and
has fast decay both in time and frequency domain, as shown in Fig. 2.11, it seems to
be an attractive candidate for pulse shaping prototype function. On the other hand,
the signal basis generated by Gaussian prototype function is in no way orthogonal
as gα(t) > 0 holds on the whole real axis, and it expends over several symbol
duration in the time domain and frequency sub-bands in the frequency domain and
therefore cause intrinsic ISI/ICI, as shown in Fig. 2.12. It is not a trivial task to
combat these distortions.
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Figure 2.12: Gaussian prototype with α = 1, and ∗ indicate the position of the
neighboring lattice points.

Isotropic Orthogonal Transform Algorithm (IOTA) function

Orthogonality between basis functions is normally obtained by using either a time
or frequency limitation of the prototype function, for example, the rectangular func-
tion and the half cosine function. A different approach, called Isotropic Orthogonal
Transform Algorithm (IOTA), is presented in [5, 12] and summarized below.

Define Oa as the orthogonalization operator on function x(t) according to the
following relation

Oax(t) =
x(t)

√

a
∑∞

k=−∞ |x(t − ka)|2
, a > 0 (2.44)

The effect of the operator Oa is to orthogonalise the function x(t) along the fre-
quency axis, which can be seen directly on the ambiguity function

Ay

(

0,
m

a

)

= 0, ∀m 6= 0 and Ay(0, 0) = 1 (2.45)

where y(t) = Oax(t). That is, the resulting function y(t) and its frequency shifted
versions construct an orthonormal set of functions. The proof can be found in
Appendix 2.6 D.

Similarly, in order to orthogonalise x(t) along the time axis, one can turn to
frequency domain and apply this orthogonalization operator to X(f), which is
the Fourier transform of x(t). To carry out this operation on x(t), one has first
to transfer it into frequency domain by Fourier transform F , then apply to the
orthogonalization operation Oa, and then go back to the time domain by inverse
Fourier transform F−1. For y(t) = F−1OaFx(t), we have

Ay

(n

a
, 0
)

= 0, ∀n 6= 0 and Ay(0, 0) = 1 (2.46)
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Figure 2.13: IOTA function and its Fourier transform.

Hence the resulting function and its time delayed forms are orthonormal.

Starting from the Gaussian function gα(t), by applying Oτ0 we get yα(t) =
Oτ0gα(t) and

Ay

(

0,
m

τ0

)

= 0, ∀m 6= 0, and Ay(0, 0) = 1

which comes from (2.45) and shows that yα is orthogonal to its frequency shifted

copies at multiples of
m

τ0
. Then apply F−1OνF to yα(t), we get

zα,ν0,τ0
(t) = F−1Oν0Fyα(t) = F−1Oν0FOτ0gα(t)

[5]
= Oτ0F−1Oν0Fgα(t) (2.47)

and

Az

(
n

ν0
,
m

τ0

)

= Az(2nτ0, 2mν0) = 0, (m,n) 6= (0, 0) (2.48)

where the first equality comes from the fact that τ0ν0 = 1
2 and the second equality

is the straightforward result of time and frequency orthogonalization.
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Figure 2.14: Ambiguity function of IOTA prototype [dB], × indicates 0 dB and ∗
is approximately −∞ dB or 0 in linear scale.

As yα = Oτ0gα is even, Fyα = F−1yα. Recall the Fourier transform invariant
property of Gaussian displayed in (2.42), and apply it to zα,ν0,τ0

Fzα,ν0,τ0 = FF−1Oν0Fyα = Oν0Fyα = Oν0F−1yα

= Oν0F−1Oτ0gα = Oν0F−1Oτ0Fg1/α = z1/α,τ0,ν0

(2.49)

Let α = 1, τ0 = ν0 = 1√
2

and define ζ(t) = z1, 1√
2
, 1√

2
(t), then we have

Fζ = Fz1, 1√
2
, 1√

2
= z1, 1√

2
, 1√

2
= ζ (2.50)

Thus ζ is identical to its Fourier transform, as shown in Fig. 2.13, and has nearly
isotropic support over the whole time-frequency plane, as shown in Fig. 2.14. This
is the reason why it is named IOTA function.

Extended Gaussian Function (EGF)

It is shown [5, 6] that the function zα,ν0,τ0 which is generated by the algorithmic
approach described in (2.47) has a closed-form analytical expression10

zα,ν0,τ0(t) =
1

2

[ ∞∑

k=0

dk,α,ν0

[

gα(t +
k

ν0
) + gα(t − k

ν0
)

]] ∞∑

l=0

dl,1/α,τ0
cos

(

2πl
t

τ0

)

(2.51)

where τ0ν0 = 1
2 , 0.528ν2

0 ≤ α ≤ 7.568ν2
0 , gα is the Gaussian function, and the

coefficients dk,α,ν0 are real valued and can be computed via the rules described in [5,

10A general expression with τ0ν0 = 1

2n
, n ∈ N is omitted since n > 1 is not interesting for

practical usage due to high lattice density requirement.
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Figure 2.15: Ambiguity function of EGF prototype, contour plot.

6], which are summarised in Appendix 2.6 E. This family of functions are named as
Extended Gaussian Function (EGF) as they are derived from the Gaussian function.
The IOTA function ζ is therefore a special case of EGF and its properties such as
orthogonality and good time frequency localization are shared with EGF functions.
The contour plots for the ambiguity function of EGF prototypes with Gaussian
parameter α = 0.5 and α = 2 are shown in Fig. 2.15.

In practice, as reported in [5], the infinite summation in EGF can be truncated
to fifty or even fewer terms while keeping excellent orthogonality and TFL. An
approximation of EGF with a few terms is also possible while the trade-off between
localization and orthogonality has to be sought.

TFL1

EGF and IOTA functions, which have good TFL properties, spread their pulse
shapes over several symbol durations even after truncation. This costs modula-
tion/demodulation delay and complexity. In order to find prototype functions that
have limited time duration, say only one symbol long, and meanwhile have sat-
isfactory TFL property, EGF functions are truncated into only one symbol long
and used as a basis function for optimisation [30, 31], as shown in Fig. 2.16. Since
the optimisation is carried out to maximise the TFL property and the resulting
prototype function has only 1 symbol duration and therefore 1-tap coefficient on
each sub-carrier in filterbank implementation, it is referred as TFL1 from here on.

TFL parameters ξ and κ

To compare the localization property of different pulses and have a quantitative
idea about it, the Heisenberg parameter ξ and the direction parameter κ for each
pulse is calculated. The following parameters are used for calculation: 12 time and
frequency shifts, i.e., t ∈ [−6τ0, 6τ0] and f ∈ [−6ν0, 6ν0], with 32 samples per time
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Figure 2.16: TFL1 function and its Fourier transform.

and frequency shift.

Rect cosine IOTA Gauss EGF(α = 2) TFL1
ξ 0.346 0.886 0.977 1.00 0.874 0.908
κ 0.245 0.728 1.00 1.00 0.572 0.744

Note that for the rectangular pulse, ∆f2 =
∫

sin2(wf)df = ∞ and therefore ξ = 0
and κ = 0 in theory. For EGF pulse, ξ(α) = ξ(1/α) and it will steadily increase to
its maximum as α approaches 1 from either direction [5]. The Gauss pulse achieves
the maximum of ξ and therefore has the best TFL property. The IOTA pulse shows
good localization which is the maximum of ξ among the EGF functions.
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2.6 Appendix

A. Relation between H(τ, ν) and Sh(τ, ν)

By taking the two dimensional autocorrelation function of H(τ, ν), we get

E[H(τ1, ν1)H
∗(τ2, ν2)] = E[

∫

h(τ1, t1)e
−j2πν1t1dt1

∫

h∗(τ2, t2)e
j2πν2t2dt2]

=

∫∫

E[h(τ1, t1)h
∗(τ2, t2)]e

−j2π(ν1t1−ν2t2)dt1dt2

/apply (2.6)/ =

∫∫

φh(τ1, t1 − t2)δ(τ1 − τ2)e
−j2π(ν1t1−ν2t2)dt1dt2

/Set ∆t = t1 − t2/ =

∫∫

φh(τ1,∆t)δ(τ1 − τ2)e
−j2πν1∆td∆te−j2π(ν1−ν2)t2dt2

/apply (2.7)/ = Sh(τ1, ν1)δ(τ1 − τ2)

∫

e−j2π(ν1−ν2)t2dt2

= Sh(τ1, ν1)δ(τ1 − τ2)δ(ν1 − ν2)

where the last equality from the definition of δ(x).

B. RMS Doppler spread under the exp-U channel model

According to (2.9), the Doppler power spectrum can be written as

Pd(f) =
1

πfD

√

1 − ( f
fD

)2
, |f | ≤ fD (2.52)

As Pd(f) is an even function, it is easy to find that

f̄d =

∫ fD

−fD
fPd(f)df

∫ fD

−fD
Pd(f)df

= 0 (2.53)

Therefore the RMS Doppler spread

frms =

√
√
√
√

∫ fD

−fD
(f − f̄d)2Pd(f)df
∫ fD

−fD
Pd(f)df

=

√
√
√
√

∫ fD

−fD
f2Pd(f)df

∫ fD

−fD
Pd(f)df

=

√
√
√
√
√

∫ fD

−fD
f2/
√

1 − ( f
fD

)2df

∫ fD

−fD
1/
√

1 − ( f
fD

)2df
= fD

√
√
√
√

∫ π/2

0
sin2 θ
cos θ d sin θ

∫ π/2

0
1

cos θ d sin θ

= fD

√
∫ π/2

0
sin2 θdθ

π/2
=

√
2

2
fD

(2.54)

where the fourth equality comes from variable substitution by sin θ = f/fD and

the last equality comes from the fact that
∫ π/2

0
sin2 θdθ = π/4.
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C. Ambiguity function for rectangular, halfcosine and Gaussian

The cross-ambiguity function for g(t) and q(t) can be written as

Ag,q(τ, ν) =

∫

R

g(t + τ/2)q∗(t − τ/2)e−j2πνtdt =

{ ∫

Ωτ
e−j2πνtdt , |τ | < T0+T

2

0 , |τ | ≥ T0+T
2

(2.55)

where

Ωτ = {t| − T

2
≤ t +

τ

2
≤ T

2
, −T0

2
≤ t − τ

2
≤ T0

2
, |τ | <

T0 + T

2
}

is the intergartion interval dependent on the value of τ . After careful arrangement,
the above equation can be written as

Ωτ =







{t| − T

2
− τ

2
≤ t ≤ T

2
− τ

2
}, |τ | ≤ T0 − T

2

{t| − T0

2
+

τ

2
≤ t ≤ T

2
− τ

2
}, T0 − T

2
< τ <

T0 + T

2

{t| − T

2
− τ

2
≤ t ≤ T0

2
+

τ

2
},−T0 + T

2
< τ < −T0 − T

2

(2.56)

On the other hand, we have
∫ b

a

e−j2πνtdt =
e−j2πνa − e−j2πνb

j2πν
= e−jπν(a+b) sin πν(b − a)

πν
(2.57)

By applying (2.57) and (2.56) into (2.55), we get

Ag,q(τ, ν) =







ejπντ sin πνT

πνT
, |τ | ≤ T0 − T

2

ejπν(T0−T )/2 sin
[
πν(T+T0

2 − τ)
]

πνT
,

T0 − T

2
< τ <

T0 + T

2

ejπν(T−T0)/2 sin
[
πν(T+T0

2 + τ)
]

πνT
, − T0 + T

2
< τ < −T0 − T

2

0, |τ | ≥ T0 + T

2

(2.58)

By replacing q with q and T0 with T in (2.58), we get

Ag(τ, ν) =







sin
[

πνT
(

1 − |τ |
T

)]

πνT
, |τ | < T

0 , |τ | ≥ T

For the halfcosine function defined in (2.38), following the same method we have

Ag(τ, ν) =







∫ τ0− |τ|
2

−τ0+
|τ|
2

cos
π(t − τ/2)

2τ0
cos

π(t + τ/2)

2τ0
e−j2πνtdt, |τ | < 2τ0

0, |τ | ≥ 2τ0

(2.59)
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The integration in the above equation can be written as

∫ b

a

cos
π(t + τ/2)

2τ0
e−j2πνtdt =

1

2

∫ b

a

[

cos
πt

τ0
+ cos

πτ

2τ0

]

e−j2πνtdt

=
1

4

∫ b

a

[

ej πt
τ0 + e−j πt

τ0

]

e−j2πνtdt +
1

2

∫ b

a

cos
πτ

2τ0
e−j2πνtdt

=
1

4

∫ b

a

e−j2π(ν− 1
2τ0

)dt +
1

4

∫ b

a

e−j2π(ν+ 1
2τ0

)dt +
1

2

∫ b

a

cos
πτ

2τ0
e−j2πνtdt

(2.60)

By applying (2.57) and (2.60) into (2.59), we have

Ag(τ, ν) =







sin π(1 − 2τ0ν)(1 − |τ |
2τ0

)

2π(1 − 2τ0ν)
+

sin π(1 + 2τ0ν)(1 − |τ |
2τ0

)

2π(1 + 2τ0ν)

+
cos πτ

2τ0
sin 2πτ0ν(1 − |τ |

2τ0
)

2πτ0ν
, |τ | < 2τ0

0, |τ | ≥ 2τ0

For Gaussian prototype, we have

Agα(τ, ν) =
√

2α

∫ ∞

−∞
e−πα(t−τ/2)2e−πα(t+τ/2)2e−j2πνtdt

=
√

2α

∫ ∞

−∞
e−πα(2t2+τ2/2)−j2πνtdt

=
√

2αe−
π
2 ατ2

∫ ∞

−∞
e−2παt2−j2πνtdt

=
√

2αe−
π
2 ατ2 1√

2α
e−

π
2

ν2

α

= e−
π
2 (ατ2+ 1

α ν2)

(2.61)

where the fourth equality comes from (2.43).

D. Proof of orthogonalization operator Oa

Apply the Fourier transform operator F to (2.30) and set the time parameter τ = 0,
we get

Ay(0, ν) = F {γy(0, t)} = F
{
|y(t)|2

}
. (2.62)
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Construct an infinite summation regarding y(t) = Oax(t) that is given by (2.44),
we get

∞∑

m=−∞
aγy(0, t − ma) = a

∞∑

m=−∞
|y(t − ma)|2

=

∞∑

m=−∞

|x(t − ma)|2
√
∑∞

k=−∞ |x(t − ka − ma)|2∑∞
l=−∞ |x(t − la − ma)|2

(2.63)

where

∞∑

k=−∞
|x(t − ka − ma)|2 =

∞∑

l=−∞
|x(t − la − ma)|2 =

∞∑

p=−∞
|x(t − pa)|2 (2.64)

whose value is only depending on the function x, time instance t and the positive
factor a, and therefore has nothing to do with the summation index (no matter
whether m, or k, l, etc. is used). This simplifies (2.63) and the summation now
becomes

∞∑

m=−∞
aγy(0, t − ma) =

∞∑

m=−∞

|x(t − ma)|2
∑∞

p=−∞ |x(t − pa)|2 =

∑∞
m=−∞ |x(t − ma)|2
∑∞

p=−∞ |x(t − pa)|2 = 1

(2.65)

By introducing the Dirac’s delta function δ(t) and the convolution operator ∗, (2.65)
can be rewritten as

∞∑

m=−∞
aγy(0, t − ma) =

∞∑

m=−∞
aδ(t − ma) ∗ γy(0, t) = 1 (2.66)

Apply the Fourier transform on both sides and notice that [33]

F
{ ∞∑

m=−∞
δ(t − ma)

}

=
1

a

∞∑

m=−∞
δ
(

ν − m

a

)

, a > 0

F {1} = δ(ν)

F {x(t) ∗ y(t)} = X(ν)Y (ν)

(2.67)

we get

∞∑

m=−∞
δ
(

ν − m

a

)

Ay(0, ν) = δ(ν) (2.68)

which gives out straightforward Ay(0, 0) = 1 and Ay(0, m
a ) = 0 ∀m 6= 0. Q.E.D.
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E. Calculation of EGF coefficients

According to [5], the coefficients dk,α,ν0 can be expressed as

dk,α,ν0 =

∞∑

l=0

ak,le
−απl

2ν2
0 , 0 ≤ k ≤ ∞

≈
jl∑

j=0

bk,je
− απ

2ν2
0

(2j+k)
, 0 ≤ k ≤ K

(2.69)

where jl = ⌊(K − k)/2⌋ and K is a positive integer which insure an accuracy of

e
−παK

2ν2
0 for the approximation due to truncation of the infinite summation. A list

of coefficients bk,j corresponding to K = 14, which leads to an accuracy of 10−19

for α = 1, is present in the following table.

b j ( 0 to 7 )

k
0
to
14

1 3

4

105

64

675

256

76233

16384

457107

65536

12097169

1048576

13774755

4194304

−1 − 15

8
− 219

64
− 6055

1024
− 161925

16384
− 2067909

131072
− 26060847

1048576

3

4

19

16

1545

512

9765

2048

596277

65536

3679941

262144
− 105421227

16777216

− 5

8
− 123

128
− 2289

1024
− 34871

8192
− 969375

131072
− 51182445

4194304

35

64

213

256

7797

4096

56163

16384

13861065

2097152
− 139896345

8388608

− 63

128
− 763

1024
− 13875

8192
− 790815

262144
− 23600537

4194304

231

512

1395

2048

202281

131072

1434705

524288
− 142044345

16777216

− 429

1024
− 20691

32768
− 374325

262144
− 5297445

2097152

6435

16384

38753

65536

1400487

1048576
− 1458219

4194304

− 12155

32768
− 146289

262144
− 2641197

2097152

46189

131072

277797

524288

20050485

16777216

− 88179

262144
− 2120495

4194304

676039

2097152

4063017

8388608

− 1300075

4194304

5014575

16777216

As for coefficients dk,1/α,τ0
, the dual form of dk,α,ν0 , it is easy to calculate them

just by replacing the corresponding items and following the procedure above.





Chapter 3

Pulse Shape Adaptation for
GFDM Systems

3.1 Introduction

Adaptation is crucial to realise high data rate transmission in multicarrier communi-
cation systems over dispersive channels. Apart from rate/power adaptation enabled
by OFDM, GFDM systems provide possibility to adjust pulse shapes depending on
the channel characteristics. Among other famous pulse functions, the EGF function
is well known for its localisation variation in the time-frequency plane. Therefore
it plays a vital role in pulse shape adaptation in the following discussion. Besides,
adjustment of other parameters, such as sampling frequency, sub-carrier separation
bandwidth, etc., will also change the overall performance largely. The purpose of
this chapter is to investigate pulse shape adaptivity in GFDM systems to see how
it can affect the performance over doubly dispersive channels.

3.2 Previous work

In [4,9,10] it was proposed that the pulse shape should be well localized in time and
in frequency with the same time-frequency scale as the channel itself so that the
resulting ISI/ICI will be minimized. If a uniformly distributed or an elliptical scat-
tering function is assumed for the channel, the optimal pulse shape should satisfy
the condition stated in (2.25). In [14] it was pointed out that the orthogonalised
Gaussian functions are good candidates for pulse shape adaptation based on the
above rule. For more general scattering functions, various optimisation methods
have been proposed based on different objective function formulations. For exam-
ple, maximising the desired signal energy is proposed in [9], and minimising the
joint ISI/ICI power is proposed in [34] for pulse shaped multicarrier systems and
in [15] for hexagonal multicarrier systems. Maximising the signal to interference
ratio is also considered in [34]. However, as pointed in [35], the problem of max-

43
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imising the desired signal energy, and therefore also the problem of minimising
the joint ISI/ICI power, is in general non-convex. Only for very special scattering
functions this problem have closed form solutions. For example for channels with
a Gaussian scattering function, the optimal pulse shape is also Gaussian. With
the aid of power series expansion with proper truncation, one can find analytically
some sub-optimal solutions. Therefore proper numerical solutions have to be found
to enable efficient pulse shape adaptation.

3.3 Practical adaptation strategies

Recall the block diagram of an FDM system shown in Fig. 2.1, the equivalent
lowpass channel transfer function between the kth sub-channel at the transmitter
side and the lth sub-channel at the receiver side can be written as

H̃l,k(f) = G(f − kF )H(f)G∗(f + lF ) =

{
H(f)|G(f)|2, k = l
H(f)G(f − kF )G∗(f + lF ), otherwise

where G(f) is the Fourier transform of the pulse shape prototype g(t). To preserve
the transmitted signal as good as possible, the pulse shape whose overall power
spectrum |G(f)|2 has a narrow main lobe with flat top and low side lobe with
fast decay property will be optimal to minimize the interference from neighboring
sub-channels. Unfortunately it is not realistic as such a band limited function will
have a large spread in time domain, which means a considerably long filter or large
truncation error. Fig. 3.1 shows the spectrum amplitude |G(f)| for the rectangular
function, the half cosine function and its dual RRC (ρ = 1 is used here), and EGF
functions with α = 1 and α = 2. The frequency response of the EGF functions can
be easily adjusted by changing the Gaussian parameter α and therefore it plays an
important role in our following discussion.

In this section we will first review the TFL property of EGF functions and then
formulate some objective functions for optimisation. Practical adaptation strategies
as well as performance and complexity trade-offs will be discussed.

TFL property of EGF pulse shapes

Among other famous pulse functions, the EGF [6] is well known for its localisation
variation in the time-frequency plane. Therefore it plays a vital role in pulse shape
adaptation in the following discussion.

For EGF functions with τ0

T =
√

1
2λ and ν0

F =
√

λ
2 , where λ > 0 is a constant

scaling factor, it can be proved that (see the Appendix 3.4 A.)

ξ(α) = ξ(
λ2

α
), κ(α)κ(

λ2

α
) =

1

λ2
(3.1)

The variation of ξ and κ with respect to α for EGF functions with λ = 1 ( τ0

T =
ν0

F =
√

2
2 ) and λ = 2 ( τ0

T = 1
2 , ν0

F = 1) is shown in Fig. 3.2, in which τ0 and ν0
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Figure 3.1: Pulse shape spectrum.

are normalised by T and F , respectively for convenience. By just increasing the
Gaussian parameter, the time-frequency scale (the value of κ) changes continuously:
from a mostly time-axis stretched pulse to a mostly frequency-axis stretched pulse.

Compared to the case with τ0

T = ν0

F =
√

2
2 , the EGF function with τ0

T = 1
2 have

larger variation of κ and better stability of ξ, which makes it more suitable for
pulse shape adaptation. The Gaussian function, however, will not be taken into
consideration since it will introduce large intrinsic distortion after reconstruction
and therefore cause difficulty in demodulation.

If the value of κ is calculated with normalised τ0 and ν0 (by T and F respectively)
as in Fig. 3.2, the adaptation rule for rectangular lattice stated in (2.25) can be
rewritten as

κ(α) =
∆t

∆f
∝ τrms/T

fD/F
=

τrms

fD
(
Fs

N
)2 (3.2)

where τrms is the RMS delay spread and fD is the maximum Doppler shift, and
the last equality comes from the fact that F = 1/T = Fs/N . Therefore, for each
specific channel realisation (i.e. τrms

fD
is determined), the performance against delay

and Doppler dispersion depends on the bandwidth F and the direction parameter
κ. We can adjust these two parameters to improve the system performance. When
the sampling frequency Fs is fixed in some instance, the FFT size N will be subject
to adaptation since F = Fs

N . The relationship stated in (3.1) can therefore be used
in pulse shape adaptation to help select the proper α.
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Figure 3.2: TFL parameters (ξ,κ) for EGF with λ = 1 (dashed line), λ = 2 (solid
line). TFL for the Gaussian function (dotted line) is plotted as reference.

Objective function formulation

Following the system model defined in Chapter 2 and without loss of generality, we
assume symbol a0,0 is to be detected,

â0,0 =< r(t), g0,0(t) >=

∫

r(t)g∗0,0(t)dt

=

∫∫∫

H(ν, τ)
∑

m,n

am,ngm,n(t − τ)g∗0,0(t)e
j2πνtdtdνdτ

(3.3)

where r(t) is the same as defined in (2.5) but with with the noise component omitted
for simplicity.

For a GFDM system with a rectangular lattice Λ =

[
τ0 0
0 ν0

]

, assume the

signal basis is formulated from a prototype function g(t) in the way

gm,n(t) = g(t − nτ0)e
j2πmν0t
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the inner product of the two signal bases in (3.3) can be written as
∫

gm,n(t − τ)g∗0,0(t)e
j2πνtdt =

∫

g(t − nτ0 − τ)g∗(t)ej2π[mν0(t−τ)+νt]dt

= e−j2πmν0τ

∫

g(t − nτ0 − τ)g∗(t)ej2π(mν0+ν)tdt

= e−j2πmν0τ

∫

g(t′ − nτ0 + τ

2
)g∗(t′ +

nτ0 + τ

2
)ej2π(mν0+ν)t′ejπ(mν0+ν)(nτ0+τ)dt′

= e−j2πmν0τ ejπ(mν0+ν)(nτ0+τ)A∗
g(nτ0 + τ,mν0 + ν)

= ejπmnν0τ0ejπ(nτ0ν−mν0τ+ντ)A∗
g(nτ0 + τ,mν0 + ν)

(3.4)

where the third equality comes from variable substitution by t = t′ + nτ0+τ
2 and

the fourth equality comes from the definition of Ag(τ, ν) which is defined in (2.30).
Substitute (3.4) into (3.3), we get

â0,0 =
∑

m,n

am,nejπmnν0τ0

∫∫

H(τ, ν)A∗
g(nτ0 + τ,mν0 + ν)ejπ(nτ0ν−mν0τ+ντ)dνdτ

= S0,0 + I0,0

(3.5)

where S0,0 is the desired signal part with expression

S0,0 = a0,0

∫∫

H(τ, ν)A∗
g(τ, ν)ejπτνdνdτ (3.6)

and I0,0 is the joint ISI/ICI part introduced both by the channel dispersion and
the imperfectness of the reconstruction, which can be written as

I0,0 =
∑

(m,n) 6=(0,0)

am,nejπmnν0τ0

∫∫

H(τ, ν)A∗
g(nτ0 + τ,mν0 + ν)ejπ(nτ0ν−mν0τ+ντ)dνdτ

(3.7)

Assume all the transmitted symbols are independent with uniform energy, i.e.,

E{am,na∗
m′,n′} = δmm′δnn′ =

{
1, m = m′and n=n’
0, otherwise

(3.8)

the energy of the desired signal part S0,0 after passing through a WSSUS channel
can be written as

ES = E{S0,0S
∗
0,0} = E{

∫∫∫∫

H(τ, ν)H∗(ν, τ)Ag(τ, ν)A∗
g(τ, ν)ejπ(τν−τ ′ν′)dνdτdν′dτ ′}

=

∫∫∫∫

E{H(ν, τ)H∗(τ, ν)}|Ag(τ, ν)|2ejπ(τν−τ ′ν′)dνdτdν′dτ ′

=

∫∫∫∫

Sh(τ, ν)δ(τ − τ ′)δ(ν − ν′)|Ag(τ, ν)|2ejπ(τν−τ ′ν′)dνdτdν′dτ ′

=

∫∫

Sh(τ, ν)|Ag(τ, ν)|2dνdτ

(3.9)
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where the second last equality comes from the property stated in (2.8). Following
the same process and using the assumption in (3.8), the energy of the interference
part I0,0 in can be written as

EI = E{I0,0I
∗
0,0} =

∑

(m,n) 6=(0,0)

∫∫

Sh(τ, ν)|Ag(nτ0 + τ,mν0 + ν)|2dνdτ (3.10)

When a hexagonal lattice Λ =

[
τ0 pτ0

0 ν0

]

, 0 < p < 1 is used instead with

gm,n = g(t − (n + pm)τ0)e
j2πmν0t

the inner product of gm,n and g0,0 in (3.4) becomes

∫

gm,n(t − τ)g∗0,0(t)e
j2πνtdt =

∫

g[t − (n + pm)τ0 − τ ]g∗(t)ej2π[mν0(t−τ)+νt]dt

= ejπm(n+pm)ν0τ0ejπ[(n+pm)τ0ν−mν0τ+ντ ]A∗
g((n + pm)τ0 + τ,mν0 + ν)

(3.11)

The resulting expression for desired signal part S0,0 is therefore the same as in (3.6)
and the interference part I0,0 should be modified accordingly: replace n by n + pm
in (3.7) where appropriate. As a consequence, the expression for ES remains the
same and meanwhile the corresponding expression for EI becomes

EI =
∑

(m,n) 6=(0,0)

∫∫

Sh(τ, ν)|Ag((n + pm)τ0 + τ,mν0 + ν)|2dνdτ (3.12)

When a hexagonal lattice Λ =

[
τ0 0
pν0 ν0

]

, 0 < p < 1 is used with

gm,n = g(t − nτ0)e
j2π(m+pn)ν0t

the expression for EI becomes

EI =
∑

(m,n) 6=(0,0)

∫∫

Sh(τ, ν)|Ag(nτ0 + τ, (m + pn)ν0 + ν)|2dνdτ (3.13)

and the expression for ES remains unchanged. For more general case when the
analysis and synthesis prototype functions are not identical, just replace Ag(τ, ν)
by Ag,q(τ, ν) where appropriate.

Obviously expressions for ES and EI for the rectangular lattice and the hexag-
onal lattices, which are the same as the energy expressions derived for pulse shaped
multicarrier systems [34] and similar to the interference expression for hexagonal
multicarrier systems [15] respectively, have the same format and therefore optimi-
sation methods proposed for one case can be directly applied to another without
difficulties.
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Simple adaptation strategy

Different optimisation methods regarding maximising desired signal energy ES [9],
or minimising interference EI [15,34], or maximising the signal to interference ratio
ES/EI [34] are considered. However, as discussed in the Section 3.2, closed form
solutions only exist for some special cases. By using power series expansion with
proper truncation, one can find analytically some sub-optimal solutions. Therefore
numerical solutions are in general needed to find the optimal solution. Without
any additional constraint, however, exhaustive searching itself is an “impossible
mission” in the context of finding the optimal pulse shape as well as the lattice
structure with respect to each channel realisation. Given the good TFL properties
of the EGF functions, it will be applied to the objective function for exhaustive
searching with a variable quadruplet (α, τ0, ν0, p).

As shown in Fig. 3.2, the value of ξ and κ changes continuously and smoothly
with increasing α, where a sharp slope for small values of α and relatively small
slope for large α is observed. This observation indicates that searching through
selected samples rather than the range of α will be sufficient to achieve satisfactory
performance, with dense samples picked up for small α and sparse samples for
large α according to the relationship revealed in (3.1). The value of τ0, ν0 and p
can be selected according the rule stated in (2.25) or as stated in [15] to fit the
channel dispersion. The resulting optimal choice of the variables (α, τ0, ν0, p) for a
specific type of channels can then be stored for use in later stages. These optimised
quadruplets form a code book for pulse shape adaptation in GFDM systems and
the best fitted quadruplet will be selected for transmission and reception as long as
the channel information is known.

The performance of a simple pulse shape adaptation strategy based on the se-
lection of α will be demonstrated in Chapter 4 under the context of OFDM/OQAM
with a rectangular lattice.

Performance and complexity trade-off

The channel scattering function Sh(τ, ν) is not easy to model. Even if the infor-
mation of a dispersive channel is well observed, any simple expression of Sh(τ, ν)
will not be good enough to approximate the shape of the channel and therefore
introduce ambiguity and uncertainty in the exhaustive searching process. Hence
it is worthless to spend too much effort on finding the exact optimal value of the
quadruplet (either analytically or numerically) based on the assumption of a certain
channel model.

It is therefore a wise choice to build up a code book for adaptation based on
certain channel models and then train and verify it with real measured channel data.
Since this code book is constructed based on the statistic information Sh(τ, ν) of
the channel rather than the instantaneous channel impulse response h(τ, t), such
adaptation is robust to channel variations and feedback delay. The larger the code
book is, the more suitable quadruplet and therefore better performance will be
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achieved. However, too large code book requires large number of feedback bits
to the transmitter in order to correctly pick up the corresponding quadruplet for
transmission, which will decrease the spectral and power efficiency.

3.4 Appendix

A. Proof of TFL parameters ξ and κ for EGF

Recall the close-form expression of EGF in (2.51) where dk,α,ν0 =
∑∞

l=0 ak,le
lπ

2ν2
0

α

are real coefficients, and gα(t) is the Gaussian function. It is easy to figure out the
following relationships

dk,α,ν0 , dk(
α

ν2
0

) = dk(
α/λ2

ν2
0/λ2

) = dk, α
λ2 ,ν0/λ

dl,1/α,τ0
= dk(

1/α

2τ2
0

) = dk(
λ2/α

2λ2τ2
0

) = d
l, λ2

α ,λτ0

gα(t) = (λ2)1/4(2
α

λ2
)1/4e−π α

λ2 (λt)2 =
√

λg α
λ2

(λt)

gα(t + k/ν0) =
√

λg α
λ2

(λt +
k

ν0/λ
)

(3.14)

where λ > 0 is a constant scaling factor. Substitute (3.14) into (2.51), we get

zα,ν0,τ0(t) =
√

λz α
λ2 ,

ν0
λ ,λτ0

(λt) (3.15)

For EGF and Gaussian functions, as shown in [6], their Fourier transforms have
the same shape as themselves

F {zα,ν0,τ0(t)} = z 1
α ,τ0,ν0

(f), F {gα(f)} = g1/α(f) (3.16)

where F is the Fourier Transform operator.

In the following, we will normalise τ0 and ν0 by T and F respectively to simplify

calculation and system integration. Set τ0

T =
√

1
2λ , ν0

F =
√

λ
2 , then the notation of

the pulse shaping prototype function can be written as

xα(t) = zα,
ν0
F ,

τ0
T

(t) = z
α,
√

λ
2 ,
√

1
2λ

(t) (3.17)

Apply (3.15) into (3.17), we get

xα(t) =
√

λz α
λ2 ,

√
1
2λ ,

√
λ
2

(λt) (3.18)
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and its Fourier transform

Xα(f) = F {xα} =
√

λ

∫

e−j2πftz α
λ2 ,

√
1
2λ ,

√
λ
2

(λt)dt

=

√
λ

λ

∫

e−j2π f
λ τz α

λ2 ,
√

1
2λ ,

√
λ
2

(τ)dτ

=

√
λ

λ
Z α

λ2 ,
√

1
2λ ,

√
λ
2

(
f

λ
)

=

√
λ

λ
zλ2

α ,
√

λ
2 ,
√

1
2λ

(
f

λ
)

(3.19)

where the third equality comes from variable substitution by τ = λt and the last
equality comes from (3.16). On the other hand, we have

xλ2

α

(t) = zλ2

α ,
√

λ
2 ,
√

1
2λ

(t)

Xλ2

α

(f) = F
{

xλ2

α

(t)
}

= z α
λ2 ,

√
1
2λ ,

√
λ
2

(f)
(3.20)

Compare (3.19) with (3.20), we can conclude that

xα(t) =
√

λXλ2

α

(λt)

Xα(f) =

√
λ

λ
xλ2

α

(
f

λ
)

(3.21)

By applying (3.21) into (2.33) and using the fact that x(t) is symmetric around
the origin with unitary energy, we get

(∆t)2(xα) = λ

∫

t2|Xλ2

α

(λt)|2dt =
1

λ2
(∆f)2(xλ2

α

)

(∆f)2(xα) =
1

λ

∫

f2|xλ2

α

(
f

λ
)|2df = λ2(∆t)2(xλ2

α

)

(3.22)

where the last equality in both equations come from variable substitution by f = λt
and t = f

λ , respectively.

Therefore, for λ > 0 with τ0

T =
√

1
2λ and ν0

F =
√

λ
2 , we have

ξ(α) =
1

4π∆t(xα)∆f(xα)
=

1

4π 1
λ∆f(xλ2

α

)λ∆t(xλ2

α

)
= ξ(

λ2

α
)

κ(α)κ(
λ2

α
) =

∆t(xα)

∆f(xα)

∆t(xλ2

α

)

∆f(xλ2

α

)
=

1
λ∆f(xλ2

α

)∆t(xλ2

α

)

λ∆t(xλ2

α

)∆f(xλ2

α

)
=

1

λ2





Chapter 4

OFDM/OQAM System Design
and Performance Evaluation

4.1 Introduction

In order to achieve better spectral efficiency and meanwhile reducing combined
ISI/ICI, another OFDM scheme using offset QAM for each sub-carrier, denoted
OFDM/OQAM, is of increasing importance as it has already illustrated profound
advantage [10, 12, 13] over CP-OFDM in time and frequency dispersive channels.
Contrary to CP-OFDM which modulates each sub-carrier with a complex-valued
symbol, OFDM/OQAM modulates sub-carriers with a real-valued symbol and con-
sequently allows time-frequency well localized pulse shape under denser system
TFL requirement. The well designed IOTA pulse has already been introduced
in the TIA’s Digital Radio Technical Standards [36] and has been considered in
WRAN(IEEE 802.22) [37].

By adopting various pulse shaping prototype functions, OFDM/OQAM can
efficiently reduce both ISI and ICI without employing any guard interval. This
enables a very efficient packing of time-frequency symbols maximizing e.g. the
throughput or the interference robustness in the communication link.

4.2 Principles of OFDM/OQAM

Instead of using complex baseband symbols in an OFDM scheme, real valued sym-
bols modulated by offset QAM are transmitted on each sub-carrier with the syn-
thesis basis functions obtained by the time-frequency translated version of this
prototype function in the following way

gm,n(t) = eφ0+j(m+n)π/2ej2πmν0tg(t − nτ0), ν0τ0 = 1/2 (4.1)

where φ0 is an additional phase shift and g(t) is the well designed pulse shape
prototype. To maintain the orthogonality among the synthesis and analysis basis,

53
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modified inner product is defined as follows

〈x, y〉
R

= ℜ
{∫

R

x∗(t)y(t)dt

}

where ℜ{•} is the real part operator. That is, only the real part of the correla-
tion function is taken into consideration. Consequently, the inner product (cross
correlation) between gm,n(t) and gm′,n′(t) becomes

〈gm,n, gm′,n′〉
R

= ℜ
{∫

R

ej(m′+n′−m−n)π/2ej2π(m′−m)ν0tg(t − n′τ0)g
∗(t − nτ0)dt

}

=ℜ
{

(j)m′−m+n′−n+(m′−m)(n+n′)

∫

R

e−j2π(m−m′)ν0xg(x +
n − n′

2
τ0)g

∗(x − n − n′

2
τ0)dx

}

= ℜ
{

(j)m′−m+n′−n+(m′−m)(n+n′)Ag((n − n′)τ0, (m − m′)ν0)
}

(4.2)

where the second equality comes from variable substitution t = x + (n+n′)τ0

2 and
the fact that ν0τ0 = 1

2 . For an even g(t), Ag(τ, ν) is a real valued function and (4.2)
can be rewritten as

〈gm,n, gm′,n′〉
R

=

{
±Ag((n − n′)τ0, (m − m′)ν0) , (m,n) = (m′, n′) mod 2

0 , (m,n) 6= (m′, n′) mod 2
(4.3)

By grouping the basis gm,n(t) which satisfies (m,n) = (m′, n′) mod 2 into the same
subset, the corresponding system lattice gm,n in the time-frequency plane can be
decomposed into four sub-lattices: EE={m even, n even}, EO={m even, n odd},
OE={m odd, n even} and OO={m odd, n odd} [5], as shown in Fig. 4.1.

Whenever gm,n(t) and gm′,n′(t) belong to different sub-lattices, the orthogonal-
ity is automatically maintained and is independent of the prototype function as
long as this function is even. While inside the same sub-lattice, the orthogonality
only depends on the ambiguity function Ag(τ, ν) and hence can be ensured by just
finding an even prototype function whose ambiguity function satisfies

Ag(2pτ0, 2qν0) =

{
1, when (p, q) = (0, 0)
0, when (p, q) 6= (0, 0)

where p, q ∈ Z (4.4)

At the receiver side

ãn(l) = 〈gl,n, r〉
R

=

+∞∑

k=−∞

N−1∑

m=0

hm,kam,k 〈gl,n, gm,k〉R
+ 〈gl,n, n〉

R

=

N−1∑

m=0

hm,nam,n 〈gl,n, gm,n〉R
+ nn(l)

= hl,nal,n + nn(l)



Ch. 4: OFDM/OQAM System Design and Performance Evaluation 55

t

−−EE

−−OO

−−EO

−−OE

f

ν0

2ν0

3ν0

4ν0

-ν0

-2ν0

-3ν0

-4ν0

τ0 2τ0-τ0 3τ0-2τ0-3τ0-4τ0 4τ0

Figure 4.1: OFDM/OQAM lattice.

where hl,n is the amplitude of the channel realization which is assumed known by
the receiver.

Fig. 4.1 can also be used for comparison of spectral density between OFDM
(TF = 1) and OFDM/OQAM (τ0ν0 = 1

2 ) systems. Assuming in the OFDM/OQAM

system ν0 = F , τ0 = T
2 for convenience, then the OFDM system transmits complex

symbols on these black solid lattice points (EE, EO) while the OFDM/OQAM sys-
tem transmit the real parts of complex symbols on these black solid lattice points
and the imaginary parts on these white hollow lattice points (OE, OO). Therefore
the OFDM/OQAM system has double symbol rate but half coding rate compared
with the OFDM system, which results in the same data rate per frequency usage
and per time unit (spectral efficiency).

So far, two things have to be noted:

• On system level, OFDM/OQAM has twice the system lattice density (for
gm,n, 1

τ0ν0
= 2) but half the coding rate (only transmit real-valued symbols)

compared to OFDM without cyclic prefix, therefore it has the same spectral

efficiency (η = 1/2 log2 M
τ0ν0

= log2 M [bit/s/Hz]), as OFDM without cyclic
prefix, cf. (2.17).
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• For prototype function design, OFDM/OQAM has less lattice density require-
ment (Ag(τ, ν) = 0 ⇒ 1

2τ02ν0
= 1

2 ) compared to OFDM ( 1
TF = 1).

The above two features make it possible for OFDM/OQAM system to find a
well-localized prototype function while maintaining (bi-)orthogonality and there-
fore makes pulse shaping OFDM/OQAM an attractive candidate for a time and
frequency dispersive channel.

4.3 Efficient implementation

As shown in Sec. 2.2, the OFDM system can be efficiently implemented by FFT/IFFT
modules, whereas in an OFDM/OQAM system extra filters are needed to do pulse
shaping. A direct implementation of the OFDM/OQAM system with finite impulse
response (FIR) filters on each sub-carrier branch will be time consuming and cause
a large delay. As the duration of the even prototype function can be very long
(e.g. IOTA and EGF is theoretically infinite), a large delay has to be introduced to
make the system causal (i.e., realizable1). Alternatively, another approach which
utilizes uniform DFT filter banks [6, 30] provides a very efficient implementation
and preserves the orthogonality of the prototype functions. Two kinds of realiza-
tions of pulse shaping OFDM/OQAM systems are of practical interest as they are
very easy to be implemented in a classic OFDM system. Assume T is the OFDM
symbol duration and F is the inter-carrier frequency spacing, we have TF = 1 when
no CP is added. One can either set ν0 = F and shorten symbol duration [30,38], or
set τ0 = T and double the number of sub-carriers [39]. We use the former approach.

The filter banks for OFDM/OQAM which are designed to satisfy the perfect
reconstruction (PR) condition face difficulties when the signal is passed through
time varying channels. However the wireless channel is in nature doubly dispersive
(hence time varying) and the PR property designed under perfect channel condition
turns out not be PR anymore, resulting considerable amount of ISI/ICI. Therefore
as long as the joint ISI/ICI can be reduced to a satified level (according to the
system requirements), it is not a good idea to confine oneself to the PR condition
when designing the wireless communication systems. Rather than deriving the
implementation structure from filter bank theory, like in [6,30,39], we try to find the
implementation method by directly discretising the continuous time model without
considering the PR condition.

Let s(t) be the output signal of OFDM/OQAM modulator (φ0 = 0 is assumed
in the following for simplicity)

s(t) =

∞∑

n=−∞

N−1∑

m=0

[
aℜ

m,ngm,2n(t) + aℑ
m,ngm,2n+1(t)

]

=

∞∑

n=−∞

N−1∑

m=0

[
aℜ

m,ng(t − 2nτ0) + jaℑ
m,ng(t − 2nτ0)

]
ej π

2 (m+2n)ej2πmν0t

(4.5)

1A system is realizable only if it is causal.



Ch. 4: OFDM/OQAM System Design and Performance Evaluation 57

and the demodulated signal at branch k during symbol duration n can be written
as

ãℜ
m,n = ℜ

{∫

R

s(t)g∗m,2n(t)dt

}

ãℑ
m,n = ℜ

{∫

R

s(t)g∗m,2n+1(t)dt

}

(4.6)

where ℜ and ℑ indicate the real and imaginary part respectively.
By sampling s(t) at rate 1/Ts during time interval [nT − τ0, nT + τ0), as shown

in Appendix 4.5 A, the transmitted signal can be written as

sk[n] , s(nT + kTs) = gk[n] ∗ Ak
N (aℜ

m,n) + gk−N/2[n] ∗ Ak
N (jaℑ

m,n) (4.7)

where

Ak
N (xm,n) ,

N−1∑

m=0

xm,nej π
2 (m+2n)ej2π mk

N , k = −N

2
, ...,

N

2
− 1 (4.8)

gk[p] , g[pN + k] = g(pT + kTs), p ∈ Z (4.9)

Therefore the OFDM/OQAM modulator can be easily implemented by a IFFT2

block defined in (4.8) followed by a pulse shaping filter bank defined in (4.9).
At the receiver side, we sample the received signal r(t) at rate 1/Ts, and rewrite

(4.6) as follows

ãℜ
m,n ≈ ℜ






Tsj

(m+2n)

N
2 −1
∑

k=−N
2

rk[n] ∗ gk[−n]e−j2π
m(k+N/2)

N






(4.10)

ãℑ
m,n ≈ ℑ

{

Tsj
−(m+2n)

N−1∑

k=0

rk[n] ∗ gk−N
2
[−n]e−j2π mk

N

}

(4.11)

where

gk[−n] = g[−nN+k] = g(kTs−NT )gk−N
2
[−n] = g[−nN+k−N

2
] = g(kTs−NT−T/2)

Therefore, if we use (4.10) and (4.11), the OFDM/OQAM demodulator can be
implemented by filter banks gk[n] and gk−N

2
[n] followed by a FFT block. The

implementation diagram is shown in Fig. 4.2, which looks similar as the system
diagram presented in [40].

Assume the pulse shape prototype function g(t) (or its truncation) has finite
duration in −Mτ0 ≤ t < Mτ0, its discrete version g[n] is not empty when n =
−MN/2, ...,MN/2 − 1. Therefore the length of each branch filter equals to M .

2A N/2 rotation of IFFT output is needed here to shift the zero frequency sub-carrier to
middle position.
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Figure 4.2: OFDM/OQAM implementation diagram.

4.4 Performance evaluation

In this section we present various simulation results for OFDM/OQAM systems
with different system parameters, with CP-OFDM as the benchmark. All the
results reported in this section are obtained from the Matlab/Octave simulation
workbench [18, 19], with a one-tap zero-forcing frequency domain equaliser (FDE)
implemented at the receiver side. Unless mentioned otherwise, both CP-OFDM
and OFDM/OQAM utilise the same channel estimation results which are obtained
through perfect OFDM channel estimation.

TFL analysis

To illustrate how the demodulation gain varies with respect to the time and fre-
quency spread, we plot the ambiguity function of the output of one demodulation
branch, i.e.

∑

m,n

|A(τ − 2nτ0, ν − 2mν0)|2

A three dimensional plot is presented in Fig. 4.3 by utilizing the IOTA prototype
function. Axes are normalized by τ0 and ν0 respectively. Here the data transmitted
on each basis function is ignored for simplicity, and only the neighboring lattice
points in the same subset are considered. Fig. 4.4 shows two-dimensional contour
plots in which the EGF prototype functions are used. When the channel is ideal,
as shown in Fig. 4.4, EGF (α = 2) will introduce smaller distortion compared to
EGF (α = 1) since the ISI is significantly decreased although the ICI increases a
little.
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Figure 4.3: Demodulation gain for IOTA prototype in OFDM/OQAM.

Orthogonality over an ideal channel

Define the orthogonality parameter for different pulse shapes as

γ2 = E{|ãm,n − am,n|2} (4.12)

where am,n is the transmitted symbol, ãm,n is the reconstructed signal. γ2 can also
be used to indicate the distortion power introduced by non-perfect reconstruction
through an ideal channel (r(t) = s(t)), see below.

Pulse OFDM
Half-
cosine RRC

Gaussian
α=1|α=2

EGF
α = 1

EGF
α = 2

γ2 [dB] -314 -309 -69 -11 |-22 -96 -178

CP-OFDM and OFDM/OQAM with the half cosine function can achieve perfect
reconstruction in the absence of a channel as the level of distortion power reaches
the resolution limit of a double precision number (≈ 10−15). OFDM/OQAM with
the EGF pulse shape introduce limited distortion due to pulse shape truncation,
and the distortion introduced by the Gaussian pulse is very significant due to lack
of orthogonality.

Fig. 4.5 presents the reconstructed signal constellation at the OFDM/OQAM
demodulator output for an ideal channel with a 16QAM modulation. With the
length of component filters M = 12, EGF, Half Cosine and Root Raised Cosine
prototypes can achieve almost perfect reconstruction (see Fig. 4.5 a, b, d) while
the Rectangular prototype will result in some distortion (see Fig. 4.5 c).

For the EGF prototype function, the influence of three parameters α, τ0 and
the length of filter taps M is shown in Fig. 4.6. It shows that when the number of
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Figure 4.4: Contour plots for demodulation output with EGF prototypes in
OFDM/OQAM.

filter taps is large enough (e.g. M = 6), the performance of EGF prototypes with
different α is pretty good. However, when the number of filter taps is insufficient
(e.g. M = 2), the most centralized prototype (with highest α) will be least affected
by truncation (cf. Fig. 4.6 (1)b vs. Fig. 4.6 (1)d). Fig. 4.6 (2) displays the
influence of the symbol length τ0 on reconstruction performance with fixed α = 2
and M . Obviously even a slight variation of τ0 affects the performance significantly.

Frequency offset sensitivity

In [41] it was shown that in OFDM systems the power of interference brought in
by frequency offset can be written as

EI = 1 − sinc2(
f∆

F
) ≈ π2

3
(
f∆

F
)2 (4.13)

where f∆ is the carrier frequency offset, F = Fs/N is the frequency separation.
The rotation effect of the symbol is assumed to be compensated perfectly and the
number of carriers N is assumed to be large.

In this part we will evaluate the total distortion brought in by the frequency
offset and therefore the rotation effect will also be taken into consideration when
calculating the average distortion power γ2 as defined in (4.12). The phase noise
is omitted. Assume each data frame consists of Nr OFDM symbols and each
symbols contains N samples in OFDM/OQAM and N +Ncp samples in CP-OFDM
respectively, where Ncp denotes the number of cyclic prefix symbols inserted. The
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Figure 4.5: Signal constellation with a 16QAM modulation for (a) EGF (b) Half
Cosine (c) Rectangular (d) Root Raised Cosine with ρ = 0.2.
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Figure 4.6: Signal constellation of EGF with a 16QAM modulation.

distortion power γ2 in CP-OFDM systems introduced by carrier frequency offset f∆

through an ideal channel (with only frequency offset added), shown in Appendix 4.5
B, is rewritten as

γ2
OFDM =

4

3

(

πNNr
f∆

Fs

)2(

1 +
Ncp

N

)2

(4.14)
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Figure 4.7: Frequency offset robustness for CP-OFDM and OFDM/OQAM (2-tap
EGF) systems with a QPSK modulation.

The number of symbols Nr per data frame appears since the phase shift caused by
carrier frequency offset f∆ accumulates as the length of data frame increases, and
therefore increase the distortion power. The general expression for OFDM/OQAM
with different pulse shapes has a similar form as for CP-OFDM

γ2
OQAM =

4

3

(

πNNr
f∆

Fs

)2

ǫg (4.15)

where ǫg > 0 is a scaling factor related to the pulse shape g(t) and can be determined
by numerical methods. The number of taps in the pulse shape filter bank will affect
the value of ǫg since it will increase the length of the data block and therefore the
phase shift, if the number of taps used is larger than 1. Therefore a trade off
between orthogonality and frequency offset sensitivity has to be made to achieve
small ǫg. In practice a preamble or a pilot sequence will be used for synchronisation
and frequency offset estimation, then the number of taps will not be a problem
anymore. In such cases the value of ǫg will always be smaller than 1. This should
be contrasted with the factor (1 + Ncp/N)2 for OFDM.

Both simulation results (markers only) and curves by (4.14) and (4.15) are shown
in Fig. 4.7. When the same system parameters are used, OFDM/OQAM always
outperforms CP-OFDM by 0.9dB to 2.3dB, in which about 0.5dB (Tcp/T = 1/16)
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Figure 4.8: Illustration of impulse response for channel A and B.

to 1.9dB (Tcp/T = 1/4) comes from not using the cyclic prefix and another 0.4dB
gain from the pulse shape itself with ǫg ≈ 0.92.

Immunity to time and frequency dispersion

Two kinds of channels are used in this part, with the channel parameters listed in
the table below and the illustration of channel impulse response in Fig. 4.8.

paths 1 2 3 4 5 6 Bd/Fs

A Delay [Ts] 0 2 4 7 11 14
Power [dB] 0 -7 -15 -22 -24 -19 10−5

B Delay [Ts] -3 0 2 4 7 11
Power [dB] -6 0 -7 -22 -16 -20 10−5

The channel parameters for channel A and B are motivated by the reference channel
profiles in WRAN standard proposal [37] where channel A is the typical rural area
channel model and channel B is the typical urban channel model. In both of the
two channels the delay spread Td = 14Ts and the Doppler spread BD = 10−5Fs.
For a carrier frequency fc = 2GHz and sampling frequency Fs = 7.68MHz, the
normalized Doppler spread BD/Fs = 10−5 is equivalent to a moving speed of
41.5km/h. Noise is not introduced so that all the distortion comes either from
time spread or frequency spread. A cyclic prefix with length Tcp = 16Ts is used in
the CP-OFDM system, unless mentioned otherwise. Each component filter in the
OFDM/OQAM system has maximum 12 taps.

Fig. 4.9 presents the reconstructed signal constellation in OFDM/OQAM and
CP-OFDM systems over channel A and B. In Fig. 4.9 (1) a and (1) b channel
B is used with BD = 0, increased FFT size N decreases the distortion power.
In Fig. 4.9 (1) c and (1) d channel A is used with Tcp > Td, and hence only
the frequency dispersion introduces distortion. In this case the increased FFT
size N significantly enlarges distortion as the ratio BD/F = N ∗ BD/Fs increases
accordingly. This confirms our previous analysis. In Fig. 4.9 (2) only channel A
is used. With the FFT size equals to 32, the one-tap FDE is far from perfect and
therefore causes large distortion which is dominated by multipath fading. When N
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Figure 4.9: Signal constellation over channel A and B with a QPSK modulation.

becomes large enough, the performance loss of one-tap FDE tends to be negligible
while the distortion from frequency dispersion becomes large as BD

F increases. The
system finally becomes frequency dispersion dominated where increasing the FFT
size will only degrade the system performance.

Fig. 4.10 illustrates the Bit Error Rate (BER) performance of uncoded trans-
mission over doubly dispersive channels A and B with FFT size N = 256 and 4000
channel realizations. Tcp = 16Ts are used in CP-OFDM and maximum 12 taps
for each pulse shaping component filter are used in OFDM/OQAM systems. In
channel A where all the multipath interference can be fully removed by CP, CP-
OFDM performs a little better than OFDM/OQAM systems (about 0.2 dB in high
SNR region). However, when channel B is used, cyclic prefix alone cannot com-
bat interference from “early” arrived paths, and therefore significantly degrades
the performance, while OFDM/OQAM systems with different pulse shapes shows
much stronger immunity and better performance. Besides, a considerable power
and spectral efficiency gain is achieved in OFDM/OQAM by not using CP. For
OFDM with CP of length Tcp, we have Es = Eb log M where Es is the symbol
energy and Eb is the effective energy per bit, with M equals to the modulation
order. On the other hand, we have Es = (T + Tcp)P where P is the average signal

power. Since SNR , P
N0F , the relation between Eb/N0 and SNR is as follows

Eb/N0 =
Eb

N0
=

Es/ log M

N0
=

T + Tcp

T log M

P

N0F
=

(

1 +
Tcp

T

)
SNR

log M
(4.16)
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Figure 4.10: Uncoded BER versus SNR with a QPSK modulation over channel A
and B.

Performance of pulse shape adaptation

Apart from the two specific channels A and B like above, some more general channel
models will be of great interest. An extended Monte Carlo-based WSSUS channel
model [21] for doubly dispersive channels is used, with the assumption of an expo-
nential delay power profile and a U-shaped Doppler power spectrum as defined in
(2.9). Two time dispersive channels and one doubly dispersive channel are used in
the following simulation, with the channel parameters listed in the table below. For
a carrier frequency fc = 2.5GHz, Doppler spread Bd = 2fD = 700Hz is equivalent
to a moving speed of 157.5km/h.

channel τ ∈ [µs] τd [µs] τrms [µs] Bd[Hz] #taps
C [0, 4.167] 4.167 1.042 0 < 10
D [-1.042, 3.125] 4.167 1.042 0 < 10
E [0, 4.167] 4.167 1.042 700 < 10

In OFDM/OQAM systems each component filter has maximum 4 taps and a

cyclic prefix with length
Tcp

T = 1
8 is used in the CP-OFDM system, unless men-

tioned otherwise. Frequency separation F = 15kHz is used for both CP-OFDM
and OFDM/OQAM, and Nr = 10 OFDM symbols (i.e. 20 OQAM symbols) are
packaged in one data frame and transmitted through channels implemented via the
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Figure 4.11: Uncoded BER for CP-OFDM (Ncp/N = 1/8), OFDM/OQAM with
EGF (4 taps), and OFDM/OQAM with half-cosine (1-tap) over channel C, using
a QPSK modulation.

tapped delay line model [23]. Each data frame contains one preamble symbol for
channel estimation followed by Nr data symbols. An one-tap zero-forcing frequency
domain equaliser (FDE) is used together with a normal AWGN symbol detector. In
OFDM/OQAM systems, EGF with a 4-tap filter bank and half-cosine with a 1-tap
filter bank are used. The Gaussian parameter α in EGF is chosen via numerical
solution according to Sec. 3.3 by maximising the signal power ES , or by minimising
the interference power EI . The lower bound3 α = 0.5 in EGF functions is chosen
for reference.

Fig. 4.11 and Fig. 4.12 illustrates the BER performance of uncoded transmission
for OFDM/OQAM through time dispersive channels. When channel C is used, the
distortion caused by time dispersion is fully removed by the cyclic prefix in CP-
OFDM and partially reduced by pulse shapes in OFDM/OQAM systems. When
channel D is used, OFDM/OQAM outperforms CP-OFDM as the interference from
“early” arrived paths cannot be removed by the cyclic prefix. In the high SNR
region, an error floor always shows up for OFDM/OQAM systems as a result of
imperfect reconstruction due to the multipath and noise distortion. In the low
SNR region there is moderate gain of OFDM/OQAM compared with CP-OFDM,
which mainly comes from the energy saved by not using the cyclic prefix (0.51dB
for Ncp/N = 1/8). It is a little bit surprising that the performance of EGF with
minimised interference power (EI) performs worse than EGF with maximised signal

3Empirical observation shows that α ∈ [0.5, 7] for EGF functions will give a good trade off
between time frequency localisation and orthogonality.
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Figure 4.12: Uncoded BER for CP-OFDM (Ncp/N = 1/8), OFDM/OQAM with
EGF (4 taps), and OFDM/OQAM with half-cosine (1-tap) over channel D, using
a QPSK modulation.

power (ES), as can be seen in Fig. 4.11 and Fig. 4.12. One possible reason is
that the minimisation of interference power is based on the assumption of perfect
equalisation. This is not the case in our implementation with a one-tap FDE. Since
channel C and channel D are purely time dispersive, a pulse with larger support in
time domain will satisfy the requirement stated in (3.2),

κ(α) =
∆t

∆f
∝ τrms/T

fD/F
=

τrms

fD

(
Fs

N

)2

which means a smaller value of α for EGF functions. Therefore EGF with α = 0.5
performs the best among different pulse shapes in OFDM/OQAM.

The uncoded BER performance over doubly dispersive channels is shown in
Fig. 4.13. The performance degradation due to channel variation is very significant
in all the systems, while OFDM/OQAM with different pulse shapes all outperform
CP-OFDM. However, the difference between different pulse shapes is not resolvable.
A more powerful detector, such as minimum mean square error (MMSE) detector
with successive interference cancellation [15], is needed to exploit the benefit of
higher signal to interference ratio.
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Figure 4.13: Uncoded BER for CP-OFDM (Ncp/N = 1/8), OFDM/OQAM with
EGF (4 taps), and OFDM/OQAM with half-cosine (1-tap) over channel E, using
a QPSK modulation.

4.5 Appendix

A. Implementation of OFDM/OQAM

By sampling s(t) at rate 1/Ts during time interval [nT − τ0, nT + τ0), we get

s(nT + kTs) =

∞∑

l=−∞

N−1∑

m=0

[
aℜ

m,lg(nT + kTs − lT )

+jaℑ
m,lg(nT + kTs − lT − T

2
)

]

ej π
2 (m+2l)ej2π mk

N

(4.17)

where n ∈ Z and k = −N
2 , ..., N

2 − 1.

Let sk[n] = s[nN + k] = s(nT + kTs) and take variable substitution p = n − l,
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(4.17) can be rewritten as

sk[n] , s[nN + k] =

∞∑

p=−∞
g(pT + kTs)

[
N−1∑

m=0

aℜ
m,n−pej π

2 (m+2n−2p)ej2π mk
N

]

+

∞∑

p=−∞
g(pT + kTs −

T

2
)

[
N−1∑

m=0

jaℑ
m,n−pej π

2 (m+2n−2p)ej2π mk
N

]

=

∞∑

p=−∞

[
g[pN + k]Ak

N (aℜ
m,n−p) + g[pN + k − N/2]Ak

N (jaℑ
m,n−p)

]

=gk[n] ∗ Ak
N (aℜ

m,n) + gk−N/2[n] ∗ Ak
N (jaℑ

m,n)

(4.18)

in which

Ak
N (xm,n) ,

N−1∑

m=0

xm,nej π
2 (m+2n)ej2π mk

N , k = −N

2
, ...,

N

2
− 1

gk[p] , g[pN + k] = g(pT + kTs), p ∈ Z

At the receiver side, by sampling the received signal r(t) at rate 1/Ts and
approximating the integration with summation, (4.6) can be rewritten as follows

ãℜ
m,n ≈ ℜ






Ts

∞∑

l=−∞

N
2 −1
∑

k=−N
2

r(lT + kTs)g
∗
m,2n(lT + kTs)







= ℜ






Ts

∞∑

l=−∞

N
2 −1
∑

k=−N
2

r(lT + kTs)g(lT + kTs − nT )e−j π
2 (m+2n)e−j2π mk

N







= ℜ






Tse−j π
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2 −1
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Tse−j π
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N
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N







= ℜ






Tsj

(m−2n)

N
2 −1
∑

k=−N
2

rk[n] ∗ gk[−n]e−j2π
m(k+N/2)

N







= ℜ






Tsj

(m+2n)

N
2 −1
∑

k=−N
2

rk[n] ∗ gk[−n]e−j2π
m(k+N/2)

N







(4.19)

where the second equality comes from the definition gk[−n] = g[−nN+k] = g(kTs−
NT ), the third equality comes from the definition of convolution, and the last
equality comes from the fact that j(m+2n) = j(m−2n).
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By repeating the above process for the imaginary branch, we have

ãℑ
m,n ≈ ℜ
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k=0

rk[n] ∗ gk−N
2
[−n]e−j2π mk

N

}

where the last equality comes from variable substitution.

B. Distortion caused by frequency offset in OFDM systems

For the nth symbol in the OFDM data frame,

ŝk(n) =
sk

T

∫ nT0+T

nT0

e−j2πf∆tdt = sk
sin πf∆T

πf∆T
e−j2πf∆(nT0+T/2) (4.21)

where T = NTs is the symbol duration, Tcp = NcpTs is the length of CP, and
T0 = T + Tcp = (N + Ncp)Ts is the OFDM symbol length with CP added. Then
the distortion power γ2 can be written as

γ2
k(n) = |sk(n) − ŝk(n)|2 +

∑

m6=k

|Im|2 (4.22)

where the first term on the right side the distortion brought in by constellation
rotation and the second term indicates the total ICI by the offset. According
to [41] we have

∑

m6=k

|Im|2 = EI

where EI is described in (4.13).
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Assume the transmitted data symbol have unit energy, i.e. |sk(n)|2 = 1, by
substituting (4.13) and (4.21) into (4.22), we have

γ2
k(n) = |1 − sinc(f∆T )e−j2πf∆(nT0+T/2)|2 + 1 − sinc2

(
f∆

F

)

= 1 + sinc2(f∆T ) − 2sinc(f∆T ) cos 2πf∆(nT0 + T/2) + 1 − sinc2(f∆T )

= 2 − 2sinc(f∆T ) cos 2πf∆(nT0 + T/2)

(4.23)

Since this distortion is independent of the carrier index k, the average distortion
power among the whole OFDM data frame can be written as

γ2
OFDM =

1

Nr

Nr−1∑

n=0

γ2
k(n) = 2 − 2

Nr
sinc(f∆T )

Nr−1∑

n=0

cos 2πf∆(nT0 + T/2)

= 2 − 2sinc(f∆T )
sin πNrf∆T0

Nr sin πf∆T0
cos πf∆((Nr − 1)T0 + T )

≈ 2 − 2sinc(f∆T )sinc(Nrf∆T0) cos πf∆NrT0

≈ 2 − 2

(

1 − (πf∆T )2

6

)(

1 − (πNrf∆T0)
2

6

)(

1 − (πNrf∆T0)
2

2

)

≈ 4

3
(πNrf∆T0)

2 +
1

3
(πf∆T )2

(4.24)

Normally the number of Nr is relatively large and therefore the last term 1
3 (πf∆T )2

can be omitted for simplicity. By applying T0 = (N +Ncp)Ts =
N+Ncp

Fs
into (4.24),

the distortion power γ2 in CP-OFDM systems introduced by carrier frequency offset
f∆ through an ideal channel (with only frequency offset added) can be rewritten as

γ2
OFDM =

4

3

(

πNNr
f∆

Fs

)2(

1 +
Ncp

N

)2





Chapter 5

Novel Channel Estimation
Methods

5.1 Introduction

Multicarrier communication technologies are promising candidates to realise high
data rate transmission in Beyond 3G and further wireless systems where the channel
is normally doubly dispersive. Contrary to the classic OFDM system which uses
a cyclic prefix (CP) to combat time dispersion, OFDM/OQAM which utilises well
designed pulse shapes and/or system lattice can achieve smaller ISI/ICI without
using CP, and hence has the advantage of lower power leakage and a theoretically
higher spectral efficiency. Performance evaluation of OFDM/OQAM has already
illustrated promising advantage [37, 42] and it has already been introduced in the
TIA’s Digital Radio Technical Standards [36] and been considered in WRAN (IEEE
802.22) [37], but in the latter case it has been recently pulled out to appendices
pending further study partially due to its difficulties in channel estimation.

In OFDM/OQAM systems, orthogonality does not hold any more between
transmitted signals in the real and imaginary branches. The demodulated real-
valued OFDM/OQAM symbol always (even after transmission over an ideal chan-
nel) has imaginary-valued intrinsic interference from neighbouring symbols [12],
which impedes the conventional channel estimation methods used for OFDM to be
directly applied to OFDM/OQAM. Therefore channel estimation has been a big
problem for OFDM/OQAM in dispersive channels and attracts numerous research
efforts. A subspace based blind channel estimation method is proposed in [43]
where very long data records are needed to obtain good channel estimation. In or-
der to reduce the intrinsic interference to a minimum amount, a pilot-based channel
estimation scheme has been proposed in [44] and a preamble-based channel esti-
mation method has been proposed in [45], where in both of the two cases a group
of neighbouring symbols are carefully selected so that the intrinsic interference at
the central symbol position to be greatly reduced. On the contrary, by treating the

73
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intrinsic interference from neighbouring symbols as known information and conse-
quently forming a complex-valued pseudo pilot symbol, a preamble-based channel
estimation method – interference approximation method (IAM) – has been pro-
posed recently in [46–49] and verified through purely time dispersive channels. An
ideal yet unrealistic estimation method proposed in [46] produces a performance up-
per bound. A real-valued preamble sequence, denoted IAM-R in the following, has
been proposed in [47] which increases the power of the pseudo pilot by making the
imaginary interference terms constructively adding 1, and its performance in power
line communication is evaluated in [48]. In [49] the real-valued preamble symbol has
been replaced by an imaginary one, hence named IAM-I in the following, so that
the transmitted symbol and its associated intrinsic interference are both imaginary-
valued and positively added. These two heuristic preamble sequences (IAM-R and
IAM-I), however, are suboptimal since they were constructed based on tentative
observations. Additionally their performance though frequency dispersive channels,
which is common in mobile communication, has not been demonstrated.

Motivated by the principle of IAM method and awareness of the suboptimal
nature of the two IAM methods in [47,49], we have formulated in this paper a gen-
eral theoretical framework for IAM preamble design and as a consequence identified
the optimal IAM preamble sequence resulting in higher performance gain. The ef-
fectiveness of the theoretical framework and the superiority of proposed methods
has thereafter been verified by numerical simulation through time and frequency
dispersive channels.

The rest of this chapter is organised as follows. Section 5.2 presents the system
model and the general theoretical framework for IAM preamble design. In Sec-
tion 5.3 we revisit the two heuristic preamble sequences under the framework and
then derive an optimal IAM preamble sequence. Simulation results under various
doubly dispersive channels are shown in Section 5.5 and conclusions and summaries
are shown in Section 5.6.

5.2 System model

The transmitted signal in CP-OFDM and OFDM/OQAM systems can be written
in the following analytic form

s(t) =

+∞∑

n=−∞

N−1∑

m=0

am,ngm,n(t),

where am,n(m = 0, 1, ..., N − 1, n ∈ Z, ) denotes the symbol conveyed by the sub-
carrier of index m during the symbol time of index n, and gm,n(t) represents the
synthesis basis which is obtained by time-frequency translation of the prototype

1Here the term ’constructively add’ means that all the elements within the summation have
the same sign.
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function g(t). In CP-OFDM systems

gm,n(t) = ej2πmFtg(t − n(T + Tcp)), TF = 1

where T and F are the symbol duration and inter-carrier frequency spacing respec-
tively, am,n are complex valued symbols and g(t) is the rectangular function. In
OFDM/OQAM systems

gm,n(t) = eφ0+j(m+n)π/2ej2πmν0tg(t − nτ0), ν0τ0 = 1/2

where φ0 is an additional phase shift and g(t) is the well designed pulse shape
prototype. Here the transmitted symbols am,n are real-valued with symbol du-
ration τ0 and inter-carrier spacing ν0 respectively. Two kinds of realisations of
OFDM/OQAM are of practical interest. One can either set ν0 = F, τ0 = T/2 as
in [30,38] or set τ0 = T, ν0 = F/2 as in [39]. We use the former approach.

After passing through the doubly dispersive channel, the received signal (noise
is omitted here for simplicity) can be written as

r(t) =

∫

h(τ, t)s(t − τ)dτ =

∫∫

H(τ, ν)s(t − τ)ej2πνtdνdτ

=
∑

m,n

am,n

∫∫

H(τ, ν)gm,n(t − τ)ej2πνtdνdτ (5.1)

where h(τ, t) is the channel impulse response and H(τ, ν) is its Fourier transform
with respect to t. The integration interval depends on the maximum time spread
τmax and the maximum Doppler frequency fD. Without loss of generality, we
assume ak,l is the symbol to be detected, with the corresponding demodulation
output

âk,l =< r(t), gk,l(t) >,

∫

r(t)g∗k,l(t)dt (5.2)

By applying auto-ambiguity function

Ag(τ, ν) =

∫

R

e−j2πνtg(t + τ/2)g∗(t − τ/2)dt

and follow the same procedure as in (refeqn:Ag00), the correlation between transmit
and receive pulse shapes for OFDM/OQAM can be written as

∫

gm,n(t − τ)g∗k,l(t)e
j2πνtdt = jm+n−k−le−j2πmν0τ

·
∫

g(t − nτ0 − τ)g∗(t − lτ0)e
j2π[(m−k)ν0+ν]tdt

= jm+n−k−le−j2πmν0τ ejπ[(m−k)ν0+ν][(n+l)τ0+τ ]A∗
g((n − l)τ0 + τ, (m − k)ν0 + ν)

(5.3)
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Note that the additional phase shift φ0 is totally canceled out in this step. Apply
(5.3) to (5.2) and do the variable substitution p = m − k and q = n − l, we get

âk,l =
∑

p,q

ak+p,l+qj
p+q+p(q+2l)

∫∫

H(τ, ν) (5.4)

·A∗
g(qτ0 + τ, pν0 + ν)ejπ(qτ0ν−pν0τ)ejπ(2lτ0ν−2kν0τ+τν)dνdτ

Assume the channel is moderately dispersive (τmax ≪ τ0 and fD ≪ ν0), the
ambiguity function Ag(τ, ν) has relatively low variation around the lattice points
(qτ0, pν0) over the integration interval, that is

A∗
g(qτ0 + τ, pν0 + ν)ejπ(qτ0ν−pν0τ) ≈ A∗

g(qτ0, pν0) (5.5)

for |τ | ≤ τmax, |ν| ≤ fD, p, q ∈ Z. Therefore (5.4) can be rewritten as

âk,l =
∑

p,q

ak+p,l+qj
p+q+p(q+2l)A∗

g(qτ0, pν0)

·
∫∫

H(τ, ν)ejπ(2lτ0ν−2kν0τ+τν)dνdτ = a
(c)
k,l H

(c)
k,l

(5.6)

where

H
(c)
k,l ,

∫∫

H(τ, ν)ejπ(2lτ0ν−2kν0τ+τν)dνdτ (5.7)

represents the channel coefficient at lth symbol and kth sub-carrier frequency, and

a
(c)
k,l ,

∑

p,q

ak+p,l+qj
p+q+p(q+2l)A∗

g(qτ0, pν0) (5.8)

indicates the superposition of the transmitted symbol ak,l and ISI/ICI components

after demodulation at the lattice point (lτ0, kν0). Note that a
(c)
k,l only depends

on the pulse shape function g(t) and the transmitted symbols ap,q, and therefore
can be calculated before transmission. Instead of using ak,l for channel estimation
by reducing as much as possible the power of the ISI/ICI terms as in [44, 45], the

channel estimation method IAM [47,49] utilises the full knowledge of a
(c)
k,l and treats

the whole as a “pseudo pilot” to do channel estimation, as shown in Fig.fig:CHest.
With noise taken into consideration, the channel estimation becomes

Ĥ
(c)
k,l =

âk,l

a
(c)
k,l

= H
(c)
k,l +

wk,l

a
(c)
k,l

(5.9)

where wk,l is the noise term in the output of demodulation. Note that the larger the

power of a
(c)
k,l the better the estimation will be. Therefore, we focus on increasing

the power of the ISI/ICI rather than reducing it.
This IAM principle, although invented for OFDM/OQAM methods, can be

applied to any other GFDM systems as long as there is intrinsic interference which
can be predicted by preamble sequences.
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Figure 5.1: Diagram of IAM channel estimation.

5.3 IAM preamble design revisit

The frame structures of the IAM-R preamble [47] and the IAM-I preamble [49]
are shown in Fig. 5.2. The frame structure for CP-OFDM is also depicted. Note
that the preamble length in OFDM/OQAM is 3τ0 instead of 2τ0 as in CP-OFDM.
In an OFDM/OQAM system, the pulse shape g(t) is chosen to have a very good
time frequency localisation (TFL) property and therefore the ambiguity function
Ag(τ, ν) attenuates well both in time and frequency as (τ, ν) outside the origin.

Since only the surrounding symbols can introduce notable interference in a
(c)
k,l , the

neighbouring two columns of 0 suppress the ISI to a very small amount [47].

For real and even pulse shape g(t) with unit energy, the ambiguity function
Ag(τ, ν) has very good properties:

Ag(±τ,±ν) = Ag(τ, ν) = A∗
g(τ, ν), Ag(0, 0) = 1 (5.10)

This will help to simplify the following derivation.

IAM-R

As proposed in [47], am,l = ±1 for m = 0..N − 1 and am,l−1 = am,l+1 = 0, then
(5.8) can be rewritten as

a
(c)
k,l =

∑

p

ak+p,l(−1)pljpAg(0, pν0) (5.11)

For OFDM/OQAM the orthogonality within the real domain is ensured [12], i.e.,

Ag(2nτ0, 2mν0) = 0 for (m,n) 6= (0, 0)
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Figure 5.2: Preamble structures for CP-OFDM (a) and OFDM/OQAM with (b)
IAM-R and (c) IAM-I.

which indicates all the terms with even p (except p = 0) are removed from (5.11).
Hence we have

a
(c)
k,l = ak,l ± j

∑

p>0,p odd

(ak+p,l − ak−p,l)Ag(0, pν0) (5.12)

where + is retained for even l and − for odd l. To maximise the power of a
(c)
k,l , it is

straightforward to figure out that ak+p,l and ak−p,l should have different signs, i.e.,
ak+p,l = −ak−p,l, for p > 0, p odd and for l = 0..N − 1. Following this rule, one
example of the IAM-R preamble is shown in Fig. 5.2(b). The demodulation output
in (5.12) becomes

a
(c)
k,l ≈ 1 ± j2Ag(0, ν0))

where small values Ag(0, pν0), p > 1 are omitted for simplicity.
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IAM-I

As shown in (5.9), the larger the power of a
(c)
k,l the better the channel estimation

performs. Motivated by IAM-R, a new method named IAM-I was proposed in [49]
by allowing elements in the preamble sequence to be imaginary. For example if
we set ak,l = j and ak−1,l = −ak+1,l = 1 where l is odd, omitting small values
Ag(0, pν0), p > 1, the demodulation output in (5.12) becomes

a
(c)
k,l ≈ j(1 + 2Ag(0, ν0))

A triplet [1, j,−1] for odd l was proposed to formulated the preamble sequence, as
shown in Fig. 5.2(c), where a0, a1, ...aN/3 ∈ {1,−1} are randomly selected. As a
result, the corresponding demodulated symbols triplet will be

[(1 + δ) ± jδ, j(1 + 2δ), −(1 + δ) ± jδ]

where δ = Ag(0, ν0) > 0 and values of Ag(0, pν0) for p > 1 are omitted. For even
l, according to (5.12), we should use [−1, j, 1] instead, which was not discussed or
even noticed in [49].

IAM-new

Motivated by IAM-I and observing that with the triplet used a
(c)
k±1,l ≈ (1 + δ) ±

jδ have smaller power compared with a
(c)
k,l , one may think of finding the optimal

complex valued am,l carefully so that the demodulated symbols a
(c)
k,l will have the

maximum power.

Recall the expression for a
(c)
k,l in (5.11), with complex valued ak+p,l, the optimal

sequence will require that all the elements in the summation should be coherently
added, that is

phase(ak+p,l(−1)pljpAg(0, pν0)) = ϕ, for all k, p

where ϕ is an arbitrary constant within [0, 2π). Without loss of generality, we will
assume ϕ = 0 in the following and the resulting optimal preamble structure will
serve as a basis for a family of preamble sequences which differ only by a constant
multiplier ejϕ.

Since Ag(0, pν0)) is real valued will all the significant terms positive, we have

ak+p,l = (−1)plj−p · sign(Ag(0, pν0))

where function sign(x) equals to 1 for x ≥ 0 and -1 otherwise. Suppose Ag(0, pν0) ≥
0 holds for all p, then it is easy to figure out that the optimal preamble basis should
be

ak,l =

{
j−k , for even l
jk , for odd l

k = 0, ..., N − 1 (5.13)
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Figure 5.3: IAM-new preamble structure for OFDM/OQAM.

with the resulting demodulated symbol

a
(c)
k,l = (−1)lj−k

∑

p

Ag(0, pν0) ≈ (−1)lj−k(1 + 2Ag(0, ν0))

This new method was named as IAM-new and the preamble structures are shown in
Fig. 5.3, where the quadruplet [1,−j,−1, j] for even l and the quadruplet [1, j,−1,−j]
for odd l appears repeatably to formulate the preamble sequence.

5.4 Optimal preamble design

To further increase the power of demodulated preamble symbol a
(c)
k,l , the two neigh-

bouring columns can also be utilised by assigning proper complex valued symbols
rather than zeros.

For convenience, the following notations are used to simplify our derivation:

Ag(0,±ν0) = δ, Ag(±τ0, 0) = β, Ag(±τ0,±ν0) = γ, Ag(±τ0,±2ν0) = η

For different pulse shapes g(t) the above parameters are different in general. A
heuristic observation shows that 1 > δ, β, γ, η > 0 always hold for half-cosine func-
tions, EGF functions and their associated TFL1 functions, as shown in Table 5.1.
For well designed pulse shapes, Ag(nτ0,mν0) attenuates very fast with increasing
m,n and therefore the value for m > 1, n > 1 will be omitted in the following
analysis.

For the demodulated symbol a
(c)
k,l , a weighting matrix W can be formulated

to calculated notable interference elements from neighbouring symbols. As shown
in (5.8), the sign of the elements in W will be different for different value of l.
Therefore two different realisations are listed as W leven when l is an even number
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Table 5.1: Ambiguity function parameters for different pulses

Pulse shapes Ag(0, 0) δ β γ η

5-tap EGF (α=1) 1 0.2261 0.4322 0.2931 0.0418
5-tap EGF (α=2) 1 0.45 0.3648 0.2628 0.071
5-tap EGF (α=7) 1 0.6157 0.1422 0.1298 0.1003
1-tap TFL (α=1) 1 0.502 0.3124 0.2482 0.1102
1-tap TFL (α=2) 1 0.5554 0.2571 0.2131 0.1155
1-tap TFL (α=7) 1 0.6205 0.1233 0.1142 0.0913
1-tap Halfcosine 1 0.5 0.3173 0.25 0.1071

and W lodd
when l is odd.

W leven =









−jη 0 jη
−jγ −jδ −jγ
−jβ 1 jβ
−jγ jδ −jγ
−jη 0 jη









, W lodd
=









−jη 0 jη
jγ jδ jγ

−jβ 1 jβ
jγ −jδ jγ

−jη 0 jη









Obviously, W leven and W lodd
only differs from each other by changing the sign

of all the elements in the second row and the fourth row. Since the first and the
third column of the weighting matrix W also contribute to intrinsic interference,

more power will be brought to a
(c)
k,l by assigning proper complex valued symbols

rather than zeros.
Given the symmetric and fast decay nature of the weighting matrix W and the

fact that the IAM-new preamble symbols in the central column are repetition of
a quadruplet, the symbols in the other two columns should also be grouped into
quadruplet. As shown in Appendix 5.7 A, given the weighting matrix W , the
optimal preamble matrix is

Aleven =













...
...

...
x∗ 1 −x
−jx −j jx∗

x∗ −1 −x
−jx j jx∗

...
...

...













, Alodd
=













...
...

...
−x∗ 1 x
−jx j jx∗

−x∗ −1 x
−jx −j jx∗

...
...

...













(5.14)

where x = ejθ, and one of the optimal value of θ stated in (5.29) is

θ = atan
2γ

β + 2η
(5.15)

The power of the demodulated symbol becomes

|a(c)
k,l |2 = (1 + 2δ)2 + 4[(β + 2η)2 + 4γ2]
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Table 5.2: Calculation of |a(c)
k,l |2 for different preamble sequences.

IAM-R IAM-I IAM-new θ = π/4 Opt. θ

5-tap EGF (α = 1) 1.2045 1.7393 2.1089 4.5377 4.5476
5-tap EGF (α = 2) 1.8100 2.7400 3.6100 5.7417 5.7424
5-tap EGF (α = 7) 2.5163 3.6528 4.9791 5.7049 5.7188
1-tap TFL1 (α = 1) 2.0080 3.0107 4.0160 6.1345 6.1372
1-tap TFL1 (α = 2) 2.2339 3.3037 4.4555 6.1274 6.1350
1-tap TFL1 (α = 7) 2.5401 3.6814 5.0221 5.5930 5.6050

1-tap halfcosine 2.0000 3.0000 4.0000 6.1280 6.1300

For different pulses, the value of 1 > δ,β, γ, η > 0 are usually different, as
shown in Table 5.1. Therefore the optimal preamble sequences are also different,
which will provider extra complexity for channel estimation when the pulse shape
itself is also subject to adaptation. Hence a suboptimal solution which can provide
a uniform preamble sequence for all the pulse shapes at a comparable performance
will be of great interest. By taking θ = π/4 we can have a pulse shape independent
preamble structure which has the demodulated symbol power as

|a(c)
k,l |2 = (1 + 2δ)2 + 2(β + 2η + 2γ)2

It is simple to show that

(β + 2η)2 + 4γ2 ≥ 1

2
(β + 2γ + 2η)2

with equality achieved only if 2γ = β + 2η.

The power of demodulated symbols (|a(c)
k,l |2) with different pulse shapes are

calculated in Table 5.2 with all the necessary data obtained from Table 5.1.

By using “optimal” here we mean that it is optimal for the given assumption
of the weighting matrix W , where only the significant elements are taken into
consideration. If all the terms are taken into account, shown in Appendix 5.7 A,
the optimal solution becomes

θ = atan
2
∑N/4

p=1 Ag(τ0, (2p − 1)ν0)

Ag(τ0, 0) + 2
∑N/4

p=1 Ag(τ0, 2pν0)
(5.16)

It is obvious that (5.15) is just a special case of (5.16) with only one item taken
into account in the summation.
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5.5 Simulation results

simulation parameters

All the simulation results in this section were carried out on the Matlab/Octave
Simulation Workbench for Software Defined Radio [18], with the following main
parameters of the system given below:

• Sampling interval: Ts = 0.5213µs

• Frequency separation: F = ν0 = 15 kHz

• OQAM symbol duration: τ0 = 33.3333µs

• CP-OFDM symbol duration: T0 = T + Tcp = 2τ0 + Tcp

• FFT/IFFT size: N = 128

• CP used in OFDM: 4 to 32 samples (Tcp = Td)

• Number of data frames: Nr = 10 OFDM symbols

• Channel type: ideal, time dispersive, doubly dispersive

• Number of multipaths: < 10

• QPSK, 16QAM modulation without channel coding

Unlike in [47, 49] where N = 2048 FFT/IFFT was used with a convolutional
channel coding at rate 1/2, we simply use a relatively small FFT/IFFT size and no
channel coding. The reason for this was two fold. On one hand we are more inter-
ested in the relative performance gain among different channel estimation methods
rather than exact performance in a specific system configuration. On the other
hand, large FFT size and complicated channel coding take too much time for a
Matlab/Octave based simulation workbench on a normal PC.

Three kinds of pulse shapes were used in this simulation: the half-cosine func-
tion with duration L = N , the EGF with length L = 5N , and the TFL1 with
L = N . The TFL1 function was also used in [47, 49]. The first three IAM pream-
bles, namely IAM-R, IAM-I and IAM-new, have the same energy on preamble
sequences and share a similar structure (0 x 0) and there will be frequently com-
pared with each other in our following discussion. The last two IAM preambles,
namely IAM-Optimal (with optimal θ) and IAM-Subopt (with θ = π/4), have the
same structure as defined by (5.31) and (5.32) but three times the energy of the
other three preambles. The comparison between these two groups will be discussed
in a later stage.

As in Chapter 4, a tapped delay line WSSUS doubly dispersive channel is im-
plemented for simulation. An exponential delay power profile and a classic Doppler
power spectrum is assumed for the channel scattering function as defined in (2.9),
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Table 5.3: Average power of the demodulated preamble symbols for in simulation

IAM-R IAM-I IAM-new Subopt Optimal

5-tap EGF (α = 1) 1.2475 1.7978 2.2229 4.0829 4.1626
5-tap EGF (α = 2) 1.7214 2.6827 3.4149 5.4080 5.4077
5-tap EGF (α = 7) 1.9973 3.5207 3.9947 5.9927 5.9550
1-tap TFL1 (α = 1) 2 3.1042 4 5.9769 5.9727
1-tap TFL1 (α = 2) 2 3.2601 4 5.9633 5.9545
1-tap TFL1 (α = 7) 2 3.5826 4 5.7789 5.7421

1-tap halfcosine 2 2.9844 4 5.9982 6.0

with RMS delay spread τrms and maximum Doppler frequency shift fD. We set
time spread Td = 4τrms in our simulation, which together with the Doppler spread
Bd = 2fD are used in the following to describe the amount of channel dispersion.

Power of the demodulated symbols

The average power of the demodulated preamble symbols via an ideal channel for
different preamble sequences are shown in Table 5.3. Compared with the data in Ta-
ble 5.2 which is from theoretical calculation, the average power of the demodulated
signal in reality varies more smoothly with the change of pulse shapes.

It is clear that the IAM-new preamble always produce twice the output power as
IAM-R, and the optimal and suboptimal methods produce three times higher power.
The most surprising observation comes from the fact that the suboptimal preamble
structure sometimes produces slightly larger power than the optimal preamble does.
One possible explanation is that the terms Ag(nτ0,mν0) with m > 1, n > 1 is not
very small in some cases and the term Ag((2n−1)τ0, 0) for n > 1 might be negative
for some pulse shapes, both of which will cause a bias in the optimal solution.

The possible influence of the Gaussian parameter α on the performance of dif-
ferent IAM methods is interesting but not easy to quantify, since the pulse shape
will affect both the performance of demodulation and the performance of chan-
nel estimation and therefore hard to clarify each contribution. Therefore, unless
mentioned otherwise, we will use α = 1 for the 5-tap EGF pulse and the 1-tap
TFL1 pulse in OFDM/OQAM systems in the following simulations, the same as
in [47,49].

Uncoded BER performance over doubly dispersive channels

Uncoded BER simulation versus Eb/N0, with Eb the useful bit energy and N0 the
mono-lateral noise density, has been carried out for different preamble sequence
under dispersive channels, as shown in Fig. 5.4, where two dispersive channels
with delay spread Td = 4.167µs and Td = 12.5µs, and different Doppler spread
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(0Hz and 300Hz) are used. With carrier frequency fc = 2GHz, a Doppler spread
Bd = 300Hz is equivalent to a moving speed of 81km/h. In both cases, the length
of CP always equal the length of the channel delay spread, i.e., Tcp = Td. The
IAM-new method (marker o) can always outperform CP-OFDM (marker ⋄) by at
least 2.4 dB. The gain will increase a little bit when there is Doppler shift added. A
moderate gain of 0.4 dB was always achieved by IAM-new against IAM-I (marker
×).

Robustness against channel delay spread

In this part we carry simulations to check the robustness of the IAM preambles
against channel delay spread. The channel delay spread percentage is defined by
Td/T , where Td is the delay spread of the channel and T = 2τ0 is the OFDM symbol
duration without adding the CP.

Fig. 5.5 shows the uncoded BER performance with IAM-R (marker •), IAM-
I (marker ×) and IAM-new (marker o) versus the percentage of channel delay
spread, at a given Eb/N0 with a QPSK modulation. CP-OFDM with different
length of CP (Tcp = Td) at some constant Eb/N0 are also plotted as benchmark.
When the channel is purely time dispersive, as shown in Fig. 5.5 a, IAM-new can
outperform CP-OFDM by 2.4 dB and IAM-I by 0.4 dB up to 25% delay spread
with QPSK modulation. The gain decreases a little bit when the delay spread
percentage is extremely small (< 6%), where the benefit of pulse shaping cannot be
fully exploited. When there is Doppler spread present, as shown in Fig. 5.5 b, the
same gains hold up to 16% delay spread. The curves for 5-tap EGF, lying between
TFL1 and CP-OFDM, have somewhat similar changing trend as CP-OFDM and
therefore omitted to make the figures readable.

When a 16-QAM modulation was used, as shown in Fig. 5.6, a notable gain
degradation happened for all the IAM based methods regardless what kind of pulse
shapes were used in OFDM/OQAM. The benefit of IAM-new compared to IAM-R
and IAM-I is somehow retained. Besides, when TFL1 (solid line) was used the
gain over CP-OFDM was quickly diminishing when the time spread percentage is
increased. It was however relatively slowly for 5-taps EGF (dashed line), which as a
consequence always outperforms CP-OFDM in time dispersive (up to 25%) with or
without Doppler spread. The results here also indicate the necessity of pulse shape
adaptation regarding the dispersiveness of the channels. For example, it is better
to use TFL1 pulse shapes in less time dispersive channels (up to 14% for Bd = 0Hz
and up to 10% for Bd = 100Hz) and use 5-tap EGF pulse shapes otherwise.

Pulse shape adaptation in channel estimation

The potential gain from pulse shape adaptation on the performance of channel
estimation is evaluated through dispersive channel, using the IAM-new estimation
method and EGF functions with different α, as shown in Fig. 5.7. The performance
of TFL1(α = 1) and CP-OFDM are also plotted as benchmarks. When the channel
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(a) Td = 4.167µs
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Figure 5.4: Uncoded BER vs. Eb/N0 with a QPSK modulation over dispersive
channels.
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(a) Bd = 0Hz (b) Bd = 100Hz

Figure 5.5: Uncoded BER vs. the percentage of channel delay spread Td/T [%] at
a given Eb/N0 with a QPSK modulation through dispersive channels.

(a) Bd = 0Hz (b) Bd = 100Hz

Figure 5.6: Uncoded BER vs. the percentage of channel delay spread Td/T [%] at
a given Eb/N0 with a 16QAM modulation through dispersive channels.

is less dispersive, pulse shapes with higher demodulation power (in EGF case α = 7
as shown in Table 5.3) give better performance as expected. When the channel
has large delay spread and therefore is much more frequency selective, pulse shapes
with better TFL properties (in EGF case α = 1 as shown in Fig. 3.2) will result in
smaller ISI/ICI and therefore better performance. The TFL1 (with α = 1) pulse
shape always performs the best when using a QPSK modulation where low SNR is
required. When a high order modulation (e.g. 16QAM) is used as shown in Fig. 5.7
c, d, higher SNR is required to achieve the same BER or symbol error rate (SER)
and therefore a pulse shape with better TFL property is preferred. This must also
be taken into consideration when designing the pulse shape adaptation strategy.

When the optimal value of α in EGF functions are determined by maximising
the desired signal power ES stated in (3.9), or by minimising the interference power
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(a) Bd = 0Hz, Eb/N0 = 9dB, QPSK (b) Bd = 100Hz, Eb/N0 = 12dB, QPSK

(c) Bd = 0Hz, Eb/N0 = 15dB, 16QAM (d) Bd = 100Hz, Eb/N0 = 18dB, 16QAM

Figure 5.7: Uncoded BER vs. the percentage of channel delay spread Td/T [%] with
different pulse shapes.

EI stated in (3.10), we compare the performance of pulse shape adaptation with
CP-OFDM and TFL1, as shown in Fig. 5.8, where EGF with two boundary values
α = 0.5 and α = 7 are also plotted as benchmarks. Obviously the adaptation
based on minimisation of the interference power (EI) gives the best performance
in a large range of channel time dispersion. The ES method, on the other hand,
achieves satisfactory performance only when the time dispersion is relatively large.

Evaluation and verification of the optimal preamble structure

To clarify the effects of different preamble sequences on the performance of chan-
nel estimation, the same pulse shape (either TFL1 or EGF) is used with different
preamble sequences, as shown in Fig. 5.9. For TFL1 pulse shape, the performance of
IAM-Optimal and IAM-Subopt is almost identical. When a low order modulation
(hence low SNR) is used, the IAM-Optimal and IAM-Subopt preambles provide
better performance. The relative gain decreases as the channel time dispersion
increases. Therefore, when TFL1 is used, the two preambles with largest demod-
ulation power are only preferred in less dispersive channels with low modulation
order.
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(a) QPSK, Eb/N0 = 12dB (b) 16QAM, Eb/N0 = 18dB

Figure 5.8: Uncoded BER vs. the percentage of channel delay spread Td/T [%]
through dispersive channels with Bd = 100Hz. IAM-new is used for EGF and
TFL1.

When 5-tap EGF pulse shape is used, the gain brought by higher demodulation
power is significant everywhere over doubly dispersive channels as long as a low
order modulation (e.g. QPSK) is used. When a high order modulation is used,
this gain diminishes quickly. However, in all cases when 5-tap EGF pulse shape
is used, IAM-Optimal preamble always performs better than IAM-Subopt, which
differs significantly from the case when TFL1 pulse shape is used.

Another observation from Fig. 5.9 is that the performance of IAM-Optimal and
IAM-Subopt preambles is actually worse than IAM-new preamble when the chan-
nel is highly dispersive. One possible explanation is that the optimal structure
defined in (5.31) and (5.32) is based on the assumption that the channel is moder-
ately dispersive. In highly dispersive channels, the approximation in (5.5) may not
hold anymore and therefore degrade the performance of IAM channel estimation
methods. The preambles defined by IAM-R, IAM-I and IAM-new, depend only
on the two neighouring elements in the same OFDM/OQAM system and therefore
have much stronger immunity to channel dispersions. The preambles defined by
IAM-Optimal and IAM-Subopt, however, depend on all the neighbouring elements
and therefore is more sensitive to channel dispersion.

The gain of the IAM-Optimal/Subopt comes from the fact that more energy
has been allocated to their preambles (x, y, z rather than 0, x, 0). For applica-
tions where the performance is a crucial factor, it is a good choice to use them.
But in cases where power/energy is a crucial factor, it might not be wise to use
such preamble structures. To demonstrate its energy efficiency, the uncoded BER
performance of the IAM-Subopt with different number of frames within one data
frame are compared under the same level of Eb/N0 with

Eb =
(Nr + 3)Es

Nrlog2(M)
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(1) 1-tap TFL1 (α = 1)

(2) 5-tap EGF (α = 1)

Figure 5.9: Uncoded BER vs. the percentage of channel delay spread Td/T [%] at
a given SNR over dispersive channels for OFDM/OQAM with IAM-R (marker ·),
IAM-I (+), IAM-new (×), IAM-Subopt (∗), and IAM-Optimal (o).
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Figure 5.10: Uncoded BER vs. Eb/N0 with a QPSK modulation

where M is the modulation order. As shown in Fig. 5.10 where the channel is
purely time dispersive, the optimal preamble only outperforms IAM-new preamble
for a large value of Nr.

5.6 Summary

In this chapter we have presented a general theoretical framework for preamble-
based IAM channel estimation methods for OFDM/OQAM systems. We also used
this framework to revisit the two heuristic IAM structures and identified the optimal
IAM preamble sequence after analytical derivation. It has been shown that, when
QPSK was used, the newly proposed optimal structure IAM-new can achieve about
2.4 dB gain over CP-OFDM in doubly dispersive channels up to 25% delay spread
when no Doppler spread presented and up to 16% delay spread when Doppler spread
Bd = 100Hz. Compared to IAM-R and IAM-I, a moderate gain of 0.9 dB and 0.4
dB respectively always maintained. When 16-QAM was used, the gain decreases
as the delay spread percentage increases, and these pulse shapes with better time
frequency location properties are preferred when channel is largely time dispersive.

The power of demodulated symbols, however, only plays important role in sys-
tem performance in low SNR region where the distortion brought in by noise is
significant. In high SNR region, the power of noise is relatively small compared
with the power of the interference and therefore higher demodulated symbol power
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may not necessarily mean higher system performance. Depending on the chan-
nel characteristics and the SNR level, the importance of better TFL property and
higher demodulation power may varies. Therefore a careful investigation of differ-
ent scenarios is necessary before setting system parameters or making pulse shape
adaptation strategies.

All the IAM methods discussed in this paper, however, are still not very attrac-
tive for high mobility communications, where the channel estimation sequence has
to be inserted into many places within the same data frame. As the IAM preamble
structure takes 3 OFDM/OQAM symbol duration, i.e., one and a half OFDM sym-
bol duration, the gain on spectral efficiency by not using CP will diminish when
such preamble structures are frequently used for every several data symbols. On the
other hand, the framework for IAM preamble design has been verified to be effec-
tive. Therefore we will focus on designing more time and energy efficient preambles
in future work based on the framework proposed in this chapter. The application
of this framework to other GFDM systems is another interesting topic.

5.7 Appendix

A. Derivation of the optimal IAM preamble structure

For odd l, given the preamble matrix

Alodd
=













...
...

...
x1 1 x5

x2 j x6

x3 −1 x7

x4 −j x8

...
...

...













(5.17)

where |xi| ≤ 1, i = 1, ..., 8 are complex valued variables, the demodulated symbols
at corresponding points are as follows:

a
(c)
1 = 1 + 2δ + j [β(x5 − x1) + γ(x2 + x4 + x6 + x8) + 2η(x7 − x3)]

︸ ︷︷ ︸

y1

a
(c)
j = j[1 + 2δ + β(x6 − x2) + γ(x1 + x3 + x5 + x7) + 2η(x8 − x4)

︸ ︷︷ ︸

y2

] (5.18)

a
(c)
−1 = −1 − 2δ + j [β(x7 − x3) + γ(x2 + x4 + x6 + x8) + 2η(x5 − x1)]

︸ ︷︷ ︸

y3

a
(c)
−j = j[−1 − 2δ + β(x8 − x4) + γ(x1 + x3 + x5 + x7) + 2η(x6 − x2)

︸ ︷︷ ︸

y4

]
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Then the preamble design problem becomes a optimisation process which try to
find a realisation of xi, i = 1, ..., 8 that can maximise the minimum power of the
demodulated symbols, i.e.,

{xi, i = 1, ..., 8} = arg max
xi,i=1...8

min{|a(c)
1 |2, |a(c)

j |2, |a(c)
−1|2, |a

(c)
−j |2} (5.19)

under the constraint that |xi| ≤ 1, i = 1, ..., 8.
In order to maximise the power, all the elements in each a(c) in (5.18) should

be coherently added, that is,

phase(x5 − x1) = phase(x2 + x4 + x6 + x8) = phase(x7 − x3)
phase(x6 − x2) = phase(x1 + x3 + x5 + x7) = phase(x8 − x4)

(5.20)

Given (5.18), it is easy to figure out that the condition that maximise |a(c)
1 |2 (e.g.

when jy1 > 0) will minimise |a(c)
−1|2, and vice versa. The same situation happens

for |a(c)
j |2 and |a(c)

−j |2. Therefore the optimal solution to maximise the minimum
power is to set y1, y3 purely real valued and y2, y4 purely imaginary, that is,

phase(y1) = phase(y3) = 0 or π
phase(y2) = phase(y4) = π/2 or − π/2.

Thereafter the following equations can be formulated






ℑ(x5) = ℑ(x1), ℑ(x7) = ℑ(x3) y1, y3 purely real
ℜ(x5)ℜ(x1) < 0, ℜ(x7)ℜ(x3) < 0 coherent addition
ℜ(x1 + x3 + x5 + x7) = 0
ℜ(x6) = ℜ(x2), ℜ(x8) = ℜ(x4) y2, y4 purely imaginary
ℑ(x6)ℑ(x2) < 0, ℑ(x8)ℑ(x4) < 0 coherent addition
ℑ(x2 + x4 + x6 + x8) = 0

(5.21)

where ℜ{·} denotes the real part operator and ℑ{·} denotes the imaginary part
operator. It is clear from (5.19), (5.20) and (5.21) that the power of yi, i = 1, .., 4
can reach the maximum only if |xi| = 1, i = 1, ..., 8, i.e., each element in the
preamble utilises the maximum power available. Hence (5.21) can be rewritten as







ℑ(x5) = ℑ(x1), ℜ(x5) = −ℜ(x1) ⇒ x1 = −x∗
5

ℑ(x7) = ℑ(x3), ℜ(x7) = −ℜ(x3) ⇒ x3 = −x∗
7

ℜ(x6) = ℜ(x2), ℑ(x6) = −ℑ(x2) ⇒ x2 = x∗
6

ℜ(x8) = ℜ(x4), ℑ(x8) = −ℑ(x4) ⇒ x4 = x∗
8

(5.22)

where {·}∗ indicates the complex conjugate operator. To simplify the expressions,
we introduce some other intermediate variables φi ∈ [0, 2π), i = 1..4, so that

x5 = cos φ1 + j sin φ1, x1 = −x∗
5 = − cos φ1 + j sin φ1

x6 = cos φ2 + j sin φ2, x2 = x∗
6 = cos φ2 − j sin φ2

x7 = cos φ3 + j sin φ3, x3 = −x∗
7 = − cos φ3 + j sin φ3

x8 = cos φ4 + j sin φ4, x4 = x∗
8 = cos φ4 − j sin φ4

(5.23)
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then yi, i = 1..4 can be written as

y1 = 2[β cos φ1 + γ(cos φ2 + cos φ4) + 2η cos φ3] , 2f1

y2 = 2j[β sin φ2 + γ(sinφ1 + sinφ3) + 2η sin φ4] , 2jf2

y3 = 2[β cos φ3 + γ(cos φ2 + cos φ4) + 2η cos φ1] , 2f3

y4 = 2j[β sin φ4 + γ(sinφ1 + sinφ3) + 2η sin φ2] , 2jf4

(5.24)

Now the optimisation problem (5.19) transfers to

{φi, i = 1..4} = arg max
φi,i=1..4

min{f2
1 , f2

2 , f2
3 , f2

4 } (5.25)

Before we solve this problem, let’s look at a maximisation problem first.

max C = f2
1 + f2

2 + f2
3 + f2

4 w.r.t φi ∈ [0, 2π), i = 1..4 (5.26)

Take derivation of C with respect to φi, i = 1..4 and set them equal to 0, we have

∂C
∂φ1

= −2f1β sin φ1 + 2f2γ cos φ1 − 4f3η sin φ1 + 2f4γ cos φ1 = 0
∂C
∂φ2

= −2f1γ sin φ2 + 2f2β cos φ2 − 2f3γ sin φ2 + 4f4η cos φ2 = 0
∂C
∂φ3

= −4f1η sin φ3 + 2f2γ cos φ3 − 2f3β sin φ3 + 2f4γ cos φ3 = 0
∂C
∂φ4

= −2f1γ sin φ4 + 4f2η cos φ4 − 2f3γ sin φ4 + 2f4β cos φ4 = 0

(5.27)

It is not easy to solve the above equations and find all the possible solutions. After
adding some additional conditions, however, it is possible to find just one or two
solutions which will also solve the maximisation problem stated in (5.26). Such
solutions will then be applied to (5.19) and (5.25) for verification.

Given the symmetric property in (5.24), and let’s suppose φ1 = φ3 and φ2 = φ4,
then it is straightforward to see that

f1 = f3 = (β + 2η) cos φ1 + 2γ cos φ2

f2 = f4 = (β + 2η) sinφ2 + 2γ sin φ1

f1(β + 2η) sinφ1 = 2f2γ cos φ1

f2(β + 2η) cos φ2 = 2f1γ sin φ2

(5.28)

Obviously φ1 = atan 2γ
β+2η and φ2 = acot 2γ

β+2η is one solution for the above equa-
tions. Combined with the hypothesis φ1 = φ3 and φ2 = φ4, it is easy to prove
that

{

φ1 = φ3 = atan 2γ
β+2η

φ2 = φ4 = acot 2γ
β+2η

or

{

φ1 = φ3 = atan 2γ
β+2η + π

φ2 = φ4 = acot 2γ
β+2η + π

(5.29)

satisfy the system of nonlinear equations in (5.27) and therefore a solution for the
maximisation problem stated in (5.26).

Now apply (5.29) to (5.19) and (5.25) and check if all the requirements are also
satisfied. From (5.29) we have cos φ1 = sinφ2 and sin φ1 = cos φ2, and apply this
into (5.28) we get

f1 = f2 = f3 = f4 =
√

(β + 2η)2 + 4γ2
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and therefore
|a(c)

1 |2 = |a(c)
j |2 = |a(c)

−1|2 = |a(c)
−j |2

a
(c)
1 = 1 + 2δ + j2

√

(β + 2η)2 + 4γ2 (5.30)

Hence (5.19) and (5.25) are also satisfied by the solution in (5.29).
Substitute (5.29) into (5.23) and apply the results to the preamble matrix Alodd

described in (5.17), we get

Alodd
=













...
...

...
−x∗ 1 x
−jx j jx∗

−x∗ −1 x
−jx −j jx∗

...
...

...













(5.31)

where x = ejθ is the basic element of the optimal preamble sequence and the
value of θ is chosen to be one of the two possible solutions stated in (5.29), say let
θ = atan 2γ

β+2η . By using “optimal” here we mean that it is optimal for the given
assumption of the weighting matrix W .

For even l, following the same rule above one can find the optimal preamble
matrix as

Aleven =













...
...

...
x∗ 1 −x
−jx −j jx∗

x∗ −1 −x
−jx j jx∗

...
...

...













(5.32)

For different pulses, the value of 1 > δ,β, γ, η > 0 are usually different, as
shown in Table 5.1. Therefore the optimal preamble sequences are also different,
which will provider extra complexity for channel estimation when the pulse shape
itself is also subject to adaptation. Hence a suboptimal solution which can provide
a uniform preamble sequence for all the pulse shapes at a comparable performance
will be of great interest. Take a close examination of (5.24) and then it is obvious
that

θ = φ1 = φ2 = φ3 = φ4 = π/4

will satisfy this requirement as it will result in

f1 = f2 = f3 = f4 =

√
2

2
(β + 2γ + 2η).
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It is simply to show that

√

(β + 2η)2 + 4γ2 ≥
√

2

2
(β + 2γ + 2η)

with equality achieved only if 2γ = β + 2η.

Focusing on a preamble symbol ak,l with odd l and regardless of the channel

and noise, the demodulated symbol a
(c)
k,l can be obtained from (5.8) by substituting

ak+p,l+q with the corresponding preamble symbols defined by (5.31). Without loss
of generality, assume ak,l = 1 with l odd, then

a
(c)
k,l =

∑

q=0,p

jp · jp+p·2lA∗
g(0, pν0) + x

∑

q=1,p

j2p+q+2p(q+2l)A∗
g(τ0, 2pν0)

+ jx∗
∑

q=1,p

j2p−1+q+(2p−1)(q+2l)A∗
g(τ0, (2p − 1)ν0)

− x∗
∑

q=−1,p

j2p+q+2p(2l+q)A∗
g(−τ0, 2pν0)

− jx
∑

q=−1,p

j2p−1+q+(2p−1)(2l+q)A∗
g(−τ0, (2p − 1)ν0)

Apply l = 2n − 1 and the property of Ag(τ, ν) stated in (5.10), we can get

a
(c)
k,l=2n−1 =

∑

p Ag(0, 2pν0) + (jx + jx∗)
∑

p Ag(τ0, 2pν0)

+(x − x∗)
∑

p Ag(τ0, (2p − 1)ν0) (5.33)

=
∑

p Ag(0, pν0) + j2
[

cos θ
∑

p Ag(τ0, 2pν0) + sin θ
∑

p Ag(τ0, (2p − 1)ν0)
]

where the second equality comes from x = cos θ + j sin θ. To find the optimal θ

that maximises the power of a
(c)
k,l=2n−1, we take the derivation of |a(c)

k,l=2n−1|2 with
respect to θ and set it to zero. The resulting solutions are as follows:

tanθ =

∑

p Ag(τ0, 2pν0)
∑

p Ag(τ0, (2p − 1)ν0)
or cotθ = −

∑

p Ag(τ0, 2pν0)
∑

p Ag(τ0, (2p − 1)ν0)

Therefore, for the power of a
(c)
k,l=2n−1, we have

|a(c)
k,l=2n−1|2 ≤

(
∑

p

Ag(0, pν0)

)2

+ 4

(
∑

p

Ag(τ0, 2pν0)

)2

+4

(
∑

p

Ag(τ0, (2p − 1)ν0)

)2

(5.34)
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where the equality achieves when

θ = atan

∑

p Ag(τ0, 2pν0)
∑

p Ag(τ0, (2p − 1)ν0)
= atan

2
∑N/4

p=1 Ag(τ0, (2p − 1)ν0)

Ag(τ0, 0) + 2
∑N/4

p=1 Ag(τ0, 2pν0)

or θ = acot

∑

p Ag(τ0, 2pν0)
∑

p Ag(τ0, (2p − 1)ν0)
+ π (5.35)

It is obvious that (5.29) is therefore just a special case of (5.35) with only one item
taken into account in the summation.

Following the same procedure, it is easy to verify that the same result in (5.34)
and (5.35) will also hold for even l, which finishes our derivation.





Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we investigated the pulse shape adaptation and channel estima-
tion methods in GFDM systems over doubly dispersive channels for future wireless
communication applications. General frameworks for pulse shape adaptation and
channel estimation preamble design were proposed and verified in the context of
OFDM/OQAM systems. Simulation results indicated that a potential gain could
be achieved by using the frameworks for system design and analysis.

We began our investigation with a comparative study of OFDM and GFDM
systems with state-of-the-are technologies. Various TFL functions and parameters
were introduced to ease the task of system analysis. Many prototype functions, in-
cluding half-cosine, RRC, Gaussian, EGF, TFL1, etc., were discussed and analyzed
by TFL functions and parameters. The special property of the EGF functions was
derived and shown to be a good candidate for pulse shape adaptation.

A framework for pulse shape optimisation over doubly dispersive channels was
proposed targeting at maximisation the desired signal energy or minimising the
combined ISI/ICI. A practical adaptation strategy with focus on the EGF func-
tion was proposed and the trade-off between performance and complexity was also
discussed.

The OFDM/OQAM system, which is already adopted by or considered in wire-
less communications standards, was intensively reviewed and evaluated with dif-
ferent pulse shapes. Efficient implementation methods were proposed and perfect-
ness of reconstruction was investigated. Inspired by previous work, novel preamble
based channel estimation methods were proposed for OFDM/OQAM systems with
the help of the proposed framework. Under the framework, an optimal pulse shape
dependent preamble structure was derived and a suboptimal but pulse shape in-
dependent preamble structure was proposed which resulted in the same or similar
performance as the optimal one.

99



100 Jinfeng Du: Pulse Adaptation and Channel Estimation in GFDM Systems

6.2 Future work

As stated in Chapter 5, more time and energy efficient preambles are of great
interest and importance in wireless communication. For example, a two-symbol long
preamble structure might be used for channel estimation, with unknown interference
from neighbouring data symbols. This unknown interference will of course degrade
the performance to some extent. As long as the interference can be controlled
under a certain level, satisfactory performance is still possible to be achieved. How
to control the uncertainty of the unknown interference and how to make the decision
of channel estimation with presence of the unknown interference is still not clear.

Another important issue needs to be considered is the pulse shape adaptation
strategy when the effect of ISI/ICI and channel estimation have to be taken into
consideration. It is still not clear how the demodulation power will relate to the
pulse shape itself, let alone its relationship with the TFL parameters. Once again
the EGF function can be a good starting point.

As shown in [50, 51], filter bank spectral estimator (FBSE) can provide high
spectrum estimation accuracy with very large dynamic range and relatively low
complexity, and therefore is a very promising candidate for spectrum sensing for
cognitive radios. A systematic approach of selecting proper pulse shapes in GFDM
system taking into consideration the requirement of minimising joint ISI/ICI as well
as efficient channel estimation and spectrum estimation will be of great interest,
since it will enable dynamic spectrum access (DSA) in a more efficient way and
therefore significantly promote the efficiency of spectrum usage.
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