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Abstract 

This work describes a class of liquid scintillators that contain mostly water (>50 wt. % 

of the entire composition) and can discriminate between interactions induced by 

neutrons and gamma rays. By balancing the interface interactions between the 

components of the formulation, these scintillators form emulsions that can be 

thermodynamically stable. This approach, which considers a quantity known as the 

hydrophilic-lipophilic difference, requires consideration of the salinity and temperature 

as well as characterization of the surfactants and oil phase. Emulsions comprised of 

water and various oils were characterized first. Then, the effect of scintillating dyes in 

the oil phase was considered, followed by the construction of partial phase diagrams of 

the emulsions. For transparent oil-in-water emulsions with a single phase, the 

scintillation light yield and properties of pulse-shape discrimination were measured. 

The best performing scintillators contained 33 wt. % of a scintillating oil phase and 

exhibited a light yield that was as high as 18% of the light yield of a commercially 

available liquid scintillator that does not contain water (EJ-309). These water-based 

liquid scintillators exhibited a figure of merit of neutron/gamma ray discrimination as 

high as 1.79 at about 1500 keVee.  
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1. Introduction

In some respects, water is an ideal medium for large detectors (≥ kiloton

scale)[1,2]. It has high optical transparency, has minimal impact on the environment, is 

easy to handle and transport, and is affordable when compared to organic scintillators. 

Detection of ionizing radiation in pure water relies on Cherenkov radiation[3]. 

Comparatively, organic scintillators have higher light yield and lower detection 

threshold. Another advantage of organic scintillators is their ability to discriminate 

between ionizing radiation (e.g., gamma rays vs. neutrons). Water-based liquid 

scintillator (WbLS) has been proposed as an intermediate option for large detectors. 

WbLS could exhibit higher light output and improved sensitivity to ionizing radiation 

of lower energy when compared to pure water while potentially maintaining much of 

the optical transparency of pure water[4].  

WbLS incorporates organic scintillator into water, relying on a surfactant to 

form an emulsion (Figure 1a). Since WbLS was introduced, researchers have made 

meaningful progress on scintillator characterisation and development of detector 

applications of WbLS[4–7]. The ability to separate Cherenkov and scintillation signals 

has been identified as a key advantage of WbLS[7]. Large detectors (up to 50 kiloton) 

comprised of WbLS have been considered for potential applications in neutrino and 

proton decay physics[8]. While a few formulations have been explored[6,9,10], WbLS 

formulations commonly contain linear alkyl benzene (LAB) as the oil phase and the 

sulfonated derivative of LAB, linear alkyl benzene sulphonic acids, as the surfactant. 

Further understanding of the balance between the surfactant, oil phase, and water phase 

will be crucial for developing WbLS and improving scintillation performance and 

stability.     

As described in previous reports, the phase behaviour of any emulsion is 

dictated by the ionic strength of the aqueous phase (S), the temperature (T, in oC), the 

hydrophobic or hydrophilic nature of the surfactant (Cc), and the lipophilicity of the oil 

(the effective alkane carbon number, EACN)[11]. For ionic surfactants, the effect of 

these four parameters can be quantitatively expressed as a dimensionless quantity, the 

hydrophilic-lipophilic difference (HLD): 



𝐻𝐿𝐷 = Cc − k(EACN) − α(T − 25°C) + ln 𝑆 (1) 

In this equation, k is generally about 0.15-0.17, depending on the surfactant, 

and α is 0.01 oC-1. The ionic strength, S, is a combination of the ionic strength of the 

salt added and the ionic strength of the surfactant[12]. For a formulation with HLD < 0 

and with equal content of oil and water, an oil-in-water emulsion is favoured, and phase 

separation occurs for any excess volume of oil that does not emulsify. For a formulation 

with HLD > 0 and with equal content of oil and water, a water-in-oil emulsion is 

favoured, and any excess volume of water separates. For a formulation with HLD ≈ 0 

and with equal content of oil and water, three phases can form, including one where 

interactions between the surfactant and the oil and water phases are equally favourable, 

maximizing the oil-water interfacial area[13].     

HLD has gained traction as a useful tool for formulating emulsions that are 

thermodynamically stable (e.g., for oil recovery)[12].  For a set of components that 

form an emulsion, it’s important to know all quantities that influence HLD. These 

quantities allow a formulator to create stable emulsions where the dispersion phase and 

continuous phase are predictable (oil-in-water or water-in-oil). Simple experiments can 

be used to estimate unknown quantities in the HLD equation. For example, if the EACN 

of the oil is unknown, surfactants with known values of Cc can be mixed to scan across 

a wide range of Cc and then determine EACN (i.e., a Cc scan).  

Figure 1. a) For WbLS, ionizing radiation (red arrow) is converted to visible 

light (blue arrows) in the oil phase that is stabilized by surfactants, as shown in this 

cartoon. b) A scan of Cc can estimate EACN by identifying where HLD ≈ 0, as show 



in this photograph. The vials are 28 mm in diameter. c) Transparent emulsions for 

scintillators can be formulated, as shown in this photograph of a cuvette filled with a 

WbLS that contains an oil phase comprised of 8 wt. % 2,5-diphenyloxazole and 0.5 wt. 

% 9,10-diphenylanthracene in LAB. The overall oil content is about 33 wt. % and the 

overall water content is about 50 wt. %. For scale, the cuvette has a diameter of 50 mm. 

To illustrate, emulsions of hexane and water were formulated using different 

weight ratios of two surfactants. The surfactants sodium dodecylbenzene sulfonate 

(SDBS, Cc = -0.9) and sodium dioctyl sulfosuccinate (DOSS, Cc = 2.55) provide a 

wide range of accessible values of Cc[14]. The HLD ≈ 0 when the Cc = 0.40 (Figure 

1b). For Cc = 0.40, Eq. 1 can be set such that HLD = 0. The remaining values needed 

to solve Eq. 1 to get EACN are known. Using this equation, the EACN is about 6, which 

agrees with the reported value for hexane[13].  

We’ve attempted to quantify HLD for various oil phases that could be used for 

WbLSs. In mapping partial phase diagrams of WbLS formulations, we discovered 

several formulations that form single phases that are transparent or semi-transparent 

(e.g., Figure 1c). The light yield predominately depends on the oil content. Pulse shape 

discrimination (PSD) is possible for WbLS with an appropriate oil content (about 10 

wt. % and greater). These results highlight possible detection capabilities of WbLS and 

are a promising step toward further development of large detectors using WbLS.  

2. Materials and methods

All materials were used as received without further purification except m-

terphenyl and 9,10-diphenylanthracene, which were purified by recrystallization or 

washing. Hexane, ethyl benzene, propyl benzene, hexyl benzene, m-terphenyl, 2-

butanol, 9,10-diphenylanthracene, sodium dodecylbenzene sulfonate, and sodium 

dioctyl sulfosuccinate were purchased from Sigma. Toluene, cyclohexane, and sodium 

chloride were purchased from VWR. 2,5-diphenyloxazole was purchased from Acros 

Organics. Water that was purified through a Milli-Q water purification system was 



used. Stock solutions of the water phase were prepared by dissolving and mixing 

sodium chloride salt (typically 1.5 g/100 mL water) and 2-3 wt. % of 2-butanol. When 

referencing the water phase, we include the content of sodium chloride and 2-butanol. 

Typically, all surfactants were weighed into individual vials, and then liquids were 

added by mass or volume. Stock solutions of scintillators were prepared by dissolving 

appropriate weight content of scintillating dyes into organic solvents. All contents of 

the formulations were dissolved by shaking and heating to about 60 oC for a period of 

one day, followed by further shaking as necessary. Before taking photographs, 

formulations were allowed to settle and equilibrate over multiple days. Detailed recipes 

of formulations that were used to determine HLD characteristics of LAB are provided 

in the Supporting Information as examples (Table S1). 

All photographs were taken using a Nikon D750 and were globally edited in 

Adobe Lightroom for colour and exposure corrections. Photographs of fluorescing 

scintillators were taken while the WbLS was illuminated by a 365 nm UV lamp. To 

highlight scattering due to emulsion formation, photographs were taken using front 

lighting and backlighting. These photographs were used to estimate the HLD. Where 

three phases occurred, this formulation had an HLD value of approximately zero. Other 

phases were identified as HLD < 0 or HLD > 0 based on whether the characteristic of 

the surfactant was more hydrophilic or hydrophobic than the characteristics of the 

surfactant used for HLD = 0. These qualitative characterizations were also used to 

estimate the phase diagrams of the formulations.  

Before scintillation characterization, the WbLS formulations were stirred 

overnight in an oxygen-free environment to remove dissolved oxygen unless otherwise 

indicated. WbLS formulations were pipetted into cylindrical cells with quartz windows 

50 mm in diameter with a 10 mm path length (Starna Cells). The outer edge and one 

face of the cells were wrapped and covered with Teflon tape. The exposed face was 

coupled with optical grease to a Hamamatsu R6231-100-SEL photomultiplier tube 

(PMT). The PMT interfaced with a 14-bit high resolution CompuScope 14200 

waveform digitizer and signals from the PMT were recorded at a sampling rate of 200 

MS/s. Ionizing radiation from 60Co incident upon the WbLS produced scintillation that 

provided a measurement of light yield of the WbLS. Comparison with 137Cs was used 



for confirmation of the energy of ionizing radiation. From histograms of the pulse 

integral, the Compton edges of 137Cs and 60Co of scintillators could be observed. The 

location of 500 keVee was defined by the pulse integral at 50% of the height of the 

137Cs Compton edge, which could be equated to the Compton edge of 60Co at 1118 keV 

using a calibration curve that was generated from various organic scintillators.  

For PSD, the WbLS formulations were also exposed to a 252Cf source shielded 

behind 5.1 cm of lead to reduce the gamma-ray flux. The waveforms from 

measurements with 252Cf were integrated over two separate time integrals to determine 

the total charge (Qtotal), while the later time integral comprised the charge of the delayed 

component of the signal (Qtail). Since scintillation pulses that result from interactions 

induced by neutrons are generally longer in time, the charge of the delayed component 

relative to the total charge is generally greater for scintillation that occurs due to 

neutrons and small for scintillation that occurs due to gamma-rays. The PSD can be 

quantified using a Figure of Merit (FoM) that is determined from histograms of the ratio 

of the charge of the delayed component relative to the total charge, as described in 

previous reports[15,16]. Briefly, the FoM is: 

𝐹𝑜𝑀 =  
〈𝑛〉−〈𝛾〉

𝐹𝑊𝐻𝑀𝑛+𝐹𝑊𝐻𝑀𝛾
(2) 

In this equation, 〈n〉-〈γ〉 represents the difference between the average value of the 

neutron and gamma-ray signals, and FWHMn +FWHMγ represents the sum of the 

full-width at half of the maximum value of the distributions of the neutron and 

gamma-ray signals.  

3. Results and discussion

3a. Studies of emulsion formation 

We focused on the HLD of alkylated benzenes. These aromatic solvents can 

participate in energy transfer to facilitate scintillation. Non-aromatic solvents like 

hexane and cyclohexane do not participate in energy transfer but were also studied for 



comparison of emulsion formation (Figure 1b, Figure S1). For aromatic solvents, we 

performed Cc scans with SDBS and DOSS on toluene, ethyl benzene, propyl benzene, 

and hexyl benzene (Table 1). These scans involved systematically changing the relative 

weight content of SDBS and DOSS and estimating where HLD ≈ 0 based on 

photographs of the emulsions (Figure 2a for summary of HLD, Figure S1 for 

photographs). For toluene, the surfactant scan was not sufficient to estimate EACN. 

The Cc at which HLD ≈ 0 was not in the range that we studied. All emulsions that 

formed were water-in-oil with excess water separating to the bottom. For ethyl benzene, 

the EACN is around -0.5. As the number of carbons on the alkyl chain increases, the 

EACN increases as expected (i.e., the oil phase becomes more lipophilic). For propyl 

benzene, the EACN is around 2, and for hexyl benzene, the EACN is around 6.  

Table 1: Summary of Cc scans for different solvents. HLD ≈ 0 occurred 

when a third phase appeared and was used to estimate the EACN (Figure S1). These 

formulations contained 2-3% 2-butanol and 1.5 g/100 mL NaCl in the water phase. 

Solvent Cc values scanned Cc where HLD ≈ 0 EACN 

Hexane -0.03, 0.28, 0.40, 0.62, 0.96, 1.33 0.40 6 

Cyclohexane -0.62, -0.33, -0.11, 0.06, 0.32, 0.62 -0.33 2 

Toluene -0.85, -0.76, -0.62, -0.54, -0.22, 0.12 N/A <-2 

Ethyl benzene -0.85, -0.76, -0.62, -0.54, -0.22, 0.12 -0.62 -0.5

Propyl benzene -0.76, -0.54, -0.22, 0.12, 0.45, 0.82 -0.22 2 

Hexyl benzene -0.76, -0.54, -0.22, 0.12, 0.45, 0.82 0.45 6 

Linear alkyl benzene 0.62, 0.96, 1.33, 1.72, 2.12, 2.55 1.33 11 



Given that linear alkyl benzene (LAB) is common in organic liquid 

scintillators and is used in previously reported WbLS formulations, its phase behavior 

in emulsions is important to consider. LAB is commercially available as a mixture of 

alkylated benzenes. The number of carbons of the alkyl substituents for the LAB used 

in this report (Alkylate 225, purified by Eljen Technology) is 10-16. The EACN of LAB 

as estimated by a Cc scan is 11 (Figure 2a, Figure S2). This EACN could be compared 

to the EACNs of ethyl benzene, propyl benzene, and hexyl benzene, which have alkyl 

substituents containing 2, 3, and 6 carbons respectively. For LAB, the EACN is greater 

than the EACN for these other alkylated benzenes, consistent with the trend that 

increasing the number of carbons on the alkyl substituent increases the EACN.  

In some formulations (e.g., ethyl benzene or propyl benzene), we observed 

opaque phases. These are either due to large micelles or complicated phase behaviour 

(e.g., formation of liquid crystal phases by the surfactants).[14] Smaller micelles scatter 

blue light. When observed with backlighting, these emulsions with smaller micelles 

appear transparent (Figure S1). To formulate transparent emulsions, small micelles 

must be formed, which increases the oil/water interface area. One way to decrease 

micelle size would be to increase surfactant concentration. The molecular structure of 

the oil phase and surfactant may also play a role in the micelle size. For example, when 

comparing hexane and cyclohexane at HLD ≈ 0, the middle phase for the hexane 

emulsion is more transparent than the middle phase for the cyclohexane emulsion at an 

identical surfactant concentration. We speculate that this difference in transparency 

may relate to: a) the nature of the surfactant mixture since a formulation containing 

hexane at HLD = 0 includes more DOSS, which has two flexible hydrocarbon chains 

that can readily interact with the oil phase, and/or b) the nature of the oil since hexane 

is an extended alkane that may be more accessible to the surfactant due to flexibility 

and sterics. Future work should explore these ideas, but they suggest that LAB may be 

preferable as the primary oil phase for WbLS formulations that contain DOSS and 

SDBS, given the EACN of LAB and the extended nature of the alkyl substituents.  

3b. Scintillating emulsions 



The emulsions described above cannot be used as WbLSs because they lack 

scintillation dyes, which may change the phase behavior of the emulsions. For example, 

the addition of 1 wt. % 2,5-diphenyloxazole (PPO) to LAB resulted in the emergence 

of a middle phase at Cc = 0.96 that persisted at Cc = 1.33. For comparison, a middle 

phase for undoped LAB was observed only at Cc = 1.33 (Figure 2b for summary of 

HLD, Figure S2 for photographs). Thus, the EACN for 1 wt. % PPO in LAB is about 

10 (vs. 11 for undoped LAB, Table 2). For 5 wt. % PPO in LAB, the EACN further 

decreased to about 9. For comparison, 5 wt. % m-terphenyl (mTP) in LAB shifted the 

EACN to 10. PPO contains nitrogen and oxygen, whereas mTP does not contain any 

heteroatoms, which may influence the EACN. For an oil phase that contains 15 wt. % 

PPO in LAB, the EACN again decreased to about 6. The introduction of a secondary 

dye (e.g., 9,10-diphenylanthracene, DPA) at 0.5 wt. % to LAB had minimal effect on 

the HLD/EACN. To summarize, the Cc at which HLD = 0 decreases as PPO content 

increases, indicating that PPO requires a more hydrophilic surfactant mixture to balance 

the emulsion (Figure 2b). These results emphasize that formulation of WbLSs must 

consider all components of each phase since undoped LAB will have different 

interactions with surfactants than LAB that contains dissolved dyes. 

Table 2: Summary of Cc scans for different oil phases contained LAB and 

scintillating dyes. HLD ≈ 0 occurred when a third phase appeared and was used to 

estimate the EACN (Figure S2). These formulations contained 2-3% 2-butanol and 

1.5 g/100 mL NaCl in the water phase. 

Solvent Cc values scanned 
Cc where 

HLD ≈ 0 
EACN 

Linear alkyl benzene 0.62, 0.96, 1.33, 1.72, 2.12, 2.55 1.33 11 

1 wt. % PPO in LAB 0.28, 0.62, 0.96, 1.33, 1.72, 2.12 1.33 10 

5 wt. % PPO in LAB -0.03, 0.28, 0.62, 0.96, 1.33, 1.72 0.96 9 

5 wt. % mTP in LAB -0.03, 0.28, 0.62, 0.96, 1.33, 1.72 1.33 10 



15 wt. % PPO in LAB -0.33, 0.28, 0.45, 0.53, 0.62, 0.96 0.53 6 

15 wt. % PPO + 0.5% DPA in LAB -0.03, 0.28, 0.62, 0.96, 1.33, 1.72 0.62 6 

Thus far, HLD was evaluated to determine EACN, and this evaluation requires 

the content of the oil phase to equal the content of the water phase. To facilitate scaling 

of detectors to large sizes, it is desirable to have water comprise the majority of WbLS. 

Thus, it is also important to construct phase diagrams for compositions of interest and 

elucidate phase behaviour of the WbLS formulations. We prepared various 

formulations that contained LAB with 15 wt. % PPO as the oil phase. Phase diagrams 

were estimated from formulations with different values of Cc (-0.24, 0.35, 0.53, 1.04), 

which influence the HLD (ca. -0.8, -0.3, 0, 0.5). Phases that were observed include: oil 

in water with excess oil on top (Type I); water in oil with excess water on bottom (Type 

II); a microemulsion of oil and water that is sandwiched between excess oil and excess 

water on top and bottom (Type III, Figure 2c).  

The prevalence of Type I vs. Type II in the phase diagram depends on the 

HLD. For HLD < 0, Type I was favourable. As HLD increases, Type II becomes more 

favourable (Figure 2d). This preference highlights an important aspect of using HLD 

to formulate WbLS: by changing the HLD, the function of the WbLS could change. For 

example, radioactive species that are water soluble can be analysed in liquid 

scintillation cocktails that are commercially available. These cocktails contain high 

contents of aromatic oils and small amount of surfactant to emulsify water-soluble 

radioactive species. For these cocktails, HLD > 0 may be more favourable to create 

water in oil emulsions (Type II) that use surfactants most efficiently. The same oil phase 

can be used for Type II emulsions as for Type I emulsions if the surfactancy balance is 

accounted for. Future work in this area should consider principles of net average 

curvature, which can provide a predictive approach for formulating a given 

emulsion[17].  



Figure 2. a) The HLD of an emulsion is influenced by the EACN, as shown 

in this plot that summarizes the phase behaviour of emulsions containing different oil 

phases as the Cc of the surfactant was changed. b) The EACN also changes when dyes 

are added, as shown in this plot that summarizes the phase behaviour of emulsions 

containing LAB and various dyes. For a) and b), the HLD was estimated from 

photographs of the Cc scans (available in the Supporting Information). A gradient 

colour plot is used to highlight the estimated HLD of the formulations that were studied; 

HLD greater than and less than 0 should extrapolate as Cc increases or decreases. c) 

When evaluating the phase diagrams of these emulsions, various phases were observed, 

as shown in these photographs of emulsions in 28 mm vials. Photographs were taken 

with front lighting, and blue scattering is apparent. d) Phase diagrams at different values 

of Cc were constructed. As the Cc increases, a Type II emulsion (water in oil) becomes 

more favourable. 

Some formulations were highly opaque, were highly viscous, contained solid 

particles, and/or became coagulated formed due to complex phases (e.g., liquid crystal 

phases)[14] or due to precipitation (Figure 2d). These formulations are not suitable for 

scintillation. Single phases that are transparent are ideal for WbLS. In estimating the 

phase behaviour of these WbLS formulations, we identified formulations that contained 



single phases that would be suitable as WbLSs (Figure 3a,b). The viscosity and 

stability of these single phases varied; however, the use of additional 2-butanol in the 

water phase could help with stability in some cases without influencing the HLD 

(Figure S3). In addition to WbLSs based on LAB with ionic surfactants, we also 

formulated WbLSs that contained doped propyl benzene with ionic surfactants and 

doped xylene with a nonionic surfactant (Igepal ® Co-720). These formulations were 

tested for light output and, in some cases, PSD.  

3c. Scintillation characterization 

An important feature of WbLS is the light yield produced by the organic liquid 

scintillator phase. The relative weight content of the oil phase that is comprised of 

organic liquid scintillator dictates the light yield of a WbLS. As oil content increases, 

the relative light yield increases. Light yields as high as 18% of the light yield of an 

organic liquid scintillator that does not contain water (EJ-309) were observed (Figure 

3c). Consistent with our results, other reports of this previously reported WbLS 

highlighted higher light yield at higher content of scintillator[10]. In our formulation, 

the oil phase comprises 33 wt. % of the total scintillator. The surfactant and water phase 

comprise 17 wt. % and 50 wt. % of the total scintillator respectively. As typical for 

liquid scintillators, the removal of dissolved oxygen by sparging with nitrogen may 

improve light yield.  Generally, the relative weight content of the water phase inversely 

affects the light yield when compared to the relative weight content of the oil phase 

(Figure 3d). Notably, the light yield can reach 12% of the light yield of EJ-309 when 

the water phase comprises > 60 wt. % of the WbLS and can reach 9% of the light yield 

of EJ-309 when the water phase comprises > 80 wt. % of the WbLS. These values can 

provide a baseline for future improvements in WbLS formulation.  The relative weight 

content of the surfactant shows no general trend for light yield. Higher content of 

surfactant generally means that more oil can be dissolved; lower light yield at higher 

surfactant content indicates that some emulsions may not be using surfactant efficiently 

(Figure 3e).  



Figure 3. a), b) Formulations that formed a single, transparent phase were 

suitable for scintillation, as shown in these photographs of a cuvette containing a WbLS. 

The overall oil content is about 33 wt. % and the overall water content is about 50 wt. 

%. The photograph in b) was taken with the WbLS under a UV lamp. For scale, the 

cuvette has a diameter of 50 mm. c) The light yield generally increases as the content 

of the oil phase increases, as shown in this plot. d) The light yield generally decreases 

as the content of the water phase increases, as shown in this plot. e) There is no general 



trend for light yield vs. surfactant content, as shown in this plot. All plots contain 

multiple data points for a given value on the x-axis (e.g., oil) since the remaining weight 

content of a WbLS is comprised of two components that can vary relative to one another 

(e.g., water and surfactant).  

In addition to affecting light output, the weight content of the oil phase in 

WbLS influences the ability to discriminate between gamma rays and neutrons. 

Discrimination of gamma rays and neutrons is possible by comparing the delayed 

component of scintillation light vs. the total scintillation light; neutrons generally 

produce a larger fraction of delayed component than gamma rays. Scintillation from 

WbLS with higher weight content of oil (e.g., 33 wt. % oil phase) has clear separation 

of gamma rays (Figure 4a). As the weight content of the oil phase decreases, the 

separation is less clear. For a WbLS with 15 wt. % oil phase, the scintillation signatures 

of neutrons and gamma become broader, and PSD is apparent but less obvious than for 

a WbLS with 33 wt. % oil phase (Figure 4b). Higher energy particles are necessary to 

observe PSD at lower weight content of the oil phase. Once the oil content is at 5 wt. 

%, PSD is no longer apparent (Figure 4c).  

The FoM for PSD quantifies the effect of the oil content (Figure 4d). As the 

weight content of the oil phase increases from 5 to 15 to 33 wt. %, the FoM increases 

from about 0.50-0.65 to 0.88-1.20 to 1.23-1.53. Note that the FoM depends on energy 

and increases moderately as energy increases for a given WbLS. The FoM is further 

improved when incorporating propyl benzene as the primary organic solvent instead of 

LAB. For WbLS that incorporates propyl benzene, PSD is apparent (Figure 4e). A FoM 

is as high as 1.79 has been obtained for the gamma-equivalent energy of 1500 keVee. 

The mechanism for this increase in FoM for PSD will be explored as we continue to 

develop our formulations.  



Figure 4. The gamma/neutron PSD characteristics can be compared for WbLS 

formulations that contain a) 33 wt. % oil, b) 15 wt. % oil phase, and c) 5 wt. % oil 

phase. d) The Figure of Merit depends on energy for a given WbLS and decreases as 

oil content decreases. e) PSD was observed for a WbLS with an oil phase that contained 

propyl benzene as the organic solvent. Gradient scale bars represent relative density of 

data points.  

4. Conclusion

A key advantage of WbLS is the ability to tune the content of the oil phase to 

suit the detection needs[10]. Specific applications may rely on properties of pure water 

(e.g., low cost, directionality of Cherenkov radiation) or properties of organic liquid 

scintillators (e.g., light yield), and both phases can coexist in WbLS. Notably, WbLS 

can identify particles based on the signatures of Cherenkov radiation and organic liquid 

scintillation. Here, we establish an additional functionality that can be achieved in 

WbLS: pulse-shape discrimination. PSD can help with particle identification and thus 

reduce cosmogenic fast neutron backgrounds or reduce systematic uncertainties that 

may arise when using large detectors that rely on WbLS. By mapping partial phase 

diagrams of various WbLS formulations, we also highlight the importance of 

formulating using a rational approach like HLD. That is, the HLD can be adjusted as 



another way to suit detection needs. This approach allows one to formulate and favour 

oil-in-water emulsions over water-in-oil emulsions or vice versa, depending on the 

application requirements. With these principles established for WbLS, future work 

should focus on materials development to further understand scintillation properties and 

particle discrimination. Formulations could also be formed using a predictive approach 

like net average curvature[17]. By improving the functionality of WbLS, we hope to 

facilitate future development of large particle detectors.  
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Table S1. Detailed recipe of the formulations used to determine hydrophilic-lipophilic difference (HLD) 

characteristics of LAB. The surfactants sodium dodecylbenzene sulfonate (SDBS, Cc = -0.9) and sodium dioctyl 

sulfosuccinate (DOSS, Cc = 2.55) were used to determine the effective alkane carbon number (EACN) of LAB.  

  

SDBS 
mass (g) 

DOSS 
mass (g) 

NaCl mass 
(g) 

2-butanol 
mass (g) 

water mass 
(g) 

oil mass 
(g) 

CC 
value 

"Type" 

0.4 0.4 0.108 0.216 6.876 8 0.62 I 

0.32 0.24 0.108 0.216 6.876 8 0.96 I 

0.24 0.32 0.108 0.216 6.876 8 1.33 III 

0.16 0.64 0.108 0.216 6.876 8 1.72 II 

0.08 0.72 0.108 0.216 6.876 8 2.12 II 

0 0.8 0.108 0.216 6.876 8 2.55 II 



 
Figure S1. By varying the weight content of two surfactants with different Cc, the overall Cc can be changed until 

the HLD ≈ 0. This Cc scan can estimate EACN of various oils, as show in these photographs taken with front lighting 

(left) and backlighting (right) for cyclohexane (a), toluene (b), ethyl benzene (c), propyl benzene (d), and hexyl 

benzene (e). These photographs were referenced when filling Table 1. The vials are 28 mm in diameter. 

 



 
Figure S2. By varying the weight content of two surfactants with different Cc, the overall Cc can be changed until 

the HLD ≈ 0. This Cc scan can estimate EACN of LAB containing various amounts of scintillating dye, as show in 

these photographs taken with front lighting (left) and backlighting (right) for undoped LAB (a), 1 wt. % PPO in LAB 

(b), 5 wt. % PPO in LAB (c), 5 wt. % mTP in LAB (d), 15 wt. % PPO in LAB (e), and 15 wt. % PPO along with 0.5 

% DPA in LAB (f). These photographs were referenced when filling Table 2. The vials are 28 mm in diameter. 

 

 



 
Figure S3. a) The addition of up to 10 wt. % 2-butanol does not have a meaningful effect on HLD, as shown in these 

photographs taken with front lighting (left) and backlighting (right) of scintillation vials that contain a formulation 

where HLD is close to zero (i.e., three phases are present). Note that the volumes of each phase are similar as 2-butanol 

content increases, which suggests that HLD is not impacted substantially at the weight content of 2-butanol added. 

Interestingly, the middle phase that consists of a relatively high content of oil and water becomes more transparent as 

the 2-butanol content increases, which may hint at the stabilizing effect of this alcohol additive. b) 2-butanol helps 

with stabilization of high content of an oil phase in a WbLS, as shown in these photographs of a WbLS containing 33 

wt. % of the oil phase. Note that the white object at the bottom of the vial in each photograph is a stir bar that was not 

used after initial dissolution and mixing of all components. As shown in the photograph on the left, sedimentation 

occurs shortly after stirring is completed (ca. one day). This sedimentation appears different than phase separation of 

oil and water phases and disappears upon gentle mixing (e.g., with a stir bar). Sedimentation was mitigated by adding 

2-butanol (second photograph). Upon addition of 2 butanol, the sedimentation ceases and was stable after 7 days (third 

photograph). The WbLS appears homogeneous and transparent after more than two months after initial preparation 

(fourth photograph).  
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