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We present a theory of ultrashort-pulse difference-frequency generation (DFG) with quasi-phase-matching
(QPM) gratings in the undepleted-pump, unamplified-signal approximation. In the special case of a cw (or
quasi-cw) pump, the spectrum of the generated idler is related to the spectrum of the signal through a transfer-
function relation that is valid for arbitrary dispersion in the medium. The engineerability of this QPM-DFG
transfer function establishes the basis for arbitrary pulse shaping. Experimentally we demonstrate QPM-
DFG devices operating in a frequency-degenerate type II configuration and producing pulse-shaped output at
1550 nm from 220-fs pulses at 1550 nm. © 2001 Optical Society of America

OCIS codes: 140.7090, 190.7110, 190.2620, 190.4360, 230.4320, 320.5540, 320.7110, 320.7080.
1. INTRODUCTION
For many applications it is necessary to modify the tem-
poral shape of ultrashort optical pulses obtained from a
laser source in a well-defined manner.1 The utility of
longitudinally nonuniform quasi-phase-matching (QPM)
gratings for pulse compression and shaping by the
second-harmonic generation (SHG) process has been
demonstrated.2–9 This technique relies on the engineer-
ability of the QPM gratings and allows shaping of pulses
at half the wavelength of the seed pulses. This substan-
tial wavelength shift, inherent to SHG, could be disad-
vantageous for certain applications, such as for fiber-optic
communication systems at 1550 nm. Also, if it is desir-
able to obtain shaped pulses at a wavelength other than
the harmonic of the seed, the SHG process does not pro-
vide adequate flexibility.

In this paper we present a theory of difference-
frequency generation (DFG) with longitudinally nonuni-
form QPM gratings. Under the assumptions of plane
waves, an undepleted pump, an unamplified signal,
slowly varying amplitudes, and a cw pump wave, we de-
rive a transfer-function relation between spectra of the
seed signal and the shaped idler, valid for arbitrary ma-
terial dispersion and pulse shapes. Similar to the QPM-
SHG transfer function, this QPM-DFG transfer function
can be engineered by controlling the duty cycle and the
k-vector distribution of the grating, hence serving as a ba-
sis for fairly arbitrary pulse shaping. The advantage of
the QPM-DFG shaping over the QPM-SHG shaping is
that, by use of the former, the idler can be produced at
any wavelength that can be phase matched by QPM.
Also, in the QPM-DFG shaping case the shaped-pulse
spectrum is linear in the seed-pulse spectrum, making
straightforward the accounting of the group-velocity dis-
persion (GVD) and higher-order dispersion terms in the
0740-3224/2001/040534-06$15.00 ©
design of the shaper, whereas such accounting in the
QPM-SHG case is complicated.9

As an example of this technique, we experimentally
demonstrate QPM-DFG pulse-shaping devices operating
in the type II phase-matching configuration, which allows
shaped idler pulses to be obtained at the same wave-
length, 1550 nm, as the seed signal pulses.

2. THEORY
The theoretical treatment of the QPM-DFG process with
longitudinally nonuniform gratings presented in this pa-
per is similar to that used for the analysis of the QPM-
SHG process in Refs. 8 and 9. We assume plane-wave in-
teractions along the propagation direction z in a lossless,
nongyrotropic medium of length L. We consider the pro-
cess of idler generation from the input signal and pump
waves in the undepleted-pump and unamplified-signal
approximation. Starting from the Maxwell’s equations
in the frequency domain, we arrive at the following set of
coupled one-dimensional frequency-domain scalar wave
equations:

]2

]z2 Êi~z, v! 1 k2~v!Êi~z, v! 5 2m0v2P̂NL~z, v!, (1)

]2

]z2 Ês~z, v! 1 k2~v!Ês~z, v! 5 0, (2)

]2

]z2 Êp~z, v! 1 k2~v!Êp~z, v! 5 0, (3)

where Êm(z, v) is the Fourier transform of the electric
field; here, and in the rest of the paper, a hat denotes the
Fourier transform and subscript m 5 i, s, p denotes
the idler, signal, and pump, respectively. In Eqs. (1)–(3),
2001 Optical Society of America
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k(v) is the frequency-dependent k vector, and k(v)
5 (v/c)n(v), where n(v) is the refractive index.

In a medium whose nonlinear coefficient is negligibly
dispersive, the nonlinear polarization spectrum,
P̂NL(z, v), which drives the idler generation, can be writ-
ten in terms of the signal and pump electric fields in the
form10

P̂NL~z, v! 5 2«0d~z !E
2`

1`

Es*̂ ~z, v 2 v8!Êp~z, v8!dv8,

(4)

where d(z) is the material nonlinear coefficient, allowed
here to vary with position to describe the modulation that
is due to the presence of the QPM grating.

As in Ref. 8, we use the frequency-domain envelopes
Âm(z, Vm), defined by

Êm~z, v! 5 Âm~z, Vm!exp@2ik~vm 1 Vm!z#, (5)

where the k vector is a function of frequency and we in-
troduce the frequency detunings Vm 5 v 2 vm from the
optical carrier angular frequency vm . This definition ex-
plicitly accounts for the effect of material dispersion on
each frequency component of the interacting waves.
These envelopes should not be confused with the conven-
tional envelopes Bm(z, t), defined in the time domain,
such that the Fourier transform of the electric field is ex-
pressed as

Êm~z, v! 5 B̂m~z, Vm!exp@2ik~vm!z#, (6)

with the k vector evaluated at the carrier frequency of the
pulse. A more complete discussion of the envelopes is
presented in Ref. 8.

In terms of these frequency-domain envelopes the
coupled wave equations (1)–(3) can be rewritten as

]

]z
Âi~z, V i! 5 2i

m0v i
2

2ki
P̂NL~z, V i!exp@ik~v i 1 V i!z#,

(7)

]

]z
Âs~z, Vs! 5 0, (8)

]

]z
Âp~z, Vp! 5 0, (9)

where we use the slowly varying envelope approximation,
]2Âm /]z2 ! k(v)(]Âm /]z). The nonlinear polarization
P̂NL(z, V i) is expressed with Eqs. (4) and (5) in terms of
the signal and pump envelopes as

P̂NL~z, V! 5 2«0d~z !E
2`

1`

As*̂ ~z, 2V 1 V8!Âp~z, V8!

3 exp$i@k~vs 2 V 1 V8!

2 k~vp 1 V8!#z%dV8, (10)

where we define V [ V i 5 v 2 v i , V8 [ v8 2 vp , and
use As*̂ (2V) 5 As*̂ (V).

Equations (8) and (9) describe free propagation of the
signal and pump waves through the dispersive medium;
their solutions are
Âs~z, V! 5 Âs~V!, (11)

Âp~z, V! 5 Âp~V!, (12)

where Âs(V) 5 Âs(z 5 0, V) is the signal envelope and
Âp(V) 5 Âp(z 5 0, V) is the pump envelope at the input
(z 5 0) of the nonlinear crystal.

Substituting the solutions (11) and (12) into the expres-
sion for P̂NL(z, V), Eq. (10), we obtain the output idler en-
velope by integrating Eq. (7):

Âi~L, V! 5 2igE
0

L

d~z !dzE
2`

1`

dV8Âs* ~V8 2 V!

3 Âp~V8!exp@2iDk~V, V8!z#, (13)

where g [ 2p/(l ini), l i is the idler wavelength, and ni is
the refractive index at the idler frequency and the
k-vector mismatch

Dk~V, V8! 5 k~vp 1 V8! 2 k~v i 1 V!

2 k~vs 1 V8 2 V!. (14)

With Eqs. (13) and (14) one can find the output idler en-
velope Âi, given the following: the input signal and pump
envelopes Âs and Âp , respectively, the dispersive proper-
ties of the medium, represented by the functional depen-
dence Dk 5 Dk(V, V8), and the modulated nonlinear co-
efficient d(z). We note that Eq. (13) is valid for
materials with arbitrary dispersion or, equivalently, for
interacting pulses with arbitrarily broad spectra.

Now we assume that the pump is a cw monochromatic
wave, i.e., its frequency-domain envelope is a delta func-
tion,

Âp~V! 5 Epd~V 5 0 !, (15)

where Ep is the amplitude of the pump wave. Substitut-
ing Eq. (15) into Eq. (13) we obtain

Âi~L, V! 5 d̂~V!Âs* ~2V!Ep , (16)

where d̂(V) is proportional to the spatial Fourier trans-
form of d(z),

d̂~V! 5 2igE
2`

1`

d~z !exp@2iDk~V!z#dz, (17)

where Dk(V) serves as the transform variable and is de-
fined as

Dk~V! 5 k~vp! 2 k~v i 1 V! 2 k~vs 2 V!. (18)

In Eq. (17) we extended the limits of integration from [0,
L] to (2`, 1`) realizing that this cannot affect the solu-
tion since d(z) 5 0 outside of the crystal.

The result of Eq. (16) can be rewritten in terms of the
Fourier transform of the conventional time-domain enve-
lopes as

B̂i~L, V! 5 d̂~V!B̂s* ~2V!Ep exp$2i@k~v i 1 V!

2 k~v i!#L%. (19)

It is interesting to note that when d̂(V) is essentially con-
stant over the bandwidth of the signal pulse, Eq. (16) de-
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scribes the effect of spectral inversion of the spectrum of
the idler relative to the spectrum of the signal.

Assuming V ! v i , vs , we perform a Taylor expansion
in Eq. (18), resulting in

Dk~V! 5 Dk0 1 dnsiV 2 (
n52

`
1

n!
@~21 !nbsn 1 b in#Vn,

(20)

where Dk0 5 k(vp) 2 k(vs) 2 k(v i) is the carrier
k-vector mismatch, dnsi 5 1/us 2 1/ui is the signal–idler
group-velocity mismatch (GVM) parameter, where um
5 @dk(v)/dv#21uv5vm

are the group velocities, and bmn

5 @dnk(v)/dvn#uv5vm
are the GVD (n 5 2), third-order

dispersion (n 5 3), etc., coefficients. The characteristic
lengths at which a particular dispersive term becomes im-
portant for a transform-limited pulse of length t0 is
Lbmn 5 t0

n/ubmnu. In the case when GVD and higher-
order dispersion terms can be neglected, i.e., when L
! Lbmn for all m (all interacting waves) and all n > 2
(all dispersive terms beyond GVM), Eq. (17) becomes

d̂~V! 5 2igE
2`

1`

d~z !exp@2i~Dk0 1 dnsiV!z#dz,

(21)

which has the same form as the QPM-SHG transfer func-
tion derived neglecting dispersion beyond GVM.2,8

In Eq. (16) the factor d̂(V) is a transfer function that
relates the spectrum of the idler to the spectrum of the
signal. d̂(V) depends only on the dispersive properties of
the medium and the modulated nonlinear coefficient dis-
tribution, but not on any of the input-pulse parameters,
and hence can be viewed as a filter function acting on the
different spectral components of the signal pulse. This
transfer-function result is the basis for fairly general
pulse shaping with QPM gratings. Given the input sig-
nal pulse and the desired shaped idler pulse, the neces-
sary transfer function is obtained from Eq. (16) simply as
d̂(V) } Âi(L, V)/Âs* (2V), from which the desired distri-
bution of the nonlinear coefficient d(z) is obtained from
Eq. (17) with the inverse Fourier transform. Since d(z)
can be engineered by controlling the local duty cycle and
the local QPM period distribution of the grating,4,8 an
idler pulse of any desired shape can be obtained from a
given signal pulse. For example, a linearly chirped QPM
grating2,8 can be used to generate compressed idler pulses
from linearly chirped signal pulses.

The QPM-DFG transfer-function relation, Eq. (16), is
very similar to the QPM-SHG transfer function.2,8,9 The
important difference, however, is that in the SHG case
the spectrum of the shaped second harmonic, Â2(L, V), is
linearly related to the spectrum of the square of the first
harmonic (FH), A1

2̂(V) (Refs. 2, 8, and 9):

Â2~L, V! 5 D̂~V!A1
2̂~V!, (22)

where D̂(V) is the QPM-SHG transfer function. In con-
trast, the QPM-DFG transfer-function result, Eq. (16),
has the form of a linear filter in the frequency domain, re-
lating the spectrum of the shaped idler to the spectrum of
the seed signal. This distinction has a profound effect on
how GVD and higher-order dispersion of the nonlinear
medium can be accounted for in the design of the shaper.

In deriving the QPM-SHG transfer-function relation,
Eq. (22), we had to assume that GVD and higher-order
dispersion terms at the FH could be neglected, resulting
in the following expression for the QPM-SHG transfer

function D̂(V) (Refs. 2, 8, and 9):

D̂~V! 5 2igE
2`

1`

d~z !exp@2iDk~V!z#dz, (23)

where Dk(V) is the k vector mismatch for the SHG pro-
cess. If GVD and higher-order dispersion at the FH are
nonnegligible and included in the analysis, the expression
for Â2(L, V) has an integral form,8,9 more complicated
than a transfer-function result of Eq. (22), which did not
provide a ready way for the design of d(z) necessary for a
particular shaping function. Accounting for GVD and
higher-order dispersion at the FH in the design of a pulse
shaper is relatively complicated; the appropriate design
procedures were described in Ref. 9. On the contrary, in
the QPM-DFG case with a cw pump, the simple transfer-
function relation, Eq. (16), holds for arbitrary dispersion
at all the interacting wavelengths, as can be seen from
Eq. (18) or Eq. (20).

We note that Eq. (16) still holds if instead of a cw mono-
chromatic pump, which has a delta-function spectrum, a
pump wave with a sufficiently narrow spectrum is used.
In the time domain it corresponds to a long, compared
with the signal, pulse. More precisely, the pump pulse
length tp should be longer than the pump–signal group
delay accumulated in the crystal of a given length,
tp . udnspuL, where dnsp 5 1/us 2 1/up is the pump–
signal GVM parameter.

In the time domain the QPM-DFG pulse shaping relies
on a combination of two effects: spatial localization of
conversion and GVM between signal and idler pulses. A
particular frequency component of the signal mixes with
the pump to generate a corresponding idler frequency
component at spatial positions where the DFG process is
phase matched. Because of the GVM, this idler fre-
quency component undergoes a particular time delay
relative to the signal pulse, as observed at the output of
the grating. This time delay is determined by the GVM
parameter dnsi and the spatial position at which the idler
is generated, the former being a material property,
whereas the latter is defined by the grating design. This
time-domain picture can be derived from the definition of
the QPM-DFG transfer function, Eq. (21), which states
that for every frequency V, d̂(V) is obtained by summing
contributions from different sections of the QPM grating,
with phase delays determined by the longitudinal coordi-
nate z and the GVM parameter dnsi .

The maximum possible temporal window T (or the best
spectral resolution dV } 1/T) of the shaper is determined
by the length L of the device, T 5 dnsiL. We note that
the transfer-function relation, Eq. (16), predicts the
shaped idler spectrum but in principle does not set the
limit on the bandwidth of the generated idler. However,
since the QPM grating acts as a passive filter, not as an
amplifier, the bandwidth of the idler pulse cannot exceed
the bandwidth of the seed signal, at least not without pay-
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ing the price of significant efficiency reduction. There-
fore the shortest temporal feature of the shaped idler that
can be obtained, dt, is inversely related to the bandwidth,
DVs , available from the seed signal pulse, dt } 1/DVs ,
with the proportionality constant being of the order of
unity and its exact value depending on the shape of the
pulses.

The efficiency of a QPM-DFG shaper is a complicated
function of focusing, spectra of the pulses, and the par-
ticular shaping function used. For particular specific
cases it can be analyzed in the same manner as was pre-
sented in Ref. 8 for the QPM-SHG shaping case. For ex-
ample, we calculate the idler pulse energy in the case in
which the acceptance bandwidth of the QPM-DFG
shaper, DVg , is much narrower than the bandwidth of
the signal pulse DVs , i.e., DVg ! DVs . We assume that
a Gaussian signal pulse with full width at half-maximum
(FWHM) of ts is mixed with a top-hat pump pulse with
pulse length tp . We use the result of Eq. (15) and inte-
grate the idler spectral intensity over all frequencies; as-
suming optimum focusing,11 i.e., the pump and the signal
have equal confocal parameters chosen to generate a con-
focally focused idler, the idler pulse energy is then ob-
tained as

Ui 5
538
c«0

udu
n2dnsi

~ls 2 lp!3

~ls 1 lp!2ls
2lp

2

ts

tp
fUsUp , (24)

where f is the grating fill factor, and udu is related to
the intrinsic material nonlinearity deff as udu 5 (2/p)deff
for first-order QPM. For pump wavelength 780 nm,
signal wavelength 1.56 mm, and a QPM-DFG shaper on
a lithium niobate substrate operating in the type II
configuration to produce an orthogonally polarized
shaped idler pulse at the wavelength of 1.56 mm, the idler
pulse energy is obtained with Eq. (24) as Ui
5 7.2%/nJ (ts /tp)fUsUp . In comparison, the effi-
ciency for the QPM-SHG shaper pumped at 1.56 mm was
obtained in Ref. 8 as U2 5 265%/nJ fU1

2. As can be
seen, the QPM-DFG shaper suffers considerable efficiency
reduction compared with the QPM-SHG shaper. The
first reason for this efficiency reduction is intrinsic to the
QPM-DFG case ts /tp factor. The second is because the
QPM-DFG shaper considered operates in the wavelength-
degenerate type II configuration and hence uses lower
nonlinearity (deff 5 d31 5 4.3 pm/V, Ref. 12) compared
with the QPM-SHG shaper (deff 5 d33 5 27 pm/V, Ref.
12). For a wavelength nondegenerate case, type I DFG
configuration (deff 5 d33) can be used, resulting in a
higher efficiency: Ui 5 140%/nJ (ts /tp)fUsUp , where
we assumed a pump wave at 532 nm, a short signal pulse
at 800 nm, and a shaped idler at 1.59 mm.

We note that the analysis presented in this paper for a
particular QPM-DFG case, i.e., using a (quasi-) cw pump
wave, using a signal wave as a seed, and obtaining
shaped pulses at the idler wavelength, can be trivially
modified to describe any three-wave mixing process with
one of the waves (the seed pulse) mixed with the second
wave (a cw or quasi-cw wave) to generate a shaped pulse,
provided that the two input fields are undepleted or un-
amplified. For example, the theory presented describes a
single-pass idler generation process in a synchronously
pumped optical parametric oscillator assuming a low
single-pass gain, short pump pulse, and a narrow-band
resonated signal pulse (which can be achieved by insert-
ing a bandpass filter in the optical parametric oscillator
cavity). On the other hand, these assumptions are vio-
lated in the case of a high-gain optical parametric genera-
tion process; the presented theory cannot be applied in
that case.

3. EXPERIMENT
Using QPM to achieve phase matching in a type II con-
figuration was proposed previously13 and demonstrated
recently in periodically poled KTP.14 The advantage of
the type II configuration for QPM-DFG pulse shaping is
that it allows shaping of idler pulses at the same wave-
length as the seed signal pulses, but with orthogonal po-
larization. For a pump at a wavelength of 775 nm and a
signal at a wavelength of 1.55 mm the GVM coefficient
dnsi 5 0.26 ps/mm between orthogonally polarized signal
and idler is large enough to achieve the necessary group
delay in a device tens of millimeters long.

Here we describe an experiment with degenerate type
II DFG, pumped by a long top-hat pulse at 775 nm (Fig.
1). The pump laser was an amplified Er:fiber laser pro-
ducing 90-nJ, 600-fs pulses at 1.55 mm. The output of
this source was split into two arms.

In the first arm we generated the pump pulse for the
QPM-DFG shaper by SHG in a periodically poled lithium
niobate crystal whose length, 25 mm, was longer than the
walk-off length, 2.0 mm, between the fundamental and
the second harmonic (SH). The resulting SH pulse had a
top-hat shape and a length of tp 5 7.4 ps, which was
longer than the group delay of 6.8 ps between this pulse
and the seed signal pulse, accumulated in the shaper chip
of L 5 20 mm. The grating had a period of 168.75 mm
and was held at 118 °C to achieve 9th-QPM-order genera-
tion. The SH pulses had an energy of 6 nJ per pulse. To
generate this long pulse with a fairly flat intensity profile
in a simple uniform grating, the efficiency had to be kept
,10%. Consequently, a higher QPM order was used to
avoid overdriving the nonlinear process in the long crys-
tal of limited transverse aperture.

In the second arm, pulses from the amplified Er:fiber
laser were self-phase-modulated in a 50-cm-long fiber
with dispersion b2 5 1108 ps2/m. The output pulses of
14-nm bandwidth were compressed to ts 5 220 fs in a
grating compressor. The resulting signal pulses had an
energy of 5 nJ.

The pump and the signal beams (both polarized as or-
dinary waves) were recombined and focused through the
QPM-DFG shaper into spot sizes of 43 and 63 mm, respec-
tively. The shaped idler pulses (extraordinary wave)
were separated from the seed signal pulses with a polar-

Fig. 1. Experimental setup. SPM is the self-phase-modulating
fiber and GC is the grating compressor.
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izing beam splitter and then amplified in a zero-
dispersion fiber amplifier for temporal characterization
with an autocorrelator.

As examples of QPM-DFG shapers, we fabricated three
devices [henceforth labeled as (a), (b), and (c)] of length 20
mm on a single chip by electric-field poling of a lithium
niobate wafer.13 To achieve phase matching for type II
DFG, the QPM period of the shaper was selected to be
9.45 mm and the chip was held at 134 °C. The GVD pa-
rameters for signal and idler are calculated by use of pub-
lished Sellmeier data for the ordinary wave15 and the ex-
traordinary wave16 as b2s 5 112 fs2/mm and b2i
5 103 fs2/mm, respectively. The crystal length at which
GVD starts to play a significant role for 220-fs pulses is
Lb2 5 45 cm, which is substantially longer than the
length L 5 20 mm of the QPM-DFG shapers used in the
experiment. Hence no compensation for GVD and
higher-order dispersion was necessary in the design of the
shapers, and the simplified version of the transfer func-
tion, Eq. (21), was used for the analysis.

Device (a) was simply a uniform grating whose length
of 20 mm was much longer than the signal–idler walk-off
length Lgv 5 ts /dnsi 5 0.85 mm. The idler-pulse auto-
correlation trace [Fig. 2(a)] has a triangular profile which
implies a top-hat pulse. The FWHM of the trace (and the
pulse) is 5.1 ps, in agreement with the expected value of
dnsiL 5 5.2 ps. The generated shaped idler pulse had an
energy of 10 pJ, which gives lower than the ideal effi-
ciency (see Section 2) mainly because the focusing used in
experiment was not optimal.

Device (b) had six uniform grating segments of length
0.6 mm, alternating with 2.9-mm-long segments of un-
modulated material, where conversion was negligible.
Each grating segment generated a short pulse, since its
length was shorter than Lgv . Because of the group-
velocity walk-off effect, these pulses did not overlap at the
output. The idler autocorrelation trace [Fig. 2(b)] con-
sists of eleven pulses separated by DT 5 0.90 ps and has
a triangular envelope. Thus the pulse waveform has six
pulses of equal amplitudes. The length of an individual

Fig. 2. Autocorrelation traces of the shaped idler pulses: long
top-hat picosecond pulse, trace (a); train of six pulses of length of
approximately 200 fs, trace (b). Note that for clarity the traces
are offset vertically with respect to each other.
pulse is estimated from the trace as ;200 fs. The shaped
pulse had an energy of 1.2 pJ.

Device (c) was essentially identical to device (b) except
that alternate grating segments were shifted by exactly
one coherence length (half the QPM period) to generate
idler pulses with alternating phases. Because the inten-
sity autocorrelation loses phase information, the autocor-
relation trace for this device (not shown) was identical to
that of device (b). The difference between the pulse
trains produced by devices (b) and (c) is revealed in the
pulse spectra.

Figure 3 shows the spectra of the shaped idler pulses.
Device (a) produced a single narrow spectral peak, consis-
tent with a generated long pulse. Device (b) shows a se-
ries of spectral peaks, as expected for a train of coherent
pulses. The peak separation is determined by the tem-
poral separation between the pulses, DV 5 1/DT,
whereas the number of peaks is determined by the ratio
of a single pulse bandwidth to the peak separation. The
observed wavelength separation of ;9 nm agrees with the
expected value DV 5 1.1 ps21. Device (c) can be viewed
as obtained from device (b) by superimposing a phase-
reversal sequence with a period twice the separation be-
tween the grating segments. In the frequency domain
this modulation leads to each spectral peak splitting into
two peaks shifted by DV/2 with respect to the original
peak, which is exactly what we see by comparing spectra
(b) and (c). The slight wavelength shift of the spectrum
of device (a) relative to the spectra of devices (b) and (c) is
because the spectrum of the long pump pulse was not at
exactly half the wavelength of the seed pulse.

4. CONCLUSIONS
In conclusion, we demonstrated a new pulse-shaping
technique based on DFG with Fourier synthetic QPM
gratings. Clearly, this method can be extended to any
three-wave mixing processes such as mid-infrared DFG,
ultraviolet, and visible sum-frequency generation. Also

Fig. 3. Spectra of shaped idler pulses obtained with devices (a),
(b), and (c).
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shaping functions such as pulse compression and
matched filtering, and others such as have been demon-
strated with conventional shaping techniques,1 are pos-
sible.
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