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Pulse shortening in a Nd:glass laser by gain reshaping
and soliton formation
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We demonstrate that intracavity filtering and soliton formation in actively mode-locked lasers can lead to pulse
shortening by as much as a factor of 30. Pulses as short as 310 fs have been generated from a Nd:glass laser
that is mode locked only by an acousto-optic modulator.

Active mode locking (AML) of Nd:glass laser usu-
ally results in pulse trains with pulse lengths of
5 to 10 ps.1-3 We have generated pulses as short
as 310 fs from regeneratively actively mode-locked
Nd:phosphate and silicate lasers. Two techniques
are employed, net gain reshaping by a knife-edge,
which acts as an intracavity filter, and soliton for-
mation resulting from negative group-velocity dis-
persion (GVD) and self-phase modulation (SPM) in
the cavity. These AML results help to clarify the
recently observed passive mode-locking behavior of
Nd:glass lasers. 4' 5

The cavity design is equivalent to the setup used
in Ref. 4, except that the antiresonant Fabry-Perot
saturable absorber is replaced by an acousto-optic
modulator (AOM) (Fig. 1). The drive signal for the
AOM is generated from the pulse train itself, which
is referred to as regenerative AML.6 However, here
we use the term AML for simplicity.

The effect of net gain reshaping, i.e., gain minus
the frequency-dependent loss that is due to intracav-
ity filtering, is shown in Fig. 2. The measured fluo-
rescence curve (solid curve) of a quasi-homogeneously
broadened Nd:phosphate glass is proportional to the
saturated gain. Inserting the knife-edge (Fig. 1)
introduces a tunable long-pass wavelength filter,4

which flattens the net gain profile over a bandwidth
of approximately 10 nm (Fig. 2).

The Kuizenga-Siegman formula for AML,7 ne-
glecting SPM and GVD contributions, would predict
a pulse width of

T
a = FDg/M., Ta,FWHM - 21I X Ta,

where Dg = g/Qg2 is the gain dispersion, M, =
MCtWm2/2 is the modulator strength, g is the satu-
rated gain, M is the modulation depth, and Wtm iS

the modulation frequency. For a Lorentzian-shaped
gain profile, Qg is the HWHM linewidth. If the line
shape is of an arbitrary form, fQg represents an ef-
fective linewidth that corresponds to a Lorentzian
linewidth with the same peak curvature. After flat-
tening out the gain, we can estimate that the equiva-
lent linewidth fQg is increased by a factor of 5 to 10.
The AML pulse width would then be reduced from
10 ps (Nd:phosphate with fQg 2

7r X 4.0 X 10-12 S-1,

M = 0.01, and g = 0.01) by a factor of 3, as it scales
with the square root of the linewidth [Eq. (1)].

However, we observe much shorter pulses with the
Nd:phosphate laser. The autocorrelation and the
spectrum showed a transform-limited sech-shaped
pulse of only 310 fs (Fig. 3) when the knife-edge was
adjusted for optimum net gain reshaping. Without
gain reshaping the Nd:phosphate laser generates
only unstable picosecond pulses with strong wings
[similar to trace (a) of Fig. 3b of Ref. 4].

Using an inhomogeneously broadened Nd:silicate
glass as the gain medium in the same setup, we ob-
tained 330-fs-long pulses, but this time the knife-edge
was not necessary and did not help in the pulse short-
ening. For an ideal inhomogeneous gain medium the
saturated gain would be flat over the inhomogeneous
linewidth, assuming equally distributed spectroscopic
parameters. We confirmed this by observing that
the cw operation of the Nd:silicate laser consisted of
many longitudinal modes spread over a range of 8 to
10 nm. The mode-locking mechanism then merely
has to lock the already running frequencies together.

It is obvious that the AOM is too weak to shape
femtosecond pulses [Eq. (1)]. Haus and Silberberg8

investigated the effects of GVD and SPM on active
and passive mode locking. They found that both pro-
cesses together may lead to pulse shortening by as
much as a factor of 2.5 until instabilities arise. Here
we give a simplified explanation of why, for the case
of large enough negative GVD and SPM, pulse short-
ening can be much larger as a result of solitonlike
pulse shaping. A detailed analysis that employs soli-
ton perturbation theory will appear elsewhere.9

We model the actively mode-locked laser with GVD
and SPM by the master equation8

TR a A(T, t) = L -iD at2 + i6IA(T, t)12 ]A(T, t)

aT atF 2 1

+ [g - 1 + Dg - - q(t)jA(T, t), (2)

where A(T, t) is the slowly varying field envelope,
TR is the cavity round-trip time, D is the amount of
intracavity GVD, 8 is the nonlinear coefficient that
is due to SPM, 1 is the round-trip loss, q(t) = M[l -
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Fig. 1. Cavity design, a standard dispersion-compen-
sated delta cavity with a mode radius of 35 /-m X 55 am
inside the gain medium. PD, photodiode.
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Fig. 2. Gain reshaping by insertion of a knife-edge into
the laser beam between the two prisms (Fig. 1).

cos(womt)] is the loss modulation that is due to the
AOM, g is the saturated gain g = go/(1 + WIEL),
go is the unsaturated small-signal gain, EL is the
saturation energy of the gain medium, and W is the
pulse energy.

The first part of Eq. (2) is the nonlinear Schro-
dinger equation, which has the well-known funda-
mental soliton solution AS(T, t) = W/2T7 sech(t/7-)
exp(iFOT/TR), with (o0 = SW/4T = IDI/T2 , where the
FWHM pulse width is given by IFWHM = 1.76r and (Do
is the phase shift of the soliton per round trip in the
cavity. For the subpicosecond pulses that we have
observed in our AML experiment the first two terms
in Eq. (2) that are due to GVD and SPM are the domi-
nant effects, which affect the pulse parameters pulse
width and/or chirp on the order of 1% per round trip.
The remaining terms, i.e., the effect of the net gain
profile Dga2/at2 and the AOM modulation q(t), are
of the order of 0.01% (the AOM was operated off
resonance). Assuming the soliton solution, we can
derive the energy balance from Eq. (2), similar to the
soliton storage ring10:

g - 1 = Dg/(3T2) + MT' T 2/12. (3)

The soliton will saturate the gain until the steady-
state condition is reached, i.e., gain is equal to the
total losses per round trip.

In contrast to Ref. 10, where the authors were con-
cerned with the growth of the noise in the time inter-
val where no soliton is present, here we are concerned
with the growth of instabilities in the presence of a
soliton. Fortunately, one can show by soliton pertur-
bation theory9 that these two problems are similar.
This is not obvious, because it means that the cou-
pling of the soliton to the continuum, where instabil-
ities might grow, can be neglected. The dynamics of

the instabilities then can be studied by Eq. (2) with-
out SPM and with the gain saturated by the soliton.
This result is intuitive because the AOM and the gain
dispersion act as small perturbations on the soliton
that generate a continuum too weak to experience
SPM. Thus the stability requirement is that those
instabilities decay with time.

In analogy to AML theory,' 1 the eigensolution of
Eq. (2) without SPM that sees the most round-trip
gain is given by a complex Gaussian pulse10 a(t) =
exp(-Ft 2 ), where r = a - ib is a complex number.
The FWHM pulse width of this Gaussian pulse is
then given by r2 m = 2 ln 2/a. The complex Gauss-
ian is introduced in Eq. (2) without SPM, and this
gives us two equations for the case that the pulse
energy and the pulse shape are conserved per round
trip:

g, - I = 2Dga - 2bD,

1
r 2 T2 1 + iD '

(4)

(5)

where we have used Eq. (1) and Da = ID I/Dg as the
normalized dispersion. Equation (4) describes the
steady-state conditions for the Gaussian instability
pulses, where go is the round-trip gain required to
compensate for the losses. As the gain medium is
already saturated by the soliton in the cavity, the in-
stabilities experience the same saturated gain g of
Eq. (3). This Gaussian instability mode vanishes in
time when

g < g1. (6)

Combining Eqs. (3)-(5) and inequality (6) gives
us a relation for the minimum amount of nega-
tive GVD for stable solitonlike pulse formation,
,r.2r2 + r2 v2/(4Tr2) = 3 Rel1 + iDa, which is in agree-
ment with Ref. 9. In the asymptotic limit where
D, >> 1, this turns into

2 x3 (9 ko/2 )2
Dnmin= 2 x 9 MsDg (7)

This minimum amount of negative GVD is necessary
to spread the instabilities in time so they experience
more loss from the AOM than the soliton experiences
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Fig. 3. Noncollinear measured autocorrelation trace
fitted to an ideal sech2 pulse. The time-bandwidth
product is 0.32. Absorbed power 930 mW, output power
70 mW at 1% output coupling. Total cavity losses are
2%.

I '. I I I I I
Fluorescence spectrum
measured

Filter Loss 8, / | .r~j;;^*"*<, calculated
flattened net

.% ..' .v8;;4 of \ gain profile

-/ . :s., increasing
. knife insertion

I I 1' I-1 ----- --. I I



2148 OPTICS LETTERS / Vol. 19, No. 24 / December 15, 1994

, 1.4

xB 1.2

.0

negative GVD, fs
2

260 240 220 200

0.8 1.0 1.2 1.4

Prism Position, mm

180 160

1.6 1.8

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Fig. 4. Linear dependence of pulse width on intracavity
negative GVD as expected for a soliton.

from gain filtering. The stability criterion is valid in
particular for the Gaussian pulse that is the lowest-
order eigenstate of Eq. (2) without the SPM term.
Comparing the pulse width that we would expect in
a pure AML system [Eq. (1)] with that which is due
to soliton formation if sufficient GVD and SPM is
present, we find for the pulse width reduction factor
(using FWHM widths) that

1.66 D, D

1. 76 M 8 ~ / '

c 1.66 12 (9ko/2)2

1.76 DgMs

As stability is guaranteed only as long as Dn > Dnminm
as described in Eq. (7), we obtain a maximum reduc-
tion factor Rmax for Dn = Dn,mfi [inequality (8)].

This is in good agreement with the experimental
results, assuming 5 to 10 times net gain flattening,
which means that Dg is reduced by a factor of 102,
resulting in Rmax = 10. Therefore the FWHM pulse
width in the AML case (3 ps in Nd:glass if gain re-
shaping is applied) is reduced by Rmax, resulting in
.-300-fs-long pulses. Here we have used 00 = 0.01,
M 0.01, W9m = 2

1T X 240 x 106 S-1, g 0.01, and

fg = 10 X 27r X 4.0 THz.
To show further that we are dealing with a soliton

that is kept stable by the AOM and GVD against in-
stabilities, we used a shorter crystal to reduce SPM
and therefore to increase the pulse width to -1 ps.
Then we tuned the intracavity negative GVD by mov-
ing one of the prisms and observed a linear depen-
dence of the pulse width on GVD (Fig. 4), as expected
for a soliton. The time-bandwidth product always
stayed at 0.315, confirming that we have a sech2-
shaped soliton rather than a Gaussian pulse, which
we would expect in a pure AML experiment without
SPM and where the time-bandwidth product would
be at least 0.44.

Kerr-lens mode locking (KLM) did not contribute
to the experiment: The cavity was operated in the
middle of the stability regime rather than close to its
limits as is usually done with KLM lasers. In addi-
tion, mode locking occurred independently of the po-
sition of the gain medium. This we would not expect
in a KLM laser, because the Kerr lensing effect can
either enhance or suppress stable pulsing, depend-
ing on the gain medium position. Also, mode locking
was never observed to be self-sustaining after the rf
voltage of the AOM was turned off. Hard-aperture

KLM was shown not to be present in the Nd:silicate
experiment, for which no gain reshaping has to be
applied and therefore no hard aperture was used.

In conclusion, we have shown that soliton forma-
tion can lead to considerable pulse shortening, even in
an AML laser, beyond the limits found numerically.8

The mechanism is summarized as follows. For the
soliton, SPM and GVD are in balance, whereas the
continuum where instabilities can grow experiences
only GVD. Therefore, in contrast to the soliton, the
continuum is spread in time so that the AOM can
absorb it, which keeps the soliton stable. To reduce
the influence of gain filtering on the soliton in the
Nd:phosphate laser an intracavity filter had to be ap-
plied to flatten the net gain profile. With an inhomo-
geneously broadened Nd:silicate laser no intracavity
filter was required, because spectral hole burning ef-
fectively flattened the gain profile. In the passively
mode-locked Nd:glass laser demonstrated in Ref. 4
the same considerations now explain the buildup of
femtosecond pulses after the insertion of a knife-edge
acting as an intracavity filter. In that case the sat-
urable absorber (i.e., an antiresonant Fabry-Perot
saturable absorber) instead of the AOM stabilizes
the soliton. As a direct extension of this result, we
can show that a solitonlike pulse can also be stabi-
lized by a slow saturable absorber alone,12 i.e., the
relaxation time of the absorber can be much longer,
typically by a factor of 20, than the width of the
soliton. This implies that semiconductor saturable
absorbers with fast relaxation times near 100 fs
(thermalization time) can support pulses approach-
ing the 10-fs regime.
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