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Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case
of normal dispersion
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Time-localized solitary wave solutions of the one-dimensional complex Ginzburg-Landau equation~CGLE!
are analyzed for the case of normal group-velocity dispersion. Exact soliton solutions are found for both the
cubic and the quintic CGLE. The stability of these solutions is investigated numerically. The regions in the
parameter space in which stable pulselike solutions of the quintic CGLE exist are numerically determined.
These regions contain subspaces where analytical solutions may be found. An investigation of the role of
group-velocity dispersion changes in magnitude and sign on the spectral and temporal characteristics of the
stable pulse solutions is also carried out.@S1063-651X~97!10504-9#

PACS number~s!: 42.65.Tg, 42.25.Bs, 42.55.Wd
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I. INTRODUCTION

The emergence of stable spatiotemporal patterns in a
riety of physical situations may be modeled through the w
known complex Ginzburg-Landau equation~CGLE!. In the
simplest situation where a single transverse~or temporal!
coordinate is retained in the analysis, the CGLE reads@1#

icz1
D

2
c tt1ucu2c5 idc1 i eucu2c1 ibc tt1 imucu4c

2nucu4c. ~1!

The CGLE applies, for example, to describing self-pha
modulation of light in a dispersive medium~e.g., an optical
fiber!. In this case,t is a retarded time,z is the propagation
distance,d, b, e, m, and n are real constants~we do not
require them to be small!, c is a complex field and
D561 is the dispersion coefficient.

Many nonequilibrium phenomena, such as the genera
of spatiotemporal dissipative structures in lasers@2–4#, bi-
nary fluid convection@5,6#, phase transitions@7#, and soliton
propagation in optical fiber systems with linear and nonlin
gain and spectral filtering~such as communication links wit
lumped fast saturable absorbers@8–15# or fiber lasers with
additive-pulse mode-locking or nonlinear polarization ro
tion @1,16–27#!, may all be described by the CGLE.

For the specific case of the optical fiber mentioned abo
the physical meaning of these quantities is the followingc
is the complex envelope of the electric field,d is the linear
gain, b describes spectral filtering (b.0), e accounts for
nonlinear gain-absorption processes,m represents a higher
order correction to the nonlinear amplification or absorpti
and n is a possible higher-order correction term to t
intensity-dependent refractive index.
551063-651X/97/55~4!/4783~14!/$10.00
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Equation~1! is written in such a way that if the right-han
side of it is set to zero, then one is simply left with th
nonlinear Schro¨dinger equation~NLSE!. In the case of
anomalous dispersion (D511), the solitary wave solutions
of the CGLE and their stability have been analyzed in p
vious papers@28,29#. As is well known, in the anomalou
dispersion regime bright soliton solutions of the NLSE equ
tion exist. In this case, for relatively small values of th
various terms on the right-hand side of Eq.~1!, the solitary
wave solutions of the CGLE withD511 are close to the
usual NLSE solitons. As a consequence, in the anoma
dispersion regime it is possible to study the main proper
of the solitonlike solutions of Eq.~1! by applying the well-
developed soliton perturbation theory of the NLSE@30,31#.
This approach, however, cannot be used with normal dis
sion @i.e.,D521 in Eq. ~1!#, since in this case no solutio
of the NLSE in the form of a bright pulse exists. The que
tion then arises about the existence of any localized or br
pulse solution of the CGLE. If so, given that soliton pertu
bation theory is not applicable, it is then necessary to ch
acterize the bright pulse solutions of Eq.~1! with D521 by
means of direct analytical or numerical methods.

As a matter of fact, many physical systems described
the CGLE do indeed lead to the observation of stable pu
like solutions even in the case of normal group-velocity d
persion. For example, in soliton fiber lasers it has been
served that ultrashort~i.e., of the order of 100 fs! pulses are
formed and emitted also with a normal average cavity d
persion@20,21,32,33#. Not only the pulses in the normal dis
persion regime are as stable as in the case of anoma
dispersion: the observations also demonstrated that, whe
magnitude of the normal dispersion coefficient grows larg
a useful increase of the pulse energy results.

It is well known that, in the case of normal dispersio
without gain and loss, the balance of dispersion and non
earity can only support dark solitons. However, if, in add
4783 © 1997 The American Physical Society
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4784 55SOTO-CRESPO, AKHMEDIEV, AFANASJEV, AND WABNITZ
tion, one includes the balance of linear and nonlinear~cubic!
gain and loss, then bright solitary waves are possible eve
the normal dispersion regime: in fact, the analytical expr
sion for these chirped hyperbolic-secant profile pulses
known for quite a long time@34–36#. However, it is quite
easy to show that such solitary waves are unstable, unles
quintic nonlinear loss~or gain saturation! term is also in-
cluded. It appears that a comprehensive study of the cha
teristics and stability of the bright solitary wave solutions
Eq. ~1! has not been carried out. Thus we dedicate this w
to the above interesting task.

As was just mentioned, the case of the cubic CGLE w
extensively studied~see, e.g.,@34,37–39#! and its general
solution, i.e., a pulse with fixed amplitude, is well know
Quite recently, new types of solutions~namely, stable solu-
tions with arbitrary amplitude! were found numerically@40#
and analytically@28#. It turns out that such solutions als
exist for normal dispersion. However, as we shall disc
below, in this case such solutions are unstable.

The quintic CGLE was considered in a number of pub
cations using numerical simulations, perturbative analy
and analytic solutions. Perturbative analysis of the soliton
the quintic CGLE in the NLSE limit~i.e., for the anomalous
dispersion regime! was developed in@41–43#. The existence
of solitonlike solutions of the quintic CGLE in the case
subcritical bifurcations (e.0) was also numerically deter
mined @43,44#. More recently, the regions in the parame
space at which stable pulselike solutions exist were found
the case of anomalous dispersion in Ref.@29#. A qualitative
analysis of the transformation of the regions of existence
the pulselike solutions, when the coefficients on the rig
hand side change from zero to infinity, was done by Hak
Jakobsen, and Pomeau@42#. An analytic approach, based o
the reduction of Eq.~1! to a three-variable dynamical system
which allows one to obtain exact solutions for the quin
equation, was developed by van Saarloos and Honhen
@45,46#. However, no explicit solutions were given.

The mathematical treatment of the exact solutions of
quintic CGLE, using Painleve´ analysis and symbolic compu
tations, has appeared in the recent work by Marcq, Ch´,
and Conte@47#. The general approach, used in@47#, is the
reduction of the differential equation to a purely algebr
problem. Here we are using a simpler approach that
developed in@28# for the anomalous dispersion case. We fi
proceed by generalizing that approach to deal with arbitr
values of the dispersion coefficient. Then we analyze
stability of the various solutions, and finally seek for t
regions in the parameter space where stable pulselike s
tions exist. In this work we restrict our attention to the mo
relevant specific case for the optical applications; that is,
time-localized pulselike solutions of the CGLE.

The rest of the paper is organized as follows. The gen
ansatz and the analytical procedure are described in Se
Exact solutions of the cubic CGLE are described in Sec.
where we also study their stability. The quintic CGLE so
tions are obtained and analyzed in Sec. IV. These analy
treatments are done for an arbitrary value ofD. Stable solu-
tions are then numerically found in Sec. V, where we de
mine the regions in the parameter space where they exis
Sec. V, the numerical results deal with the caseD521. We
then lift this restriction in Sec. VI, where we analyze t
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effect of changing both the magnitude and sign of the d
persionD on the spectral and temporal characteristics of
stable pulse solutions of the CGLE, for a specific choice
the other parameters. We then discuss all the previous re
in Sec. VII. Finally, we summarize our conclusions in Se
VIII.

II. ANALYTICAL PROCEDURE

To find analytic solutions, we follow the procedure ou
lined in @28#, which we now generalize for any value of th
parameterD. We first consider the stationary solutions of E
~1! with zero transverse velocity. Traveling solutions f
b50 are considered in a special section. Hence we look
a solution of the form

c~ t,z!5a~ t !exp@ if~ t !#exp~2 ivz!, ~2!

wherev is a real constant, anda andf are real functions of
t. Assuming that

f~ t !5d ln@a~ t !#, ~3!

whered is the phase modulation parameter, known as ch
in nonlinear optics, and, after some cumbersome transfor
tions ~see Ref.@28#!, one obtains three algebraic equatio
relating the different parameters, and an ordinary differen
equation fora(t), namely,

n~4d12Dbd226Db!1m~8Dbd2d213!50, ~4!

v52
d~12d214Dbd!

2~d2Db1Dbd2!
, ~5!

d5d65
~316Deb!6A~316Deb!218~e22Db!2

2~e22Db!
,

~6!

a82

a2
1

2n

8bd2Dd213D
a41

2~2b2De!

3d~114b2!
a2

2
d

bd21Dd2b
50. ~7!

Equation~6! is an important result, it shows thatd can be
found in terms ofb ande only, and therefore its expressio
is the same for both the cubic and the quintic CGLE. T
coefficient in front ofa4 in Eq. ~7! can also be written in
another way, taking into account Eq.~4!,

2n

8bd2Dd213D
5

m

3b22Dd2bd2
. ~8!

In what follows, we consider the solitons of the cubic and t
quintic CGLE separately. In each section, we derive the a
lytical solution and then look for special cases and singul
ties.

Equation ~3! is, obviously, a restriction imposed o
f(t), because the phase modulation could have a more
eral functional dependence ont. However, this restriction
allows us to find some families of solutions in analytic
form. For the cubic case, our ansatz covers all pulselike



hi

oo

is
ys

e
te
o
d

er
ve
.e

e

d
t

w

es.
also

d
-
xed
r

55 4785PULSE SOLUTIONS OF THE CUBIC-QUINTIC . . .
lutions. In the quintic case, the solutions reported in t
paper are only those which can be represented in forms~2!
and ~3!.

III. SOLITONS OF THE CUBIC CGL EQUATION

A. Solitons with fixed amplitude

First, we consider the cubic CGLE, that is Eq.~1! with
n5m50. Then Eq.~7! has the solution

a~ t !5BCsech~Bt!, ~9!

where

C5S 3d~114b2!

2~2b2De! D
1/2

, B5S d

Dd2b1bd2D
1/2

, ~10!

and d is given by Eq.~6!, after choosing the plus~minus!
sign in front of the square root ifD is negative~positive!.
The second value ofd leads to an unphysical solution~see
Ref. @28# for details!, as the expression under the square r
for C becomes negative. Solution~9! has been found by
Pereira and Stenflo@34# ~see also@37–39#!. An important
feature of the solution~9! is that its amplitude and width
depend uniquely on the parameters of the equation. This
common property of the solutions of nonconservative s
tems. In other words, Eq.~9! is the solution with fixed am-
plitude.

Note that solution~9! depends on four parameters,d, b,
e, andD. Parameterd appears only in the expression forB
@see Eq.~10!#, so a variation ofd leads to a rescaling of th
soliton amplitude only. As in this paper we are interes
primarily in the normal dispersion case, we fix the value
the dispersionD521. So the further study is conducte
mainly on the (b,e) plane.

To find the range of existence of solution~9!, note that, on
the (b,e) plane, the denominator in the expression forB is
positive below the curveS given by

eS5b
3A114b22D

4118b2 , ~11!

and negative above it@see Fig. 1~a!#. Hence, for solution~9!
to exist, the valued must be positive below the curveS and
negative above it. As this solution exists almost everywh
on the (b,e) plane, we call it the general solution. The cur
S itself is the line where this solution becomes singular, i
its amplitudeBC tends to infinity, while the width 1/B van-
ishes.

We have found numerically, using the technique dev
oped in@48# ~see also Ref.@29# for more precise details!, that
all these solutions are unstable. Figure 1~b! shows the growth
rate of the most unstable eigenperturbation associate
each stationary solution forD521. The curves on the lef
are fore50.4 with b in the interval@0,1#, and those on the
right are forb50.1 with e in the interval@0,1#. The solid
lines are ford520.1, and the dashed lines ford520.2.
This figure shows the following:~i! the perturbation growth
s
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rate increases as eitherudu or b increases,~ii ! it decreases as
e increases~but the decline saturates fore.0.5), and~iii ! it
never goes to zero.

On the other hand, for positive linear amplification belo

FIG. 1. ~a! Line ~11! ~line S) on the plane (e,b) where the
solutions with fixed amplitudes~9! and ~24! become singular, and
where the classes of special solutions with arbitrary amplitude~12!
and~28! exist. This plot applies for both the cubic and quintic cas
The corresponding one for the case of anomalous dispersion is
shown by the dotted line for comparison. Above lineS, d must be
positive for solution~9! to exist, and negative below it. The dotte
line is lineS for D511 @28#. ~b! The growth rate of the predomi
nant perturbation eigenmode associated with the solution of fi
amplitude of the cubic CGLE~9!. The curves on the left are fo
e50.4 andb in the interval @0,1#, and those on the right for
b50.1 ande in the interval@0,1#. Solid lines are ford520.1, and
dashed ones ford520.2.
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4786 55SOTO-CRESPO, AKHMEDIEV, AFANASJEV, AND WABNITZ
the line S (d.0), the background state (c50) becomes
unstable. Accordingly, we numerically found that the corr
sponding perturbation growth rate is exactly equal tod, ex-
cept in the vicinity of the lineS, where it grows without
limit. If the initial conditions are close to the exact solutio
~9! andd!1, this instability develops slowly and the soliton
can propagate for distances up toz0;d21. Beyond that, ra-
diation waves, growing linearly from the noise, become a
preciable and can distort the soliton itself. However, in oth
problemsd can be large, soz0 is small. The general conclu-
sion is that either the soliton itself, or the background state
unstable at each point in the plane (e,b). This means that the
total solution is always unstable.

B. Solution with arbitrary amplitude

It is easy to see that solution~9! does not exist on line
S @Eq. ~11!#. However, if we also impose the condition
d50, a solution, valid only on line~11!, can be found:

a~ t !5GF sech~Gt!, ~12!

FIG. 2. The two possible types of evolution of a stationary s
lution of the cubic CGLE, as given by Eq.~16!, for G51 and
b50.5.
-

-
r

is
whereG is an arbitrary positive parameter, andd, v, and
F are given by

d5
A114b22D

2b
, ~13!

v52
~114b2!~A114b22D !

4b2 G252d
114b2

2b
G2,

~14!

-

FIG. 3. The relation between the parametersm and n on the
semiplane (e,b), for which the quintic CGL has analytic solutions
~a! The case of negative sign in Eq.~6!. ~b! The case of positive
sign in Eq. ~6!. The continuous lines represent the points (b,e)
wherem50, and the dashed lines those wheren50.
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F5S dA114b2

2e D 1/2

5F ~219b2!A114b2~A114b22D !

2b2~3A114b22D !
G 1/2. ~15!

Solution ~12! represents the arbitrary-amplitude soliton.
The reason for the existence of the arbitrary-amplitu

solutions is that, whend50, the cubic CGLE becomes in
variant relative to the scaling transformationc→Gc,
t→Gt, z→G2z. Hence, if we know a particular solution o
this equation, the whole family can be generated using
transformation. Note that all parameters of solution~12! ~ex-
ceptG) and the coefficiente are expressed in terms ofb.

We have found, from numerical simulations, that contr
ily to what happens in the anomalous dispersion regime@28#,
the class of arbitrary-amplitude solutions forD521 is un-
stable relative to small perturbations at any point of the l
S. Figure 2 shows the two possible ways of evolution
these solutions. As initial conditions, we used

~a! c~z50,t !51.001A~ t !,

~b! c~z50,t !50.999A~ t !, ~16!

where A(t) is the corresponding stationary solution„i.e.,
A(t)5a(t)exp@d ln„a(t)…#, with a(t) given by Eq.~12!… for
s
n

o

de
o

n
s

e

is

-

e
f

the following coefficients G51, D521, d50, and
b50.1 (⇒e50.308). The solution either grows withou
limit @see Fig. 2~a!# or decays, diminishing in amplitude an
increasing its width@see Fig. 2~b!#.

IV. SOLITONS OF THE QUINTIC CGL EQUATION

A. Relation between coefficients

The soliton solutions of the quintic CGLE exist for a wid
range of values of the coefficientsb, e, m, andn. Ansatz~3!
is the condition that restricts this range by imposing the
lation @Eq. ~4!# on them. Using Eq.~6!, this relation can be
rewritten as a linear equation ind:

nF12eb214e22Db

e22Db
d22DbG

1mF2Deb216b223

e22Db
d11G50. ~17!

We can also eliminated completely from Eqs.~4! and~6! to
obtain the following relation fore:

e5
4Dbm2130mn1120b2mn14Dbn263U

2m2112Dbmn132n21108b2n2
, ~18!

where
U5A~m22Dbn!2~3m2116b2m214Dbmn14n2112b2n2!. ~19!
li-
This expression gives the relation between the coefficient
an explicit form. In contrast to the cubic equation, the ge
eral solution exists for both signs in expression~6! for d.

Now we consider the zero ofm andn in the (b,e) plane.
m has to be zero on the lines~solid ones in Fig. 3 for
D521)

e5Db
163A113b2

8127b2 ~20!

for d5d6 , respectively, andn becomes zero on the tw
lines @the dashed lines in Fig. 3~b! for D521# defined by

e563A16b21324Db, ~21!

both for d5d1 . The value of the productmn changes sign
on these lines~see Fig. 3!. These conclusions can be ma
more specific when we consider more particular regions
existence of these solutions.

In what follows, we consider solutions which exist whe
at least one of the coefficientsm or n is nonzero, and expres
the solutions in terms ofb, e, and n. Using Eq. ~8!, the
solutions can alternatively be expressed in terms ofb, e,
andm.
in
-

f

B. Solutions with fixed amplitude

By using the substitutionf5a2 we can rewrite Eq.~7! in
the form

f 82

f 2
1

8n

8bd2Dd213D
f 21

8~2b2De!

3d~114b2!
f2

4d

Dd2b1bd2

50. ~22!

This is an elliptic-type differential equation. Bounded so
tonlike solutions exist only if

4d

Dd2b1bd2
.0. ~23!

The positive solution of Eq.~22! is @49#

f ~ t !5
2 f 1f 2

~ f 11 f 2!2~ f 12 f 2!cosh~2aAf 1u f 2ut !
, ~24!

where

a5S U 2n

8bd2Dd213D U D 1/25S U m

3b22Dd2bd2 U D
1/2

,

~25!

and f 1 and f 2 are given by
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f 1,25

2~2b2De!6S ~2b2De!21
18dd2n~114b2!2

~8bd2Dd213D !~Dd2b1bd2! D
1/2

6dn~114b2!
~8bd2Dd213D !. ~26!

On the line~21!, this expression must be replaced by

f 1,25

2~2b2De!6S ~2b2De!21
9 dd2m~114b2!2

~3b22Dd2bd2!~Dd2b1bd2! D
1/2

3dm~114b2!
~3b22Dd2bd2!. ~27!
-
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The soliton solution~24! exists for both signs in expres
sion ~6! for d. The range of existence in the (b,e,m,n,D)
parameter space is restricted by the relation@Eq. ~4!#, which
is a consequence of ansatz~3!. In addition, relation~23! must
be satisfied, and one off 1,2 must be positive. Taking into
account these two conditions, the region of existence of th
solutions can be obtained.

As an illustrative example, Fig. 4 shows different curv
which delimit the region of allowed values of the paramet
(b,e), where the solution exists for given values ofn, d, and
D521. The solid lines are ford520.1, and the dashe
ones ford50.1. In Fig. 4~a!, n50.1, and no solution is then
found ford5d2 . In Fig. 4~b!, n520.1, and there are solu
tions for both values ofd. The arrows indicate if the solu
tions exist above or below the corresponding curve.

As in the cubic case, we performed a detailed linear s
bility analysis of these solutions. The results of this study
D521 are summarized in Fig. 5. Here we considered
cases withb50.5, n560.1, andd560.1. Other values of
the parameters produced similar results. The figures show
growth rate of the most unstable perturbation associated
each solution given by Eq.~24!. The continuous lines are fo
the cases whend520.1, and the dashed lines ford50.1.

In Fig. 5~a!, n520.1 andd5d1 , and both thex andy
scales are linear. This figure shows that for positived the
perturbation growth rate is exactly equal tod; that is, their
instability has its origin solely in the instability of the un
form backgroundc50, while the pulse itself is stable. O
the other hand, for negatived, the growth rate become
closer to zero as we move to its smallest allowed value. T
happens whenf 1 becomes close tof 2. The solution then has
an amplitude profile with a flat top~see Sec. IV G!. This
behavior resembles that observed for the case of anoma
dispersion.

The curves shown in Fig. 5~b! are similar to that obtained
for the general solution of the cubic CGLE. This can
expected, as this solution can be obtained from that of
quintic one when we maken→01. As in the previous case
for positive d the growth rate is equal tod almost in the
whole interval, that is, its instability has its origin in th
uniform background.

Figure 5~c! shows that the solutions obtained by taki
d5d2 are, in general, much more unstable than those
tained ford5d1 . Again, for positived, we obtain an inter-
val of values ofe where the growth rate is equal tod. Note
that in Figs. 5~a! and 5~b! we used a logarithmic scale in th
y axis. As commented upon in Fig. 4~a!, no solution exists
for positiven whend5d2 .
se

s

-
r
e
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th
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us

e
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The general conclusion from the above stability analy
is that, although an exact solution~24! to the quintic CGLE
can be found when a specific relation between the parame
@Eq. ~4!# is satisfied, all of them are unstable. An excepti
appears in the vicinity of the boundary that separates pu
from pairs of fronts. The perturbation growth rate of the
soliton solutions falls to zero when we tend to this lim
These stable solutions have a flat top. They exist and
stable for both values of the dispersion parameter.

C. Singularity at n˜02

Whenn is negative, one of the solutions has a singul
ity at n→02. The value (2b2De)/d must be positive and
finite. Then f 2 has the limit @3dd(114b2)#/
@2(Dd2b1bd2)(2b2De)2#, and f 1 goes to infinity as
@2(e12b)(8bd1d223)#/@3dn(114b2)#, and so the
soliton amplitude goes to infinity. The singularity does n
occur when n→01. The second solution in the limi
n→01 coincides with solution~9!, which applies in the case
of the cubic CGLE. Clearly, this singularity is trivial and
not related to any solution.

D. Solution with arbitrary amplitude

Another singularity appears whend50 and Dd
2b1bd250. This last occurs on the same lineS in the
(b,e) plane as in the cubic case@see Eq.~11!#. Then, a class
of solutions with arbitrary amplitude exists,

f ~ t !5
3d~114b2!P

~2b2De!1Scosh~2APt!
, ~28!

whereP is an arbitrary positive parameter and

S5S ~2b2De!21
18d2n~114b2!2

~8bd2Dd213D !
PD 1/2. ~29!

The valuesd andv are given by

d5
A114b22D

2b
, ~30!

v52d
114b2

2b
P. ~31!
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As for the cubic case, we found, from numerical simulatio
that in the normal dispersion regime (D521) this class of
solutions is unstable at any point of the special lineS and for
anyP in Eq. ~28!.

E. Flat-top solitons

The soliton ~24! becomes wider and flatter as the tw
positive f 1,2 approach each other. Whenf 15 f 2, the soliton
splits into two fronts with zero velocity. Each of them can
written in the form~we ignore the translations alongt)

f ~ t !5
f 1

11exp~6a f 1t !
, ~32!

FIG. 4. Curves delimiting the regions on the (b,e) plane where
the stationary solution given by Eq.~27! exists. The continuous
lines are ford520.1 and the dashed lines ford50.1. In ~a!,
n50.1, and no solutions exist when takingd5d2 . ~b! n50.1. The
arrows indicate if the solution exists above or below the curves
,

where

f 15
~e22Db!~8bd2Dd213D !

6dn~114b2!
, ~33!

and the sign in Eq.~32! determines the orientation of th
front. f 1 and f 2 become identical when:

~2b2De!252
18dnd2~114b2!2

~Dd2b1bd2!~8bd2Dd213D !
.

~34!

FIG. 5. The perturbation growth rate of the fixed amplitu
solutions forb50.5 andd560.1. In ~a! n520.1, andd5d1 . In
~b!, n50.1, andd5d1 . In ~c!, n520.1, andd5d2 . The continu-
ous lines are ford520.1, and the dashed lines ford50.1.
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This condition involves all the parameters of the equati
Depending ond andn, it can exist at any point of the plan
(e,b). The top of the soliton becomes flatter as the ro
become closer to each other, and as indicated in Fig. 5~a! the
solution becomes more and more stable.

If f 15 f 2 exactly, the width of the pulse goes to infinit
and the pulse decomposes into two fronts. Note that, in
region of nonzero intensity, the soliton phasef(t) tends to a
constant value exponentially. So, if we combine the t
fronts, Eq.~32!, with opposite orientations, to form a wide
rectangular pulse of finite width, the influence of each fro
on the other is exponentially small. In other words, the t
fronts, Eq. ~32!, can join together without any domai
boundary between them~cf. @46#!.

Pulses and fronts have usually been considered as di
ent solutions of the CGLE@45–47#. Our results show tha
they can be transformed into each other by changing
parameters of the system. Moreover, our results give, at l
partly, the range of parameters where we can expect sm
transitions from solitons to fronts. Stable stationary flat-t
pulses have been observed experimentally in binary fl
convection@5#.

F. Algebraic solution

If d50 and (b,e) is not located on line~11!, then
v50, and eitherf 1 or f 2 ~say f 2) becomes zero. Thenf 1 is

f 15
~e22Db!~8bd2Dd213D !

3dn~114b2!
. ~35!

Equation~22! can then be written in the form

f 8214k0@ f2 f 1# f
350, ~36!

wherek052n/(8bd2Dd213D). The solution to this equa
tion is a Lorentz function,

f ~ t !5
f 1

11k0f 1
2t2

. ~37!

The valuesf 1 and k0 must be positive, which restricts th
allowed values of the coefficients of the equation for t
solution to exist.

The algebraic soliton is unstable for the full range of t
parameters where it exists. It represents a special, we
localized limit of the solution with fixed amplitude~24!.
Note that algebraic solitons exist, and play an important r
in other integrable and nonintegrable systems, including
NLSE @49#.

G. Traveling pulses

If b50, then solitons with nonzero velocity~traveling
solitons! become possible. These solutions can be obtai
using a simple transformation, because, forb50, Eq.~1! has
an additional symmetry, namely, it is invariant relative to t
Galilean transformation. As a result, traveling pulselike
lutions can be obtained from zero-velocity ones using
transformation
.

s

e

t

r-

e
st
th
p
id

ly

,
e

d

-
e

c8~z,t !5c~z,t2Dvz!expS ivt2 iD
v2

2
zD . ~38!

Hence we can use the fixed amplitude solution of S
IV B, put b50, and use transformation~38! to get the whole
family of traveling pulses. Note that all the analysis of Se
IV B is valid in this case. The critical points ine are the
intersections of the special lines in Figs. 1 and 4 with t
vertical axis,b50. This last example completes the clas
fication of possible pulselike analytic solutions for Eq.~1!.

V. REGIONS IN PARAMETER SPACE
WHERE STABLE PULSES EXIST

In this section we obtain numerically the values of t
coefficients (d,b,e,m,n) of the quintic CGLE~subspace of
the parameter-space! for which stable pulses exist. We fin
stable pulses in a certain region of parameters, and com
it with the region of a lower dimensionality where the an
lytical solutions given by Eq.~24! exist.

From a practical point of view, the knowledge of the p
rameter space where we can have stable pulse propagati
of crucial importance. In addition, one can expect unus
propagation dynamics around the boundaries of the regio
existence of stable pulses. For the case of anomalous dis
sion, we discovered the existence of composite pulses
moving pulses near the upper boundary@50#. However, in
this paper we look only for plain pulses.

Let us first fix some limits in the parameter space
which to look for stable pulses. The parameterb clearly
must be non-negative, in order to stabilize the soliton in
frequency domain. The linear gain coefficientd must be zero
or negative to provide the stability of the background. W
choosem,0 to stabilize the pulse against the collapse. T
parametern can have either sign.

Taking these restrictions into account, we have num
cally found stable solutions following the method describ
in Ref. @29#. Figure 6 shows three examples forD521 of
the soliton solutions found by using the above-referen
method.

In the same way we were able to construct the wh
region in the parameter space where a stable propagatio
bounded solutions is possible. Figures 7~a! and 7~b! show the
areas in the (b,e) plane were soliton solutions were nume
cally found for n520.1 and20.01, respectively. In both
casesD521, d520.1, andm520.1. The lower curve
~dashed line! represents lineS, and it is plotted to allow us to
make some comparisons with the conclusions which we
tained concerning the analytic solutions. First of all, let
notice that the region of stable pulses is always above
S, and that the lower boundary of the stability region~solid
line! is approximately parallel to lineS. The distance be-
tween this lower boundary and lineS depends ond, m, and
n. For smallm, n, andd this distance is small. For given
values ofn and d the filled regions become wider asumu
increases, and its lower boundary becomes higher. For g
values ofn andm the lower boundary approaches lineS as
d goes to zero. We may expect that at zerod line Swould be
the onset of instability. We also notice that the region
stable pulses in the parameter space starts at finite value
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b. We suppose that stable pulses do not exist in the limit
b→0.

The upper boundary of the region of stable pulses in
(e,b) plane corresponds to the transition from pulses
fronts @50#. Thus the solutions close to the upper bounda
can be considered to be composed of two fronts. Examp
of pulse solutions for the three different points of the shad
region designated in Fig. 7~b! by circles are shown in Fig.
7~c!. The lower boundary of the region of stable pulses c
responds to the limit when the gain is not enough to co
pensate for the losses. Below this boundary all pulses de
Three examples of stationary pulses for the parameters
cated close to the lower boundary are shown in Fig. 7~d!
@pointsd, e, and f in Fig. 7~b!#.

We now consider other planes in the parameter sp
where we found stable pulselike solutions. Figure 8 sho
the region of stable pulses in the plane (n,e) for fixed values
of m, d, andb as written in the figure. The plot shows tha
the width of the stripe in Fig. 7 increases largely asn in-
creases. The dashed line in Fig. 8 shows where the e
analytical solutions are located for the same set of para
eters. Interestingly enough, this line is also almost paralle
the upper border of the area of stable pulses, but loca
some distance from it. This shows that the analytical so

FIG. 6. Numerically found soliton solutions for~a! amplitude
profile ucu. ~b! Phase profile arg(c).
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tions are beyond that region and therefore, in total agreem
with the stability analysis, unstable. White circles inside t
filled region show the points corresponding to the numeri
solutions of Fig. 6. These examples, together with those p
sented in Fig. 7~c!, show that the upper boundary of th
region of stable pulses corresponds to the transition fr
pulses to fronts.

It is also interesting to study how the region of stab
pulses depends ond. Figure 9 shows this dependence f
fixed values ofm, n, andb. Specifically,n5m520.1 and
b520.5. The filled area corresponds toD521, and the
hatched area toD51. As the linear loss decreases, the int
val of allowed values ofe increases. The central value of th
interval increases asd increases. This means that the larg
linear losses must be compensated~provided that other pa-
rameters are constant! for by the increased third-order non
linear gain. For the above values ofn, m, andb, Eq. ~4!
gives e51 for D51 ande50.677 forD521. This value
is, as expected, above the filled or hatched region. Figu
also shows that for the same set of parameters the regio
existence of stable solutions is larger in the case of ano
lous dispersion than in the case of normal dispersion. T
difference decreases as the nonconservative parameter
come greater.

Figure 10~a! shows the region of stable pulses in the pla
(m,e) for D521, and fixed values ofn, d, andb written in
the figure. Asumu increases, the interval of allowed values
e becomes wider, and its central value larger. This last
servation can also be expected, as it indicates that la
fifth-order nonlinear losses must be compensated for by
increasing third-order nonlinear gain. The width of the stri

FIG. 7. ~a! and ~b! Regions in the (b-e) plane where stable
pulselike solutions are found forD521, m520.1,d520.1, and
~a! n520.1 and~b! n520.01. These regions are located abo
line S ~dashed line!. ~c! and~d! Pulse profiles of six of these stabl
solutions located near the boundary in~b!, as labeled therein.
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becomes infinitesimally small atm'20.06. The dashed line
represents the points where the exact analytical solutio
are located for the chosen values of (d,n,b)
5(20.1,20.1,0.5). Again, it can be seen that they are out
the region of stable pulses. However, in this case the dista
between the region of stable pulses and the exact analyt

FIG. 8. Region in the plane (n,e) where stable pulses are pos
sible forD521, b50.5, andm5d520.1. The dashed line rep-
resents the points where the analytical solution given by Eq.~24!
exists. The open circles show the location of the stable solutio
represented in Fig. 6.

FIG. 9. Region in the plane (d,e) where stable pulses are pos
sible.b50.5, andn5m520.1. The filled area is forD521, and
the hatched region forD51. For these parameters, the analytica
solution exists ate51 for D51, and ate50.677 forD521.
ns

f
ce
al

solutions increases withumu, and goes to zero at
m→20.04. The instability growth rate of the correspondin
analytical solution for this value ofm becomes neglectable
As expected from the stability analysis, this solution corr
sponds to a flat-top soliton. The example of propagation
the soliton at this point is shown in Fig. 10~b!.

The imaginary part of the quintic term is essential for th
existence of stable pulses. From Fig. 8, it follows that stab
solutions exist forn50. This is also true for positiveD. On
the other hand, Fig. 9 indicates thatm must have a finite
negative value in order to stabilize the solutions. This min
mal value depends on the values of other parameters.
n50, and typical values for (b,d)5(0.5,20.1), we calcu-
lated the interval of values ofe at small umu where we can
find stable solutions. The results are shown in Fig. 11~a!. No

s

l

FIG. 10. ~a! Region in the plane (m,e) where stable pulses are
found.D521, b50.5, andn5d520.1. The dashed line repre-
sents the points where the analytical solution exists.~b! Stable
propagation of the analytical solution~flat top soliton!, for the val-
ues of the parameters shown in~a! by a filled circle.
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solution is found ifm is exactly equal to zero, but there a
solutions in a given interval of values ofe for any value of
negativem, no matter how small its modulus is. The pe
amplitude of the pulse diverges asm tends to 02. This is
shown in Fig. 11~b!, where we have represented the pe
amplitude for the solutions obtained whene50.6 @horizontal
line in Fig. 11~a!#. The continuous line is forD521, the
dashed line is forD51, and the dotted line corresponds
the cw case, i.e., the amplitude obtained from the solution
the equation

d1euACWu21muACWu450. ~39!

FIG. 11. ~a! Region in the plane (m,e) where stable pulses ar
found.D521, b50.5,n50, andd520.1. ~b! Peak amplitude of
the stable solution for the following parameters:b50.5, n50,
d520.1, and e50.6. The continuous line is forD521, the
dashed line is forD51, and the dotted line represents the cw s
lution.
k

f

VI. ROLE OF GROUP-VELOCITY DISPERSION

In order to establish a direct connection with experimen
observations in physical systems that are describable
terms of the CGLE~e.g., a fiber laser@32,33#!, in this section
we present an example of the temporal and spectral cha
terization of the stable pulse solutions of Eq.~1!. Such solu-
tions ~say,cs) are obtained by means of the direct numeric
integration of Eq.~1!: we evaluate the pulse parameters af
that the numerically propagated pulse has relaxed its tem
ral and spectral width to its asymptotic values@this typically
requires a propagation over a distancez.50 in Eq.~1!#.

So far, in this work we considered the group-velocity d
persionD as a fixed parameter, that is, we setD521 ~1! for
the normal~anomalous! dispersion case. However, in a fibe
laser the average cavity dispersion can be easily tuned
example, by changing the length of two fiber sections w
opposite signs of the dispersion. Recent experiments wi
‘‘stretched-pulse laser’’ have shown, for example, that

FIG. 12. Dependence on the dispersion coefficientD of ~a! the
temporal widthDt, and ~b! the spectral widthDv of the stable
pulses, forb50.5, d520.01,m520.05, andn50, for different
values of the nonlinear gain coefficiente.
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energy of the chirped pulses which are emitted from the la
grows considerably larger whenever the dispersion is c
tinuously tuned from the anomalous to the normal regi
@33#.

In Figs. 12–14 we display the characteristics of the sta
pulse solutions of the CGLE~1!, as functions of the disper
sion coefficientD, for different values of the parametere.
Here the nonlinear gain varies frome50.7 ~solid curves! to
e51 ~dashed curve!, e51.25 ~dot-dashed curve!, and
e51.5 ~dotted curve!. For simplicity, we restricted our atten
tion to the specific case where all other parameters in Eq~1!
are fixed, i.e., we setb50.5, d520.01, m520.05, and
n50. We define the temporal widthDt as

Dt[A^t2&2^t&2, ~40!

where

^tn&[
* tnucsu2dt
* ucsu2dt

, n51,2, . . . , ~41!

and similarly for the spectral widthDv. Figure 12~a! shows
that the pulse widthDt is almost constant for positiveD ’s,
whereas it grows rapidly larger in the normal dispersion
gime: pulses about five times longer are obtained whenD
switches fromD511 to D521. The increase of the non
linear gain coefficiente has opposite effects on the puls
width in the two dispersion regimes: larger nonlinear ga
lead to longer~shorter! pulses in the case of normal~anoma-
lous! dispersion, respectively. On the other hand, Fig. 12~b!
shows that the spectral width of the stable solitary pul
reaches a maximum whenever the dispersionD takes small
negative values. Whereas the spectral width~hence the chirp!
is reduced as the absolute value of the dispersionD grows
larger, irrespective of its sign. Moreover, Fig. 12~b! also
shows that larger values of the nonlinear gain coefficiene

FIG. 13. Dependence on the dispersion coefficientD of the
time-bandwidth productDtDv of the stable pulses, for the sam
parameters as in Fig. 12.
er
n-
e

le

-
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lead to a spectral broadening which is mostly due to an
hanced chirping rather than to temporal compression of
pulses@see Fig. 12~a!#.

In fact, the contribution of chirping to the spectral wid
of the solitary wave solutions of Eq.~1! is well displayed by
the plots of Fig. 13, where we show the variation withD of
the time-bandwidth productDtDv. As can be seen, in the
anomalous dispersion regimeDtDv grows from 0.5~0.6! up
to 0.7 ~1! for e50.7 (1.5). In the normal dispersion regim
DtDv exhibits an exponential growth which reveals the o
currence of strong pulse chirping. Note that this chirp may
exploited in practice for achieving pulses that are stron
compressed in time, if, for example, the pulses from a fi
laser with an average normal dispersion are injected in a fi
lead with anomalous group-velocity dispersion@33#.

Two other important characteristics of the stable pu
solutions of the CGLE are illustrated in Fig. 14, where w
show theD dependence of their peak amplitude@Fig. 14~a!#
and energyE[* ucsu2dt @Fig. 14~b!#. As can be seen, for a

FIG. 14. Dependence on the dispersion coefficientD of ~a! the
peak amplitude and~b! the energy of the stable pulses.
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given value of the nonlinear gain parametere, the peak am-
plitude is nearly independent of the group-velocity disp
sion, whereas the amplitude grows monotonically with
absolute value ofe. On the other hand, the pulse energy
almost constant with respect toD for D.0, and it grows
exponentially larger as soon as decreases below zero.

VII. DISCUSSION

In the above analysis, we found pulselike solutions of
cubic and quintic CGLE for both anomalous and normal d
persion cases. All solutions are written in explicit form
terms of the parameters of the CGLE. Two different clas
of solutions exist: solutions with fixed amplitude and so
tions with arbitrary amplitude. The arbitrary-amplitude so
tons exist on special lines in the parameter space where
lutions with fixed amplitude become singular. However,
occurs that in the case of normal dispersion these solut
are always unstable, whereas they are stable for anoma
dispersion.

For the cubic case, our solutions cover all possible pul
including solitons with fixed amplitude and the class of
bitrary amplitude solitons. In the quintic case, the solut
can be explicitly written in a subspace of the full space of
coefficients of a lower dimensionality. This is a conseque
of using ansatz~3!. This subspace is described by Eq.~18!.
One of the ways to step out beyond the limitations of E
~18! would be the development of a perturbation theory
ing our set of solutions as unperturbed solutions.

The results of our work can be applied to different phy
cal problems. These days, the most promising areas w
the solutions of CGLE can give insight are optical teleco
munications and laser physics. Consequently, here we
cuss only the use of solutions in this important general a
leaving aside other possible applications.

The cubic CGLE is a good model for describing optic
transmission systems with guiding filters@8,9#. The use of
nonlinear gain (e.0) in these systems allows the reducti
or suppression of the growth of linear radiation@12,14,40#.
The present results show, in particular, that stronger spe
filtering (b;1) than what has been considered before~b!1!
can be used in these systems. In this case Eq.~11!, derived
here, gives the instability threshold. The propagation d
tance of ‘‘stable’’ pulses in the normal dispersion regime
limited by the instability of the background. Therefor
strictly speaking, all solutions of the cubic CGLE in the no
mal dispersion regime are unstable. As a consequenc
ik,
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order to describe stable pulse formation in fiber laser syst
properly, it is necessary to introduce higher-order nonlin
terms~or frequency sliding as discussed in Ref.@32#!.

As a physical system which is described by the quin
CGLE one may consider, as we mentioned above, a sol
fiber laser with nonlinear polarization-dependent los
~which is equivalent to fast saturable absorption act
@1,12,19#!. In this case, the time-localized pulse is suppor
by the nonlinear gain, and loses energy due to three effe
spectral filtering, linear losses, and the quintic stabilizi
term. However, even a small linear loss is enough to keep
background state stable. So a stable stationary soliton s
may be formed as a result of the balance between nonlin
gain, spectral filtering, and the quintic stabilizing term. It
quite remarkable that, in the normal dispersion regime,
stable solutions of the cubic-quintic CGLE exhibit an impo
tant qualitative agreement with the experimental observa
of a nearly exponential growth of the pulse energy with t
absolute value of the average dispersion@33#.

The knowledge of the regions of stability is vital for th
proper operation of a fiber laser. Numerical results as th
obtained in this work may provide a rough estimate of t
characteristics of the pulses which are emitted from the la
as the various parameters~i.e., bandwidth of the intracavity
filter, polarization controllers setting, average cavity disp
sion! are adjusted.

VIII. CONCLUSION

In conclusion, we found pulselike solutions of both th
cubic and quintic CGLE in a generalized form, which
valid for both the anomalous and the normal dispersion
gimes. We studied their stability through a linear stabil
analysis, and found that they are in general unstable. For
quintic equation we found regions in parameter space wh
the pulselike solutions are stable. A comparison of the ch
acteristics of the generated pulses as a function of the m
nitude and sign of the group-velocity dispersion was a
made. Finally, the connection of the present analysis with
available experimental results was discussed.
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