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Time-localized solitary wave solutions of the one-dimensional complex Ginzburg-Landau eq@@bE)
are analyzed for the case of normal group-velocity dispersion. Exact soliton solutions are found for both the
cubic and the quintic CGLE. The stability of these solutions is investigated numerically. The regions in the
parameter space in which stable pulselike solutions of the quintic CGLE exist are numerically determined.
These regions contain subspaces where analytical solutions may be found. An investigation of the role of
group-velocity dispersion changes in magnitude and sign on the spectral and temporal characteristics of the
stable pulse solutions is also carried d81063-651X97)10504-9

PACS numbgs): 42.65.Tg, 42.25.Bs, 42.55.wd

[. INTRODUCTION Equation(1) is written in such a way that if the right-hand
side of it is set to zero, then one is simply left with the
The emergence of stable spatiotemporal patterns in a vaonlinear Schrdinger equation(NLSE). In the case of
riety of physical situations may be modeled through the well-anomalous dispersiord(= + 1), the solitary wave solutions
known complex Ginzburg-Landau equati@@GLE). In the  of the CGLE and their stability have been analyzed in pre-
simplest situation where a single transverse temporal  vious paperd28,29. As is well known, in the anomalous
coordinate is retained in the analysis, the CGLE rddds dispersion regime bright soliton solutions of the NLSE equa-
tion exist. In this case, for relatively small values of the
various terms on the right-hand side of Ef)), the solitary

D . .
i, + Ez//nJrIz//IZz,/f:i5¢+if|l//|2¢+i5¢n+iﬂllﬁ|4¢ wave solutions pf the CGLE witld=+1 are close to the
usual NLSE solitons. As a consequence, in the anomalous
— |4y (1) dispersion regime it is possible to study the main properties

of the solitonlike solutions of Eq1) by applying the well-
developed soliton perturbation theory of the NLEID,31].

The CGLE applies, for example, to describing self-phaseThis approach, however, cannot be used with normal disper-
modulation of light in a dispersive mediufe.g., an optical sion[i.e., D=—1 in Eg.(1)], since in this case no solution
fiber). In this caset is a retarded timez is the propagation of the NLSE in the form of a bright pulse exists. The ques-
distance,s, B, €, u, and v are real constantéve do not tion then arises about the existence of any localized or bright
require them to be smaJl ¢ is a complex field and pulse solution of the CGLE. If so, given that soliton pertur-

D= *1 is the dispersion coefficient. bation theory is not applicable, it is then necessary to char-
Many nonequilibrium phenomena, such as the generatioacterize the bright pulse solutions of E¢) with D=—1 by

of spatiotemporal dissipative structures in lasgs4], bi-  means of direct analytical or numerical methods.

nary fluid convectiori5,6], phase transitiong7], and soliton As a matter of fact, many physical systems described by

propagation in optical fiber systems with linear and nonlineathe CGLE do indeed lead to the observation of stable pulse-
gain and spectral filteringsuch as communication links with like solutions even in the case of normal group-velocity dis-
lumped fast saturable absorb¢Bs-15] or fiber lasers with  persion. For example, in soliton fiber lasers it has been ob-
additive-pulse mode-locking or nonlinear polarization rota-served that ultrashoft.e., of the order of 100 jspulses are
tion [1,16—27), may all be described by the CGLE. formed and emitted also with a normal average cavity dis-
For the specific case of the optical fiber mentioned abovepersion[20,21,32,3% Not only the pulses in the normal dis-
the physical meaning of these quantities is the followi#ig: persion regime are as stable as in the case of anomalous
is the complex envelope of the electric fieldljs the linear  dispersion: the observations also demonstrated that, when the
gain, B describes spectral filtering8¢-0), € accounts for magnitude of the normal dispersion coefficient grows larger,
nonlinear gain-absorption processgsrepresents a higher- a useful increase of the pulse energy results.
order correction to the nonlinear amplification or absorption, It is well known that, in the case of normal dispersion
and v is a possible higher-order correction term to thewithout gain and loss, the balance of dispersion and nonlin-
intensity-dependent refractive index. earity can only support dark solitons. However, if, in addi-
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tion, one includes the balance of linear and nonlieabic) effect of changing both the magnitude and sign of the dis-
gain and loss, then bright solitary waves are possible even ipersionD on the spectral and temporal characteristics of the
the normal dispersion regime: in fact, the analytical expresstable pulse solutions of the CGLE, for a specific choice of
sion for these chirped hyperbolic-secant profile pulses wathe other parameters. We then discuss all the previous results
known for quite a long timd34—36. However, it is quite in Sec. VII. Finally, we summarize our conclusions in Sec.
easy to show that such solitary waves are unstable, unless tiall-

quintic nonlinear losgor gain saturationterm is also in-

cluded. It appears that a comprehensive study of the charac- Il. ANALYTICAL PROCEDURE

teristics and stability of the bright solitary wave solutions of
Eq. (1) has not been carried out. Thus we dedicate this worlﬁn
to the above interesting task.

As was just mentioned, the case of the cubic CGLE wa
extensively studiedsee, e.g.[34,37-39) and its general
solution, i.e., a pulse with fixed amplitude, is well known.
Quite recently, new types of solutiofisamely, stable solu-
tions with arbitrary amplitudewere found numerically40] Y(t,z)=a(t)exfdi(t) ]Jexp —iwz), 2)
and analytically[28]. It turns out that such solutions also
exist for normal dispersion. However, as we shall discussvherew is a real constant, araland ¢ are real functions of
below, in this case such solutions are unstable. t. Assuming that

The quintic CGLE was considered in a number of publi-
cations using numerical simulations, perturbative analysis, ¢(t)=dIn[a(t)], (©)]
and analytic solutions. Perturbative analysis of the solitons of ) ) ]
the quintic CGLE in the NLSE limiti.e., for the anomalous Whered is the phase modulation parameter, known as chirp
dispersion regimewas developed if41-43. The existence N nonlinear optics, and, after some cumbersom_e transfprma—
of solitonlike solutions of the quintic CGLE in the case of 10NS (see Ref[28]), one obtains three algebraic equations
subcritical bifurcations ¢>0) was also numerically deter- relatlr!g the different parameters, and an ordinary differential
mined [43,44). More recently, the regions in the parameter €duation fora(t), namely,
space at which stable pulselike solutions exist were found for 2 P _
tr?e case of anomaloug dispersion in REB]. A qualitative v(4d+2Dpd"~6DS) + u(8DAd—d"+3)=0, (4)
analysis of the transformation of the regions of existence of

To find analytic solutions, we follow the procedure out-
ed in [28], which we now generalize for any value of the
arameteD. We first consider the stationary solutions of Eq.
1) with zero transverse velocity. Traveling solutions for
B=0 are considered in a special section. Hence we look for
a solution of the form

5(1—d?+4DBd)

the pulselike solutions, when the coefficients on the right- w=— >, (5)
hand side change from zero to infinity, was done by Hakim, 2(d—Dp+Dpd)
Jakobsen, and Pomef£2]. An analytic approach, based on 5 5
the reduction of Eq(1) to a three-variable dynamical system, Cd.= (3+6Dep)* |(3+6DeB)*+8(e—2DB)
which allows one to obtain exact solutions for the quintic * 2(e—2Dp) '
equation, was developed by van Saarloos and Honhenberg (6)
[45,46. However, no explicit solutions were given.

The mathematical treatment of the exact solutions of the a’? 2v 4, 2(2B—De) ,
quintic CGLE, using Painlevanalysis and symbolic compu- 2zt 88d—Dd?+3D a 3d(1+4p8?%) a
tations, has appeared in the recent work by Marcq, Chate
and Conte[47]. The general approach, used[#7], is the ) _
reduction of the differential equation to a purely algebraic B Bd*+Dd- g =0. ™

problem. Here we are using a simpler approach that was
developed i 28] for the anomalous dispersion case. We first  Equation(6) is an important result, it shows thdtcan be
proceed by generalizing that approach to deal with arbitraryound in terms of8 and e only, and therefore its expression
values of the dispersion coefficient. Then we analyze thés the same for both the cubic and the quintic CGLE. The
stability of the various solutions, and finally seek for the coefficient in front ofa* in Eq. (7) can also be written in
regions in the parameter space where stable pulselike solanother way, taking into account E@),
tions exist. In this work we restrict our attention to the most
relevant specific case for the optical applications; that is, the 2v _ 1
time-localized pulselike solutions of the CGLE. 8B8d—Dd?+3D 3B—2Dd—Bd*" ®)

The rest of the paper is organized as follows. The general
ansatz and the analytical procedure are described in Sec. Ih what follows, we consider the solitons of the cubic and the
Exact solutions of the cubic CGLE are described in Sec. lllquintic CGLE separately. In each section, we derive the ana-
where we also study their stability. The quintic CGLE solu-Iytical solution and then look for special cases and singulari-
tions are obtained and analyzed in Sec. IV. These analyticdies.
treatments are done for an arbitrary valuebofStable solu- Equation (3) is, obviously, a restriction imposed on
tions are then numerically found in Sec. V, where we deter(t), because the phase modulation could have a more gen-
mine the regions in the parameter space where they exist. keral functional dependence dn However, this restriction
Sec. V, the numerical results deal with the cBse—1. We  allows us to find some families of solutions in analytical
then lift this restriction in Sec. VI, where we analyze the form. For the cubic case, our ansatz covers all pulselike so-
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lutions. In the quintic case, the solutions reported in this

paper are only those which can be represented in f¢&ns
and(3).

I1l. SOLITONS OF THE CUBIC CGL EQUATION
A. Solitons with fixed amplitude
First, we consider the cubic CGLE, that is Ed) with
v=pu=0. Then Eq.(7) has the solution

a(t)=BCsechBt), (9

where

12

3d(1+4p?) 10

2(23—De)

Sos-val + = loesrar

andd is given by Eq.(6), after choosing the pluéminug
sign in front of the square root B is negative(positive.
The second value a leads to an unphysical solutiqsee
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Ref.[28] for detail9, as the expression under the square root

for C becomes negative. Solutiof®) has been found by
Pereira and Stenflf34] (see alsq37-39). An important
feature of the solution(9) is that its amplitude and width

1.5

r— 1T 1171710
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(b)

depend uniquely on the parameters of the equation. This is a
common property of the solutions of nonconservative sys-

tems. In other words, Ed9) is the solution with fixed am-
plitude.

Note that solution9) depends on four parametei, 3,
e, andD. Paramete® appears only in the expression Br
[see Eq(10)], so a variation of5 leads to a rescaling of the

soliton amplitude only. As in this paper we are interested
primarily in the normal dispersion case, we fix the value of

the dispersionD=—1. So the further study is conducted
mainly on the 3,€) plane.

To find the range of existence of soluti(®), note that, on
the (B,€) plane, the denominator in the expression Bors
positive below the curvé& given by

3J1+482-D

'BTSBZ' (11

€s=

and negative above fisee Fig. 1a)]. Hence, for solutior{9)
to exist, the valueS must be positive below the cun#and
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FIG. 1. (a) Line (11) (line S) on the plane € 8) where the
solutions with fixed amplitude€9) and (24) become singular, and
where the classes of special solutions with arbitrary amplita@g
and(28) exist. This plot applies for both the cubic and quintic cases.

10 1

negative above it. As this solution exists almost everywher&he corresponding one for the case of anomalous dispersion is also
on the (B,¢€) plane, we call it the general solution. The curve shown by the dotted line for comparison. Above li8es must be

S itself is the line where this solution becomes singular, i.e.

its amplitudeB C tends to infinity, while the width B van-
ishes.

positive for solution(9) to exist, and negative below it. The dotted
line is line S for D= +1 [28]. (b) The growth rate of the predomi-
nant perturbation eigenmode associated with the solution of fixed

oped in[48] (see also Ref.29] for more precise detailsthat
all these solutions are unstable. Figufb) shows the growth
rate of the most unstable eigenperturbation associated
each stationary solution fdd=—1. The curves on the left
are fore=0.4 with 8 in the interval[0,1], and those on the
right are for 3=0.1 with € in the interval[0,1]. The solid
lines are for6=—0.1, and the dashed lines fé= —0.2.
This figure shows the followingii) the perturbation growth

€=0.4 and B in the interval[0,1], and those on the right for
B=0.1 ande in the interval[0,1]. Solid lines are fos=—0.1, and
1qjatshed ones fof=—0.2.

rate increases as eithgd| or 8 increasesyii) it decreases as
€ increasegbut the decline saturates fer>0.5), and(iii ) it
never goes to zero.

On the other hand, for positive linear amplification below
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FIG. 2. The two possible types of evolution of a stationary so- B Hv> 0 \\j
lution of the cubic CGLE, as given by E¢16), for G=1 and 20—+ Lo b bvn

B=0.5.
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the line S (6>0), the background statey&=0) becomes B
unstable. Accordingly, we numerically found that the corre-

sponding perturbation growth rate is exactly equabtaex-

cept in the vicinity of the lineS, where it grows without FIG. 3. The relation between the parametgrsand v on the
limit. If the initial conditions are close to the exact solution semiplane §,), for which the quintic CGL has analytic solutions.
(9) and 5<1, this instability develops slowly and the soliton (@ The case of negative sign in E(). (b) The case of positive
can propagate for distances upzg~ 5~ 1. Beyond that, ra- Sign in Eg.(6). The continuous lines represent the poings )
diation waves, growing linearly from the noise, become ap¥herex =0, and the dashed lines those where0.

preciable and can distort the soliton itself. However, in other

problemss can be large, sa, is small. The general conclu- where G is an arbitrary positive parameter, add », and
sion is that either the soliton itself, or the background state, i are given by

unstable at each point in the plang 8). This means that the

total solution is always unstable.

e V1+4B°-D 13
B. Solution with arbitrary amplitude - 2B '
It is easy to see that solutiof®) does not exist on line
S [Eq. (11)]. However, if we also impose the condition N, T AaZ 2
6=0, a solution, valid only on lin¢11), can be found: 0= — (1+48 )(4;;_ 4p"—D) G2= _d%GZ,

a(t)=GF seciiGt), (12) (14
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d1+482\ the following coefficients G=1, D=-1, §=0, and
F:(T B=0.1 (=€=0.308). The solution either grows without
limit [see Fig. 2a)] or decays, diminishing in amplitude and
(2+982)\1+4B82(V1+4B%-D) 172 increasing its widtHsee Fig. 2b)].
= > ) (15
2p%(3V1+4p°-D) IV. SOLITONS OF THE QUINTIC CGL EQUATION
Solution (12) represents the arbitrary-amplitude soliton. A. Relation between coefficients

The reason for the existence of the arbitrary-amplitude
solutions is that, whed=0, the cubic CGLE becomes in-

variant relative to the scaling transformatiogt— Gy, is the condition that restricts this range by imposing the re-

t—Gt, z—G?z. Hence, if we know a particular solution of > ; : X
this equation, the whole family can be generated using thilsatlon [Eq. (4)] on them. Using Eq(6), this relation can be

transformation. Note that all parameters of soluti®8) (ex- Fewritten as a linear equation th

The soliton solutions of the quintic CGLE exist for a wide
range of values of the coefficiengs €, u, andv. Ansatz(3)

ceptG) and the coefficient are expressed in terms @f 12¢B2+4e—2D 8
We have found, from numerical simulations, that contrar-v d-2Dg
ily to what happens in the anomalous dispersion redi?ag €-2Dp
the class of arbitrary-amplitude solutions 9= —1 is un- 2Def— 16873
stable relative to small perturbations at any point of the line S 1} =0. (17
S. Figure 2 shows the two possible ways of evolution of €e—2DB

these solutions. As initial conditions, we used We can also eliminatd completely from Eqs(4) and(6) to

(a) ¥(z=0t)=1.001A(t), obtain the following relation fok:
(b) ¢(z=0;1)=0.99NA(1), (16) _ ADBu*+30uv+1208%uv+4DBr*+3U 19
€ — 2+ 12D Buv+ 32,7+ 108857
where A(t) is the corresponding stationary solutigne.,
A(t)=a(t)exddIn(a(t))], with a(t) given by Eq.(12)) for  where
|
U=\(u—2DBv)?(3u’+16B8%u’+ 4D Buv+4v°+12B8%17). (19

This expression gives the relation between the coefficients in B. Solutions with fixed amplitude

an explicit form. In contrast to the cubic equation, the gen- By using the substitutiofi=a? we can rewrite Eq(7) in
eral solution exists for both signs in expressién for d.

; . the form
Now we consider the zero qf andv in the (8,¢€) plane.
u has to be zero on the linesolid ones in Fig. 3 for f'? 8v ¢ 8(2B8—De) 45
D=-1) T2 T 88d-Dd?+ 3D | 3d(1+48% ' Dd- B+ Bd?
=0. 22
_1+3)1+3p° 22
e=DA—57 275 20 This is an elliptic-type differential equation. Bounded soli-
tonlike solutions exist only if
for d=d.., respectively, andv becomes zero on the two 45
lines[the dashed lines in Fig.(B) for D= —1] defined by m> 0. (23
e=+3.1682+ 3-4Dg, 21) The positive solution of Eq(22) is [49]
f(t)= 2hatz (24)
both ford=d, . The value of the produgt v changes sign (f1+f5) — (F1— fo)cosH2aTy|folt) '

on these linegsee Fig. 3. These conclusions can be made
more specific when we consider more particular regions ofyhere
existence of these solutions.

In what follows, we consider solutions which exist when 2v 172 i 12
at least one of the coefficientsor » is nonzero, and express ™| | §34—Dd2+3D ~\|38—2Dd— gd? ’
the solutions in terms 0B, €, and v. Using Eq.(8), the (25)

solutions can alternatively be expressed in termg3pfe,
and u. andf, andf, are given by
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. ( ) 185d?v(1+4%)? )1’2
~(2B=De)=| (2B-De)™ Gri b2+ 3D)(Dd— g+ B0 ,
f10= 8dv(1+ 45D (88d—Dd?+3D). (26)
On the line(21), this expression must be replaced by
9 8d?u(1+4p%)? vz
(20012 26-00% o Losoa-gge) ,

The soliton solution24) exists for both signs in expres- The general conclusion from the above stability analysis
sion (6) for d. The range of existence in the8(e,u,»,D) is that, although an exact solutig@4) to the quintic CGLE
parameter space is restricted by the relafigg. (4)], which  can be found when a specific relation between the parameters
is a consequence of ans&By. In addition, relation(23) must  [Eq. (4)] is satisfied, all of them are unstable. An exception
be satisfied, and one df; , must be positive. Taking into appears in the vicinity of the boundary that separates pulses
account these two conditions, the region of existence of thesieom pairs of fronts. The perturbation growth rate of these
solutions can be obtained. soliton solutions falls to zero when we tend to this limit.

As an illustrative example, Fig. 4 shows different curvesThese stable solutions have a flat top. They exist and are
which delimit the region of allowed values of the parametersstable for both values of the dispersion parameter.

(B, €), where the solution exists for given valuesi9fs, and
D=-1. The solid lines are fos=—0.1, and the dashed

ones for5=0.1. In Fig. 4a), »v=0.1, and no solution is then C. Singularity at »—0~

found ford=d_. In Fig. 4b), v=—0.1, and there are solu- When v is negative, one of the solutions has a singular-
tions for both values ofl. The arrows indicate if the solu- ity at v—0~. The value (8—De¢)/d must be positive and
tions exist above or below the corresponding curve. finite. Then f, has the limit [38d(1+4B?)]/

As in the cubic case, we performed a detailed linear staf2(Dd— B+ Bd?)(28—De¢)?], and f; goes to infinity as
bility analysis of these solutions. The results of this study forf — (e+23)(88d+d?—3)]/[3dv(1+48%)], and so the
D=-—1 are summarized in Fig. 5. Here we considered thesoliton amplitude goes to infinity. The singularity does not
cases with3=0.5, v=*0.1, andé=*0.1. Other values of occur when »—0%. The second solution in the limit
the parameters produced similar results. The figures show the—0* coincides with solutior{9), which applies in the case
growth rate of the most unstable perturbation associated witbf the cubic CGLE. Clearly, this singularity is trivial and is
each solution given by Eq24). The continuous lines are for not related to any solution.
the cases whehd= —0.1, and the dashed lines fér=0.1.

In Fig. 5@, »=—0.1 andd=d_., and both thex andy D. Solution with arbitrary amplitude
scales are linear. This figure shows that for positdvéhe
perturbation growth rate is exactly equal &pthat is, their
instability has its origin solely in the instability of the uni-
form backgroundy=0, while the pulse itself is stable. On
the other hand, for negativé, the growth rate becomes
closer to zero as we move to its smallest allowed value. This

Another singularity appears whens=0 and Dd
— B+ Bd?=0. This last occurs on the same ligin the
(B,¢€) plane as in the cubic cagsee Eq(11)]. Then, a class
of solutions with arbitrary amplitude exists,

2

happens wheffi; becomes close tb,. The solution then has f(t)= 3d(1+4p7)P , (28)
an amplitude profile with a flat togsee Sec. IV G This (2,8—De)+Scosr(2\/5t)
behavior resembles that observed for the case of anomalous
dispersion. - - . whereP is an arbitrary positive parameter and

The curves shown in Fig.(B) are similar to that obtained
for the general solution of the cubic CGLE. This can be 5 oo L1
expected, as this solution can be obtained from that of the s—| (28-Dey?+ 18d°v(1+4p5°) P 29
quintic one when we make—07. As in the previous case, (88d—Dd?+3D) '
for positive § the growth rate is equal té almost in the
Wh_ole interval, that is, its instability has its origin in the The valuesd and o are given by
uniform background.

Figure 5c) shows that the solutions obtained by taking
d=d_ are, in general, much more unstable than those ob- V1+48°—D
tained ford=d_. . Again, for positives, we obtain an inter- d= 28 (30)
val of values ofe where the growth rate is equal & Note
that in Figs. %a) and §b) we used a logarithmic scale in the 5
y axis. As commented upon in Fig(a}, no solution exists w=—d 1+4B (31)

for positive v whend=d_ . 2B
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FIG. 4. Curves delimiting the regions on thg,€) plane where
the stationary solution given by Ed27) exists. The continuous €
lines are for6=—0.1 and the dashed lines fat=0.1. In (a),
v=0.1, and no solutions exist when takidg-d _ . (b) v=0.1. The
arrows indicate if the solution exists above or below the curves. ~ FIG. 5. The perturbation growth rate of the fixed amplitude
solutions for3=0.5 andé=+0.1. In(a) v=—0.1, andd=d, . In

As for the cubic case, we found, from numerical simulations (b), =0.1, andd=d, . In (c), »=—0.1, andd=d_. . The continu-
. . . o . ‘ous lines are fov=—0.1, and the dashed lines f6=0.1.

that in the normal dispersion regim® € —1) this class of

solutions is unstable at any point of the special hand for  \yhere

any P in Eq. (28).

_ (e—2DB)(8Bd—Dd?*+3D)
E. Flat-top solitons fi= 6du(1+ 459 , (33
The soliton (24) becomes wider and flatter as the two
positive f, , approach each other. Whdn=f,, the soliton and the sign in Eq(32) determines the orientation of the
splits into two fronts with zero velocity. Each of them can befront. f; and f, become identical when:
written in the form(we ignore the translations alony

(28 De)? 186vd3(1+48%)?
_De)2=

L (32 ~ (Dd-B+pd?)(88d—Dd?+3D)"
1+exp( = afyt)’ 34

f(t)=
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This condition involves all the parameters of the equation. 02

Depending ons and v, it can exist at any point of the plane P (Z,0)=(z,t— sz)exr{ivt—iD 72) . (39
(e,B). The top of the soliton becomes flatter as the roots

become closer to each other, and as indicated in Fay.tbe

solution becomes more and more stable. Hence we can use the fixed amplitude solution of Sec.

If f,=f, exactly, the width of the pulse goes to infinity, IV B, put =0, and use transformatia88) to get the whole
and the pulse decomposes into two fronts. Note that, in th&amily of traveling pulses. Note that all the analysis of Sec.
region of nonzero intensity, the soliton phaﬁﬁ) tends to a IV B is valid in this case. The critical pOintS im are the
constant value exponentia”y_ SO, if we combine the twointersections of the SpeCial lines in FlgS 1 and 4 with the
fronts, Eq.(32), with opposite orientations, to form a wide, Vertical axis,=0. This last example completes the classi-
rectangular pulse of finite width, the influence of each frontfication of possible pulselike analytic solutions for Ed).
on the other is exponentially small. In other words, the two
fronts, Eg. (32), can join together without any domain
boundary between thelef. [46]).

Pulses and fronts have usually been considered as differ-
ent solutions of the CGLE45-47. Our results show that In this section we obtain numerically the values of the
they can be transformed into each other by changing theoefficients ¢,8,€,u,v) of the quintic CGLE(subspace of
parameters of the system. Moreover, our results give, at leagie parameter-spacéor which stable pulses exist. We find
partly, the range of parameters where we can expect smoothable pulses in a certain region of parameters, and compare
transitions from solitons to fronts. Stable stationary flat-topit with the region of a lower dimensionality where the ana-
pulses have been observed experimentally in binary fluidytical solutions given by Eq(24) exist.
convection[5]. From a practical point of view, the knowledge of the pa-
rameter space where we can have stable pulse propagation, is
of crucial importance. In addition, one can expect unusual
. ) propagation dynamics around the boundaries of the region of

If 6=0 and (B,€) is not located on line(11), then  existence of stable pulses. For the case of anomalous disper-
=0, and eitherf; or f, (sayf,) becomes zero. Thefy is  gjon, we discovered the existence of composite pulses and

(e—2DB)(8Bd—Dd?+3D) moving pulses near the upper bound&bg@]. However, in
= (35)  this paper we look only for plain pulses.

V. REGIONS IN PARAMETER SPACE
WHERE STABLE PULSES EXIST

F. Algebraic solution

! 3dw(1+4p%) Let us first fix some limits in the parameter space in
which to look for stable pulses. The paramefgrclearly

Equation(22) can then be written in the form must be non-negative, in order to stabilize the soliton in the
frequency domain. The linear gain coefficighinust be zero

f'24 4ko[ f—f,]f3=0, (36)  Or negative to provide the stability of the background. We

chooseu <0 to stabilize the pulse against the collapse. The
parameter can have either sign.

Taking these restrictions into account, we have numeri-
cally found stable solutions following the method described
in Ref.[29]. Figure 6 shows three examples for=—1 of
37) the soliton solutions found by using the above-referenced

method.
In the same way we were able to construct the whole

The valuesf, andk, must be positive, which restricts the '€gion in the parameter space where a stable propagation of
allowed values of the coefficients of the equation for thisPounded solutions is possible. Figurég)and 1b) show the
solution to exist. areas in the 8,€) plane were soliton solutions were numeri-
The algebraic soliton is unstable for the full range of thecally found for v=—0.1 and—0.01, respectively. In both
parameters where it exists. It represents a special, weak§@sesD=—1, 6=-0.1, andu=—-0.1. The lower curve
localized limit of the solution with fixed amplitudé24). dashed lingrepresents lin&, and it is plotted to allow us to
Note that algebraic solitons exist, and play an important rolefake some comparisons with the conclusions which we ob-

in other integrable and nonintegrable systems, including th&ained concerning the analytic solutions. First of all, let us
NLSE [49]. notice that the region of stable pulses is always above line

S, and that the lower boundary of the stability regi@olid
line) is approximately parallel to lin&. The distance be-
tween this lower boundary and lirdepends or5, wu, and

If B=0, then solitons with nonzero velocitftraveling  v. For smallu, v, and ¢ this distance is small. For given
solitong become possible. These solutions can be obtainedalues of v and & the filled regions become wider ag|
using a simple transformation, because,8er0, Eqg.(1) has  increases, and its lower boundary becomes higher. For given
an additional symmetry, namely, it is invariant relative to thevalues ofv and u the lower boundary approaches liBeas
Galilean transformation. As a result, traveling pulselike so-6 goes to zero. We may expect that at zérine S would be
lutions can be obtained from zero-velocity ones using théhe onset of instability. We also notice that the region of
transformation stable pulses in the parameter space starts at finite values of

whereko=2v/(88d—Dd?+3D). The solution to this equa-
tion is a Lorentz function,

fy

O e

G. Traveling pulses
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i FIG. 7. (a) and (b) Regions in the g-€) plane where stable

- pulselike solutions are found f@=-1, u=-0.1,6=-0.1, and

7 (@ »=-0.1 and(b) v=—0.01. These regions are located above
] line S (dashed ling (c) and(d) Pulse profiles of six of these stable
solutions located near the boundary(b), as labeled therein.

arg(‘?)

A 4

-20 T R R A tions are beyond that region and therefore, in total agreement
with the stability analysis, unstable. White circles inside the
-15 -10 -5 O 5 10 15 f . . . :
illed region show the points corresponding to the numerical
t solutions of Fig. 6. These examples, together with those pre-
sented in Fig. &), show that the upper boundary of the
FIG. 6. Numerically found soliton solutions fde) amplitude  region of stable pulses corresponds to the transition from
profile | . (b) Phase profile argk). pulses to fronts.
. We suppose that stable pulses do not exist in the limit of 't iS also interesting to study how the region of stable
B—0. pulses depends odA. Figure 9 shows this dependence for
The upper boundary of the region of stable pulses in thdixed values ofu, v, and 8. Specifically,y=u=—0.1 and
(e,B) plane corresponds to the transition from pulses ta3=—0.5. The filled area corresponds = —1, and the
fronts [50]. Thus the solutions close to the upper boundaryhatched area tb=1. As the linear loss decreases, the inter-
can be considered to be composed of two fronts. Examplegal of allowed values ot increases. The central value of this
of pulse solutions for the three different points of the shadednterval increases a8 increases. This means that the larger
region designated in Fig.(®) by circles are shown in Fig. linear losses must be compensatpdovided that other pa-
7(c). The lower boundary of the region of stable pulses corfameters are constarnfor by the increased third-order non-
responds to the limit when the gain is not enough to comiinear gain. For the above values of w«, and 8, Eq. (4)
pensate for the losses. Below this boundary all pulses decagivese=1 for D=1 ande=0.677 forD=—1. This value
Three examples of stationary pulses for the parameters lds, as expected, above the filled or hatched region. Figure 9
cated close to the lower boundary are shown in Figl) 7 also shows that for the same set of parameters the region of
[pointsd, e, andf in Fig. 7(b)]. existence of stable solutions is larger in the case of anoma-
We now consider other planes in the parameter spackus dispersion than in the case of normal dispersion. This
where we found stable pulselike solutions. Figure 8 showslifference decreases as the nonconservative parameters be-
the region of stable pulses in the planed) for fixed values come greater.
of u, 8, andB as written in the figure. The plot shows that  Figure 1@a) shows the region of stable pulses in the plane
the width of the stripe in Fig. 7 increases largelymasn-  (u,€) for D=—1, and fixed values o#, &, andg written in
creases. The dashed line in Fig. 8 shows where the exathe figure. Aqu| increases, the interval of allowed values of
analytical solutions are located for the same set of parame becomes wider, and its central value larger. This last ob-
eters. Interestingly enough, this line is also almost parallel tservation can also be expected, as it indicates that larger
the upper border of the area of stable pulses, but locatefifth-order nonlinear losses must be compensated for by the
some distance from it. This shows that the analytical soluincreasing third-order nonlinear gain. The width of the stripe
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FIG. 8. Region in the planer(e) where stable pulses are pos-
sible forD=-1, 8=0.5, andu= 6= —0.1. The dashed line rep-
resents the points where the analytical solution given by (E4).
exists. The open circles show the location of the stable solutions
represented in Fig. 6. 4 L (b)
C £=0.362
becomes infinitesimally small at~ —0.06. The dashed line 3 —-0.061
represents the points where the exact analytical solutions oH=0
are located for the chosen values ofé,%,8) —
=(—0.1,-0.1,0.5). Again, it can be seen that they are out of E‘ 2 S
the region of stable pulses. However, in this case the distance C lr?
between the region of stable pulses and the exact analytical 1L S
L S
- = T
0 C 1 / L1l I P11
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t

FIG. 10. (a) Region in the planeg, ) where stable pulses are

found.D=-1, 8=0.5, andv= 5= —0.1. The dashed line repre-
sents the points where the analytical solution exigig. Stable
propagation of the analytical solutidfiat top soliton, for the val-

0.1

—0.6

-0.4

-0.2

0

ues of the parameters shown(& by a filled circle.

solutions increases with|u|, and goes to zero at
u— —0.04. The instability growth rate of the corresponding
analytical solution for this value gf becomes neglectable.
As expected from the stability analysis, this solution corre-
sponds to a flat-top soliton. The example of propagation of
the soliton at this point is shown in Fig. ).

The imaginary part of the quintic term is essential for the
existence of stable pulses. From Fig. 8, it follows that stable
solutions exist forv=0. This is also true for positiv®. On
the other hand, Fig. 9 indicates that must have a finite
negative value in order to stabilize the solutions. This mini-
mal value depends on the values of other parameters. For

FIG. 9. Region in the plane& e) where stable pulses are pos-
sible. 3=0.5, andv=pu=—0.1. The filled area is fob=—1, and

v=0, and typical values forg,5)=(0.5,—0.1), we calcu-

the hatched region fob=1. For these parameters, the analytical lated the interval of values of at small|x| where we can

solution exists ak=1 for D=1, and ate=0.677 forD=—1.

find stable solutions. The results are shown in Figal INo
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FIG. 12. Dependence on the dispersion coefficnif (a) the
u temporal widthAt, and (b) the spectral widthAw of the stable
pulses, for8=0.5, §=—0.01, u=—0.05, andv=0, for different
FIG. 11. () Region in the plane, €) where stable pulses are Values of the nonlinear gain coefficieat

found.D=— 1, BZO.S, v=0, ands=—0.1. (b) Peak amplitude of VI. ROLE OF GROUP-VELOCITY DISPERSION

the stable solution for the following parametegd=0.5, »=0,

6=-0.1, ande=0.6. The continuous line is fob=—-1, the In order to establish a direct connection with experimental
dashed line is foD=1, and the dotted line represents the cw so-observations in physical systems that are describable in
lution. terms of the CGLEe.g., a fiber lasdr32,33), in this section

we present an example of the temporal and spectral charac-
solution is found ifu is exactly equal to zero, but there are terization of the stable pulse solutions of E#j). Such solu-
solutions in a given interval of values effor any value of ~ tions(say,ys) are obtained by means of the direct numerical
negativep, no matter how small its modulus is. The peak integration of Eq(l): we evaluate the pulse paramet_ers after
amplitude of the pulse diverges astends to 0. This is  that the numerically propagated pulse has relaxed its tempo-
shown in Fig. 11b), where we have represented the peakral and spectral width to its asymptotic valléisis typically
amplitude for the solutions obtained wherr 0.6[horizontal ~ réquires a propagation over a distazee50 in Eq.(1)].
line in Fig. 11a)]. The continuous line is fob=—1, the So far, in this work we considered the group-velocity dis-
dashed line is foD=1, and the dotted line corresponds to PersionD as a fixed parameter, that is, we Bet —1 (1) for

the cw case, i.e., the amplitude obtained from the solution of'® Normal@anomalousdispersion case. However, in a fiber
the equation laser the average cavity dispersion can be easily tuned, for

example, by changing the length of two fiber sections with
opposite signs of the dispersion. Recent experiments with a
5+ €| Acwl®+ u|Acwl*=0. (390  “stretched-pulse laser” have shown, for example, that the
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time-bandwidth producAtAw of the stable pulses, for the same CY . b ]
parameters as in Fig. 12. 40 — Y ( ) -
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energy of the chirped pulses which are emitted from the laser - \\ ]
grows considerably larger whenever the dispersion is con- o - \ N -
tinuously tuned from the anomalous to the normal regime gy 30— N ]
[33] S B \\\ \\\ :
In Figs. 12—-14 we display the characteristics of the stable & AN . .
pulse solutions of the CGLEL), as functions of the disper- m 20 — ) ]
sion coefficientD, for different values of the parameter C
Here the nonlinear gain varies froex= 0.7 (solid curvesg to -
e=1 (dashed curve e€=1.25 (dot-dashed curye and 10 —
e=1.5(dotted curve For simplicity, we restricted our atten- C
tion to the specific case where all other parameters i Hq. T T
are fixed, i.e., we seB=0.5, 6=—-0.01, u=—0.05, and 0
v=0. We define the temporal widtht as -1 -0.5 ]g 0.5 1
At=\(t%)—(t)%, (40)
FIG. 14. Dependence on the dispersion coefficntf (a) the
where peak amplitude andb) the energy of the stable pulses.
n |2 lead to a spectral broadening which is mostly due to an en-
Jt"| gl *dt e .
<tn>EW' n=12,..., (41)  hanced chirping rather than to temporal compression of the
S

pulses[see Fig. 12a)].

In fact, the contribution of chirping to the spectral width
and similarly for the spectral width w. Figure 12Za) shows of the solitary wave solutions of E€l) is well displayed by
that the pulse widthAt is almost constant for positive’s,  the plots of Fig. 13, where we show the variation wiihof
whereas it grows rapidly larger in the normal dispersion rethe time-bandwidth produchtAw. As can be seen, in the
gime: pulses about five times longer are obtained wbBen anomalous dispersion regimgA » grows from 0.50.6) up
switches fromD=+1 to D= —1. The increase of the non- to 0.7(1) for e=0.7 (1.5). In the normal dispersion regime
linear gain coefficiente has opposite effects on the pulse AtAw exhibits an exponential growth which reveals the oc-
width in the two dispersion regimes: larger nonlinear gainscurrence of strong pulse chirping. Note that this chirp may be
lead to longeKshortej pulses in the case of norm@noma- exploited in practice for achieving pulses that are strongly
lous) dispersion, respectively. On the other hand, Fighl2 compressed in time, if, for example, the pulses from a fiber
shows that the spectral width of the stable solitary pulsesaser with an average normal dispersion are injected in a fiber
reaches a maximum whenever the disperdiorakes small lead with anomalous group-velocity dispersi@3].
negative values. Whereas the spectral witlnce the chirp Two other important characteristics of the stable pulse
is reduced as the absolute value of the disperflogrows  solutions of the CGLE are illustrated in Fig. 14, where we
larger, irrespective of its sign. Moreover, Fig. (b2 also  show theD dependence of their peak amplitudég. 14(a)]
shows that larger values of the nonlinear gain coefficient and energyE= [|2dt [Fig. 14b)]. As can be seen, for a
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given value of the nonlinear gain parameteithe peak am- order to describe stable pulse formation in fiber laser systems
plitude is nearly independent of the group-velocity disper-properly, it is necessary to introduce higher-order nonlinear
sion, whereas the amplitude grows monotonically with theterms(or frequency sliding as discussed in Rf2]).

absolute value ot. On the other hand, the pulse energy is As a physical system which is described by the quintic

almost constant with respect @ for D>0, and it grows CGLE one may consider, as we mentioned above, a soliton

exponentially larger as soon as decreases below zero. fiber laser with nonlinear polarization-dependent losses
(which is equivalent to fast saturable absorption action
VII. DISCUSSION [1,12,19). In this case, the time-localized pulse is supported

by the nonlinear gain, and loses energy due to three effects:

In the above analysis, we found pulselike solutions of thespectral filtering, linear losses, and the quintic stabilizing
cubic and quintic CGLE for both anomalous and normal disterm. However, even a small linear loss is enough to keep the
persion cases. All solutions are written in explicit form in packground state stable. So a stable stationary soliton state
terms of the parameters of the CGLE. Two different classegnay be formed as a result of the balance between nonlinear
of solutions exist: solutions with fixed amplitude and solu-gain, spectral filtering, and the quintic stabilizing term. It is
tions with arbitrary amplitude. The arbitrary-amplitude soli- quite remarkable that, in the normal dispersion regime, the
tons exist on special lines in the parameter space where sgtable solutions of the cubic-quintic CGLE exhibit an impor-
lutions with fixed amplitude become singular. However, ittant qualitative agreement with the experimental observation
occurs that in the case of normal dispersion these solutionsf a nearly exponential growth of the pulse energy with the
are always unstable, whereas they are stable for anomaloggsolute value of the average dispersji8].
dispersion. The knowledge of the regions of stability is vital for the

For the cubic case, our solutions cover all possible pulsesroper operation of a fiber laser. Numerical results as those
including solitons with fixed amplitude and the class of ar-pbtained in this work may provide a rough estimate of the
bitrary amplitude solitons. In the quintic case, the solutioncharacteristics of the pulses which are emitted from the laser
can be explicitly written in a subspace of the full space of thegs the various parametefise., bandwidth of the intracavity

coefficients of a lower dimensionality. This is a consequenceiiter, polarization controllers setting, average cavity disper-
of using ansatZ3). This subspace is described by Efi8).  sjon) are adjusted.

One of the ways to step out beyond the limitations of Eq.
(18) would be the development of a perturbation theory us- VIIl. CONCLUSION

ing our set of solutions as unperturbed solutions. . . .
The results of our work can be applied to different physi- In concluspn', we founq pulselike s'olutlons of bo?h the
bic and quintic CGLE in a generalized form, which is

cal problems. These days, the most promising areas where' . )
P 4 P g valid for both the anomalous and the normal dispersion re-

the solutions of CGLE can give insight are optical telecom-"¢

munications and laser physics. Consequently, here we digimes. We studied their stability through a linear stability

cuss only the use of solutions in this important general areaé“?"YS'S’ and_ found that they are in general unstable. For the
leaving aside other possible applications. duintic equation we found regions in parameter space where

The cubic CGLE is a good model for describing optical the pulselike solutions are stable. A comparison of the char-

transmission systems with guiding filtel8,9]. The use of apteristics of _the generated pulses asa functiqn of the mag-
nonlinear gain €>0) in these systems allows the reduction nitude a_nd sign of the gr_oup-velocny dispersion was also
or suppression of the growth of linear radiatift®,14,4q. maQe. Finally, the connection of the present analysis with the
The present results show, in particular, that stronger spectr‘?l‘lv‘""Iable experimental results was discussed.

filtering (8~ 1) than what has been considered bef@&1)
can be used in these systems. In this case(EL), derived
here, gives the instability threshold. The propagation dis- The work of J.M.S.-C. was supported by the CICyT under
tance of “stable” pulses in the normal dispersion regime isContract No. TIC95-0563-C05-03 and by the Comunidad de
limited by the instability of the background. Therefore, Madrid under Contract No. 06T/039/96. N.A. would like to
strictly speaking, all solutions of the cubic CGLE in the nor-thank the Australian Academy of Sciences for financial sup-
mal dispersion regime are unstable. As a consequence, port.
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