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In this paper we propose a practical discontinuous feedback control scheme for the 
regulation of joint positions of robotic manipulators. A robust on-off switching control 
strategy based on a pulse-width-modulation (PWM) feedback scheme is proposed for 
the joint torques. The discontinuous PWM controller design is carried out on the basis 
of a suitable controller designed for an average model which is of continuous nature. 
Simulations of the closed loop performance of the proposed control scheme are 
presented for a two-link robotic manipulator.
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I . IN TRO DUC TIO N

In this article a Pulse-Width-Modulated (PWM) feedback control scheme is pro­
posed for the regulation of robot joint positions. The PWM switched control strategy 
specifies the control torque to the system corresponding to one of two fixed feedback 
control laws. The discontinuous (on-off) stabilizing controller is determined from a con­
tinuous controller which is designed for the nonlinear average model of the PWM con­
trolled system. The average model, used here for design purposes, is obtained by for­
mally imposing an infinite sampling frequency assumption on the PWM actuator. It is 
shown, in full generality, that the obtained average model coincides with the original 
plant dynamics, when feedback controlled by a suitable convex combination of the fixed 
available feedback control laws. The smooth duty ratio function components serve as 
the averaging parameters for the referred convex combination (See Filippov [l]) and 
constitute the control inputs for the average model. The infinite sampling frequency 
idealization on the controlled system establishes exactly the same relationship between 
the average and the actual PWM controlled responses as the one existing between the 
actual chattering motions and the Ideal Sliding Dynamics associated with Variable 
Structure Control Schemes undergoing sliding regimes (Utkin [2]). In the context of 
single-input single-output systems (SISO), the average (piece-wise smooth) controlled 
system model has been shown to capture all the essential qualitative features (i.e., sta­
bility) of the actual (discontinuous) PWM controlled system, provided a sufficiently high 
sampling frequency is used (See Sira-Ramirez [3]-[5]). The actual (discontinuous) PWM 
controller design is shown to be easily obtained from the average closed loop stabilizing 
design.

PWM controlled systems have been studied in the past in the context of linear sys­
tems by Skoog [6], Skoog and Blankenship [7], by La Cava et al [8], Chen and Wu [9] 
and Gelig and Churliov [10]. For a rather complete survey of the many early contribu­
tions available in this field, the reader is referred to Sira-Ramirez [11] and the references 
therein. The definite relationships between PWM controlled responses for nonlinear 
single-input single-output systems and their underlying sliding regimes were presented 
in [3]-[5]. Applications of these fundamental connections to the design of regulating 
controllers for DC-to-DC Power Converters were given in Sira-Ramirez [12]-[13] and in 
Sira-Ramirez and Ilic [14]. Some aerospace applications of PWM control can also be 
found in [ll].

PWM control has a considerable appeal in the practical implementation of control 
systems using digital computers and digital logic circuits. Infact a number of integrated 
circuits (IC’s) may be developed for PWM control systems without requiring the Digital 
to Analog conversion and complicated analog power amplifiers. This simplicity can lead 
to considerable cost savings because in a servo system the PWM voltage pulses gen­
erated by the control computer can be fed directly to the base of each power transistors. 
The power transistors would be fully on or fully off (assuming ideal switching



conditions), then the servo motor voltages could he controlled between H—Vmax result­
ing in output motor torques of H—Tmax . The beauty of the PWM control system is that 
the entire system could be implemented on an IC, with the exception of the power 
transistors, the diodes and a small amount of switching electronics. It is concievebale 
with further developments in the PWM control theory and IC’s for this type of control, 
a servo sytem hardware maybe packaged into the size of a matchbox, and as a result it 
could be located next to the servo motor.

In this article, an extension of the basic SISO results for nonlinear PWM controlled 
systems is developed for multivariable nonlinear PWM systems. An application exam­
ple is furnished for the PWM feedback control of angular positions of robotic manipula­
tors. .''- J -  J-J''- -  .. J ■■ M-V'-.

In Section 2 we consider the relevant features of nonlinear multivariable PWM con­
trolled systems. In particular, we derive the average model and point out its relevance 
to the actual <Iiscon 1,‘muoiih .'Itabiliziiig design. In Section A we d e r iv e th e  p VVM con 
Lroller for' a two link robotic Inaiii [udatOi: and diriciirirt the si mu Iation results. In Srrctiori 
4 we propose new directions for further research.

2. M ULTIVARIABLE PW M  CONTROL OF NONLINEAR SYSTEM S

2.1. An A verage Approach to  the A nalysis and Design of M ultivariable  
PW M  Controlled Nonlinear System s.

In this section a technique is developed for the analysis of nonlinear systems regu­
lated by means of Pulse Width Modulating the actuators. This technique is based on 
an obtained average model of the PWM controlled system. This model is useful both as 
an analysis and as a design tool for a large class of nonlinear systems discontinuously 
controlled by Pulse Width Modulating of the actuators.

Gonsider the nonlinear PWM controlled plant:

M ' 1 ~ fi*(0) +  <ilx(*))':(t) : with.o(t) =PWM[>i(tj] (2 . 1)

where,

U i(t)=PW M [r t (t)]
ur(x(t)) for Lk < t <  t k +  /4 (tk )T 

u|~(x(t)) for tk +  (tk)T < t < t k +  T

i .T"''-Ij 2? ...in

(2 .2)

and, tk+1 =  tk +  T, where T is the PWM frequency<

Here, x(i“) is the n-dimeiisional plant state vector, u(t) represents an m-dimensional 
input vector of discontinuous control functions constituted by fixed multivariable



feedback control laws u+(x(t)) and u~ (x(t)). The feedback control components u;(t) 
(1=  1,2,...,in) aresw itched at most one £ from u f  (x(t)) to U1- (x(t)) within the inter- 
sampling interval [t^jt^+i], bare addressed as the duty 'cycle, 'of'fixed' duration T . The 
sampling frequency 1/T  is assumed to be the same amongst all controllers (i =  l...ni) 
(extension to the multi-rate option will not be treated here). The instants at which the 
switching occur in the inter-sampling interval [Ijc, are determined, for each contrpl, 
by the corresponding component value of the multivariable duty ratio function p(t) 
obtained at the sampling instants i.e. by /^tjc). The components of the duty ratio 
functions /^(t) are continuous piece-wise smooth functions of time. The duty ratio func­
tions are limited between 0 and I ; this way the corresponding activation of the feedback 
control result in physically meaningful PWM duty ratios which are applied to the 
actuators. The duty ratio function p(t) will be generated by means of a feedback 
arrangement whose detailed specification will be presented in section 2.3. The vector 
function f(*) and the column vectors gj (*) (i =  1,2, ...,m), of the matrix G(x), are con­
sidered to be n-dimensional smooth vector fields. The n x m matrix G(x) is assumed to 
be locally full rank. We refer to the discontinuous control scheme described by (2.1) - 
(2.2) as the actual PWM controlled system.

Definition 2.1
The average PWM system is defined as the smooth dynamical system obtained 

from (2.1) - (2.2) when the sampling frequency of the PWM actuator, I /T , grows to 
infinity.

The next proposition establishes that the above defined average system is easily 
obtained from the discontinuous system (2.1), by just formally replacing the discontinu­
ous Control input vector u(t) by a continuous piece-wise smooth control vector in which 
each component is a convex combination of the fixed available feedback control laws 
Ujt" (x(t)), uf(x(t)). The duty ratio function components fi[, associated with the input 
vector components are seen to serve as the averaging parameter in the above mentioned 
convex combination.

Proposition 2.2
The average PWM system is represented by:

S  gi(z(t))[rt(t)^(Z(t))H -(l-ft(t))ur(i(t))j . (2.3)

Proof;

We can rewrite the differential equation for the controlled plant in (2.1) - (2.2) as 
an equivalent integral-difference equation relating the values of the state vector x(t) at 
subsequent sampling instants:
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tk+T m tk+/'i(tk)T
x(tk +  T) =  x(tk) +  J  f(x(a))dcr +  £  /  gi(x(a))uf (x(a))chr  ̂;
■- -v tk ■ ' i=i tk . ;-■; ■

E-y ;y -v;- ' v . ■■■ m ■ ' tk+T : y  : : v v
+  E  I  gi(x(cr))ur(x(a))<i<T

i=X tk+//i(tk)T .

Notice that this expression involves no approximation whatsoever.
Subtracting x(tk) form x(tk4-T), dividing by T and taking the limit as the sample 

period T goes to zero, while letting the sampling instant tk adopt an arbitrary value t  of 
the time coordinate, one obtains:

IimT—o, tk— t
x(tk+T) — x(tk) dx(t)

dt

Iim'•T—*o, tk-+t

tk+T
I  f(x(<r))d<T

+

Iimx- ►0; tk-* t
E  I  Si ( x (a '))uif  (x(<r))d(T
i= l tk +

limT_+o, tk-+t

tk+T

E  I  Si(x(^)ur(x(^)dCT
i= l tk+/A-,(tk)T

Iil
=  f(x(t)) +  E  gi(x(t)) [/ti(t)uif (x(t)) +  (l-/ii(t))u-(x(t))] (2.3b)

i= l

i.e., one obtains the time derivative of the state vector x(t), at each instant of time t, 
when the sampling frequency I /T  is assumed to be infinitely large. For the purpose of 
clarity, we denote by z(t) the averaged value of the state vector x(t), and x(t) is 
obtained as the solution of (2.3b). Thus the average system behaviour is given by:

=  fM t)) +  f j  gi(2(t))[rt(t)u*(z(t)j +  ( l - r t ( t ) ) u - ( 2(t))]

Therefore the average PWM control vector ^  (t) is given as 

>A (t) =  m (t)uf(z(t)) +  (I -  /,i(t))ur(z(t))



i 1,2j ..*5X11

2.2. Properties o f A ctual and Averaged PW M  Controlled S y s te m s ,

■•f'jbtlce that the average model (2.3) is highly reminiscent to the ideal sliding 
dynafnies Obtained by application of the Method of the Equivalent Control (Utkin [2]) 
to the underlying multi-input Variable Structure System described by (2,1) - (2.2). As a 
m atter of fact, the obtained system of differential equations for the plant dynamics in 
(2.3), constitutes a Filippov type of geometric average model (See Filippov [I]). Such 
models are extensively used to describe the idealized smooth behavior (i.e., the average 
behavior) Of sliding: regimes occurring in the intersection of a finite number of discpn- 
tinous surfaces.

Instead of further relating actual trajectories of PWM controlled systems with 
non-ideal sliding regimes taking place on integral manifolds of the average PWM model 
(See Sira-Ramirez [3] - [5j for further details), we shall derive some essential properties 
of the actual discontinuous responses of (2.1) - (2.2) in relation to the idealized response 
of the average model (2.3). In particular, we show that the integral equation related to 
the discontinuous model (2.1) - (2.2) is a second order regular perturbation - in the sam­
pling period T - of the corresponding integral equation of the average model (2.3). This 
means that as the sampling frequency goes to infinity, the trajectories of (2.1) - (2.2) 
tend edfdinudnsly totvard those of the average model (2.3). First, We introduce some 
notation and state some basic lemmas:

Notice that system (2.1) - (2.2) can be written as:

m .
+  .S  wI SiW t ))!1**(x(t)) -  ur(x(t))]

i=l
with ■

dx(t)
dt

f(x(t)) +  E  Si (xOO)Ui (x(t))
i=l

Wi (t) =  PWM[/q(t)]
jl for tk < t <  t k -f-/q(tk)T 
[0 for tk +  Pj(tk)T < t <  t k +  T

i =  l , 2,...,m

Hence, without any loss of generality, and with a slight abuse of notation, one may 
assume that the controlled system is of the form:

=  f(x(t)) + G(x(t))w (2.5)

With the control vector w given, componentwise, by (2.4).
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L em m a 2.3
The average system obtained by infinite sampling frequency in (2.4), (2.5) is given

by:
d-z(t) f(z(t)) +  g(z(t))/j(t) (2 .6)

where /z(t) is the multivariable duty ratio function.

P roof: This is obvious upon letting Ujf (X) =  I, and, u; (x) =  0, for all i’s in Proposition
2.2.

L e tam a  2.4
Let g(t) and /i(t) be piecewise smooth functions of t  defined in the closed interval 

[0,T] with 0 <  /i(t) <  I for all t, then, for any T such that 0 <  r  <  T, we have:
T;' '■ /'(r)T
J g(<T)/.i(<j)da = J  g(cr)dcr + 0 (T2) (2.9)

Proof:..
Expanding g(<r) using a Taylor series about cr = 0, One obtains the following expres­

sion for the integral in the right hand side of the above equality (2.9):
/'(r)T l<(r)T AcrfrA

I  g(<-r)dcr =  f  [g(0) +  { - | - i  | a=0} a  +  h.o.t]d<r

g(0)/x(r)T +  I  { ^ £ 1 =o} (M^)Tj2 +  h.o.t

where h.o.t are higher order terms.
Using a similar expansion for the integral in the left hand side of (2.4), yields:

o

T T
/  g(a)M<T)dff -  /  [g(0M0) +  I cr +  h.o.t] da

0

g(0)M(0)T +  I  I } T2 +  h.o.t

the result follows.

R em ark  Notice that the above lemma also holds valid when g(*) is a map taking values 
in Rni. '

Consider the PWM controlled system given by (2.1) and (2.2), described as an 
equivalent integral-difference equation, relating the values of the state vector x(t) at 
subsequent sampling instants:



tk+T m tk+ î(̂ k)T
x(tk +  T) =  x(tk) +  J  f(x(cr))da +  £  \  /  gi(x(<7))<kr (2.10)

; k  - i= l' k

Similarly, if one rewrites (2.3) as the corresponding integral-difference equation, 
relating the state z(t) at times tk and tk+T, one obtains the following expression:

tk+T ^  :tk~hT
z(tk +  T) =  z(tk) +  J  f(z(cr))d(T +  £  /  gi(z(tf))//i(cr)dcr (2.11)

k  »=1

Under the assumption of identical initial states x(tk) and z(tk), a comparison of
(2.10) and (2.11) with use of Lemma 2.4 on the last integral of (2.10) reveals that the 
integral equation for the actual PWM controlled system only differs by a second order 
term in T from the integral equation describing the average PWM controlled model
(2.11) . It is easy to see that his statement remains valid whatever the length of time T 
Pr the number p f . sampling, ititervals under consideration. Hejj.ce, (2.10) is a regular 
second order perturbation of (2.11) in terms of the parameter T. It follows, from well 
known results in the theory of perturbations of integral equations (see Miller (-15, pp. 
273-285]), that as the sampling period T decreases to zero, the solution of the actual 
PWM controlled system continuously converges toward the solution of the average 
PWM model in a global manner (see also Tikhonov et al [16, pp. 180-185] for the same 
basic result in the context of differential equations). We have thus proved the following 
theorem.

Theorem  2.4
Under the assumption of identical initial conditions, the solutions of the actual 

PWM controlled system given by (2.1) and (2.2) globally and continuously converge 
toward the solutions of the average PWM system as the sampling frequency 1/T  tends 
to infinity.

Remark: According to the above result, the actual PWM controlled trajectories
approximate arbitrarily close to the trajectories of the average PWM system as the sam­
pling frequency gets higher and higher. This corresponds to the very same manner in 
which the actual sliding regimes approximate arbitrarily close the Ideal Sliding Dynam­
ics, as the imperfections of the switching element are made to tend to become non­
existent ([2]). The average model (2.3), hence, captures all the essential features of the 
actual PWM controlled system given by (2.1) and (2.2), provided a high sampling fre­
quency is used for the Pulse Width Modulation of the actuator. An estimate of the 
required sampling frequency which guarantees a prespecified error bound between the 
actual and the average PWM responses was presented in [11].

Notice furthermore that the result of theorem 2.4 is completely independent of the 
manner in which the duty ratio function is synthesized. Whether the time function p(t)



representing the duty ratio function is an open loop or a closed loop signal is immaterial 
to the approximating properties of the actual PWM controlled system trajectories with 
respect to those of the average PWM responses as T tends to zero.

2.3. A  Stabilizing Feedback PW M  Gontroller Design Scheme based on Aver­
age PW M  M odel Stabilization.

In this section we propose a general design procedure for the stabilization of an 
actual PWM controlled system such as the one given by (2.1) and (2.2). The procedure 
proposes to consider first the problem of stabilization of the average PWM system by 
means of an appropriate continuous multivariable duty ratio function specification as a 
feedback control law. For this task, any of the available nonlinear controller design 
methods (Lyapunov design, Approximate Linearization, Extended Linearization, 
Pseudo-linearization or Feedback Linearization) can be utilized. The multivariable 
duty ratio synthesis may be based on either output tracking error measurements or 
state feedback strategies. The stabilizing design for the average PWM system model is 
then translated into an actual (i.e., discontinuous) PW M controller design whose aver­
age closed loop model precisely coincides with the average closed loop controlled system. 
This discontinuous design procedure is essential whenever the available external control 
inputs are of the fixed amplitude type, such as in the case of ON-OFF systems (actua­
tors delivering fixed positive and negative torques, as in some robotic manipulators or as 
in jet-controlled satellites), and a stabilizing continuous controller design is either well 
known or easy to derive.

Consider the PWM system (2.1) - (2.2), reduced to the form (2.4) - (2.5). Suppose, 
furthermore, thaty without regard for the constrained nature of the control signals Pi (t) 
to the discrete set {O,I }, the following feedback control scheme is known stabilize the 
average PWM controlled system:

-  - V- flz(.V) , g;!z(t})!/<:(.);

 ̂-'M ' :y(t) =;h(z(t)) /■

e(t) =  yd(t) - y ( t )

=  tffW ) +  FK(t))e(t)

Mt) == 77(^(t),e(t)) (2.12)

The question would be now: how to translate this continuous stabilizing feedback con­
troller design into a suitable ON-OFF controller of PWM nature which retains the sta­
bilizing features of the given design and at the same time approximates arbitrarily close 
to the continuous responses of the closed loop system for arbitrary initial states?.
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The components of /u(t) must be properly liniited between 0 and I, by a limiting 
operation* This limiting process is essential for the PWM of the actuator to be such 
that the signal has a physically meaningful duty ratio specification. We consider 

as a computed duty ratio function and will denote it from now on as /I(t). It is 
further assumed that the limiting operation on the given /i(t) does not destroy the sta­
bility of the closed loop system (2.12). The control signal p.(t) is obtained as the output 
of the dynamical compensator characterized by the q-dimensional state vector £(t). 
Such a dynamical compensator is driven by the p-dimensional tracking error vector e(t), 
obtained as the difference between the desired p-dimensional output response y<j(t) and 
the actual plant output signal y(t). The vector £(•) and the column vectors -*)i(*) 
(i =  l , 2,...,p) of the matrix F(’), are considered to be smooth vector fields in their 
respective spaces. The output map of the compensator ??(£,e) and that of the plant, 
h(z), are assumed to be smooth maps of dimension m and p, respectively.

On the basis of the fundamental approximating properties of the actual PWM con­
trolled responses with respect to the average PWM controlled trajectories, under 
sufficiently high sampling frequency assumptions, the feedback control scheme for the 
actual PWM system is easily obtained from (2.12) as (See Figure 1):

F ^ t t l  = f (x(t)) +  ^  gi(x(t))Ui(t) 

y(t) =  h(x(t))

e(t) =  yd(t) - y ( t )

v..;v V - f -  =  f(e(t)) +  r(e(t))e(t)

M(t) =  7?(C(t),e(t))

u(t) =  PWM[/x(t)]/q(t) =  inf{l, sup{zq(t),0}} ; i =  l , 2,...,m

ui(t)= P W M [/ii(t)]
I for tk < t <  tk +  /Zj(Iic)T 
0 for tk +  zq(tk)T < t <  tk +  T

^k+1 =  tIc+T (2.13)

Thus the design procedure consists of the following steps.

(I) Obtain the average model (2.3) for the PWM controlled system (2.1) - (2.2) by 
formally substituting the discontinuous control input to the original system by a convex 
combination, of the form (2.4), of the available feedback control laws. Alternatively, 
transform the original system to one in which the control variables take values in the 
discrete set {0,1} as in (2.4) - (2.5). Such a transformation of the input space coordi­
nates should reflect the fact that only two extreme feedback control inputs are available
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(say Ujf (X) and uj“(x); i == l , 2...,m) on each control channel. Obtain then the average 
model by simply substituting the components of the vector of switch position function 
by the corresponding components of the multivariable duty ratio as in (2.6).

(2) Design a nonlinear (static or dynamic) stabilizing feedback control scheme, as it 
was dpne in (2.12), for the average PWM controlled system taking as input functions, 
the components of the duty ratio function vector. Such a design must be carried under 
the constraint of having each duty ratio function component limited between 0 and I.

(3) Obtain the actual (discontinuous) PWM stabilizing feedback control in the form 
of (2.13) directly from the derived stable average PWM closed loop system (2.12). This 
entitles us to use sufficiently high sampling frequency for the PWM of the actuators. 
The reader is referred to [11], for developments leading to a (rather conservative) esti­
mate of the sampling frequency in terms of Lipschitz constant of the drift vector field 
and a constant bound on the input channel matrix. Otherwise, one can always resort to 
extensive simulations (or trial and error) Until a satisfactory PWM sampling frequency 
which produces a desired agreement between the actual and the average PWM con­
trolled responses is found.

3. APPLICATIO NS TO THE PW M  CONTROL O tv ROBOTIC MANIPLL 
LATORS . ■■■

In this section we apply the design procedure outlined in the previous section to the 
PWM regulation of a two joint robotic manipulator. The pulsed control strategy will 
consist of a PWM scheme based on utilization of positive and negative pulsed torques to 
the joints (no zero torque is assumed to be available, but the above results and the con­
trol scheme can be easily extended to the ON-OFF-ON cases). We use an already exist­
ing stabilizing feedback control scheme presented by Baumann in [17] and we suitably 
modified it to interpret it as an average PWM closed loop system and thus obtain a 
duty ratio synthesis in a continuous feedback manner. From here, it is easy to obtain 
the actual PWM controlled system.

Consider the following state space model of a two link robotic manipulator [17] 
such as the one shown in Figure 2:
dx! ;> .-VK' v;.; / :r , -'--ZriAr ,
~TT  = x2

I +sin 2X3 

!+Cosx3

[x 4 sinx3 +2x2x4 sinx3 —g c o s ^  + x3)—2g Cosx1] +

I +Sin2X3
[xI sinx3 +  g cos(x1+ x 3)] +

l+ s in 2x3

I +COSX3

l+ s in 2x3 u2



dx3
dt

dx4 ITf-COSX3

H -Sin-X 3
[x4 sinx3 +2x2x4sinx3 —g cos(x1 +X3 )—2g cosxi] +

3+ 2 cosx3 ,  . , , ' , l+ cosx 3
— ~  2----  I-X 2SinX3 -  g COs(x1+X3)] -  — -  -
I+sm  X3 I +sin X3

u4 +
3+2cosx3 
" '• u3
!+Sin2X3

(3.1)

where, g is the acceleration due to the gravity, X4 and X3 are the angular positions of 
the two joints while X3 and X4 are the corresponding angular velocities and the u ’s are 
the input torques. All masses and lengths are assumed to be unity.

A state-scheduled continuous multivariable stabilizing feedback controller design, 
based on Extended Linearization, is given by (See [17]):

u4 =  [2 Cosx4 +  cos(x4 +  x3)]g — 32(1+COSX3 )x3 — 8(l+ eosx3)x4 +

16(1+Cosx3) (x4d - X 4) +  (21+22cosx3) (x3d—x3)

U3 =  g cos(x4 +  x3) — 32x2 — 8x4 +  16(x4d—X4) +  (23—cosx3) (x3d—x3) (3.2)

where, X4d and x2d represent the desired angular positions of joints I and 2, respec­
tively; they represent the reference inputs to the controller.

Let us assume that the control actions U4 and U2 are piecewise constant torques of 
magnitude + u 4max and +U2max for each joint. The given continuous controller design 
(3.2) may still be utilized on an ON-OFF PWM switching strategy as suggested in the 
previous section. For this, one simply replaces the control inputs U4 and U2 in the sys­
tem model (3.1) by

U4 =  U4max(2w4 l) ; u2 — u2max(2w2 I) (3.3)

and considers the signals w4 and W2 (as switch position functions) constrained to the 
discrete set {0,l}. This reflects the fact that only torques of the form +U4max and 
+U2max are available from the actuators of each joint of the manipulator. The average 
model of such a PWM controlled system Would be simply obtained by directly replacing 
the discontinuous signals W4 and W2 by the duty ratio functions /Ij and /U2, respectively, 
as it was done in Lemma 2.3. The duty ratio functions can now be obtained from the 
continuous controller (3.2) as:

H1 = inf {1, sup{0, /Ii (t)}} ; i =  1,2 (3.4)

with: '
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/X1 =  0.5 { l 4- [2 Cosx1 +  cos(x1 +  x3)]g — 32(l+cosx3)x2 — 8(l+ cosx3)x4 +  

16(l+cosx3)(xld -  X1) +  (21+22cosx3)(x2d -  x3)}

H2 =  0 .5 {l +  g cos(x1 +  x3) — 32x2 — 8x4 +  IB(Xld - X 1) +  (23—cosx3)(x2d -  X3)) (3.5)

The duty ratio functions are sampled at a sufficiently high rate and their sampled 
values generate a torque pulse width to be used during the next intersampling interval. 
The actual trajectories undergo discontinuities in the velocity variables while the posi­
tion variables are smoothed out by the natural integration for the system dynamics.

The phase plane behavior, for each link, of the average PWM controlled manipula­
tor is portrayed in Figures 3 and 4, respectively. The corresponding time responses for 
the average PWM regulated link angular positions X1 and X3 , converging to desired final

positions (— rad and 0 rad, respectively), are depicted in Figures 5 and 6. The joint

velocities of the average system are given in Figures 7 and 8. The frequency of the 
PWM of the actuator was set at 500 samples per second. The actual PWM controlled 
responses can be obtained from simulations on an analog computer. We tried to simu­
late the the actual system on a VAX 11/780 running UNDC v4.4 using the IMSL subrou­
tine IVPBS which utilizes a sixth order Runga-Kutta integration routine. We found the 
simulation to be exteremely sensitive to the integration step size employed in the IVPBS 
subroutine. It should be noted that the IVPBS integration routine expects the equation 
of the system to be continuous however our controller is discontinous as a result of 
which round-off error builds up, for our system this resulted in about 3% error in the 
joint positions. It is bur belife that better agreement between the responses of the actual 
and the average PWM controlled system can be obtained in real applications( or when 
simulations are carried out using an analog computer):

4. CONCLUSIONS
A systematic method has been proposed for the design of multivariable nonlinear 

feedback regulators of discontinuous nature such as those needed in systems which 
include PWM of the actuators. The method is based on the feedback stabilization of a 
m ultiinput continuous average model easily derived from the original discontinuous sys­
tem model in a manner similar to the Filippov average model of systems in sliding 
mode. The approximation characteristics of the responses of the actual discontinuous 
design, with respect to those of the average design, improve as the sampling frequency 
of the PWM actuator is increased. The results obtained in this article make available a 
wide variety of known continuous feedback design techniques for the case of PWM 
regulated systems. Indeed, if a stabilizing continuous feedback design is available, the 
corresponding approximating PWM controller can be synthesized by considering simple 
modifications of the continuous feedback control signals. The resulting feedback 
scheme is identified with the closed loop specification of the multivariable duty ratio



function for the average PWM model. The discontinuous PWM controller design is 
then easily derived from this straightforward identification process.

The theoretical results were applied to the PWM feedback stabilization of a two 
link robotic manipulator via a known state-scheduled controller design based on 
Extended Linearization. Simulations were performed on both the average and the 
actual PWM controlled system models. Round off errors of about 3% ,with respect to 
the average system, were encountered in the actual system response because of the 
discontinuous nature of the controlled system, response. These errors were due to the 
nature of the numerical integration schemes used in the simulations.
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Figure I.

F IG U R E  C A PT IO N S

Actual Nonlinear PWM Feedback Control Scheme.

Figure 2. 

Figure 3.

Two Link Robotic Manipulator.

Phase plane behavior of Link I for the Average PWM Controlled Manipu­
lator.

Figure 4. Phase plane behavior of Link 2 for the Average PWM Controlled Manipu­
lator.

Figure 5>
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Position of Link I for the Average PWM Controlled Manipulator.

Figure 6. Position of Link 2 for the Average PWM Controlled Manipulator.

Figure 7. Velocity of Link I for the Average PWM controlled Manipulator.

Figure 8. Velocity of Link 2 for the Average PWM controlled Manipulator.
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Figure I. Actual Nonlinear PWM Feedback Control Scheme.



Figure 2. Two Link Robotic Manipulator.
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Figure 3. Phase plane behavior of Link I for the Average PWM Controlled Manipulator.
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Figure 4. Phase plane behavior of Link 2 for the Average PWM Controlled Manipulator.
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Figure 5. Position of Link I for the Average PWM Cohtrollad Manipulator.
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Figure 6. Position of Link 2 for the Average PWM Controlled Manipulator.
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Figure 7. Velocity of Link I for the Average PWM controlled Manipulator.
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Figure 8, Velocity of Link 2 for the Average PWM controlled Manipulator-
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