
Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright © 2001

PULSE-WIDTH OPTIMIZATION IN A PULSE DENSITY
MODULATED HIGH FREQUENCY AC-AC CONVERTER

USING GENETIC ALGORITHMS*

BURAK OZPINECI, JOÃO O. P. PINTO, and LEON M. TOLBERT

Department of Electrical and Computer Engineering, The University of Tennessee,
Knoxville, TN 37996

Abstract:
As the size and the cost of power semiconductor

switches are decreasing, converter topologies with
high device count are starting to draw more attention.
One such type of converters is the high frequency AC
(hfac) link converters. A popular control method for
these converters is Pulse Density Modulation (PDM).
The hfac link voltage of the converter in this paper is
a high frequency, three-step, variable pulse-width
(PW) square wave voltage waveform. A Genetic
Algorithm approach will be used to determine the
PW to optimize the output voltage harmonic content.

I. Introduction:

The first high frequency ac (hfac) link
converters were introduced in the 1970s, however,
because of the number of switches involved and low
switching frequency, they were not very popular.
With the advancement of modern power
semiconductor switches, the size and the cost of the
power switches have decreased drastically.
Moreover, an increase in the switching frequency of
the devices increased the viability of hfac link
converters. In the near future, with the use of silicon
carbide (SiC) instead of silicon (Si) in power
semiconductor switches, it is expected that the size of
the power switches will decrease further and their
operating frequency will increase. Thus, the hfac link
converters are expected to have a bright future.

Hfac link converters consist of two power
conversion stages. The primary stage is a high
frequency (hf) inverter, which produces some kind of
a sine or square voltage wave at a high frequency.
The secondary stage converts this high frequency
voltage either to dc or ac. The control of the primary
converter is usually straightforward, but the optimal
control of the secondary hfac-ac converter is
somewhat complicated. A popular control strategy
for the secondary stage of an hfac inverter is Pulse
Density Modulation (PDM).

In this paper, the converter introduced in [1]
will be taken as the base and PDM operation will be
explained accordingly. The hfac link voltage in [1] is
a square wave with zero intervals. Hfac-ac converter
controller decides on the value of pulse-width (PW)

depending on the voltage command. This PW is fed
to the hf inverter controller, which, in turn, produces
the hfac link voltage. In [1], depending on the
command voltage, a constant pulse-width is
demanded from the hf inverter. However, by
intuition, variable PW is expected to result in better
harmonic quality.

Genetic Algorithm (GA) is a search method to
find the maximum of functions by mimicking the
biological evolutionary processes. In this paper, GA
is used to optimize the harmonic quality at the output
of a PDM hfac-ac converter in both constant PW and
variable PW cases.

GA applications in power electronics literature
are not very common. Two such applications are [2]
and [3].

II. Pulse Density Modulated High Frequency AC
(PDM hfac) Link Inverter

The PDM hfac link inverter in [1] is shown in
Fig. 1. It consists of a high frequency (hf) inverter, a
high frequency transformer, and a hfac-ac matrix
converter.

V1

1:n

S11

S12

S21

S22 S32

S31

a
b

c

AC Motor

V2

AC Switch

hfac-ac matrix converterhf transformerhf inverter

Vdc
+

-
o

Fig. 1: Pulse density modulated high frequency ac (PDM
hfac) link inverter

The hf inverter converts the dc input to a three-
stepped square waveform at constant frequency. The
hf inverter control can vary the pulse-width (PW) of
this waveform depending on the PW command (Fig.
2). The matrix converter, on the other hand, converts
this hfac voltage to three-phase voltages at lower
frequencies to run an ac motor.

In this paper, the operation of the inverter will
not be discussed any further. More information can
be found in [1]. The matrix converter operation will
be explained in more detail.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright © 2001

0.5nVdc
v2=n*v1

-0.5nVdc

... ...

...

...

...

...

......

vao

vbo

vco

PW
PW

PW PW

Ts

kTs/2 (k+1)Ts/2 (k+2)Ts/2

Ts/2 Ts/2

S11 S12

S22

S22

S31

S31

Fig. 2: Hfac link voltage and the construction of the output
voltages

The matrix converter controller calculates the
polarity and PW requirement of each phase using the
PDM algorithm. For simplicity, consider only phase
a. The PDM algorithm takes the integral of the actual
phase voltage at the k⋅(Ts/2)th instant and subtracts it
from the integral of the command phase voltage at
the (k+1)⋅(Ts/2)th instant as follows:

∫−∫= dtaovdtaovA * (1)
The resulting A is the “area” needed for the actual

voltage integral, dtaov∫ to be equal to dtaov∫
* at the

(k+1)⋅(Ts /2)th instant.
Fig. 3a shows phase a command voltage, vao

*

and the integral waveforms, dtaov∫
* and dtaov∫ . Note

that for a sinusoidal phase voltage command:

= tVaov ωsin* , (2)
and the command voltage integral expression, is,

()()wt
V

aov cos1* −=∫
ω

(3)

The harmonic quality depends on how close the
actual voltage integral is tracking the command
voltage integral.

The required PW is determined as follows: if A
is negative, phase a requires a positive pulse with

dcnVAPW = , otherwise phase a requires a negative

pulse with dcnVAPW = .
Like phase a, phase b and phase c have different

polarity and PW requirements. Each independent
phase leg can satisfy the polarity requirement. If a
phase needs a pulse with the same polarity as v2, then
the upper switch corresponding to this phase leg is
turned on with the lower one off. Likewise, if a pulse
of different polarity is required, then the
corresponding lower switch is turned on with the
upper switch off. Consider vao in Fig. 2. In the first v2
half cycle, the polarity of vao is required to be the
same as the polarity of v2, so the upper switch, S11 is
turned on. In the next half cycle, opposite polarity is
required, thus, the lower switch S12 is turned on. The
PW requirement of each phase is different, thus, there

are three PW values but the hf inverter can only
supply one.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10-3

0

2

4
x 10-4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10-3

-4
-2
0
2

x 10-4

v a
o a

nd
 v

ao
*

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10-3

-4
-2
0
2

x 10-4

v b
o a

nd
 v

bo
*

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4
-2
0
2

x 10-4

ti

v c
o a

nd
 v

co
*

vao*

vao

vao*

vbo

vbo*

vco vco*

mvao dtmvao* dt

(a)

(b)

(d)

(c)

Fig. 3: a) The voltage integral waveforms, b) phase a, c)
phase b, d) phase c command and actual waveforms

Close voltage integral tracking depends on the
optimum selection of PW. In [1], a look-up table of
PWs is generated for each voltage command and fed
to the controller of the hf inverter controller. For the
same command voltage, PW value stays constant. It
is changed only if the voltage command changes. Fig.
4 shows how PW varies with the command voltage in
[1]. Note that this graph is the result of trial-and-error
search methods. Also note that, PW is limited to
[3µsec, 22µsec] range because of the commutation
time of the power devices.

PW(µsec)

Vom0 0.2 0.4 0.6 0.8 1.0

25

20

15

10

5

0

0.12 0.88

3

22

Fig. 4: PW versus the command voltage in [1]

A more optimum approach intuitively should
depend on the individual PW demands of the phases.
For this reason, the following cases are introduced:

i. min PW: At any decision instant, find the
minimum PW requirement and feed it to the hf
inverter controller.

ii. mean: Instead of the minimum, take the
arithmetic mean of the PW requirements.

iii. max: Same as the previous two, but the
maximum PW is used instead.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright © 2001

III. Genetic Algorithm (GA)

Genetic Algorithm is a computational model
that solves optimization problems by imitating
genetic processes and the theory of evolution. It
imitates biological evolution by using genetic
operators like reproduction, crossover, mutation, etc.

Optimization in GA means maximization. In
cases where minimization is required, the negative or
the inverse of the function to be optimized is used.

To minimize a function,),,2,1(kxxxf K using
GA, first, each xi is coded as a binary or floating-
point string of length m. In this paper, a binary string
is preferred, e.g.

=

=

=

0101111110

11110001012

01001100011

K

LLL

K

K

kx

x

x

(4)

The set of {x1, x2,…,xk} is called a chromosome
and xi are called genes. The algorithm works as
follows:
1-Initialize population:

Set a population size, N, i.e. the number of
chromosomes in a population. Then initialize the
chromosome values randomly. If known, the range of
the genes should be considered for initialization.

Population, P=

NkxNxNx

kxxx
kxxx

,,,,2,,1

2,,,2,2,2,1
1,,,1,2,1,1

K
LLL

K

K

(5)

2-Evaluate each chromosome
Use the function in the problem to evaluate the

fitness value (FV) of each chromosome,

),,2,1(

1

kxxxf
FV

K
= (6)

Add all the FVs to get the total fitness. Divide
each FV by the total FV and find the probability of
selection, pi, for each chromosome. The integer part
of the product, piN gives the number of descendents
from each chromosome. At the end, there should be
N descendent chromosomes. If the number of
descendents calculated is less then N, the rest of the
descendents are found randomly considering the
reproduction probabilities, pi of each chromosome.
3- Crossover Operation

A floating number (between 0 and 1) for each
chromosome is assigned randomly. If this number is
smaller than a pre-selected crossover probability, this
chromosome goes into crossover. The chromosomes
undergoing crossover are paired randomly. In this
case assume x1 and x2 are paired. The crossing point
is randomly selected, assume 3 in this case.

Then, before crossover,

[]
[]11110012

01001011

K

K

001

100

=

=

x

x
(7)

and after crossover,
[]
[]01001012

11110011

K

K

001

100

=

=

x

x
(8)

As seen above, the bits after the 3rd one are
exchanged.
4- Mutation Operation:

A floating number (between 0 and 1) for each
bit is assigned randomly. If this number is smaller
than a pre-selected mutation probability, this bit
mutates. Assume that the 2nd and 4th bits of x1 and 2nd,
3rd and 5th bits of x2 need to be mutated.

Then, before mutation and after crossover,

=

=

01001002

111101011
K

K

101

00

x

x
(9)

and after mutation,

=

=

01001002

111101011
K

K

010

11

x

x
(10)

Finally, the new population is ready for another
cycle of genetic algorithm. The algorithm runs a
certain number of times as required by the user. At
the end, the chromosome with the maximum FV is
the answer.

IV. Results

Consider the control of one phase independent
of the others. In this case, PW command is variable
and is equal to the PW requirement of phase a only.
Fig. 5 shows the graphs of PW and the actual and
command voltage integrals. As seen in this figure,
PW requirement is maximum when the voltage
command integral has a high slope and minimum
when it has a low slope. Around the minimum PW
region, the oscillations are because of the minimum
3µsec PW requirement. The hf inverter can supply
only a minimum PW of 3µsec.

The hf inverter supplies the exact PW
requirement of the phase between 3 to 22µsec,
therefore, the tracking looks perfect. Although it is
not very clear, there is some error around the
minimum PW region because of the PW oscillations.

As repeated earlier, normally all three phases
are in operation, and they have three different PW
requirements, but there is only one PW the hf inverter
can supply. To find the optimum PW, five cases are
investigated: constant PW, min PW, mean PW, max
PW, PW as a function of command voltages.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright © 2001

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

 t, µsec

PW
(scaled)

mvao* dt

mvao dt

Fig. 5: PW and the actual and command voltage integrals
for the one phase variable PW case.

a. Constant PW:
This case uses a constant pulse-width depending

on the command voltage. As stated earlier, in [1], a
trial and error method was used to find the optimum
constant PW. In this paper, however, a GA search [4]
method is used.

In this case, each chromosome consists of the
pulse-width value, PW. A population size of 10 is
selected, and it is initialized randomly with the
following constraint in mind: 3µsec<PW<22µsec.

The fitness value of each value is found by
using the following equation:

()∑
=

∑ ∫−∫

=
c

aphasei
dtiovdtiov

FV
2*

1
(11)

This function determines how good the tracking
is by taking the inverse of the sum-squared tracking
error. Note that the reason for taking the inverse is, as
explained before, to minimize error by maximizing
FV.

Fig. 6 shows the constant PW results obtained
for each voltage command. Note that this also
validates the result in [1]. Also notice that constant
PW value does not have much of an output frequency
dependence.
b. Min PW:

PW requirement of each phase is calculated and
the minimum is chosen to be fed to the hf inverter
controller.

∫−∫= dtaovdtaovA * (12)

∫−∫= dtbovdtbovB * (13)

∫−∫= dtcovdtcovC * (14)
PW=min(A,B,C) (15)

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5
x 10 -5

0 0.5 1
0

0.5

1

1.5

2

2.5
x 10-5

PW PW

fo Vom

0.12 0.88

0.3

2.22.2

0.3

a) b)

Fig. 6: The results of the GA search for the constant PW a)
PW vs. output frequency, fo, b) PW vs. command voltage,

Vom
In Fig. 5, the minimum PW corresponds to the

lowest and highest points of the voltage integral. It is
expected that the voltage integral tracking of a phase
will be almost perfect in its min PW regions, and
tracking will be poor in its max PW regions. Fig. 7
shows the tracking waveforms for all the three phases
for a certain operating region. The graph is divided
into three regions depending on which phase has the
min PW. It is clear from this figure that when the PW
requirement of a phase is minimum, the tracking is
excellent after the actual voltage integral reaches the
command voltage integral. When another phase gets
the min PW requirement, then the tracking becomes
poor. Moreover, the actual voltage integral departs
from the command voltage integral because the PW
is no longer enough for that phase.
c. Max PW:

Another option is taking the maximum of the
PW requirements.

PW=max(A,B,C) (16)

Fig. 8 shows the tracking results at the same
operating region as the min PW case. It is obvious
how better the tracking is in this case compared to the
min PW case. The graph is again divided into three
regions depending on which phase has the max PW
requirement. At any time, the phase with the
maximum PW requirement supplies the PW
command to the hf inverter. It is not very clear in this
figure, but whenever a phase is supplying the PW
command then in that region, its voltage integral
tracking is the best. In the rest of the cycle, tracking
is still good but the actual voltage integral has several
ripples.
d. Mean PW:

This time the average of the PW requirements is
taken as the PW command.

PW=(A+B+C)/3 (17)

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright © 2001

The tracking results are not shown because they
are similar to the results in Fig. 8. However, the sum-
squared error is worse than the max PW case.

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Phase a PW Phase c PW Phase b PW

Time, µsec

mvao* dt

mvco* dt

mvbo* dt

mvao dtmvco dt

mvao dt

Fig. 7: Min PW operation tracking waveforms

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

time, µsec

Phase a PWPhase b PW Phase c PW

mvco* dt
mvao* dt

mvbo* dt

mvco dt
mvao dt

mvbo dt

Fig. 8: Max PW operation tracking waveforms

e. PW as a function of command voltages:
The PW values in the max PW case are plotted

in Fig. 9a for a command voltage, Vom=0.5 and and a
frequency command, fo=40Hz. This is a spiky
waveform at 6 times the original output frequency. If
the spikes are filtered, the remaining waveform looks
like a three-phase rectified voltage waveform (Fig.
9b).

Further studies show that the filtered PW
waveform is actually a function of the command
voltages scaled by a factor, kf. Thus, the PW function
is:

)))
3

2(cos()),
3

2(cos()),(cos(max(*

))
3

2cos(),
3

2cos(),(cos(*

),,(*

πωπωω

πωπωω

+−=

+−=

=

tabstabstabsfk

tttffk
covbovaovffkPW

(18)
and its construction is shown in Fig. 10.

0 0.005 0.01 0.015 0.02 0.025

0.5

1

1.5

2
x 10 -5

pu
ls

ew
id

th
, s

0 0.005 0.01 0.015 0.02 0.025
0.5

1

1.5

2
x 10 -5

pu
ls

ew
id

th
, s

0 0.005 0.01 0.015 0.02 0.025

0.5

1

1.5

2
x 10 -5

pu
ls

ew
id

th
, s

(a)

(b)

(c)

Fig. 9: a) PW waveform from the max PW case, b) cleaned
version of the waveform in a), c) PW function

superimposed on the waveform in a)

))*(),*(),*(max(* covabsbovabsaovabsfkPW =

0.005 0.01 0.015 0.02 0.025

-1

0

1

x 10-5

pu
ls

ew
id

th
, s

v

kfVao* kfVbo*kfVco*

kf|Vao*|kf|Vco*| kf|Vbo*|

Fig. 10: Construction of the PW function

To find the kf values for each voltage and
frequency command, another GA search is initiated.
This search follows the same steps as the constant
PW GA search with the only difference of using kf
instead of PW. The range of kf in this case is chosen
to be 3µsec<kf<50µsec. Note that although the max
limit for kf is 50µsec, the PW function is still limited
to 22µsec. Resulting kf values for each command
voltage is given in Fig. 11. As in the constant PW
case, it was found that kf does not depend much on
the output frequency. The only dependence can be
seen when Vom is over 0.88 because of the upper
bound of the PW, 22µsec.

The sum-squared tracking errors corresponding
to different voltage and frequency command values
are plotted in Figs. 12 and 13. Min PW case is
ignored simply because the amount of tracking error
is significantly larger than the other cases. Among the
rest, mean PW and constant PW cases also have high
tracking errors. The remaining two, max PW and kf
result in the lowest tracking errors. Therefore, either
one can be used to get the optimum PW.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright © 2001

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5
x 10-5

fo

k f

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10-5

Vom

k f

2.2

0.3

2.2

0.3

0.12 0.88

b)

Fig. 11: The results of the GA search for kf a) kf vs. output
frequency, fo, b) kf vs. command voltage, Vom

10 20 30 40 50 60

10-8

10-7

V
om

=0
.1

10 20 30 40 50 60
10-8

10-7

V
om

=0
.2

10 20 30 40 50 60

10-7

V
om

=0
.3

10 20 30 40 50 60

10-7

V
om

=0
.4

10 20 30 40 50 60

10
-7

V
om

=0
.5

10 20 30 40 50 60

10-6

V
om

=0
.6

10 20 30 40 50 60

10-6

V
om

=0
.7

10 20 30 40 50 60
10-7

10-6

V
om

=0
.8

10 20 30 40 50 60

10-6

V
om

=0
.9

10 20 30 40 50 60

10-4

V
om

=1
.0

Fig. 12: Sum-squared tracking error vs. fo at different
command voltage values (dotted cyan: mean PW, dash-
dotted blue: constant, solid black: kf, dashed red: max)

Implementation complexity is a good measure
to choose the better one among these two methods.
Implementation of the max PW method includes the
calculation of the PW requirement of each phase and
then choosing the biggest requirement as the PW
command. The kf method, on the other hand, also
requires calculation of the PW requirement of each
phase for the pulse polarity, and then finding kf from
a look-up table and multiplying it by the unity PW
look-up table.

Thus, the kf method has more implementation
complexity than the max PW method. However, the
kf method has one crucial advantage compared to the
max PW method- the kf method knows what the next
PW command will be even before the integration
step. This is especially important because the PW
command in the max PW method is calculated by the
matrix converter controller and sent to the hf inverter
controller. On the other hand, in the kf method, the
inverter controller calculates the PW command, thus

it does not need feedback from the matrix converter
controller. As a result, both of the controllers can be
used independent of each other.

0.2 0.4 0.6 0.8

10-6

fo
v=

8H
z

0.2 0.4 0.6 0.8

10-6

fo
v=

10
H

z

0.2 0.4 0.6 0.8
10-8

10-6

fo
v=

20
H

z

0.2 0.4 0.6 0.8
10-8

10-7

fo
v=

29
.9

85
8H

z

0.2 0.4 0.6 0.8
10-8fo

v=
40

H
z

0.2 0.4 0.6 0.8
10-8fo

v=
50

H
z

0.2 0.4 0.6 0.8
10-8

fo
v=

59
.8

8H
z

Fig. 13: Sum-squared tracking error vs. Vom at different
command frequency values (dotted cyan: mean PW, dash-

dotted blue: constant, solid black: kf, dashed red: max)

V. Conclusions

Although there are many optimization problems
in power electronics, GA applications in this area of
electrical engineering are rarely seen in literature.

The study in this paper uses a GA search
method to find the optimum pulse width for a hfac
link power converter. This GA pulse optimization
method can also be applied to other PWM methods
such as Selective Harmonic Elimination PWM [2],
etc.

References:
1. H. Li, B.Ozpineci and B.K.Bose, “A Soft-

Switched High Frequency Non-Resonant Link
Integral Pulse Modulated DC-DC Converter for
AC Motor Drive”, Conference Proceedings of
IEEE Industrial Electronics Conference
(IECON), 1998, vol. 2, pp 726-732

2. A. I. Maswood, S. Wei, M. A. Rahman, “A
Flexible Way to Generate PWM-SHE Switching
Patterns Using Genetic Algorithms”, Conference
Proceedings of IEEE Applied Power Electronics
Conference and Exposition (APEC), 2001, vol.
2, pp. 1130-1134

3. M. J. Schutten, D. A. Torrey, “Genetic
Algorithms for Control of Power Converters”,
Conference Proceedings of IEEE Power
Electronics Specialists Conference, 1995, vol. 2,
1321-1326

4. C. Houck, J. Joines, M. Kay, The Genetic
Algorithm Optimization Toolbox (GAOT) for
Matlab 5,
http://www.ie.ncsu.edu/mirage/GAToolBox/gaot

