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Abstract 

Materials engineering at the nanoscale by precise control of growth parameters can lead to many unusual 

and fascinating physical properties. The development of pulsed laser deposition (PLD) 25 years ago has 

enabled atomistic control of thin films and interfaces and as such it has contributed significantly to 

advances in fundamental material science. One application area is the research field of spintronics, which 

requires optimized nanomaterials for the generation and transport of spin-polarized carriers. The mixed 

valence manganite La1-xSrxMnO3 (LSMO) is an interesting material for spintronics due to its intrinsic 

magnetoresistance properties, electric-field tunable metal-insulator transitions, and half-metallic band 

structure. Studies on LSMO thin-film growth by PLD show that the deposition temperature, oxygen 

pressure, laser fluence, strain due to substrate-film lattice mismatch, and post-deposition annealing greatly 

influence the magnetic and electrical transport properties of LSMO. For spintronic structures, robust 

ferromagnetic exchange interactions and metallic conductivity are desirable properties. In this article, we 

review the physics of LSMO thin films and the important role that PLD played to advance the field of LSMO-

based spintronics. Some specific application areas including magnetic tunnel junctions (MTJs), multiferroic 

tunnel junctions (MFTJs), and organic spintronic devices are highlighted, and the advantages, drawbacks, 

and opportunities of PLD-grown LSMO for next-generation spintronic devices are discussed.  

2. Introduction 

The technology of spintronics uses the charge and spin of electrons to store information or to carry 

out logic operations [1, 2]. Spintronic components are often more versatile, energy efficient and faster than 

their conventional counterparts. Major developments in spintronics include giant magnetoresistance 

(GMR) [3] in metallic multi-layers and spin valve devices and tunneling magnetoresistance (TMR) [4] in 

MTJs. Both effects have been used in commercial applications including magnetic field sensors, the read 

head of magnetic hard-disk drives, and non-volatile magnetic random access memory (MRAM). Many 

functional spintronic devices require a highly spin-polarized injector and detector. La1-xSrxMnO3 (LSMO) with 
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x = 0.2 – 0.4 has been a popular choice as magnetic electrode in both inorganic and organic spin-based 

structures because of its fully spin polarized conduction band at the Fermi level [6]. Other interesting 

properties of LSMO include a matching work function with several organic semiconductors and polymers 

and a metal-insulator transition that is tunable by lattice strain and electric fields.  

Pulsed laser deposition (PLD) [7] is a versatile thin-film deposition technique that can be used for 

nanoscale engineering of complex materials and interfaces. In correlated electron systems like LSMO, 

strong lattice-charge-spin coupling offers extensive control of magnetic and electronic transport properties 

by growth optimization and external actuation [8]. Besides intrinsic material parameters, spintronic 

elements often rely on band-structure effects at the interfaces between magnetic and non-magnetic thin 

films. Since the interface of LSMO is sensitive to bonding with other materials, charge transport due to 

polar discontinuities, and electric-field effects, it allows for the engineering of improved material responses 

and new functionalities. In this article, we review the use of PLD-grown LSMO films in spintronics. After an 

introduction to LSMO and a discussion on the control of LSMO properties using PLD, examples of LSMO 

films in MTJs, MFTJs, and organic spintronic devices are given.  

 

3. La1-xSrxMnO3: Structural, magnetic and transport properties 

Perovskite manganites with the general formula R1-xAxMnO3 (where R = rare-earth cation and A = 

alkali or alkaline earth ion) have been widely investigated since the 1990s because of their interesting 

magnetic and electrical properties, such as colossal magnetoresistance (CMR) and composition- and 

temperature-dependent metal-insulator transitions. Among perovskite manganites, LSMO is an optimal 

choice for spintronic applications as it combines high carrier spin polarization, the highest Curie 

temperature (TC  360 K in thin films) within the manganites family [8], and low carrier density (1021 - 1022 

cm-3) [9]. Figure 1 illustrates the crystal structure of the LSMO unit cell. The lattice is approximated by a 

face-centered-cubic (fcc) structure with a Mn ion in the center and La/Sr cations at the corners of the cubic 

unit cell. Six oxygen ions surround the Mn ion and together they form a MnO6 octahedron. For a perfect 

size match between the La and dopant cations, the tolerance factor dA-O/√2dMn-O = 1 and the Mn-O-Mn 

bond angle is 180. However, due to a mismatch between the radii of the cations, the unit cell of 

manganites becomes distorted with a modified MnO6 octahedron. For hole doped LSMO with x = 1/3 and 

an average A-site radius of <rA> ≈ 1.24 Å, the Mn-O-Mn bond angle is 166.3. LSMO has a rhombohedral 

crystal structure with R3c space group symmetry [11]. The structural stability of LSMO is determined by 

charge neutrality, which also depends on the radius of the A-site dopant (Sr). In the LSMO lattice, the rare-

earth La3+ ions are the largest, while the smaller Mn ions exhibit the mixed-valence phase of Mn3+ and 

Mn4+, depending on the hole doping concentration x.  
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Figure 1. Schematic illustration of the LSMO crystal structure. 

 

The electronic properties of LSMO are strongly correlated with the crystal structure. In an ideal 

perovskite structure, the five d orbitals of an isolated Mn ion undergo a crystal field splitting into a t2g 

triplet (consisting of the dxy, dxz and dyz orbitals) and an eg doublet (originating from the d x
2

-y
2 and d3z

2
-r

2 

orbitals) as schematically shown in Figure 2. The degeneracy of the levels is further lifted by lattice 

distortions that lower the crystal symmetry, also known as Jahn-Teller (JT) distortions. Due to the 

tetrahedral Mn-O coordination the t2g triplet is energetically lower than the eg doublet. Lifting of the two-

fold degeneracy of the eg spin-up and spin-down bands by JT distortions results in the spin-resolved band 

structure of LSMO [6]. Therefore, in the Mn4+ valence states the low-lying t2g states are occupied by three 

parallel-spin electrons forming a S = 3/2 core spin while in the Mn3+ valence state (S = 2) the additional 

electron occupies a higher-lying eg state (with crystal field splitting Δ  1.5 eV between the lowest t2g and 

the highest eg level). As substitution of each trivalent La3+ by divalent Sr2+ in LaMnO3 induces itinerant holes, 

a doping concentration of x = 0.3 - 0.4 leads to a roughly equal number of Mn3+ and Mn4+. Depending on 

doping concentration, LSMO has a conduction band that is either more (x < 0.5) or less (x > 0.5) than half-

filled. In hole-doped LSMO (x < 0.5), the fully occupied spin-up localized t2g band and partially occupied 

spin-up eg band are separated from the empty minority bands by a large Hund’s energy of about 2.5 eV. For 

both spin orientations, the oxygen 2p states are fully occupied and the electronic structure near the Fermi 

level is determined by hybridization between the majority spin Mn-eg states and the O-p states. The 

minority spin states and the O-2p band are separated by an insulating band gap and therefore only majority 

carriers are present at the Fermi level, i.e. LSMO is a half metal for x = 0.3 - 0.4. The 100% spin polarization 

at the Fermi level of LSMO is much larger compared to the 40% spin polarization of ferromagnetic 3d 

transition metals [11-14].   
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Figure 2. (a) Crystal field splitting of the Mn ion d-levels and electronic occupation of the mixed-valence Mn 

ions. The degeneracy of the eg and t2g levels is lifted by an in-plane contraction and out-of-plane elongation 

of the oxygen octahedron. (b) Schematic illustration of the density of states of LSMO and Ni showing the 

fully spin-polarized conduction band of LSMO. Adapted from Ref. 8 [Dagotto A et al., 2001 Phys. Rep. 344 1] 

and 33 [Haghiri-Gosnet A -M and Renard J -P 2003 J. Phys. D: Appl. Phys. 36  R127]. 

 

The phase diagram of mixed-valence LSMO [8, 15] is shown in Fig. 3. For low hole doping (x < 0.1), 

LSMO is an antiferromagnetic insulator (AFM-I). With increasing hole doping, first a ferromagnetic 

insulating (FM-I) (x < 0.2) and eventually a ferromagnetic metallic (FM-M) (x = 0.2 – 0.4) ground state is 

stabilized. For x = 0.3, a metal-insulator transition is observed at TMI, which is close to TC. Both the metal-

insulator and the paramagnetic-ferromagnetic phase transitions are connected to the electronic 

distribution of spin-up and spin-down states and the width of the impurity band. The magnetic and 

transport properties in this correlated electron system are essentially influenced by the size of the A-site 

cations which controls the tolerance factor, the average Mn-O bond length, and the Mn-O-Mn bond angle 

of the MnO6 octahedra. The two transition temperatures TMI and TC can either coincide (for single crystals 

or epitaxial thin films) or vary substantially depending on the presence of structural defects and grain 

boundaries. 
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Figure 3. Phase diagram of La1-xSrxMnO3, reproduced with permission from Ref. 15 [Fujishiro H, Fukase T 

and Ikebe M, 1998 J. Phys. Soc. Jpn. 67 2582]. 

 

The regime in which ferromagnetism and metallic conduction coexist is generally explained by 

double exchange (DE) [16, 17] between localized 3d magnetic moments with strong on-site Hund’s 

coupling. Hopping of eg electrons between adjacent Mn3+ and Mn4+ along the Mn-O-Mn chains governs 

both ferromagnetism and metallic transport. The hopping probability is largest when the Mn spins are 

aligned parallel. Anderson and Hasegawa have shown that the transfer integral varies as the cosine of the 

angle between neighboring spins [18]. Hence, charge carriers can move easily in the ferromagnetic phase 

while they get localized due to randomly aligned Mn spins when the manganite is paramagnetic. 

Mechanisms that are capable of modifying the spin alignment, such as magnetic field or temperature, can 

therefore alter the carrier mobility and the resulting electrical conductivity. With decreasing temperature, 

the combined itinerant and local-moment system lowers its total energy by ferromagnetic spin alignment 

and by allowing the itinerant electrons to gain kinetic energy [19]. However, Millis et al. [20-22] have shown 

that a Hamiltonian incorporating the DE interaction alone cannot explain CMR in manganites [8]. It was 

proposed that in addition to DE, an electron–phonon coupling term dictates electronic transport, which is 

expected for a system where electrons hop between Mn3+ and Mn4+ ions. Hole doping of the system 

replaces Mn3+(d4) by Mn4+(d3) which, in the dilute limit, is associated with large JT coupling. The DE model 

with the inclusion of JT distortions explains the CMR effect and the high temperature paramagnetic phase 

in LSMO and other manganites in general.  

In LSMO, different MR mechanisms are active including CMR and low-field magnetoresistance 

(LFMR). CMR is associated with the suppression of spin fluctuations in an applied magnetic field and 

therefore a fairly large magnetic field (a few Tesla) is required [8]. LFMR is due to the suppression of spin-
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dependent scattering at grain boundaries or tunneling between grains, which requires a small magnetic 

field that is comparable to the coercivity [23]. In the low temperature ferromagnetic phase (below TC), the 

conduction electrons are almost completely polarized inside a magnetic domain resulting in easy transfer of 

electrons within the Mn–O–Mn chains. Hence, in single crystals or epitaxial thin films the manganite 

resistance does not change substantially in a small applied magnetic field. However, for polycrystalline bulk 

materials or thin films, the differently aligned magnetic domains and the grain boundaries can act as 

insulating scattering centers for spin-polarized electrons, which enhances the zero-field resistivity. There 

are two different effects related to LFMR. i) Electrons from one magnetic domain hop to another magnetic 

domain through an intermediate insulating layer by a spin-dependent tunneling process (<500mT) and ii) 

suppression of spin fluctuations at grain boundaries at larger field (>500 mT). The probability of spin-

dependent tunneling depends strongly on the spin states of neighboring grains. At the coercive field, half of 

the domains switch their magnetic orientation. Hence, the tunneling probability of electrons is smallest at 

Hc and the electrical resistance peaks. After successive magnetization reversal into the direction of the 

external magnetic field, the tunneling probability again increases leading to a decrease of the electrical 

resistance. There are reports of up to 20% LFMR in polycrystalline LSMO thin films on single crystal (100) 

yttria-stabilized zirconia substrates [24]. The suppression of spin fluctuations at grain boundaries by a 

moderate magnetic field also contributes to the negative MR effect. 

The temperature dependence of electrical conductivity in bulk and thin films of LSMO has been 

described by different models. In the low temperature ferromagnetic phase, the resistivity of LSMO has 

been fitted with equations of the form [25]: 

 

 = 0 + 2T
2                                            (1) 

 = 0 + 2.5T
2.5                                       (2) 

 = 0 + 2T
2 + 4.5T

4.5                           (3) 

 

where 0 is the resistivity due to temperature-independent scattering on impurities, defects, domains-walls 

and grain boundaries. Generally, 0 decreases significantly in an applied magnetic field due to an improved 

spin alignment at grain boundaries and domain walls. The temperature dependence of the resistivity 

originates from different scattering sources. For example, Urushibara et al. [25] showed that the resistivity 

of single crystal LSMO can be fitted well below 200 K using Eq. 1. In this case, the T2 term predominantly 

accounts for electron-electron scattering. Additional electron-magnon scattering can be taken into account 

by the introduction of a   T4.5 term (Eq. 3), which is typical for double-exchange systems [Ref. 19 and 

references therein]. However, Eq. 2 provides a better fit to some experimental data. Finally, electron-

phonon scattering does increase the resistivity of LSMO at high temperatures. Just like 0, the temperature-
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dependent terms (2, 2.5 or 4.5) decrease in a magnetic field. Snyder et al. [26] suggested that the decrease 

of 2 is proportional to H-1/3, which implies that a reduction of spin fluctuations suppresses electron-

electron scattering in LSMO. 

 

4. Control of La1-xSrxMnO3 properties by pulsed laser deposition 

 

Pulsed laser deposition is a thin-film ablation technique based on laser-matter interactions. In a PLD 

setup, a short and high-energy laser pulse is focused on a target. The intense local heating induces ejection 

of target ions into a plasma plume. The substrate, placed at an optimum distance from the target, receives 

the plasma ions and under the right deposition conditions (temperature, background gas pressure, laser 

fluence, and pulse repetition rate) high quality films can be grown. The stoichiometry of complex multi-

element materials is conserved during the PLD process. In addition, PLD is a powerful technique for 

obtaining smooth defect free interfaces between thin films, which is of particular interest for spintronic 

structures. 

The magnetic and electrical transport properties of LSMO are controlled by lattice-charge-spin 

coupling, which is very sensitive to phase and structural order, oxygen stoichiometry, and lattice distortions 

induced by doping [27-29]. In thin films, the physical properties are further influenced by low and high 

angle grain boundaries (polycrystalline growth) and lattice strain. For PLD of LSMO thin films, mainly 

excimer lasers (Nd:YAG laser, KrF (248 nm) and ArF (193nm)) are used. The laser fluence and pulse 

repetition rate for optimal LSMO films depend on the composition, substrate, and deposition temperature. 

High deposition temperatures (> 650°C) and post-deposition annealing under a controlled oxygen pressure 

are generally required for the growth of high-quality LSMO films. Although the optimum deposition 

parameters vary for films grown by different groups, typical growth parameters for LSMO thin films are a 

deposition temperature of 700 - 800°C, an oxygen pressure of about 0.25 Torr, a laser repetition rate of 5 -

10 Hz and a laser fluence of 2 – 2.5 J /cm2. 

For spintronic applications, the large spin polarization of LSMO is a desirable property. In addition, a 

high TC, good metallic conductivity, and atomically smooth interfaces are often essential for practical 

devices. Because strain control in thin LSMO films is vital for obtaining optimal properties, the effects of 

strain have been studied extensively [30-32]. More details can for example be found in Ref. 33 and 

references therein. Various single-crystal substrates including SrTiO3 (STO), LaAlO3 (LAO), NdGaO3 (NGO), 

and MgO have been used for PLD of LSMO. Because of the small lattice mismatch between LSMO and these 

substrates (except for MgO), the lattice strain is not released easily. For example, 20 – 30 nm thick LSMO 

films on STO are still considerably strained and bulk-like lattice parameters are only obtained for 

considerably thicker films. The MnO6 octahedra of strained LSMO are distorted and the hopping 

probabilities of eg electrons are restricted. Localization of eg electrons reduces the ferromagnetic 
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interactions and it enhances the electrical resistivity of thin LSMO films, two effects that are not desirable 

for spintronic structures.  

Other factors that control the magnetic and electrical transport properties of LSMO are film 

composition, oxygen stoichiometry and crystal orientation [34-38]. The composition and oxygen content 

mainly affect the saturation moment and the transition temperature, whereas lattice strain and film 

texture can also induce magnetic anisotropy [39, 40]. Moreover, LSMO films with a polycrystalline texture 

can exhibit large LFMR and a large dielectric constant due to the presence of high and low angle grain 

boundaries. 

To illustrate the influence of substrate selection and PLD parameters on the structural, magnetic and 

electrical properties of LSMO films, we discuss some of our results below [41, 42]. In the experiments, the 

LSMO films were systematically grown on three different single-crystal substrates (STO (001), NGO (001), 

MgO (001)) under a variety of PLD conditions. X-ray diffraction pole figures (ϕ –  scans) of the (110) 

reflection at 2 = 32.76 are shown in Fig. 4. Obviously, different crystal orientations are obtained in most 

of the samples. Only the films grown at 700C (indicated by number 5) and a LSMO thickness of about 200 

nm on MgO and STO are fully epitaxial. All other films contain additional crystal orientations with 

pseudocubic axes at 10, 13, 16 and 27 angles with respect to the substrate [001] direction. In addition, 

the reflections from LSMO films on MgO are much wider than those from STO and NGO samples, indicating 

the presence of low angle grain boundaries with single grain orientation.  
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Figure 4. X-ray diffraction pole figures of the LSMO (110) reflection at 2 = 32.76 on MgO, STO and NGO 

substrates with a (001) orientation. The PLD parameters for samples indicated by No. 1 are; growth 

temperature TS = 780 C, laser pulse frequency f = 5 Hz, and LSMO film thickness t = 400 nm. For 2, TS = 780 

C, f = 5 Hz, and t = 200 nm. For 3, TS = 780 C, f = 10 Hz, and t = 400 nm. For 4, TS = 780 C, f = 10 Hz, and t = 

500 nm. For 5, TS = 700 C, f = 10 Hz, and t = 200 nm. Reprinted from J. Alloys and Compounds, 

512, Majumdar S et al., Stress and defect induced enhanced low field magnetoresistance and dielectric 

constant in La0.7Sr0.3MnO3 thin films, 332,   (2012), with permission from Elsevier. 

 

Magnetic measurements on LSMO/MgO (001) clearly indicate that the ferromagnetic-paramagnetic 

phase transition of LSMO is considerably broader than that of comparable films on STO and NGO (Fig. 5). 

The broadening of the magnetic transition is accompanied by a metal-insulator transition at a temperature 

well below TC. Both effects are explained by the formation of (001) and (211)-oriented grains during PLD of 

LSMO on MgO [42]. For LSMO films on STO and NGO substrates, the magnetic properties do depend less on 

PLD conditions and film thickness, although the TC of 200 nm films on STO (342 K) is approximately 10 K less 

than for 400 nm films. The reduction of TC is ascribed to compressive film strain. The largest LFMR effect 

(17%) is obtained for the thickest LSMO film on MgO while the LFMR is only 1% for epitaxial films on STO 

and nearly epitaxial films on NGO. These results indicate that tunneling through grain boundaries 

contributes significantly to the conduction of polycrystalline LSMO films on MgO. Finally, LSMO films on 

MgO (001) with a high density of grain boundaries possess a large dielectric constant (r’) [41, 42]. At room 

temperature, r’ remains large up to a frequency of a few kHz. This behavior is explained by a variation of 

the conductivity and capacitance of grains and grain boundaries, which leads to Maxwell–Wagner-type 

polarization and the formation of a Schottky barrier at the interface. The r’ of epitaxial LSMO films on STO 

(001) on the other hand, remains relatively constant up to MHz frequencies. In this system, lattice strain 

mainly influences the evolution of r’. 
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Figure 5. Temperature dependence of field cooled magnetization (left) and sheet-resistance of LSMO films 

(right) on MgO, STO and NGO substrates grown under the same experimental conditions as sample 3 in Fig. 

4. Adapted from Ref. 43 [Majumdar S et al., 2008 J. Appl. Phys. 104 033910]. 

The coexistence of ferromagnetism with defect-induced LFMR and a large dielectric constant opens 

up new routes for a variety of interesting applications. For spintronics, however, epitaxial and defect free 

LSMO films on lattice-matched substrates are more desirable. One drawback of LSMO-based spintronic 

structures is the relatively low TC. Although the TC of LSMO thin films is about 360 K, it has been reported 

that it already starts to lose its spin polarization at 200 K [44], especially near the surface of the LSMO 

film. Consequently, only a current with small spin polarization can be generated in LSMO-based spintronic 

devices at room temperature, which poses a serious challenge for practical applications. Also, the tunneling 

magnetoresistance (TMR) of magnetic tunnel junctions (MTJs) with LSMO electrodes is often smaller than 

expected, which suggests that the LSMO interface layer is not fully spin-polarized at the Fermi level. The 

reduction of spin polarization might be due to LSMO-tunnel barrier interactions. In fact, some studies 

indicate that LSMO can lose its half-metallicity in contact with a STO (001) substrate [45, 46]. According to 

polar discontinuity theory [47, 48], STO is composed of alternating SrO and TiO2 planes while (001) oriented 

LSMO is deposited as alternating layers of (La0.67Sr0.33O)0.67+ and (MnO2)
0.67-. Thus, the LSMO layers are 

charged while STO is charge-neutral. The polar discontinuity that occurs at the STO-LSMO interface leads to 

an electronic redistribution, which either reduces or enhances the charge carrier density in the interfacial 

layers of LSMO. As a result, the population of the eg orbitals changes and via the DE mechanism this can 

alter the electrical conductivity and magnetic properties of the LSMO interface. To avoid detrimental 

effects due to polar discontinuities, interface engineering of LSMO-STO heterostructures has been 

suggested as a possible solution [49, 50]. 

 

 

Figure 6. Schematic illustration of the LSMO lattice orientation on STO (001) and STO (110) substrates. 

Adapted from Ref. 51 [Majumdar S et al. 2013 J. Phys.: Condens Mat. 25 376003]. 
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One route towards interface engineering is based on the growth of LSMO films on substrates with 

different crystal orientation. For example, LSMO on (110)-oriented STO substrates exhibits a completely 

different interface structure than LSMO on STO (001) (Fig. 6). In the (110) system, the STO is composed of 

alternating SrTiO4+ and O2
4- planes. Since LSMO (110) contains alternating layers of La0.67Sr0.33MnO4+ and 

O2
4-, a polar discontinuity is avoided and the magnetization and spin polarization of the interfacial layers 

can be preserved. Experiments indeed show that (110)-oriented LSMO films possess a larger magnetic 

moment and higher TC (increase of about 15 K) compared to (001) oriented films [51]. Moreover, recent x-

ray photoelectron spectroscopy (XPS) and high kinetic energy XPS studies indicate that LSMO films on STO 

(001) are under larger tensile strain, due to strain effects in both the [100] and [010] in-plane directions. 

This not only affects the LSMO lattice parameters but also the angle between the unit cell axes. For (110)-

oriented LSMO, strain effects along the [001] and [110] directions affect the LSMO unit cell less. As a 

result, LSMO (110) films are more relaxed. This in turn leads to a smaller distortion of the MnO6 octahedra 

and a higher population of Mn4+ ions, which via improved DE interactions enhances the magnetic 

properties of LSMO. 

 

5. Applications of La1-xSrxMnO3 in spintronics 

a. Magnetic tunnel junctions (MTJ) 

The ever-increasing demand for high-density magnetic data storage on computer hard-disk drives 

has motivated extensive research on magnetic tunnel junctions (MTJs) that exhibit large tunneling 

magnetoresistance (TMR) at room temperature. Moreover, MTJs form the storage cells in non-volatile 

magnetic random access memories (MRAMs). MTJs consist of a multilayer structure with two 

ferromagnetic electrodes that are separated by a thin insulating tunnel barrier. In most cases, dielectric 

oxides such as Al2O3 and MgO provide the necessary potential for quantum-mechanical tunneling of 

electrons between the two ferromagnetic layers. The TMR effect is a measure of the relative change in 

tunnel barrier resistance upon magnetization reversal in one of the electrodes. The effect is largest when 

the alignment of the magnetic moments on either side of the tunnel barrier switches from parallel to 

antiparallel or vice versa. TMR originates from an imbalance between the number of majority and minority 

electrons that contribute to the tunneling current. The spin-polarized band structure of the electrodes and 

spin filtering within the tunnel barrier can both contribute to the magnitude of TMR. When the influence of 

the tunnel barrier is negligible (e.g. for MTJs with amorphous Al2O3), the TMR effect is approximated by 

Julliere’s formula [52]:            –                                              (4) 

where RAP and RP are the tunnel barrier resistance for antiparallel and parallel aligned magnetic moments 

and P1 and P2 indicate the spin polarization of the electrodes. The latter quantity is often specified as: 
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     (  )    (  )  (  )   (  )                                           (5) 

with N and N indicating the density of majority and minority electrons at the Fermi level.  

Because of its half-metallic character, LSMO has been explored as electrode material for MTJs (see for 

example Refs. 53 and 54 for details). In most cases, the LSMO and barrier layers are grown by PLD. The first 

demonstration of TMR using LSMO electrodes was reported by a research group at IBM [55, 56]. The best 

results in this study were obtained using optimally doped La2/3Sr1/3MnO3 electrodes and 3 - 6 nm thick STO 

tunnel barriers. The junctions, which were fabricated using a combination of optical lithography and ion-

beam etching, showed a TMR of 83% at 4.2 K [55]. According to Julliere’s formula (Eq. [4]), this corresponds 

to a LSMO spin polarization of 54%. In subsequent years, considerably larger TMR values for LSMO-based 

MTJs were reported in literature [57, 58]. For example, Bowen and coworkers reported a low-temperature 

TMR of 1850% for MTJs with a LSMO/STO/LSMO structure (Fig. 7) [57]. A spin polarization of 95% can be 

extracted from these experiments, which confirms the half-metallicity of LSMO.  

 

Figure 7. TMR versus magnetic field curve for a MTJ with a LSMO/STO/LSMO structure at 4 K. Reprinted 

with permission from Bowen M et al. 2003 Appl. Phys. Lett. 82 233  [2003], American Institute of Physics. 

 

 Despite these promising results, LSMO electrodes exhibit some detrimental properties. In particular, 

the TMR effect of LSMO-based MTJs tends to decrease sharply with temperature, becoming negligible at 

room temperature [44]. Moreover, the MTJ resistance does not scale linearly with the inverse of the 

junction area [23], which suggest that electron tunneling between LSMO electrodes is inhomogeneous.  

Finally, MTJs with LSMO electrodes often exhibit an irregular switching behavior (Fig. 7). In the remainder 

of this section, the temperature and bias voltage dependence of LSMO-based MTJs are briefly discussed. 

We also elaborate on the observation of inverse TMR effects and interface engineering strategies to 

overcome some of the drawbacks of LSMO. 
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Temperature dependence: Although LSMO-based MTJs often show very large TMR ratios at low 

temperature, the effect decreases considerably at elevated temperatures irrespective of tunnel barrier 

material [59-62]. Especially above T  200 K, sharp decays of TMR are often observed [44]. Since this 

characteristic feature occurs well below the TC of LSMO films (360 K), it raises questions regarding the 

breakdown of half-metallicity.  Polar discontinuity theory [47, 48] suggests the formation of a magnetically 

dead layer at the LSMO-STO interface, which is detrimental for the ferromagnetic properties and hence 

spin polarization of LSMO. In their study on LSMO-based MTJs with LAO and STO tunnel barriers, Garcia et 

al. concluded that the spin polarization at the surface of LSMO decays much faster than in the bulk due to 

the discontinuation of oxygen bonds [44]. In this picture, the distortion of the MnO6 octahedra by dangling 

bonds acts as a localization center for eg electrons and this results in a deterioration of the magnetic and 

electronic properties (Fig. 8). In experiments, the modified magnetic and electronic properties are often 

manifested by a decrease of TC and TMI, a decrease of the saturation magnetization, and an increase of the 

resistivity and low temperature magnetoresistance. At LSMO-oxide barrier interfaces the oxygen bonds are 

better preserved and, hence, the interface spin polarization is considerably larger compared to that of free 

LSMO surfaces. However, both transport and spectroscopic studies indicate that even with better 

preserved oxygen bonds the spin polarization of the LSMO/oxide barrier interface vanishes completely at 

about 300 K. Large TMR values at room temperature remain therefore elusive for MTJs with LSMO 

electrodes.  

 

Figure 8. Temperature dependence of the bulk magnetization and surface spin polarization of free LSMO 

and the interface spin polarization of LSMO in contact with three different oxide tunnel barriers. Reprinted 

with permission from Garcia V et al. 2004 Phys. Rev. B 69 052403  [2004], American Physical Society. 

 

Bias voltage dependence: Another striking feature of LSMO-based MTJs is a fast decay of the TMR effect 

with increasing bias voltage, especially in the low (≤ 0.2 V) bias range (Fig. 9) [63-65]. This strong bias 

dependence is accompanied by a zero-bias anomaly in the conductance curves. Gu et al. theoretically 
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studied the anomaly and they proposed that the tunnel barrier conductance is proportional to |V|3/2 due to 

DE interactions in LSMO [66]. They showed that the stimulation of spin excitations, caused by strong Hund’s 

coupling between the conduction eg electrons and the localized quantum spins of the LSMO ions, assists 

electron tunneling even for antiparallel aligned electrodes. As a result, an extra tunneling conductance and 

a decrease of TMR are obtained. These findings are also confirmed by experimental studies [55, 65]. At a 

bias voltage of about 350 mV, a plateau in the TMR curve is generally observed, which is followed by 

another sharp decrease beyond 400 mV (Fig. 9) [65]. The point of inflection can be interpreted as the onset 

of electron tunneling into the minority conduction band of LSMO. Based on this hypothesis, one can 

determine the position of the minority LSMO band from TMR measurements. The obtained value of 380 

mV corresponds well with spin-polarized inverse photoemission results [67]. Exchange biasing of LSMO 

electrodes have been also shown using antiferromagnetic La0.45Sr0.55MnO3 in an MTJ with structure 

La0.45Sr0.55MnO3/LSMO/STO/Co and robust exchange bias with exchange energy of 0.13 erg cm−2 at the 

interface between antiferromagnetic La0.45Sr0.55MnO3 and ferromagnetic LSMO is reported [68]. More 

details on the bias dependence of LSMO-based MTJs are discussed elsewhere [69]. 

 

 

Figure 9. Bias dependence of a LSMO/STO(2.8 nm)/LSMO MTJ (normalized to its value at 10 mV) at 4.2 K. 

The inset shows the spin asymmetry, defined as spin = (IP – IAP)/ (IP + IAP), in this bias range. Reprinted with 

permission from Bowen M et al. 2005 Phys. Rev. Lett.  95 137203  [2004], American Physical Society. 

 

Inverse TMR: Depending on the choice of barrier material and the applied bias voltage, both normal and 

inverse TMR effects can be observed in LSMO-based MTJs. De Teressa et al. [70] showed that for a LSMO 

and Co electrode, normal TMR is observed for an Al2O3 (ALO) tunnel barrier while for STO and Ce0.69La0.31O3 

(CLO) barriers the TMR response is inversed (Fig. 10). In the latter case, insertion of a thin ALO layer 

between the STO tunnel barrier and the Co electrode changes the sign of the TMR effect, but insertion of 

ALO between the STO barrier and LSMO does not alter the TMR response. These results are explained by a 
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change in tunneling spin polarization due to different bonding at the dielectric oxide-Co interfaces. The 

effective polarization of Co is negative for STO or CLO barriers, but positive for ALO. The negative tunneling 

spin polarization of Co indicates preferential transmission of d electrons from the Co-STO and Co-CLO 

interfaces, while the positive polarization is due to predominant tunneling of s electrons from the Co-ALO 

interface. Consequently, inverse and normal TMR effects are observed for tunneling of d electrons and s 

electrons, respectively. Inverse TMR effects have also been observed in LSMO-based MTJs with a Co90Fe10 

[71, 72], CoFeB [73], and Fe or Ni40Fe60 [74] counter electrode.  

 

Figure 10. TMR response of MTJs with a LSMO and Co electrode and a STO (a), CLO (b), ALO (c) or hybrid 

ALO/STO (d) tunnel barrier at 40 K. Reprinted with permission from De Teresa J M et al., 1999 Science 

286 507. Reprinted with permission from AAAS. 

 

Interface engineering: Several interface engineering techniques have been explored to improve the 

performance of LSMO-based MTJs. Due to a polar discontinuity, a STO tunnel barrier donates holes to 

LSMO electrodes [75]. The insertion of 2 unit cells of LaMnO3 between LSMO and STO can compensate for 

charge transfer at LSMO/STO interfaces [76]. Experiments indicate that the magnetic properties of this 

engineered interface are better, however, significant improvements of the TMR response and the 

temperature stability have not been demonstrated yet [77]. Other routes that have been explored include 

the use of LAO tunnel barriers [76] or the growth of more stable LSMO (110) electrodes [78]. Also in these 

cases, only limited enhancements of MTJ properties are obtained.  
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b. Multiferroic tunnel junctions (MFTJ)  

 

One of the recent trends in spintronics is the exploration of electric-field controlled magnetism. 

Materials that combine magnetic and ferroelectric phases, or so-called multiferroics, offer this desirable 

property via magneto-electric (ME) coupling between two ferroically ordered states. Unfortunately, single-

phase multiferroic materials are rare and their application potential is often limited by low ordering 

temperatures, small ferroelectric polarization or magnetization, or weak ME coupling. As an alternative, 

studies on multiferroic heterostructures have greatly intensified in recent years (see e.g. Refs. 79 and 80 for 

reviews). In a multiferroic heterostructures, magnetic and ferroelectric films are artificially assembled and 

the ME coupling originates from direct or indirect interactions at the interfaces. Each material constituent 

of a multiferroic heterostructure can be independently optimized for high temperature operation, which 

facilitates their integration into practical devices. Moreover, since a wide variety of magnetic and 

ferroelectric materials are available, the nature and strength of ME interactions can be systematically 

altered and maximized. This has led to the engineering of large ME responses that exceed those of single-

phase multiferroic materials by several orders of magnitude. Complex oxide materials are of particular 

interest for multiferroic heterostructures because their physical properties are very sensitive to external 

parameters including strain and electric fields. Indeed, electric-field control of LSMO properties has been 

achieved by PLD growth onto piezoelectric substrates [81 - 85]. In these structures, an electrically activated 

piezostrain is transferred to the LSMO layer, which alters the magnetic and electrical transport properties. 

Direct electric-field effects have been obtained in systems where LSMO is directly coupled to a ferroelectric 

material. Here, out-of-plane polarization reversal in the ferroelectric causes charge accumulation or 

depletion in the interfacial layers of LSMO, which for an appropriately selected doping concentration x can 

lead to magnetic and electric phase transitions. Finally, LSMO has been used extensively as bottom 

electrode in multiferroic tunnel junctions (MFTJs). In this section, we will briefly review the physics of MFTJs 

and electric-field controlled LSMO phase transitions.       

 MFTJs consist of two ferromagnetic electrodes separated by an insulating ferroelectric tunnel 

barrier. In most cases, the ferroelectric material is BaTiO3 (BTO), PbTiO3 (PTO) or PbZr0.2Ti0.8O3 (PZT). Tunnel 

junctions with a single-phase multiferroic tunnel barrier have also been studied [86]. In all junctions, PLD is 

used to grow the LSMO bottom electrode. Besides the necessary electrical conductivity, LSMO provides a 

compressive lattice strain to the BTO, PTO or PZT tunnel barrier which stabilizes the out-of-plane 

ferroelectric polarization. Using piezo-response force microscopy (PFM), Garcia et al. have shown that the 

ferroelectric polarization of ultrathin BTO films on LSMO can be retained down to a film thickness of only 1 

nm (Fig. 11) [87]. Reversal of the polarization in MFTJs changes the tunnel barrier resistance [87 - 90]. This 

effect, which has been labeled as tunneling electroresistance (TER), can have different origins [91]. In 

junctions with a metallic top electrode (e.g. Co, Fe etc.), TER is often explained by an incomplete screening 
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of the polarization charges at the barrier/electrode interfaces, which for inherently different electrode 

materials leads to an asymmetric deformation of the barrier potential profile [92, 93]. In this case, reversal 

of the barrier polarization produces distinctive average barrier heights and consequently two different 

tunnel barrier resistances. This scenario is supported by an exponential increase of the TER effect with 

tunnel barrier thickness [87]. The TER effect of MFTJs can be considerably larger than the TMR of 

conventional MTJs. The maximum TMR effect at room temperature is about 600% for MgO-based MTJs 

with CoFeB electrodes [94], which correspond to an OFF/ON ratio of 7. However, for MFTJs with a 

La0.67Sr0.33MnO3 bottom electrode, a BTO tunnel barrier, and a Co top electrode, OFF/ON ratios as high as 

100 have been obtained at room temperature (Fig. 12) [88]. Moreover, ferroelectric switching between two 

resistance states only requires a current density of about 1 x 104 A cm-2, which is considerably smaller than 

the critical current density for spin-transfer torque writing in MTJs (> 1 x 106 A cm-2). The large, stable, and 

reproducible TER effect underpins the potential of FTJs for data storage applications.  

 

   

Figure 11. Evidence of ferroelectricity in 1 nm (left) and 3 nm (right) thick BTO films on LSMO. Reprinted by 

permission from Macmillan Publishers Ltd: [Nature] Garcia V et al., 2009 Nature 81 460, copyright (2009). 

 

   

Figure 12. (Left) Junction resistance as a function of bias voltage for an MFTJ with a LSMO/BTO/Co 

structure. (Right) Reproducible switching between the ON and OFF resistance states of 50 different 
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junctions. Reprinted by permission from Macmillan Publishers Ltd: [Nature Nanotech.] Chanthbouala A et 

al., 2012 Nature Nanotech. 7 101, copyright (2012). 

 

The TER effect is not limited to MFTJs because it does not rely on the electrodes being magnetic. 

Large electrical responses have also been obtained for non-magnetic top contacts [95 - 97]. More generally, 

such structures are often referred to as ferroelectric tunnel junction (FTJ). In addition to the TER effect, 

however, MFTJs also exhibit a TMR response. The magnitude and even sign of the TMR effect can change 

upon polarization reversal in the tunnel barrier [98 - 100]. As an example, Fig. 13 shows experimental data 

of a Co/PZT(3.2 nm)/LSMO junction [98]. In this experiment, switching of the polarization from pointing 

towards the Co to pointing towards the LSMO electrode by a +3 V bias voltage pulse changes the TMR 

response from -7% to +5% at 10 K. An opposite effect is measured when a bias pulse of -3 V is applied. This 

modification of the TMR effect is attributed to either an anti-aligned induced magnetic moment on the Ti 

ions at the Co interface or a spin-dependent screening effect in the LSMO interfacial layers. Support for the 

first scenario has been obtained by x-ray resonant magnetic scattering measurements [99] and first-

principles calculations based on density-functional theory [101].   

 

 

Figure 13. (Left) TMR response of a Co/PZT(3.2 nm)/LSMO junction at 50 K in the as-grown state (black 

squares) and after polarization switching with a +3V voltage pulse (red circles). The polarization state of the 

barrier as well as the magnetization of the two electrodes are schematically shown for each non-volatile 

state. (Right) Resistance (black squares) and TMR (red circles) after successive switching with 3 V pulses for 

a different junction at 10 K. Reprinted by permission from Macmillan Publishers Ltd: [Nature Mater.] Pantel 

D et al., 2012 Nature Mater. 11 289, copyright (2012). 

 

Besides LSMO/ferroelectric barrier/metallic electrode junctions, large TER effects have also been 

obtained in all-oxide MFTJs. Recently, Yin et al. reported on a TER response of 5000% at 40 K in PLD grown 

50 nm LSMO/3 nm BTO/0.4 – 2 nm La0.5Ca0.5MnO3 (LCMO)/30 nm LSMO junction [89]. The origin of this 
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effect is attributed to an electric-field induced metal-insulator transition in the LCMO layer, which is driven 

by charge modulation. As the junction resistance depends exponentially on the barrier width, large effects 

are readily obtained when only a few atomic layers of the LCMO are affected by polarization reversal. The 

ability to induce a phase transition in the interfacial layers of thin-film manganites with appropriate doping 

concentration is supported by DFT calculations and experiments. Theoretical work by Tsymbal and co-

workers indicates that the magnetic structure of the interfacial layers of La0.5Sr0.5MnO3 changes from 

ferromagnetic to antiferromagnetic when the polarization in a neighboring BTO film is rotated away from 

the LSMO/BTO interface [102]. A similar effect is calculated for La0.5Ca0.5MnO3 [89]. According to the phase 

diagram of LSMO and LCMO, the ferromagnetic-to-antiferromagnetic transition is closely associated with a 

metal-insulator transition (Fig. 3). 

 

Additional experimental evidence for strong electric-field effects in LSMO can also be found in 

literature. For example, Hong et al. demonstrated that the temperature of magnetic phase transitions and 

the MR response change upon polarization reversal in LSMO/PZT field-effect structures [103]. Magneto-

optical Kerr effect measurements on 250 nm PZT/4 nm LSMO bilayers confirm this observation [104]. In the 

latter study, it is also shown that the magnetization of LSMO changes when the polarization of an adjacent 

PZT film is reversed between two out-of-plane states. The origin of this effect was studied in detail by Vaz 

et al. using x-ray absorption near edge spectroscopy (XANES) [105]. In their experiments, large shifts in the 

absorption edge of Mn were observed, indicating a change of Mn valency due to charge carrier modulation 

in LSMO. Holes are depleted from the LSMO interface region when the polarization of the PZT layer points 

towards the LSMO film, whereas hole accumulation occurs when the polarization points in the opposite 

direction. These electrostatic modifications are analogous to chemical doping of LSMO. Polarization 

reversal can therefore induce large magnetic and electrical transport effects when the LSMO doping 

concentration is positioned near one of the phase transitions. For example, recent experiments by Lu et al. 

indicate that electric-field control over the ferromagnetic-paramagnetic phase transition is obtained for 

PLD-grown La0.67Sr0.33MnO3 films at room temperature [106].  

The recent progress on electric-field controlled effects in LSMO and LSMO-based MFTJs holds a great 

promise for practical device applications, especially since significant and reproducible effects can be 

obtained at room temperature.  

 

c. Organic spin valves (OSV) 

 

LSMO films grown by PLD are also frequently used as spin injector in organic spintronics, an emerging 

research field that combines spintronics and molecular/organic electronics. In many of these studies, the 

LSMO layer contacts an organic semiconductor (OS), which acts as spin transporting medium. The use of 
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OSs in spintronics is motivated by their long spin relaxation time compared to inorganic materials, which is 

attributed to weak spin-orbit and hyperfine interactions in light-element compounds. Control over the 

electronic properties via chemical engineering, low production costs, and ease of large scale fabrication are 

often used as additional motivation. Several review articles have been published on organic spintronics 

[107-110]. Here, we only focus on the frequent use of PLD and LSMO in organic spin valves and MTJ 

devices.  

The choice of LSMO in organic spintronics is mainly based on its stability in contact with OS 

molecules and its high degree of spin polarization. In addition, the work function ( 4.9 eV) and low carrier 

density of LSMO are particularly suitable for efficient spin injection into many organic semiconductors and 

polymers. In the first report on organic spin valves, Dediu et al. demonstrated a magnetoresistance (MR) 

effect of 30% at 300 K in a planar geometry with two LSMO electrodes and a 140 nm wide oligomer 

sexithianyl (T6) transport channel [111]. A significantly clearer spin-valve response and MR ratio of 40% at 

11 K was subsequently obtained in the first vertical spin valve with a LSMO/140 nm Alq3/Co structure [112]. 

However, the MR effect, which was attributed to spin-conserved hopping transport in the OS spacer layer, 

decayed sharply with increasing temperature. In 2006, room-temperature operation of vertical organic spin 

valves was reported for OS polymer regio-regular poly(3-hexyl thiophene) (RRP3HT) and poly(3-

octylthiophene) (P3OT) based devices with a LSMO/RRP3HT/Co [113] and LSMO/P3OT/LSMO [114] 

structure. In the RRP3HT-based spin valves, the GMR was 80% at 5 K and the effect diminished to 1.5% at 

room temperature.  
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Figure 14. MR response of a LSMO/RRP3HT(100 nm)/Co/Al vertical spin valve at 5K (left) and at room 

temperature (right). Adapted from Ref. 113 [Majumdar S et al., 2006 Appl. Phys. Lett. 89 122114]. 

 

Many studies have been devoted to the physical origin of the strong temperature dependence of MR 

in organic spin valves [43, 113 - 120]. In one of our efforts, we systematically investigated the influence of 

the LSMO electrode using PLD on three different substrates (STO, NGO, and MgO) [43]. Not surprisingly, 

the largest GMR values are obtained for epitaxial LSMO films on STO. However, despite the lower GMR for 

polycrystalline LSMO on MgO, the temperature variation of the MR effect is very similar on all substrates 
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(left panel of Fig. 15). This finding suggests that the decrease of GMR signal in organic spin valves at 

elevated temperatures could be due to deteriorated spin transport in the OS spacer layer. In a later study 

[119], we particularly focused on polymer RRP3HT-based spin valves with LSMO and Co electrodes. 

Measurements on these structures indicate that despite nearly constant LSMO spin polarization in the 5 – 

50 K temperature range, the MR response is already reduced by half (right panel of Fig. 15). These 

experimental results suggest that spin-conserved transport through the OS is obtained in the variable-range 

hopping (VRH) regime (at low temperatures), but that thermally activated polaron hopping destroys the 

spin information of the carriers at elevated temperatures. Other experiments on the detailed nature of spin 

scattering mechanisms in OS materials confirm this picture [117, 118, 120].  
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Figure 15. (Left) Temperature dependence of the MR response of a LSMO/RRP3HT/Co spin valve on MgO 

and STO substrates Adapted from Ref. 42. (Right) GMR response of a LSMO/RRP3HT/Co spin valve on STO 

at different temperatures. Adapted from Ref. 119 [Majumdar S and Majumdar H S 2012 Org. Electron. 13  

2653]. 

 

LSMO – OS interfaces: Besides the LSMO electrode and the OS transport channel, properties of the 

LSMO-OS interface are also crucial for the GMR response of organic spin valves. Several experiments have 

focused on the electronic and spin injection properties of such interfaces. Engineering of the interface 

between LSMO and an OS polymer was, for example, investigated using XPS [113]. For a LSMO/RRP3HT 

interface, a chemical reaction between LSMO and RRP3HT was identified by studying the core level spectra 

of the Sulphur 2p peaks, a constituent atom of RRP3HT [113]. Once RRP3HT is coated on LSMO, the pristine 

LSMO surface disappeared. Cleaning with acetone and alcohol was unable to reduce the sulphur bonding 

and restore the pristine state of LSMO. The introduction of monolayers of two different organic insulators 

in the tunneling limit, however, did partially or completely destroy the chemical bonding between RRP3HT 

and LSMO and this resulted in negligible spin injection. Different devices were studied with varying degrees 

of chemical bonding between LSMO and RRP3HT and from this it was concluded that spin injection from 

the ferromagnetic half-metal into the OS decreases systematically when the chemical bond is weakened. 

Similar chemical reactions between LSMO and organic molecules were also reported in Ref. 121. Later a 
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photoelectron spectroscopy (PES) study of the interface in LSMO/Alq3/Co SVs by Zhan et al. [122] revealed 

the introduction of OS small molecule Alq3 on LSMO creates a strong interface dipole of 0.9 eV that shifts 

the energy levels of Alq3 with respect to the vacuum level. Due to this energy level shift, electron injection 

into Alq3 becomes more favorable than hole injection. An unperturbed band diagram favors the injection of 

holes over the injection of electrons in Alq3. The dipole moment of the Alq3 molecule itself was suggested 

to be the origin of the interface dipole. They also suggested this to be the origin of the inverse sign of 

magnetoresistance in such devices, which is still a debatable issue.  

  

Interfacial dipole formation of the LSMO/RRP3HT interface is also confirmed by recent magneto-

transport experiment [123] and by fitting the transport data with Cheung and Cheung model [124]. This 

interfacial dipole modifies the barrier height for the injection of spin-polarized carriers from LSMO to the 

OS layer. For different crystalline qualities of the LSMO film starting from epitaxial on STO to textured on 

MgO, and finally to completely polycrystalline LSMO on quartz, the application and removal of RRP3HT 

introduces different GB-like defects in the vicinity of the LSMO surface. The introduction of more GB-like 

defects leads to a higher resistance and larger LFMR in epitaxial films. However, for the LSMO films on MgO 

and quartz, with already deteriorated crystalline and transport properties, no significant changes in MR 

response was found due to the addition or removal of RRP3HT layers. This result signifies that epitaxial thin 

films of LSMO, considered best for spin injection in polymeric spin valves, undergo degradation at the 

interface with OSs, extending into bulk regions, by the introduction of GB like defects and carrier 

localization centers. To achieve better spin injection, different interface engineering between LSMO and OS 

can be tested. For more details on the organic – ferromagnetic interface including the newly coined 

“spinterface” science, we refer to review articles on this topic [125, 126]. 

 

Besides their usage in organic spin valves, OS materials have also been explored as tunnel barrier in 

MTJ structures [127-129]. In many experiments, LSMO is used as bottom electrode. While the TMR of 

organic MTJs can be significant at low temperature (up to 300% at 2 K in Ref. [129]) in nano-junctions, the 

effect decreases sharply with temperature. Similarly to organic spin valves, the deterioration of TMR at 

elevated temperatures is attributed to a decrease of interface magnetization in LSMO in combination with 

enhanced spin scattering during tunneling transport through the OS barrier. Moreover, the TMR of organic 

MTJs decreases more rapidly with bias voltage than the TMR of inorganic structures. Because of this it is 

thought that not only magnons, which are known to play a key role in conventional MTJs, but also phonons 

influence the transport properties of organic junctions. 

 

6. Conclusions and future research 
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Ferromagnetic half-metallic LSMO thin films have been utilized in experimental studies on spintronics for 

nearly two decades. During this period, several milestones have been achieved. First, the growth of LSMO 

thin films and its dependence of PLD growth parameters are now well understood. Second, their 

integration into spintronics structures has contributed to a better understanding of spin-polarized transport 

effects, particularly at low temperatures. In the future, LSMO will remain an important material for 

investigations on fundamental magnetic and electronic transport phenomena. Moreover, its instrumental 

use in multiferroic tunnel junctions opens up promising possibilities for commercial applications in future 

nanoelectronics devices. Without the development of PLD 25 years ago, the tremendous advances in 

complex magnetic oxides and their contribution to the spintronics research field would not have been 

possible. The engineering of new material properties at the atomic scale is more relevant than ever and, 

hence, PLD of complex interface is anticipated to unveil more interesting new physics in the future. 
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