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Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of
quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and
especially quantum state reconstruction of mechanical oscillators remains a significant challenge.
Here we propose a scheme to realize quantum state tomography, squeezing and state purification
of a mechanical resonator using short optical pulses. The scheme presented allows observation of
mechanical quantum features despite preparation from a thermal state and is shown to be exper-
imentally feasible using optical microcavities. Our framework thus provides a promising means to
explore the quantum nature of massive mechanical oscillators and can be applied to other systems
such as trapped ions.

I. INTRODUCTION

Coherent quantum mechanical phenomena, such as en-
tanglement and superposition, are not apparent in the
macroscopic realm. It is currently held that on large
scales quantum mechanical behavior is masked by deco-
herence [1] or that quantum mechanical laws may even
require modification [2]. Despite substantial experimen-
tal advances, see for example Ref. [3], probing this regime
remains extremely challenging. Recently however, it has
been proposed to utilize the precision and control of
quantum optical fields in order to investigate the quan-
tum nature of massive mechanical resonators by means
of the radiation pressure interaction [4–6]. Quantum
state preparation and the ability to probe the dynam-
ics of mechanical oscillators, the most rigorous method
being quantum state tomography, are essential for such
investigations. These have been experimentally realized
for various quantum systems, e.g. light [7, 8], trapped
ions [9], atomic ensemble spin [10] and intra-cavity mi-
crowave fields [11]. By contrast, an experiment real-
izing both quantum state preparation and tomography
of a mechanical resonator is yet to be achieved. Also,
schemes that can probe quantum features without full
tomography (e.g. [5, 12]) are similarly challenging. In
nano-electromechanics, cooling of resonator motion and
preparation of the ground state has been observed [13, 14]
but quantum state reconstruction [15] remains outstand-
ing. In cavity optomechanics significant experimental
progress has been made towards quantum state control
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over mechanical resonators [6], which includes classical
phase-space monitoring [16], laser cooling close to the
ground state [17] and low noise continuous measurement
of mechanically induced phase fluctuations [18]. Still,
quantum state preparation is technically difficult primar-
ily due to thermal bath coupling and weak radiation pres-
sure interaction strength, and quantum state reconstruc-
tion remains little explored. Thus far, a common theme
in proposals for mechanical state reconstruction is state
transfer to and then readout of an auxillary quantum sys-
tem [19]. This is a technically demanding approach and
remains a challenge.

In this paper we introduce an optomechanical scheme
that provides direct access to all the mechanical quadra-
tures in order to obtain full knowledge about the quan-
tum state of mechanical motion. This is achieved by
observing the distribution of phase noise of strong pulses
of light at various times throughout a mechanical pe-
riod. We show that the same experimental tools used for
quantum state tomography can also be used for squeezed
state preparation and state purification, which thus pro-
vides a complete experimental framework. Our scheme
does not require ‘cooling via damping’ [6] and can be per-
formed within a single mechanical cycle thus significantly
relaxing the technical requirements to minimize thermal
contributions from the environment.

Using a pulsed interaction that is very short compared
to the period of an oscillator to provide a back-action-
evading measurement of position was introduced in the
seminal contributions of Braginsky and colleagues [20,
21], where schemes for sensitive force detection were de-
veloped. In our work, the quantum nature of a mechan-
ical resonator is itself the central object of investigation.
Here, the pulsed interaction is used to provide an experi-
mentally feasible means to generate and fully reconstruct
quantum states of mechanical motion. The proposed ex-
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FIG. 1: (a) Schematic of the optical setup to achieve measure-
ment based quantum state engineering and quantum state to-
mography of a mechanical resonator. An incident pulse (in)
resonantly drives an optomechanical cavity, where the intra-
cavity field a accumulates phase with the position quadra-
ture XM of a mechanical oscillator. The field emerges from
the cavity (out) and balanced homodyne detection is used to
measure the optical phase with a local oscillator pulse (LO)
shaped to maximize the measure of the mechanical position.
(b) Scaled envelopes of the optimal input pulse, its corre-
sponding intracavity field and the optimal local oscillator as
computed in the appendix.

perimental setup is shown in Fig. 1. A pulse of duration
much less than the mechanical period is incident upon
an optomechanical Fabry-Pérot cavity which we model
as being single-sided. Due to the entanglement gener-
ated during the radiation-pressure interaction, the op-
tical phase becomes correlated with the mechanical po-
sition while the optical intensity imparts momentum to
the mechanical oscillator. Time-domain homodyne de-
tection [8] is then used to determine the phase of the field
emerging from the cavity, and thus to obtain a measure
of the mechanical position. For each pulse, the measure-
ment outcome PL is recorded, which for Gaussian optical
states has mean and variance

〈PL〉 = χ
〈
X in

M

〉
, σ2

PL
= σ2

P in

L

+ χ2σ2
Xin

M

, (1)

respectively. X in
M is the mechanical position quadrature

immediately prior to the interaction and P in
L describes

the input phase of light. The position measurement
strength χ is an important parameter in this work as
it quantifies the scaling of the mechanical position in-
formation onto the light field. A derivation of Eq. (1)
including an optimization of χ by determining the input
pulse envelope to gain the largest cavity enhancement is
provided in the appendix.
In order to describe and quantify the pulse interaction

and measurement we use the non-unitary operator Υ that
determines the new mechanical state via ρoutM ∝ ΥρinMΥ†.
This operator is mechanical state independent and can be
determined from the probability density of measurement
outcomes

Pr(PL) = TrM
(
Υ†ΥρinM

)
. (2)

For pure optical input, it takes the form

Υ = (π2σ2
P in

L

)−
1

4 exp

[
iΩXM − (PL − χXM )

2

4σ2
P in

L

]
, (3)

where Ω quantifies the momentum transfer to the me-
chanics due to the pulse mean photon number. Υ can
be readily understood by considering its action on a me-
chanical position wavefunction. It selectively narrows the
wavefunction to a width scaling with χ−2 about a po-
sition which depends upon the measurement outcome.
Moreover, the quantum non-demolition-like nature of Υ
allows for back-action-evading measurements of XM , i.e.
the back-action noise imparted by the quantum measure-
ment process occurs in the momentum quadrature only
[40]. Other methods, such as the continuous variational
measurement scheme [22], which has recently been con-
sidered for gravitational-wave detectors [23], also allow
for back-action-evading measurements. However, using
short pulses offers a technically simpler route for quan-
tum state tomography and is readily implementable, as
will be discussed below.
In the following, we consider coherent drive i.e. σ2

P in

L

=

1/2. We first address the important challenge of how to
experimentally determine the motional quantum state of
a mechanical resonator. We then discuss how such a
measurement can be used for quantum state preparation
and finally we provide details for a physical implementa-
tion and analyze a thorough list of potential experimental
limitations.

II. MECHANICAL QUANTUM STATE

TOMOGRAPHY

Of vital importance to any experiment aiming to ex-
plore quantum mechanical phenomena is a means to mea-
sure coherences and complementary properties of the
quantum system. This is best achieved by complete
quantum state tomography, which despite being an im-
portant quantum optical tool has recieved very little at-
tention for mechanical resonators [41]. Any measure-
ment made on a single realization of a quantum state
cannot yield sufficient information to completely charac-
terize that quantum state. The essence of quantum state
tomography is to make measurements of a specific set of
observables over an ensemble of identically prepared re-
alizations. The set is such that the measurement results
provide sufficient information for the quantum state to
be uniquely determined. One such method is to measure
the marginals 〈X| e−iθnρeiθn |X〉, where n is the number
operator, for all phase-space angles θ, see Refs. [7, 8, 25]
and e.g. Ref. [26].
Our scheme provides a means for precision measure-

ment of the mechanical quadrature marginals, thus al-
lowing the mechanical quantum state to be determined.
Specifically, given a mechanical state ρinM , harmonic evo-
lution of angle θ = ωM t provides access to all the quadra-
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FIG. 2: The scheme presented here provides an experimen-
tally feasible means to obtain direct access to the marginals
of a quantum state of a mechanical resonator. Shown are
complementary quadrature marginals of the mechanical co-
herent state superposition |ψδ〉 ∝ |iδ〉 + |−iδ〉, for δ = 1.5
(blue dashed lines with fill, plotted with XM ). The mechani-
cal ground state is shown for comparison in gray dashed lines.
The two population components are seen for the quadrature
angle θ = π/2 and the quantum interference fringes for θ = 0.
A coherent optical pulse is used to probe the mechanical state
where its phase quadrature becomes the convolution between
the intrinsic phase noise, with variance scaling with χ−2, and
the mechanical marginal (red solid lines, plotted with PL/χ
where χ = 2), see Eq. (4). The convolution kernel can be ob-
served by using a fixed length cavity, shown in the θ = 0 plot
(red dashed line with fill, fixed length with XM = −4), which
allows for accurate recovery of the mechanical marginals even
for a weak measurement strength χ.

tures of this mechanical quantum state which can then
be measured by a subsequent pulse. Thus, reconstruction
of any mechanical quantum state can be performed. The
optical phase distribution (2), including this harmonic
evolution, becomes

Pr(PL) =∫
dXM√
π
e−(PL−χXM )2 〈XM | e−iθnρinMe

iθn |XM 〉 , (4)

which is a convolution between the mechanical marginal
of interest and a kernel that is dependent upon χ and
the quantum phase noise of light. The effect of the con-
volution is to broaden the marginals and to smooth any
features present.
Let us consider the specific example of a mechanical

resonator in a superposition of two coherent states, i.e.
|ψδ〉 ∝ |iδ〉 + |−iδ〉. The XM marginal of this mechani-
cal Schrödinger-cat state contains oscillations on a scale
smaller than the ground state. The convolution scales

the amplitude of these oscillations by exp(− 2δ2

χ2+1 ) and

thus for small χ they become difficult to resolve in the
optical phase noise distribution. Shown in Fig. 2 are

marginals of the mechanical state |ψδ〉 and the optical
phase distributions that would be observed according to
(4). Scaling the phase distribution by using the vari-
able PL/χ provides an approximation to the mechanical
marginals, which becomes more accurate with increas-
ing χ and may even show the interference features in
a superposition state. Indeed, the limiting case of in-
finite χ corresponds to a von-Neumann projective mea-
surement of the mechanical position, such that the dis-
tribution obtained for PL/χ becomes identical to the me-
chanical marginals. However, the mechanical marginals

can be recovered even for small measurement strength χ.
This is achieved as follows: First, by fixing the length
of the cavity the optical phase distribution can be ob-
served without contributions from mechanical position
fluctuations. This allows measurement of the convolution
kernel for a particular χ (determined by the properties
of the mechanical resonator of interest, cavity geometry
and pulse strength, see (A5)). With χ and the kernel
known one can then perform deconvolution to determine
the mechanical marginals. The performance of such a
deconvolution is limited by experimental noise in the cal-
ibration of χ and the measurement of Pr(PL). However,
it is expected that these can be accurately measured as
quantum noise limited detection is readily achieved.

III. MECHANICAL QUANTUM STATE

ENGINEERING AND CHARACTERIZATION

We now discuss how the measurement affects the me-
chanical state. First, we consider Υ acting on a mechan-
ical coherent state |β〉. By casting the exponent of Υ in
a normal ordered form, one can show that the resulting
mechanical state, which is conditioned on measurement
outcome PL, is NβΥ |β〉 = S(r)D(µβ) |0〉. Here, Nβ is a
β-dependent normalization, D is the displacement oper-
ator for µβ = (

√
2β + iΩ + χPL)/

√
2(χ2 + 1) and S is

the squeezing operator, which yields the position width
2σ2

XM
= e−2r = (χ2 + 1)−1.

In most experimental situations, the initial mechanical

state is in a thermal state ρn̄ = 1
πn̄

∫
d2βe−|β|2/n̄ |β〉 〈β|,

quantified by its average phonon occupation number n̄.
The marginals of the resulting state after the action of Υ
are

〈XM | e−iθnΥ ρn̄Υ
†eiθn |XM 〉 ∝

exp

[
− (XM −

〈
Xθ

M

〉
)2

2σ2
θ

]
, (5)

where

〈
Xθ

M

〉
=

χPL

χ2 + 1
1+2n̄

cos(θ)− Ω sin(θ),

σ2
θ =

1

2

cos2(θ)

χ2 + 1
1+2n̄

+
1

2
(χ2 + 1 + 2n̄) sin2(θ)

(6)



4

FIG. 3: Wigner functions of the mechanical state (above) at
different times (indicated by arrows) during the experimental
protocol (below). From left: Starting with an initial thermal
state n̄ = 10, (this is chosen to ensure the figure dimensions
are reasonable,) a pulsed measurement is made with χ = 1.5

and outcome P
(1)
L

= 4χ obtained, which yields anXM quadra-
ture squeezed state. The mechanical state evolves into a PM

quadrature squeezed state following free harmonic evolution
of one quarter of a mechanical period prior to a second pulse

with outcome P
(2)
L

= −3χ yielding the high purity mechan-
ical squeezed state. The effective thermal occupation of the
mechanical states during the protocol is indicated. The final
state’s occupation can be reduced below unity even for large
initial occupation, see Eq. (7) of the main text. Dashed lines
indicate the 2σ-widths and the dotted lines show the ground
state (n̄ = 0) for comparative purposes. The displacement Ω
is not shown.

are the mean and variance of the resulting conditional
state, respectively. For large initial occupation (provided
thermal fluctuations are negligible during the short inter-
action), the resultant position quadrature of the mechan-
ics has mean

〈
Xθ=0

M

〉
≃ PL/χ and width 2σ2

θ=0 ≃ χ−2.
Thus, squeezing in the XM quadrature below the ground
state is obtained when χ > 1 and is independent of the

initial thermal occupation of the mechanics. We have
thus shown how the remarkable behavior of quantum
measurement (also used in Refs. [10, 11, 27, 28]) can
be experimentally applied to a mechanical resonator for
quantum state preparation.

There is currently significant interest in the prepara-
tion of low entropy states of mechanical resonators as
a starting point for quantum experiments, e.g. Refs.
[13, 14, 17]. The two main methods being pursued in
optomechanics [6] are ‘passive cooling’ which requires
the stable operation of a (usually cryogenically com-
patible) high-finesse cavity, and ‘active cooling’ which
requires precision measurement and feedback. Closer
in spirit to the latter, our pulsed measurement scheme
provides a third method to realize high-purity states of
the mechanical resonator. We quantify the state purity
after measurement via an effective mechanical thermal
occupation n̄eff, which we define through 1 + 2n̄eff =√
4σ2

θ=0σ
2
θ=π/2. When acting on an initial thermal state,

the measurement dramatically reduces uncertainty in the
XM quadrature, but leaves the thermal noise in the PM

quadrature unchanged: use of (6) for n̄ ≫ 1 yields

n̄
(1)
eff ≈

√
n̄/2χ2. The purity can be further improved

by a second pulse, which is maximized for pulse separa-
tion θ = ωM t = π/2, where the initial uncertainty in the
momentum becomes the uncertainty in position. Such a
sequence of pulses[42] is represented in Fig. 3, where the
resulting state was obtained akin to (5). The effective
occupation of the final state after two pulses is

n̄
(2)
eff ≃ 1

2

(√
1 +

1

χ4
− 1

)
, (7)

which is also independent of initial occupation. For χ >

1, n̄
(2)
eff is well below unity and therefore this scheme can

be used as an alternative to ‘cooling via damping’ for
mechanical state purification.
Following state preparation, one can use a subsequent

‘read-out’ pulse after an angle of mechanical free evo-
lution θ to perform tomography. During state prepa-
ration however, the random measurement outcomes will
result in random mechanical means (6). This can be
overcome by recording and utilizing the measurement
outcomes. One can achieve unconditional state prepa-
ration with use of appropriate displacement prior to the
read-out pulse. Or, use post-selection to analyze states
prepared within a certain window. Alternatively, one
may compensate during data analysis by appropriately
adjusting each measurement outcome obtained during
read-out. We now look at the latter option and consider
a Gaussian mechanical state prepared by a prior pulsed
measurement. The position distribution has variance

σ2 to be characterized and has a known mean
〈
X

(p)
M

〉
,

which is dependent upon the random measurement out-
come. The read-out pulse will then have the distribution

Pr(PL) ∝ exp
[
(−(PL − χ

〈
X

(p)
M

〉
)2)/(1 + χ22σ2)

]
. For

each read-out pulse, by taking PL|p = PL − χ
〈
X(p)

〉

one can obtain the conditional variance σ2
PL|p for all θ

to characterize the noise of the prepared Gaussian state.
We note that this concept of compensating for a random
but known mean can also be used to characterize non-
Gaussian states.

IV. EXPERIMENTAL FEASIBILITY

We now provide a route for experimental implementa-
tion, discussing potential limitations and an experimen-
tally feasible parameter regime. To ensure that the in-
teraction time be much less than mechanical time-scales
the cavity decay rate κ must be much larger than the
mechanical frequency. To this end, we consider the use
of optical microcavities operating at λ = 1064 nm, length
4λ and finesse of 7000, which have an amplitude decay
rate κ/2π ≃ 2.5 GHz. Such short cavity devices incor-
porating a micromechanical element as one of the cavity
mirrors have previously been fabricated for tunable op-
tical filters, vertical-cavity surface-emitting lasers (VC-
SELs) and amplifiers (see for example Ref. [31]), but are
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yet to be considered for quantum optomechanical appli-
cations. Typically, these devices employ plane-parallel
geometries, which places a severe constraint on the min-
imum lateral dimensions of the suspended mirror struc-
ture in order to minimize diffraction losses [32]. Geome-
tries using curved mirrors are required to reduce diffrac-
tion losses for the practical realization of high-finesse cav-
ities. Presently, all realizations use a curved suspended
mirror, see e.g. Ref. [33]. However, in order to allow for
enhanced freedom in the construction of the mechanical
resonator, particularly with respect to the development
of ultra-low loss mechanical devices [34], a flat suspended
mirror is desired. In Fig. 4 our proposed fabrication
procedure for such a device is shown. The small-mode-
volume cavity considered here provides the bandwidth
necessary to accommodate the short optical pulses and
additionally offers a large optomechanical coupling rate.
One technical challenge associated with these microcavi-
ties is fabrication with sufficient tolerance to achieve the
desired optical resonance (under the assumption of a lim-
ited range of working wavelength), however this can be
overcome by incorporating electrically controlled tunabil-
ity of the cavity length [31, 33].

For a mechanical resonator with eigenfrequency
ωM/2π = 500 kHz and effective mass m = 10 ng,

the mechanical ground-state size is x0 =
√
~/mωM ≃

1.8 fm and optomechanical coupling proceeds at g0/2π =

ωc(x0/
√
2L)/2π ≃ 86 kHz, where ωc is the mean cavity

frequency and L is the mean cavity length. The pri-
mary limitation in measurement strength is the optical
intensity that can be homodyned before photodetection
begins to saturate. Using pulses of mean photon number
Np = 108, which can be homodyned, yields Ω ≃ 104 for
the mean momentum transfer[43] and χ ≃ 1.5. For this
χ, the action of a single pulse on a large thermal state
reduces the mechanical variance to σ2

XM
≃ 0.2, i.e. less

than half the width of the ground-state. With a second
pulse after mechanical evolution the effective occupation

(7) is n̄
(2)
eff ≃ 0.05.

In order to observe mechanical squeezing, i.e.
σ2
XM

< 1/2, the conditional variance must satisfy

σ2
PL|p < σ2

P in

L

+χ2/2, where additional noise sources that

do not affect the mechanical state, e.g. detector noise,
can be subsumed into σ2

P in

L

. It is therefore necessary to

have an accurate experimental calibration of χ to quan-
tify the mechanical width. (Similarly, Ω must also be ac-
curately known to determine the conditional mean, see
Eq. (6).) This can be performed in the laboratory as fol-
lows: For a fixed length cavity and a given pulse intensity,
the length of the cavity is adjusted by a known amount
(by a calibrated piezo for example) and the proportion-
ality between the homodyne measurement outcomes and
the cavity length is determined. The pulses are then ap-
plied to a mechanical resonator and χ is determined with
knowledge of x0 of the resonator. With χ known Ω can
then also be measured by observing the displacement of
the mechanical state after one-quarter of a period.

DBR (micro-mechanics)

DBR

Substrate

Sacrificial Layer
Transparent Handle

FIG. 4: Our proposed design and fabrication procedure for
high-finesse optomechanical microcavities: Using microcav-
ities provides optomechanical coupling rates many orders
of magnitude larger than current millimetre or centimetre
length-scale implementations of optomechanical Fabry-Pérot
cavities and can provide sufficient radiation-pressure inter-
action to resolve the small-scale quantum properties of the
mechanical resonator. (a) Cross-sectional view with a quar-
ter of the device removed. Uppermost (colored green) is the
mechanical resonator supported by auxiliary beams as was
considered in Ref. [34]. The optical field is injected into
the device from below through a transparent handle (colored
blue) and the curved rigid input mirror (colored pink) and
then resonates in the vacuum-gap between this and the me-
chanical device before being retro-reflected. The design is a
layered structure, fabricated in the following steps: (b) The
base consists of a high-reflectivity distributed Bragg reflector
(DBR) and an etch stop layer deposited on a suitable han-
dle substrate. (c) First, a sacrificial film is deposited atop
the DBR. (d) Next, a microlens pattern is transferred into
the sacrificial layer through a reflow and reactive ion etching
process. The radius of curvature of this structure is designed
to match the phase front of the optical mode to minimize
diffraction loss. (e) Following the microlens fabrication pro-
cess a high reflectivity dielectric DBR is deposited over the
sample surface. (f) The structure is then flipped and bonded
to a transparent handle using a suitable low-absorption ad-
hesive (e.g. spin on glass or UV-curable epoxy). (g) After
mounting, the original growth substrate and etch stop are
removed via chemo-mechanical etching. (h) Finally, the me-
chanical resonator is patterned and subsequently released via
selective removal of the underlying sacrificial film. We re-
mark that these integrated structures provide a platform for
‘on-chip’ hybridization with other quantum systems.
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Finally we discuss practical limitations. Firstly, finite
mechanical evolution during the interaction decreases the
back-action-evading nature of the measurement, which
is described in the appendix. Such evolution is not ex-
pected to be a severe limitation in the proposed imple-
mentation considered here as ωM/κ ≃ 10−4. Secondly,
the optical measurement efficiency η, affected by optical
loss, inefficient detection and mode-mismatch, yields a
reduced measurement strength χ → √

ηχ. And thirdly,
in many situations coupling to other mechanical vibra-
tional modes is expected. This contributes to the mea-
surement outcomes and yields a spurious broadening of
the tomographic results for the mode of interest. In prac-
tice however, one can minimize these contributions by en-
gineering mechanical devices with high effective masses
for the undesired modes and tailoring the intensity profile
of the optical spot to have good overlap with a particular
vibrational profile [35].

V. COUPLING TO A THERMAL BATH

For our tomography scheme the mechanical quantum
state must not be significantly perturbed during the time-
scale ω−1

M . To estimate the effect of the thermal bath
following state preparation we consider weak and linear
coupling to a Markovian bath of harmonic oscillators.
For this model, assuming no initial correlations between
the mechanics and the bath, the rethermalization scales
with n̄γM , where γM is the mechanical damping rate. It
follows that an initially squeezed variance (χ > 1) will
increase to 1/2 on a time-scale

τ =
Q

n̄ωM

1

2

(
1− 1

χ2

)
. (8)

Thus, for the parameters above and mechanical quality
Q = ωM/γM ≃ 105 a temperature T . 1 K is required
for the observation of squeezing during one mechanical
period.

The state purification protocol, as shown in Fig. 3,
is affected by rethermalization between the two pulsed
measurements. This increases the effective thermal oc-
cupation and Eq. (7) is modified to

n̄
(2)
eff (T ) ≃ 1

2

(√
1 +

1

χ4
+

πn̄

Qχ2
− 1

)
. (9)

For the above system parameters n̄
(2)
eff (T = 1 K) ≃ 0.15.

Thus, mechanical state purification by measurement is
readily attainable even at a modest bath temperature.

Moreover, we note that the position measurements of
this scheme can be used to probe open system dynamics
and thus provide an empirical means to explore decoher-
ence and bath coupling models [36].

VI. CONCLUSIONS

We have described a scheme to overcome the current
challenge of quantum state reconstruction of a mechan-
ical resonator, which is of vital importance for the ex-
ploration of quantum mechanical phenomena of these
macroscopic objects. Our experimental protocol allows
for state purification, remote preparation of a mechanical
squeezed state and direct measurements of the mechani-
cal marginals for quantum state reconstruction, thus pro-
viding a complete experimental framework. The experi-
mental feasibility has been analyzed and we have shown
that with the use of optomechanical microcavities this
scheme can be readily implemented. The optomechani-
cal entanglement generated by the pulsed interaction may
also be a useful resource for quantum information pro-
cessing. Moreover, the framework we have introduced
can be built upon for further applications in quantum
optomechanics and can be generalized to other systems,
such as nano-electromechanics and superconducting res-
onators, or used with dispersive interaction to study the
motional state of mechanical membranes, trapped ions
or particles in a cavity.

Appendix A: Model

The intracavity optomechanical Hamiltonian in the ro-
tating frame at the cavity frequency is

H = ~ωMb
†b− ~g0a

†a(b+ b†), (A1)

where a (b) is the optical (mechanical) field operator.
The cavity field accumulates phase in proportion to the
mechanical position and is driven by resonant radiation
via the equation of motion

da

dt
= ig0(b+ b†)a− κa+

√
2κain, (A2)

where κ is the cavity decay rate and ain describes the op-
tical input including drive and vacuum. During a pulsed
interaction of timescale κ−1 ≪ ω−1

M the mechanical po-
sition is approximately constant. This decouples (A2)
from the corresponding mechanical equation of motion
and during the short interaction we have db

dt ≃ ig0a
†a,

where we neglect the mechanical harmonic motion, me-

chanical damping and noise processes. We write ain(t) =√
Npαin(t) + ãin(t), where αin(t) is the slowly varying

envelope of the drive amplitude with
∫
dt α2

in = 1 and
Np is the mean photon number per pulse and similarly

a =
√
Npα(t) + ã(t). Neglecting ig0(b + b†)ã and ap-

proximating α as real, (A2) becomes the pair of linear
equations:

dα

dt
=

√
2καin − κα, (A3)

dã

dt
= ig0

√
Np(b+ b†)α+

√
2κ ãin − κã. (A4)
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After solving for ã(t), the output field is then found by

using the input-output relation ãout =
√
2κã− ãin.

The mechanical position and momentum quadratures
are XM = (b + b†)/

√
2 and PM = i(b† − b)/

√
2, re-

spectively, the cavity (and its input/output) quadra-

tures are similarly defined via ã (ãin/ãout). The
statistics of the optical amplitude quadrature is unaf-
fected by the interaction, however, the phase quadra-
ture contains the phase dependent upon the mechani-
cal position. It has output emerging from the cavity

P out
L (t) = g0

κ

√
Np ϕ(t)X

in
M + 2κe−κt

∫ t

−∞dt
′ eκt

′

P in
L (t′) −

P in
L (t), where ϕ(t) = (2κ)

3

2 e−κt
∫ t

−∞dt
′ eκt

′

α(t′) describes

the accumulation of phase, X in
M is the mechanical posi-

tion prior to the interaction and the last two terms are
the input phase noise contributions. P out

L is measured via

homodyne detection, i.e. PL =
√
2
∫
dt αLO(t)P

out
L (t). To

maximize the measure of the mechanical position the lo-
cal oscillator envelope is chosen as αLO(t) = Nϕ ϕ(t),
where Nϕ ensures normalization. The contribution of

X in
M in PL scales with χ =

√
2 1
Nϕ

g0
κ

√
Np, which quanti-

fies the mechanical position measurement strength. The
mean and variance of PL are given in Eq. (1) for pure
Gaussian optical input and together with Ω and (2) are
used to determine Υ, as given in (3). We have thus ar-
rived, for our physical setting, at an operator which is
known from generalised linear measurement theory (see
for example [37]). Also, we note that (3) is equivalent
to Υ = eiΩXM 〈PL| eiχXLXM |0〉, though the non-unitary
process of cavity filling and decay is not explicit. We
also remark that the construction of Υ can be readily
generalized to include non-Gaussian operations.

The maximum χ is obtained for the input drive
αin(t) =

√
κe−κ|t|. This can be seen by noting that

N−2
ϕ =

∫
dt ϕ2(t), which in Fourier space is N−2

ϕ ∝∫
dω (ω2 + κ2)−2 |αin(ω)|2. Hence, for such cavity-based
measurement schemes, the optimal drive has Lorentzian
spectrum. This drive, α(t) obtained from (A3) and the
local oscillator are shown in Fig. 1(b). The resulting
optimal measurement strength is given by

χ = 2
√
5
g0
κ

√
Np, (A5)

and the mean momentum transfer due to α2 is Ω =
3√
2

g0
κ Np.

We note that this optimization of the driving field may
also be applied to cavity-enhanced pulsed measurement
of the spin of an atomic ensemble [10, 38] or the coor-
dinate of a trapped ion/particle [39]. Particularly in the
latter case, this will broaden the repertoire of measure-
ment techniques available and may lead to some interest-
ing applications.

Appendix B: Finite mechanical evolution during

interaction

In the model used above we have assumed that the
mechanical position remains constant during the pulsed
optomechanical interaction. Including finite mechanical
evolution, the intracavity field dynamics (A4) must be
determined simultaneously with the mechanical dynam-
ics. In the mechanical rotating frame with the conjugate
quadratures XM , PM these dynamics are solved to first
order in ωM/κ resulting in the input-output relations:

P
out

M = P
in

M +Ω+N1χXC1,

X
out

M = X
in

M − ωM

κ
ξ1Ω− ωM

κ
χN2XC2,

PL = P in
L + χ

(
X

in

M +
ωM

κ
ξ2P

in

M

)

+ χ
ωM

κ
ξ3Ω+ χ2ωM

κ
N3XC3,

(B1)

where PL still represents the measurement outcome,
N1,2,3 and ξ1,2,3 are input drive dependent dimensionless
parameters of order unity, the former normalizing the
non-orthogonal amplitude quadrature temporal modes
XC1,2,3. The main effects of the finite mechanical evo-
lution can be seen in PL. i) The mechanical quadrature
measured has been rotated, which in terms of the non-

rotating quadratures is X̃M ≃ XM + ωM

κ ξ2PM . Such a
rotation poses no principle limitation to our scheme how-
ever this must be taken into account for the measurement
of a particular mechanical quadrature. ii) Each pulsed
measurement now has a non-zero mean proportional to
Ω. This can be experimentally characterized and ap-
propriately subtracted from the outcomes. iii) PL now
includes a term proportional to the optical amplitude
noise. This term decreases the back-action evading qual-
ity of the measurement and has arisen due to mechani-
cal momentum noise gained from the optical amplitude
quadrature evolving into position noise. The conditional
variance of the rotated mechanical quadrature including
these effects, for large initial occupation, is

σ2
X̃M

≃ 1

2

[
1

χ2
+ ζ2χ2

(ωM

κ

)2
]
, (B2)

where ζ is another drive-dependent parameter of order
unity. The two competing terms here give rise to a min-
imum variance of ζωM/κ when χ2 = κ/(ζωM ). Experi-
mentally reasonable values of χ will lie much below this
optimum point, however, as κ ≫ ωM for the parame-
ters we consider, the broadening due to finite evolution
is small and strong squeezing can be achieved.
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