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Pulses in a Gierer–Meinhardt Equation with a Slow Nonlinearity∗

Frits Veerman† and Arjen Doelman†

Abstract. In this paper, we study in detail the existence and stability of localized pulses in a Gierer–Meinhardt
equation with an additional “slow” nonlinearity. This system is an explicit example of a general
class of singularly perturbed, two component reaction-diffusion equations that goes significantly
beyond well-studied model systems such as Gray–Scott and Gierer–Meinhardt. We investigate the
existence of these pulses using the methods of geometric singular perturbation theory. The additional
nonlinearity has a profound impact on both the stability analysis of the pulse—compared to Gray–
Scott/Gierer–Meinhardt-type models a distinct extension of the Evans function approach has to be
developed—and the stability properties of the pulse: several (de)stabilization mechanisms turn out
to be possible. Moreover, it is shown by numerical simulations that, unlike the Gray–Scott/Gierer–
Meinhardt-type models, the pulse solutions of the model exhibit a rich and complex behavior near
the Hopf bifurcations.
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1. Introduction. The study of localized pulses in a two-component system of singularly
perturbed reaction-diffusion equations has been a very active field of research since the nineties
of the previous century. In its most general form, a system that may exhibit such a pulse
reads—in one, unbounded, spatial dimension—as

(1.1a)

(1.1b)

{

Ut = Uxx + F (U, V ),

Vt = ε2Vxx +G(U, V ),

with U, V : R × R
+ → R, and 0 < ε ≪ 1 asymptotically small. The nonlinear reaction

terms F,G : R2 → R are assumed to satisfy F (Ū , V̄ ) = G(Ū , V̄ ) = 0 for certain (Ū , V̄ ) such
that the trivial background state (U, V ) ≡ (Ū , V̄ ) is spectrally stable. However, research
on pulses in equations of the type (1.1) has been restricted mostly to model equations. In
particular two of these models have played a central role in the development of the theory:
the (irreversible) Gray–Scott (GS) equation for a class of autocatalytic reactions [17]—that
became the center of research attention by the intriguing observations in [25, 28]—and the
Gierer–Meinhardt (GM) equation [16] for (biological) morphogeneses—for which the existence
problem had already been considered in the mathematical literature for a somewhat longer
time [31]. For both the GS and the GM models, quite precise insight has been obtained in
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PULSES IN A SLOWLY NONLINEAR GM EQUATION 29

the existence, stability, and dynamics of localized (multi)pulses, also in more than one spatial
dimension—although one certainly cannot claim that the models are fully understood; see
[4, 5, 6, 11, 9, 18, 21, 22, 23, 26, 27, 32, 34] and the references therein for the literature on
one spatial dimension.

The “fast” V -component of a localized (multi)pulse solution of a singularly perturbed
model (1.1) is asymptotically localized: it decays exponentially to the V -component V̄ of
the background state on a spatial scale that is asymptotically shorter than the spatial scale
associated with the “slow” U -component. As a consequence, the two-component (U, V )-flow
generated by (1.1) is governed by a scalar equation in the slow component U :

(1.2) Ut = Uxx + F (U, V̄ )

except for the asymptotically small spatial regions in which the V -component is not exponen-
tially close to V̄ . Clearly, this is in general a nonlinear equation. However, for the GS and
GM models, this slow reduced scalar equation is linear:

(1.3)
(GS) Ut = Uxx +A(1− U), A > 0 parameter, (Ū , V̄ ) = (1, 0),
(GM) Ut = Uxx − αU, α > 0 parameter, (Ū , V̄ ) = (0, 0).

In fact, as far as we are aware, this—the fact that the counterpart of (1.2) is linear—is the case
for all singularly perturbed two-component reaction-diffusion equations with exponentially
localized pulse solutions considered in the literature (including the Schnakenberg model [33,
30]). There are a number of papers in the literature in which more general classes of equations
than the GS or GM models are considered; see [5, 10]. In these papers the background state
(Ū , V̄ ) is translated to (0, 0) so that F (Ū , V̄ ) = F (0, 0) = 0 in (1.1). Moreover, the nonlinear
part of F (U, V ) is assumed to be separable; i.e., F (U, V ) is written as −αU + F1(U)F2(V ).
Therefore F2(V̄ ) = F2(0) = 0, and these more general systems also reduce to linear slow scalar
equations like (1.3) outside the asymptotically small regions where V is not close to V̄ .

In this paper, and in its companion paper [13], we consider the potential impact of the
nonlinearity of F (U, V̄ ) as a function of U in comparison with the literature on “slowly linear”
model systems such as GS and GM. Here, we consider a very explicit model problem, a GM
equation with a “slow nonlinearity” (see (1.7) below), in full analytical detail; in [13] we
consider the existence and stability of pulses in a general setting, i.e., as solutions of (1.1).
We refer the reader to Remark 1.1 for a more specific motivation of our choice to study
equations with “slow nonlinearities.”

In the standard form (1.1), the classical GM equation [16] is given by

(1.4a)

(1.4b)

⎧

⎪

⎨

⎪

⎩

Ut = Uxx − αU + σ V 2,

Vt = ε2Vxx − V +
V 2

U
,

in which α > 0 is the main bifurcation parameter and σ > 0 is most often scaled to 1. The
pulse-type solutions of (1.4) have an amplitude of O

(

1
ε

)

[5, 18]. Therefore, we scale U and V
and subsequently x and ε,

(1.5) U → U

ε
, V → V

ε
, x →

√
ε x, ε → ε2,
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30 FRITS VEERMAN AND ARJEN DOELMAN

to bring (1.4) in its “normal form” [5]

(1.6a)

(1.6b)

⎧

⎪

⎨

⎪

⎩

ε2Ut = Uxx − ε2αU + σ V 2,

Vt = ε2Vxx − V +
V 2

U
.

In this paper, we study a “slowly nonlinearized” version of (1.6) that is obtained from (1.6)
by adding a very simple nonlinear term to its “slow” U -equation (1.6a):

(1.7a)

(1.7b)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ε2Ut = Uxx − ε2
(

αU − γ Ud
)

+ σ V 2,

Vt = ε2Vxx − V +
V 2

U
,

with new parameters γ ≥ 0, d > 1. Moreover, we now allow σ ∈ R\{0}. Systems incorporating
such a slow nonlinearity were already encountered in [24] (although no pulse-type solutions
were considered in this paper). This equation indeed reduces to a nonlinear slow reduced
scalar U -equation away from the regions in which V is not exponentially close to V̄ = 0:

(1.8) Ut = Uχχ − αU + γ Ud,

in which χ = εx is a “superslow” spatial coordinate; see section 2. Note that scaling back
the additional “slowly nonlinear” term γ Ud through (1.5) introduces an O

(

εd−1
)

, i.e., an
asymptotically small, additional term to the GM equation in its classical form (1.4). We will
see in the upcoming analysis that this term has a significant impact on the dynamics generated
by (1.4). Thus, in a way, our work can also be interpreted as a study of the “vulnerability”
of the classical GM model (1.4) to asymptotically small “slowly nonlinear” changes to the
model.

In recent years, the analysis of localized pulses in one-dimensional singularly perturbed
reaction-diffusion equations has been focused mostly on pulse dynamics and interactions; see
[4, 10, 9, 23] and the references therein. However—like the work on multipulse patterns [8, 18,
21, 22, 32, 33]—this analysis is based on fundamental insights on the existence and stability of
stationary, solitary pulses [5, 6, 11, 31, 34]. On the unbounded domain, i.e., for x ∈ R, these
pulses correspond to homoclinic solutions of the four-dimensional spatial dynamical system
reduction of the partial differential equation. Here, we restrict our analysis to the existence and
stability of homoclinic stationary pulse solutions (Uh(x), Vh(x)) to (1.7) that are biasymptotic
to the background state (0, 0), i.e., limx→±∞ (Uh(x), Vh(x)) = (0, 0). Especially the issue
of stability requires a significant extension of the methods developed in the literature for
“slowly linear” GS/GM-type models. The present results form the foundation for a subsequent
analysis of the multipulse patterns (see Remark 1.1) and pulse interactions. Moreover, already
at the level of these most basic pulse solutions, we encounter novel phenomena in the dynamics
generated by (1.7) that have not yet been observed in the literature on “slowly linear” models.

The existence problem (see section 2) can be studied directly along the lines developed in
[5] for “slowly linear” normal form models of GM type with a separable nonlinearity. Our main
result on the existence of homoclinic pulses (Uh(x), Vh(x)), Theorem 2.1, can be established
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x

h VhU

(a)

x

Vhh
U

(b)

Figure 1. The stationary homoclinic pulse (Uh(x), Vh(x)) of (1.7); (a) σ > 0, (b) σ < 0.

by a direct application of the methods of geometric singular perturbation theory [14, 15].
In other words, at the existence level the “slow nonlinearity” in (1.7) does not require the
development of novel theory. However, it is established by Theorem 2.1 that (1.7) exhibits
homoclinic pulse patterns that differ significantly from those found in “slowly linear” GS/GM-
type models. Unlike linear slow reductions such as (1.3), the planar stationary problem
associated with reduction (1.8) has orbits homoclinic to its saddle point (that corresponds to
the background state of (1.7)). As a consequence, unlike the classical GM model (1.4), system
(1.7) has homoclinic pulse solutions (Uh(x), Vh(x)) for σ < 0. At leading order in ε, the slow
U -component Uh(x) follows a large part of the homoclinic orbit of (1.8) so that for σ < 0 the
slow component of the solitary homoclinic 1-pulse solution has the leading order structure of
two combined slow scalar pulses; see Figure 1(b).

The spectral stability of (Uh(x), Vh(x)) is studied in section 3 by the Evans function D(λ)
associated with the linearized stability problem, following the ideas developed in [5, 6]. As is
to be expected from the general theory [3], D(λ) can be decomposed into a slow and a fast
component, and all nontrivial eigenvalues are determined by the slow component. In [5, 6],
i.e., for the GM and GS models, the zeroes of this slow component are determined analytically
by “the NLEP method.” The linearity of the slow scalar reduction (1.3) plays a central role in
this approach—as it does in all analytical studies of the spectral stability of pulses in GS/GM-
type models (see [4, 18, 21, 22, 23, 32, 34] and the references therein). More explicitly, the fact
that the spectral stability problem is exponentially close to a constant coefficient eigenvalue
problem outside the asymptotically small regions in which V is not close to V̄ is a crucial
ingredient of the stability analysis of GS/GM-type models. Due to the nonlinearity in the
slow scalar reduction (1.8) this is not the case for (1.7): away from the fast V -pulse, the linear
operator associated with the stability problem still has coefficients that depend explicitly (and
slowly) on x (on χ; see (1.8)). Its solution space is therefore not governed by simple, pure
exponentials (as for GS/GM-type models).

The key to the NLEP approach as developed in [5, 6] is constructing a set of basis functions
for the linear operator/system associated with the stability of the pulse for which the Evans
function D(λ)—the determinant of this set—can be evaluated, or, better, approximated, ex-
plicitly. In this paper and its companion paper [13], we show that the NLEP approach can be
based on a set of basis functions that is determined by the slowly varying problem outside the
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Figure 2. The orbits through C of the critical eigenvalue λ associated with the spectral stability of
(Uh(x), Vh(x)) as a function of increasing α (γ = 2, σ = 1) to leading order in ε. (a) d = 2 < 3: The
same scenario as in the GS and the GM models [5, 6]. Two real positive eigenvalues merge and become a
pair of complex conjugate eigenvalues that travels through the imaginary axis: the pulse is stabilized by a Hopf
bifurcation at a critical value of α. (b) d = 5 > 3: A significantly different scenario. The eigenvalues initially
display the same behavior as in the case d < 3: the pulse is again stabilized by a Hopf bifurcation. However,
for α increasing further, the orbits sharply turn around and follow the imaginary axis closely in the negative
direction; see (c), a zoom of (b). Eventually, the orbits branch off, head back to the imaginary axis, and again
cross the imaginary axis at a second critical—Hopf—value of α. Finally, the pair meets again at the positive
real axis and splits up into two positive real valued eigenvalues.

fast V -pulse region, in such a way that it is still possible to determine an analytical approxima-
tion for the zeroes of D(λ). Here, a central role is played by the χ-dependent Sturm–Liouville
problem associated with the linearization of (1.8) about its (stationary) homoclinic orbit,
defined on a half-line. This problem has a two-dimensional set of slowly varying solutions.
We show that these solutions can take over the role of the slow exponentials coming from
the (slow) stability problem about the trivial state U = 0 of the linear constant coefficient
GS/GM-type reductions (1.3). In the present paper, these solutions can be expressed in terms
of Legendre functions, due to the special/simple nature of the nonlinearity in (1.8). In the
general setting of [13] the construction of the Evans functions cannot be this explicit. The
main novel analytical result of this paper is given by Theorem 3.10, in which indeed an ex-
plicit expression is given for the zeroes of D(λ), which is a generalization of the corresponding
“slowly linear” results in [5, 6].

In section 4, we analyze and interpret the expression obtained in Theorem 3.10. One of our
first, and quite straightforward, results is Corollary 4.3: the σ < 0 “double hump” pulses of
Figure 1(b) cannot be stable. The σ > 0 pulses of Figure 1(a), however, can very well be stable.
In Figure 2, a graphical description is given of our two main stability results, Theorems 4.6 and
4.7. The stability of the pulse (Uh(x), Vh(x)) depends strongly on the character of the “slow
nonlinearity” in (1.7). As long as the exponent of the nonlinearity d is smaller than 3, the sta-
bility scenario is exactly like that of the “slowly linear” GS/GM-type models: (Uh(x), Vh(x))
stabilizes by a Hopf bifurcation for increasing α—even the shape of the orbit of the critical
eigenvalues λ(α) through C is very similar to its counterparts in [5, 6]. However, this orbit
changes drastically when d becomes larger than 3; see Figure 2: for d > 3 there is a second
Hopf bifurcation (as function of α) that destabilizes (Uh(x), Vh(x)). Different from the results
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on GS/GM-type models, for d > 3, there is only a bounded α-region for which (Uh(x), Vh(x))
can be stable. In Theorem 4.8 this is established rigorously for d > 3 large enough.

Finally, in section 5, we present some simulations of (1.7). We have not attempted to
perform a systematic (numerical bifurcation) analysis of the dynamics of (1.7). Apart from
checking (and confirming) the outcome of our asymptotic stability analysis, our goal has been
to obtain an indication of whether or not the “slow nonlinearity” of (1.7) generates behavior
that is not known from the (vast) literature on GS/GM-type models.

We are not aware of any examples in the literature on GS/GM-type models of stable
nonmoving solitary pulses that are not completely stationary. A priori, one would expect
that if a pulse is destabilized (for instance, by decreasing α in the GM model (1.4)), it may
bifurcate into a stable standing pulse with a periodically varying amplitude. However, this
requires a supercritical Hopf bifurcation, and all Hopf bifurcations of stationary pulses in
GS/GM-type models reported on in the literature seem to be subcritical: as α decreases
through its critical Hopf bifurcation value, the standing pulse starts to oscillate up and down,
but the amplitude of this oscillation grows, and after a certain time the pulse is extinguished;
see, for instance, Figure 11(a) in section 5. It should be noted that this statement is based
on numerical observations; the nature of the Hopf bifurcation of solitary, standing pulses in
GS/GM-type models has not been analyzed in the literature (for instance, by a center manifold
reduction). Moreover, it should also be remarked that, for instance, the GS model does exhibit
periodic and even chaotic pulse dynamics; see, for instance, [4, 27]. However, this richer type
of behavior occurs only in the context of pulse interactions; it is governed by the interactions
between traveling pulses, and/or between pulses and the boundary of the domain. We have
not considered this type of dynamics here, as we have completely focused on the behavior
of standing, solitary spatially homoclinic pulses. Nevertheless, we have observed very rich
dynamics, much richer than those exhibited by linear GS/GM-type models. In section 5
examples are given of periodically oscillating pulses, i.e., standing pulses with an amplitude
that varies periodically in time; quasi-periodically oscillating pulses (the amplitude of the
pulse oscillation is modulated periodically); and oscillating pulses of which the amplitude is
modulated in an even more complex fashion. A simulation of such a “chaotically oscillating
pulse” is shown in Figure 3.

It has not been investigated whether the pulse dynamics of Figure 3 are “chaotic” or, for
instance, are quasi-periodic with three or more independent frequencies. In other words, we
have not studied the details of the associated bifurcation scenario and have not computed
any measure by which the (possible) chaotic nature of the pulse dynamics can be quantified.
The analytic core of this paper, the analysis of the spectrum associated with the stability
of (Uh(x), Vh(x)), can serve as an ideal starting point for a center manifold analysis of the
nature of the Hopf (and subsequent) bifurcations for pulses and/or multipulses occurring in
this model (and/or generalizations of (1.7)). This is expected to give analytic insight into
(the possible route leading to) the complex/chaotic behavior observed in Figure 3. This will
be the subject of future research.

Remark 1.1. Our research is strongly motivated by recent findings on the character of the
destabilization of spatially periodic multipulse patterns with long wavelength L. In [8] it is
established for GM-type models that these patterns can be destabilized only by two distinct
types of Hopf bifurcations as L → ∞, one in which the linearly growing mode also has
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Figure 3. The dynamics of the maximum of the U-pulse as a function of time in a simulation of (1.7)
with γ = 2, σ = 1, ε = 0.002, d = 5, and α = 90.6 for x ∈ [−5000, 5000] with homogeneous Neumann boundary
conditions; (b) zooms in on a small part (in time) of (a). The position of the maximum does not vary in time.
The value of α is close to the second Hopf bifurcation at which (Uh(x), Vh(x)) destabilizes; see Figure 2.

wavelength L (the most commonly encountered destabilization in the literature) and another
in which this mode has wavelength 2L. Moreover, these destabilizations alternate countably
many times as L → ∞. This is called the “Hopf dance” in [8]. This Hopf dance also occurs in
the GS model, as indicated by the AUTO-simulations in [8]. The GM analysis in [8] shows that
this “dance” is completely driven by the exponential expression E(L) = e−L

√
α+λh associated

with the slow reduced eigenvalue equation uxx − αu = λhu originating from (1.3), in which
λh ∈ C is the (complex) eigenvalue of the homoclinic (L → ∞) limit pattern. The rotation of
E(L) ∈ C as L → ∞ is the mechanism underpinning the Hopf dance. From a generic point
of view, it is not at all clear why this “linear” Hopf dance should take place (this is even
more obvious for the subsequent “belly dance” [8]). Hence, to really understand the subtleties
involved in the destabilization of long wavelength spatially periodic patterns, one needs to go
beyond “slowly linear” models for which the associated “slow reduced” eigenvalue problems
are not governed by expressions such as E(L). In other words, one needs to study systems of
the type (1.1) with F (U, V̄ ) not linear as a function of U .

2. Pulse construction. Our goal is to construct a stationary pulse solution which is ho-
moclinic to the trivial background state (U, V ) = (0, 0). To achieve this goal, we use the
singularly perturbed nature of the system. The spatial dynamics of the stationary pulse are
given by the four-dimensional system

(2.1a)

(2.1b)

(2.1c)

(2.1d)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ux = p,

px = −σ v2 + ε2
(

αu− γ ud
)

,

ε vx = q,

ε qx = v − v2

u
.
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Along the lines of Fenichel theory, we can perform a slow-fast decomposition in the spatial
variable x: recognizing system (2.1) as the slow system, we can define the fast variable ξ = x

ε

to obtain the associated fast system

(2.2a)

(2.2b)

(2.2c)

(2.2d)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

uξ = ε p,

pξ = −ε σ v2 + ε3
(

αu− γ ud
)

,

vξ = q,

qξ = v − v2

u
.

The trivial background state is in these systems represented by the origin (u, p, v, q) =
(0, 0, 0, 0). While the vector field which generates the flow of the system is not defined at the

origin due to the singular v2

u
term in the v-equation, the ratio v2

u
will be well-defined for the

constructed pulse.

2.1. Geometric analysis. When ε → 0, the slow and fast systems (2.1) and (2.2) reduce
to the reduced slow system

uxx = −σ v2,(2.3a)

q = v − v2

u
= 0(2.3b)

and the reduced fast system

uξ = pξ = 0,(2.4a)

vξξ = v − v2

u
.(2.4b)

We see that in this limit, the slow and fast dynamics decouple completely. We define M0 =
{(u, p, v, q) |u > 0, v = q = 0} as the two-dimensional normally hyperbolic invariant manifold
that consists of hyperbolic equilibria of the reduced fast system (2.4); it has three-dimensional
stable and unstable manifolds Ws,u(M0) which are the unions of the 2-parameter families of
one-dimensional stable and unstable manifolds (fibers) at the saddle points (u0, p0, 0, 0) ∈ M0.
The reduced fast dynamics (2.4) allow a 2-parameter family of homoclinic solutions v0,h:

(2.5) vh,0(ξ;u0, p0) =
3u0
2

sech2
(

1

2
ξ

)

.

The union over this family as a bundle over M0 forms the intersection Ws(M0) ∪Wu(M0);
see Figure 4(a).

Fenichel persistence theory [14, 15, 19, 20] states that, for ε sufficiently small, the full sys-
tem (2.2) has a locally invariant slow manifold Mε which is O(ε) close toM0. SinceM0 is also
invariant under the nonreduced (fast) flow of (2.2), we have already found Mε = M0. More-
over, Fenichel theory states the existence of three-dimensional stable and unstable manifolds
Ws,u(Mε) which are O(ε) close to their unperturbed counterparts Ws,u(M0). The intersec-
tion Ws(Mε)∩Wu(Mε) exists and is transversal and therefore determines a two-dimensional
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36 FRITS VEERMAN AND ARJEN DOELMAN

(a) (b)

Figure 4. Transversal intersection of the stable and unstable manifolds. (a) The family of homoclinic orbits
vh,0(ξ;u0, p0), viewed as a bundle over M0. Both the u- and p-directions are along the vertical axis; M0 is
indicated in blue. (b) For the perturbed system (ε > 0), Ws(Mε) and Wu(Mε) intersect transversally: γh
(indicated in red) represents Ws(Mε) ∩ Wu(Mε), a one-parameter family of orbits homoclinic to Mε—recall
that dim (Mε) = 2, dim (Ws,u(Mε)) = 3 so that dim (γh) = 2.

manifold. The existence and transversality are based on a Melnikov-type calculation in [5],
which can be applied directly to system (2.2). Since the original model equations (1.7) are in-
variant under reflection in the spatial variable x → −x, this reflection is in the four-dimensional
system (2.1) equivalent to the momentum reflection (p, q) → (−p,−q). Because the coordinate
reflection ξ → −ξ maps Ws(Mε) to Wu(Mε) and vice versa, it follows that the intersection of
these two manifolds is symmetric in the invariant subset of the momentum reflection, the two-
dimensional hyperplane {(u, p, v, q) | p = q = 0}. The transversality of this hyperplane to Mε

excludes the possibility that it has the intersection Ws(Mε)∩Wu(Mε) as a subset, from which
we can conclude that Ws(Mε) ∩ Wu(Mε) intersects the hyperplane {(u, p, v, q) | p = q = 0}
transversally. This determines a 1-parameter family of orbits biasymptotic to Mε. Since both
Ws(Mε) and Wu(Mε) are O(ε) close to Ws,u(M0) where the 2-parameter family of homo-
clinic orbits was parametrized by u0 and p0 (see (2.5)), it is convenient to use u0 to parametrize
the 1-parameter family of orbits biasymptotic to Mε determined by Ws(Mε)∩Wu(Mε). For
a sketch of the situation, see Figure 4(b).

The next step is to use this structure to construct an orbit homoclinic to (0, 0, 0, 0) in the
full, perturbed system (2.1)–(2.2). For that purpose, it is necessary to consider the dynamics
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on Mε. The flow on Mε can be determined by substituting v = q = 0 in (2.1) and yields

(2.6) uxx = ε2
(

αu− γ ud
)

.

Introducing a superslow coordinate χ = εx, this can be written as

(2.7) uχχ = αu− γ ud.

This equation allows a solution (bi)asymptotic to the trivial background state: since γ > 0,
it is homoclinic to (0, 0, 0, 0) ∈ Mε and explicitly given by

(2.8) uh,0(χ) =

[

α(d+ 1)

2γ
sech2

(

1

2
(d− 1)

√
αχ

)]
1

d−1

.

The superslow dynamics on Mε allow us to get a grip on picking exactly that orbit bi-
asymptotic to Mε from the intersection Ws(Mε) ∩ Wu(Mε) which is also homoclinic to
(0, 0, 0, 0) ∈ Mε, that is, which is (mostly) asymptotically close to uh,0 ∈ Mε. This orbit
will make a fast excursion through the V -field, since this is where the fast dynamics take
place (see (2.2), (2.4)). Since our goal is to construct a symmetric pulse, we can choose an
interval symmetric around the origin in which the fast jump occurs. The interval needs to be
asymptotically small with respect to the slow variable x but asymptotically large with respect
to the fast variable ξ: to be asymptotically close to Mε, the V -component of the pulse needs
to be exponentially small. A standard choice [5] for this fast spatial region is

(2.9) If =

{

ξ ∈ R

∣

∣

∣

∣

|ξ| < 1√
ε

}

.

Indeed, x ≪ 1 and ξ ≫ 1 on ∂If . For a sketch of the orbit, see Figure 5.
Now, we define the take-off and touchdown sets To,d ⊂ Mε to be the collection of base-

points of all Fenichel fibers in Wu(Mε) (resp., Ws(Mε)) that have points in the transverse
intersection Ws(Mε) ∩ Wu(Mε). Detailed information on To,d can be obtained by study-
ing the fast system (2.2) on Mε. First, we observe that pξ = O(ε3) on Mε so that the
p-coordinate on Mε remains constant to leading order during the fast excursion through the
V -field. Therefore, the change in the p-coordinate of the pulse is completely determined by
its accumulated change during its excursion through the fast field, and is given by

∆ξp =

∫

If

pξ dξ =

∫

If

−ε σ v2 +O(ε3) dξ =

∫ ∞

−∞
−ε σ vh,0(ξ;u0, p0)

2 dξ +O(ε2)

= −6 ε σ u20 +O(ε2),(2.10)

where we have used (2.2) and (2.5). Moreover, since uξ = ε p and p = O(ε) on If , we see that
∆ξu = O(ε2). This means that during the jump through the fast field, the u-coordinate of
the pulse does not change to leading order.

Since Ws(Mε)∩Wu(Mε) intersects the hyperplane {(u, p, v, q) | p = q = 0} transversally,
we can define the take-off and touchdown sets as curves

(2.11) To =
{

(u, p, 0, 0) ∈ Mε

∣

∣ p = 3 ε σu2
}

and Td =
{

(u, p, 0, 0) ∈ Mε

∣

∣ p = −3 ε σu2
}
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38 FRITS VEERMAN AND ARJEN DOELMAN

Figure 5. An asymptotic construction of the orbit γh(ξ) of Theorem 2.1 drawn in three dimensions. The
p- and q-directions are combined, since there is no direct interaction between them. The blue surface represents
the persistent slow manifold Mε, while the fast dynamics take place on the red surface, which is spanned by
the v- and q-directions. The slow homoclinic orbit uh,0(χ) is drawn in blue, while the fast homoclinic orbit
vh,0(ξ;u∗, 0) is drawn in red. The jump through the fast field projected on Mε is indicated by the purple line.

To

u
h,0

Td

u
u

p

*

(a) For σ > 0 the jump is downwards; the re-
sulting pulse is shown in Figure 1(a).

To

Td

u
u

p

u
h,0

*

(b) For σ < 0 the jump is upwards; the result-
ing pulse is shown in Figure 1(b).

Figure 6. The homoclinic orbit uh,0(χ) is drawn in blue in the (u, p)-plane. The take-off and touchdown
curves To =

{

(u, p)
∣

∣ p = 3 ε σu2
}

and Td =
{

(u, p)
∣

∣ p = −3 ε σu2
}

are drawn in green. The jump through the
fast field at u = u∗ is indicated by the dashed purple line.

at leading order. Note that if σ changes sign, the take-off and touchdown curves are inter-
changed: for σ > 0 the take-off curve has positive p-values, while for σ < 0 the take-off curve
has negative p-values. This also means the direction of the fast jump is reversed when σ
changes sign; see (2.10) and Figure 6(a).
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An orbit of the system (2.1)–(2.2) is homoclinic to (0, 0, 0, 0) if its Fenichel fiber basepoints
in To,d intersect the superslow homoclinic orbit uh,0 ∈ Mε; see Figure 6(a). This intersection
can be determined by integrating (2.6) once,

(2.12) 1
2p

2 = ε2
(

1
2αu2 − γ

d+1 u
d+1

)

,

and substituting p = ±3 ε σu2 from (2.11) to obtain

(2.13)
2γ

d+ 1
ud−1 = α− 9σ2u2,

which for α, γ, |σ| > 0 and d > 1 always has a unique real positive solution, denoted by u∗.
Furthermore, we define χ∗ as the (unique) positive χ-value for which uh,0(χ∗) = u∗, the u-
coordinate of the intersection. When σ < 0, we obtain a slightly different pulse, since part of
the slow homoclinic orbit uh,0 is covered twice; see Figure 6(b). This has its consequences for
the formulation of our main existence result.

Theorem 2.1. Let ε > 0 be sufficiently small. Then, for all values of the parameters α > 0,
γ > 0, |σ| > 0, and d > 1, there exists a unique orbit γh(ξ) = (uh(ξ), ph(ξ), vh(ξ), qh(ξ))
as a solution of system (2.2) which is homoclinic to (0, 0, 0, 0) and lies in the intersection

Ws(Mε) ∩Wu(Mε). Moreover,

(2.14) ‖vh(ξ)− vh,0(ξ;u∗, 0)‖∞ = O(ε) , ‖qh(ξ)− d
dξvh,0(ξ;u∗, 0)‖∞ = O(ε)

for all ξ ∈ R and

(2.15) ‖uh(χ)−uh,0(χ− sgn(σ)χ∗)‖∞ = O(ε) , ‖ph(χ)− ε d
dχuh,0(χ− sgn(σ)χ∗)‖∞ = O(ε)

for all χ < 0, while

(2.16) ‖uh(χ)−uh,0(χ+sgn(σ)χ∗)‖∞ = O(ε) , ‖ph(χ)− ε d
dχuh,0(χ+sgn(σ)χ∗)‖∞ = O(ε)

for all χ > 0.
The orbit γh corresponds to a homoclinic pulse solution (Uh, Vh) of system (1.7).
Proof. The missing details in the above geometric construction, especially in the precise

estimates of (2.14), (2.15), and (2.16), can be obtained in a manner identical to the corre-
sponding result on “slowly linear” systems in [5].

3. Pulse stability: Analysis. The linear stability of the stationary pulse solution (Uh, Vh)
of (1.7) found in the previous section is determined by adding a perturbation of the form
(ū(x), v̄(x)) eλt and linearizing equation (1.7) around the stationary solution, obtaining in the
fast variable ξ

(3.1a)

(3.1b)

(3.1c)

(3.1d)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ūξ = ε p̄,

p̄ξ = −2 ε σ Vh(ξ) v̄ + ε3
(

α+ λ− γ dUh(ξ)
d−1

)

ū,

v̄ξ = q̄,

q̄ξ =

(

1 + λ− 2
Vh(ξ)

Uh(ξ)

)

v̄ +
Vh(ξ)

2

Uh(ξ)2
ū.
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We write the fast system (3.1) in vector form

(3.2) d
dξφ = A(ξ;λ, ε)φ,

where φ(ξ) = (ū(ξ), p̄(ξ), v̄(ξ), q̄(ξ))T and

(3.3) A(ξ;λ, ε) =

⎛

⎜

⎜

⎜

⎝

0 ε 0 0
ε3
(

α+ λ− γ dUh(ξ)
d−1

)

0 2 ε σ Vh(ξ) 0
0 0 0 1

Vh(ξ)
2

Uh(ξ)2
0 1 + λ− 2 Vh(ξ)

Uh(ξ)
0

⎞

⎟

⎟

⎟

⎠

.

Since the V -component of the stationary pulse decays much faster than its U -component,
the ratio Vh

Uh
is well-defined and converges to zero as ξ → ±∞. This results in the constant

coefficient matrix

(3.4) A∞(λ, ε) = lim
|ξ|→∞

A(ξ;λ, ε) =

⎛

⎜

⎜

⎝

0 ε 0 0
ε3 (α+ λ) 0 0 0

0 0 0 1
0 0 1 + λ 0

⎞

⎟

⎟

⎠

which has eigenvalues

(3.5) ±Λf = ±
√
1 + λ and ± ε2Λs = ±ε2

√
α+ λ

and associated eigenvectors

(3.6) Ef,± =
(

0, 0, 1,±
√
1 + λ

)T

and Es,± =
(

1,±ε
√
α+ λ, 0, 0

)T

.

The essential spectrum of the linear eigenvalue problem (3.1) therefore is

(3.7) σess = {λ ∈ R |λ ≤ max(−α,−1)} ;

see [29]. Since α > 0, we can conclude that the stability of the pulse (Uh, Vh) is determined
by its discrete spectrum.

3.1. The Evans function and its decomposition. The Evans function, which is complex
analytic outside the essential spectrum (see [29, 3] and the references therein) associated with
system (3.1) can be defined by

(3.8) D(λ, ε) = det [φi(ξ;λ, ε)] ,

where the functions φi, i = 1, 2, 3, 4, satisfy boundary conditions at ±∞ (see below) and span
the solution space of (3.1). The eigenvalues of (3.2) outside σess coincide with the roots of
D(λ, ε), including multiplicities.

Definition 3.1. A statement of the form “f(x) � c g(x) as x → ∞” is true whenever the

limit limx→∞ 1
g(x) f(x) = c exists and is well-defined.
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Lemma 3.2. For all λ ∈ C \ σess, there are solutions φf,L/R(ξ;λ, ε) and φs,L/R(ξ;λ, ε) to

(3.1) such that the set
{

φf,L/R(ξ;λ, ε), φs,L/R(ξ;λ, ε)
}

spans the solution space of (3.1) and

φf,L(ξ;λ, ε) � Ef,+ eΛf ξ as ξ → −∞,(3.9a)

φf,R(ξ;λ, ε) � Ef,− e−Λf ξ as ξ → ∞,(3.9b)

φs,L(ξ;λ, ε) � Es,+ eε
2Λsξ as ξ → −∞,(3.9c)

φs,R(ξ;λ, ε) � Es,− e−ε2Λsξ as ξ → ∞.(3.9d)

Moreover, there exist analytic transmission functions tf,+(λ, ε) and ts,+(λ, ε) such that

φf,L(ξ;λ, ε) � tf,+(λ, ε)Ef,+ eΛf ξ as ξ → ∞,(3.10a)

φs,L(ξ;λ, ε) � ts,+(λ, ε)Es,+ eε
2Λsξ as ξ → ∞,(3.10b)

where ts,+(λ, ε) is defined only if tf,+(λ, ε) �= 0. These choices, when possible, determine

φf,L/R and φs,L uniquely.

Proof. Although the linearized system (3.2) is not identical to its counterpart in [5], exactly
the same arguments as in [5] can be applied here. Therefore, we refer the reader to [5] for the
details of the proof.

The Evans function can be determined by taking the limit ξ → ∞ of the determinant of
the functions defined in Lemma 3.2, since the Evans function itself does not depend on ξ since
the trace of A(ξ;λ, ε) vanishes (Abel’s theorem). This yields (see [5])

(3.11) D(λ, ε) = 4ε tf,+(λ, ε) ts,+(λ, ε)
√
1 + λ

√
α+ λ.

Corollary 3.3. The set of eigenvalues of (3.2) is contained in the union of the sets of roots

of tf,+(λ, ε) and ts,+(λ, ε).
Note that, due to the fact that ts,+(λ, ε) is defined only when tf,+(λ, ε) �= 0, the Evans

function D(λ, ε) does not necessarily vanish when tf,+(λ, ε) = 0. This is called the “resolution
to the NLEP paradox” in [5, 6]. The roots of tf,+ will be discussed later, in section 3.3.

3.2. The slow solution φs,L outside If . To obtain more information about the roots
of ts,+(λ, ε), it is necessary to determine the leading order behavior of φs,L(ξ;λ, ε) in the
different coordinate regimes. From Lemma 3.2 we know that φs,L is slowly growing in ξ, since
its leading order behavior for both ξ → ±∞ is determined by the exponential growth factor
ε2Λs = O(ε2). However, the dynamics governing φs,L differ significantly inside and outside the
fast spatial region If . Based on our knowledge of the homoclinic solution stated in Theorem
2.1, we can infer the form of the matrix A(ξ;λ, ε) both inside and outside If :

(3.12) Af (ξ;λ, ε) =

⎛

⎜

⎜

⎜

⎝

0 ε 0 0
ε3
(

α+ λ− γ dud−1
∗

)

0 2 ε σ vh,0(ξ;u∗, 0) 0
0 0 0 1

vh,0(ξ;u∗,0)2

u2
∗

0 1 + λ− 2
vh,0(ξ;u∗,0)

u∗
0

⎞

⎟

⎟

⎟

⎠
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to leading order for ξ ∈ If and

(3.13) As(ξ;λ, ε) =

⎛

⎜

⎜

⎝

0 ε 0 0
ε3
(

α+ λ− γ duh,0(|ε2ξ|+ sgn(σ)χ∗)d−1
)

0 0 0
0 0 0 1
0 0 1 + λ 0

⎞

⎟

⎟

⎠

for ξ /∈ If to leading order.
Note that it is the fact that this “intermediate” slow matrix exists, or, better, that it is not

identical to A∞(λ, ε) (3.4), that distinguishes the “slowly nonlinear GM problem” from “slowly
linear” problems such as the classical GM or GS systems. Note also that a intermediate matrix
as As(ξ;λ, ε) was already encountered in [7], in the study of a system with nonexponential
(algebraic) decay.

Lemma 3.4. Consider the system

(3.14) d
dξψ = As(ξ;λ, ε)ψ

with As(ξ;λ, ε) as given in (3.13). There exist solutions ψf,±(ξ;λ, ε) and ψs,±(ξ;λ, ε) which

span the solution space of (3.14) for ξ < − 1√
ε
and

ψf,+(ξ;λ, ε) � Ef,+ eΛf ξ, ψs,+(ξ;λ, ε) � Es,+ eε
2Λsξ,(3.15a)

ψf,−(ξ;λ, ε) � Ef,− e−Λf ξ, ψs,−(ξ;λ, ε) � Es,− e−ε2Λsξ(3.15b)

as ξ → −∞.

Proof. The same arguments as in the proof of Lemma 3.2 apply, since limξ→−∞As(ξ;λ, ε) =
A∞(λ, ε).

Since A(ξ;λ, ε) is to leading order equal to As(ξ;λ, ε) for ξ < − 1√
ε
and both φs,L and

ψs,+ � Es,+ eε
2Λsξ as ξ → −∞, combining Lemmas 3.2 and 3.4 yields the following corollary.

Corollary 3.5. For ξ < − 1√
ε
, we can write

φs,L(ξ;λ, ε) = ψs,+(ξ;λ, ε)

to leading order.

The slow evolution of the ū-component of ψs,± can be written, again using χ = ε2ξ, as

(3.16) ūχχ −
(

α+ λ− γ duh(|χ|+ sgn(σ)χ∗)
d−1

)

ū = 0.

We can introduce the coordinate transformation

z = − 1√
α

d
dχuh,0(χ− sgn(σ)χ∗)

uh,0(χ− sgn(σ)χ∗)

=
1√
α

d

dχ
log

1

uh,0(χ− sgn(σ)χ∗)

= tanh

(

1

2
(d− 1)

√
α (χ− sgn(σ)χ∗)

)

(3.17)
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(by (2.8)) for the region χ < 0 to obtain

(3.18) (1− z2) ūzz − 2 z ūz +

(

ν(ν + 1)− µ2

1− z2

)

ū = 0,

where

ν =
d+ 1

d− 1
,(3.19a)

µ = +
2

d− 1

√

1 +
λ

α
,(3.19b)

where we have chosen the branch cut associated with σess such that Reµ > 0; note that
ν > 1. Equation (3.18) is the Legendre differential equation: its solutions are the associated
Legendre functions Pµ

ν (z) and Qµ
ν (z) (see [2, 1]). Given the symmetry z → −z of the equation,

we choose the basis of the solution space to be Pµ
ν (±z). The limit χ → −∞ corresponds to

the limit z → −1. Taking into account the normalization of ψs,+ from Lemma 3.4, the correct
expression for the ū-component of ψs,+ is

(3.20) ū(χ) = Γ(1 + µ) eΛssgn(σ)χ∗P−µ
ν (−z(χ))

such that

(3.21) lim
χ↑0

ū(χ) = Γ(1 + µ) eΛssgn(σ)χ∗P−µ
ν (z∗) ,

where we define

(3.22) z∗ = sgn(σ) tanh
(

1
2(d− 1)

√
αχ∗

)

.

We can express z∗ in terms of u∗ using (2.7): integrating once yields

(3.23) u2χ = αu2 − 2 γ

d+ 1
ud+1,

so, by (3.17),

(3.24) z2 =
1

α

u2χ
u2

= 1− 2γ

α(d+ 1)
ud−1,

and hence

(3.25) α
(

1− z2∗
)

=
2γ

d+ 1
ud−1
∗ = α− 9σ2u2∗

by (2.13); from this, we conclude that

(3.26) z∗ =
3σ√
α
u∗.

Note that z∗ inherits the sign of σ, since χ∗ is chosen to be positive; see section 2.1.
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Lemma 3.6. Let ūs(ξ;λ, ε) be the ū-component of φs,L(ξ;λ, ε) as defined in Lemma 3.2.
Then

(3.27) ūs(ξ) = Γ(1 + µ) eΛssgn(σ) χ∗P−µ
ν (z∗) +O(ε

√
ε) for ξ ∈ If .

Moreover, there are two transmission functions ts,+(λ, ε) and ts,−(λ, ε) such that

(3.28) φs,L(ξ;λ, ε) = ts,+(λ, ε)ψs,−(−ξ;λ, ε) + ts,−(λ, ε)ψs,+(−ξ;λ, ε) for ξ >
1√
ε

up to exponentially small terms in ξ, where ts,+ was already introduced in Lemma 3.2.
Proof. The ū-component of φs,L is constant on If , since both

d
dξ ūs and

d
dξ p̄s,+ are asymp-

totically small on If . Therefore, we can determine its leading order value using Corollary 3.5
and (3.21). The matrix As as defined in (3.13) is symmetric in ξ. For the region ξ > 1√

ε
we

can therefore use the same ψf,± and ψs,± from Lemma 3.4 as a basis for the solution space in
this region, under the reflection ξ → −ξ. The role of ψs,+ and ψs,− is reversed compared to
the interval ξ < − 1√

ε
: we see that ψs,−(−ξ) grows (slowly) exponentially as ξ → ∞, whereas

ψs,+(−ξ) has an exponential (slow) decay under the same limit. The normalization of φs,L for
ξ → ∞, which by Lemma 3.2 introduces ts,+(λ, ε) in (3.28), does not exclude the possibility
that for ξ > 1√

ε
, φs,L has components which decay (slowly) as ξ → ∞. Therefore, we write the

leading order expression of φs,L in this region as a linear combination of a slowly increasing
and a slowly decreasing component and introduce ts,−(λ, ε) to measure the decreasing com-
ponent. A term containing the fast decreasing component is omitted, since for ξ > 1√

ε
this

would give only an exponentially small correction to the result in (3.28).
Based on the results of Lemma 3.6, we have

(3.29) lim
χ↓0

ūs(χ) = Γ(1 + µ)
[

ts,+(λ, ε)P
−µ
ν (−z∗) + ts,−(λ, ε)P

−µ
ν (z∗)

]

to leading order.
Corollary 3.7. Combining (3.27) and (3.29) yields

(3.30) ts,+(λ, ε)P
−µ
ν (−z∗) + ts,−(λ, ε)P

−µ
ν (z∗) = P−µ

ν (z∗) +O(ε
√
ε)

to leading order.

This gives a (first) relation between ts,+(λ, ε) and ts,−(λ, ε).

3.3. The fast components of φs,L inside If . Since ūs(ξ;λ, ε) is constant to leading order
for ξ ∈ If (see Lemma 3.6), we can represent it by its value at 0 ∈ If . Moreover, the equation
for the v̄-component in (3.1) decouples and yields an inhomogeneous Sturm–Liouville problem,

(3.31) v̄ξξ −
(

(1 + λ)− 2

u∗
vh,0(ξ;u∗, 0)

)

v̄ =
1

u2∗
vh,0(ξ;u∗, 0)

2 ūs(0),

where we used that uh(ξ) = u∗ and vh(ξ) = vh,0(ξ;u∗, 0) for ξ ∈ If to leading order (see
Theorem 2.1). Based on the slow behavior of φs,L determined in Lemmas 3.2 and 3.6, we
observe that the solution v̄ of (3.31) must extinguish as ξ → ∂If , which implies that v̄ must
decay exponentially fast in ξ.
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By the nature of the GM equation (1.4) and its “slow nonlinearity” the problem can be
solved exactly along the same lines as done in section 3.2 for the slow problem. First, we
introduce a coordinate transformation similar to (3.17),

(3.32) ζ = −
d
dξvh,0(ξ;u∗, 0)

vh,0(ξ;u∗, 0)
=

d

dξ
log

1

vh,0(ξ;u∗, 0)
= tanh

(

1

2
ξ

)

,

using (2.5). In this coordinate, vh can be written as

(3.33) vh(ζ;u∗, 0) =
3u∗
2

(

1− ζ2
)

and (3.31) is transformed to

(3.34) (1− ζ2) v̄ζζ − 2 ζ v̄ζ +

(

12− 4(1 + λ)

1− ζ2

)

v̄ = 9 ūs(0) (1 − ζ2)

and If = {ζ ∈ R | |ζ| < 1} up to exponentially small terms; compare (2.9).
Its homogeneous reduction

(3.35) (1− ζ2) v̄ζζ − 2 ζ v̄ζ +

(

12− 4(1 + λ)

1− ζ2

)

v̄ = 0

can again be solved using associated Legendre functions; it is a special case (α = 1, d = 2) of
the slow eigenvalue problem (3.18).

It should be noted that there is a crucial difference between (3.18) and (3.34). The slow
equation (3.18) is defined only on part of the “full” domain: z ∈ (−1, z∗) ⊂ (−1, 1). Therefore,
the eigenvalues of (3.18) do not yield direct implications for the stability of the pulse (Uh, Vh).
This is very different from the fast system (3.34). It has three eigenvalues; its corresponding
eigenfunctions are

λ
(0)
f =

5

4
, v̄

(0)
f (ζ) =

(

1− ζ2
)

3
2 ,(3.36a)

λ
(1)
f = 0, v̄

(1)
f (ζ) = ζ

(

1− ζ2
)

= − 2

3u∗

dζ

dξ

d

dζ
vh(ζ;u∗, 0),(3.36b)

λ
(2)
f = −3

4
, v̄

(2)
f (ζ) =

(

ζ2 − 1

5

)

√

1− ζ2.(3.36c)

Referring to [5], we recall that the roots of tf,+(λ, ε) are to leading order given by the
eigenvalues of (3.35), so we have the following lemma.

Lemma 3.8. There are unique λ(i)(ε) ∈ R such that limε→0 λ
(i)(ε) = λ

(i)
f and

tf,+(λ
(i)(ε), ε) = 0 with multiplicity 1 for i = 0, 1, 2.

Proof. See [5].
Hence, the eigenvalues of (3.35) are to leading order zeroes of the fast component of the

Evans function D(λ, ε) given in (3.11) and thus, in principle, candidates for being zeroes of
the full Evans function.
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46 FRITS VEERMAN AND ARJEN DOELMAN

For all λ ∈ C \ σess, the solution space of (3.35) is spanned by the associated Legendre
functions

(3.37) v̄±(ζ;λ) = c±(λ)P
−2

√
1+λ

3 (±ζ), lim
ζ→±1

v̄±(ζ;λ) = 0,

where we normalize v̄± (i.e., choose c±) such that their Wronskian is given by

(3.38) W (v̄−, v̄+)(ζ;λ) =
1

1− ζ2
,

which implies that

(3.39) c+(λ) c−(λ) = −1

2
Γ
(

4 + 2
√
1 + λ

)

Γ
(

−3 + 2
√
1 + λ

)

.

Indeed, the expression in (3.39) has poles at λ = λ
(i)
f , i = 0, 1, 2. This is due to the fact

that v̄±(ζ;λ) cannot span the two-dimensional solution space for λ = λ
(i)
f . Since we have

normalized the Wronskian (3.38), this is now encoded in the values of c±(λ).
We know that the inhomogeneous equation (3.34) has a unique bounded solution v̄in(ξ;λ)

for all λ ∈ C \ σess and λ �= λ
(0,1,2)
f . It can be determined using the Green’s function

(3.40) G(ζ, s;λ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v̄−(s;λ) v̄+(ζ;λ)
W (v̄−, v̄+)(s;λ) (1 − s2)

, s < ζ,

v̄−(ζ;λ) v̄+(s;λ)
W (v̄−, v̄+)(s;λ) (1 − s2)

, s > ζ,

so that

v̄in(ζ;λ) =

∫ 1

−1
9 ūs(0) (1 − s2)G(ζ, s;λ) ds

= 9 ūs(0)

[

v̄+(ζ;λ)

∫ ζ

−1
(1− s2) v̄−(s;λ) ds+ v̄−(ζ;λ)

∫ 1

ζ

(1− s2) v̄+(s;λ) ds

]

.(3.41)

Note that the inhomogeneous term in (3.34) is orthogonal only to the eigenfunction cor-

responding to λ
(1)
f = 0; for the other two eigenvalues the solvability condition

(3.42)

∫ 1

−1
9 ūs(0) (1 − ζ2) v̄

(i)
f (ζ) dζ = 0, i = 0, 1, 2,

is not satisfied, since both v̄
(0,2)
f (ζ) and 9(1− ζ2) are even functions in ζ. This means that v̄in

as a function of λ has a simple pole at λ
(0)
f and λ

(2)
f and is smooth at λ

(1)
f = 0.

To summarize this section, the resulting expression of v̄in is restated in the following
lemma.

Lemma 3.9. The unique solution v̄in(ζ;λ) to (3.34) is given by

(3.43) v̄in(ζ;λ) = 9 ūs(0)

[

v̄+(ζ;λ)

∫ ζ

−1
(1− s2) v̄−(s;λ) ds + v̄−(ζ;λ)

∫ 1

ζ

(1− s2) v̄+(s;λ) ds

]

,

with v±(ζ;λ) as defined in (3.37) and subject to condition (3.39).
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3.4. The slow transmission function ts,+(λ, ε). In section 3.2 we studied φs,L outside
If , and in section 3.3 we considered its fast dynamics inside If . However, we did not yet
combine these results.

Using (3.1), we see that

ūξξ = −2 ε2σ Vh(ξ) v̄ +O(ε4)

= −2 ε2σ vh,0(ξ;u∗, 0) v̄in (ζ(ξ);λ)(3.44)

to leading order in If . Thus, the total change of ūξ over If is given by

∆ξūξ =

∫

If

uξξ dξ

= −2 ε2σ

∫ ∞

−∞
vh,0(ξ;u∗, 0) v̄in (ζ(ξ);λ) dξ

= −2 ε2σ

∫ 1

−1
vh,0 (ξ(ζ);u∗, 0) v̄in (ζ;λ)

2 dζ

1− ζ2

= −2 ε2σ

∫ 1

−1

3u∗
2

(1− ζ2) v̄in (ζ;λ)
2 dζ

1− ζ2

= −6 ε2σ u∗

∫ 1

−1
v̄in (ζ;λ) dζ := ∆f ,(3.45)

all to leading order. Using the expression for v̄in(ζ;λ) from Lemma 3.9 and the symmetry in
ζ between v̄+ and v̄−, this can be rewritten as

(3.46) ∆f = −108 ε2σ u∗ ūs(0)
∫ 1

−1

∫ ζ

−1
v̄+(ζ;λ) v̄−(s;λ)(1 − s2) ds dζ.

The desired coupling between the slow and fast dynamics can now be obtained by realizing
that this change in ūξ should match with the slow behavior of φs,L outside If . Using Corollary
3.5 and Lemma 3.6,

∆f = ∆ξūξ = ūξ

(

1√
ε

)

− ūξ

(

− 1√
ε

)

= ε2 Γ(1 + µ)
dz

dχ

d

dz

[

ts,+ P−µ
ν (−z) + ts,− P−µ

ν (z)
]

z=z∗

− ε2Γ(1 + µ)
dz

dχ

d

dz

[

P−µ
ν (−z)

]

z=−z∗

= ε2 Γ(1 + µ)
dz

dχ

d

dz

[

ts,+ P−µ
ν (−z) + (ts,− + 1) P−µ

ν (z)
]

z=z∗
(3.47)

to leading order. Together, expressions (3.45) and (3.47) can be used to obtain a second
relation between the two transmission functions ts,±(λ, ε); see Corollary 3.7. Thus, we can
eliminate ts,− and obtain a leading order expression for ts,+:

ts,+ ε2
dz

dχ

d

dz

[

P−µ
ν (−z)− P−µ

ν (−z∗)

P−µ
ν (z∗)

P−µ
ν (z)

]

z=z∗

=
∆f

Γ(1 + µ)
− 2 ε2

dz

dχ

d

dz

[

P−µ
ν (z)

]

z=z∗
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so that, using the Wronskian W
(

P−µ
ν (z), P−µ

ν (−z)
)

(z∗),

(3.48) ts,+ = P−µ
ν (z∗)

∆f

Γ(1+µ) − 2 ε2 dz
dχ

d
dz

[

P−µ
ν (z)

]

z=z∗

ε2 dz
dχW

(

P−µ
ν (z), P−µ

ν (−z)
)

(z∗)
,

which, using (3.45) and (3.26), leads to the following theorem.
Theorem 3.10. Let ε > 0 be sufficiently small. The function ts,+(λ, ε) is meromorphic as a

function of λ outside σess. It has simple poles at λ(0)(ε) and λ(2)(ε) and is analytic elsewhere.

The leading order behavior of ts,+ is given by

(3.49) ts,+(λ, 0) = P−µ
ν (z∗)

√
αz∗

Γ(1+µ)

∫ 1
−1 v̄in (ζ;λ) dζ +

dz
dχ

d
dz

[

P−µ
ν (z)

]

z=z∗

−1
2
dz
dχW

(

P−µ
ν (z), P−µ

ν (−z)
)

(z∗)
.

The nontrivial roots of the Evans function D(λ, ε) coincide with the roots of ts,+(λ, ε). These

roots determine the stability of the pulse (Uh(ξ), Vh(ξ)).

Note that it is clear from (3.49) that ts,+ inherits the poles of v̄in at λ = λ
(0,2)
f .

The roots of the Evans function D(λ, ε) outside σess are given by the roots of the product
tf,+(λ, ε) ts,+(λ, ε). Based on orthogonality arguments, we have established that ts,+(λ, 0) has

simple poles at λ = λ
(0,2)
f ; see the solvability condition (3.42). These coincide with the (simple)

roots of tf,+(λ, 0) (see Lemma 3.8), so the Evans function will not necessarily be zero at these
values of λ. Moreover, since the Evans function is analytic, this statement continues to hold
for ε > 0. Note that λ = 0 is always a trivial eigenvalue for system (3.1), with eigenfunction
d
dξ (Uh(ξ), Vh(ξ)); it does not appear as a zero of ts,+(λ, 0).

4. Pulse stability: Results. The purpose of this section is to analyze the roots of ts,+(λ, 0)
as given in Theorem 3.10. The Wronskian in the denominator is always finite for −1 < z∗ < 1,
because the underlying differential equation (3.18) is singular only at z = −1, 1. We can
therefore focus at the numerator, which is zero whenever P−µ

ν (z∗) = 0 or

(4.1)

√
α z∗

Γ(1 + µ)

∫ 1

−1
v̄in (ζ;λ) dζ +

dz

dχ

d

dz

[

P−µ
ν (z)

]

z=z∗
= 0.

Using

(4.2)

[

dz

dχ

]

z=z∗

=
1

2
(d− 1)

√
α(1 − z2∗)

and

(4.3)
d

dz

[

P−µ
ν (z)

]

z=z∗
=

1

1− z2∗

(

(ν − µ)P−µ
ν−1(z∗)− z∗νP

−µ
ν (z∗)

)

,

(4.1) can be rewritten as

18 z∗ P
−µ
ν (z∗)

∫ 1

−1

∫ ζ

−1
v̄+(ζ;λ) v̄−(s;λ)(1 − s2) ds dζ

+
1

2
(d− 1)

(

(ν − µ)P−µ
ν−1(z∗)− z∗νP

−µ
ν (z∗)

)

= 0(4.4)
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LHS

RHS
�1 1 2

�5

5

LHS

RHS

�1 1 2
Λ

�5

5

Figure 7. Here, LHS(λ) is plotted in blue for λ ∈ (−1, 2); the red line is the graph of RHS( λ
α
; ν, z∗). In the

left plot α = 0.05, ν = 2, and z∗ = 0.75. In the right plot α = 1.5, ν = 2, and z∗ = −0.60; the left figure is a
representation of the statement in Theorem 4.2.

using (3.46) and recalling that ūs(0) = Γ(1+µ)P−µ
ν (z∗) to leading order by Lemma 3.6. Since

this equation is relevant only if P−µ
ν (z∗) �= 0, we divide by z∗ P

−µ
ν (z∗) (note that z∗ �= 0, since

u∗ �= 0; see (3.26)) to obtain the following.
Corollary 4.1. If P−µ

ν (z∗) �= 0, the nontrivial roots of the Evans function D(λ, ε) as defined
in (3.11) are given to leading order by the solutions of the equation

(4.5) 18

∫ 1

−1

∫ ζ

−1
v̄+(ζ;λ) v̄−(s;λ)(1 − s2) ds dζ =

1

ν − 1

(

ν − (ν − µ)
P−µ
ν−1(z∗)

z∗ P
−µ
ν (z∗)

)

,

with µ, ν, z∗ as given in (3.19) and (3.26).
The left-hand side (LHS) of this equation is a function of λ only; all parameters are

contained in the right-hand side (RHS). Moreover, we have restricted our parameter space
(α, γ, σ, d) ∈ R>0 × R>0 × R \ {0} × (1,∞), a union of two orthants in R

4, to (α, ν, z∗) ∈
R>0 × (1,∞)× (−1, 0) ∪ (0, 1), the union of two (semicompact) slabs in R

3.
It is useful to define the LHS and RHS of (4.5) separately:

LHS(λ) = 18

∫ 1

−1

∫ ζ

−1
v̄+(ζ;λ) v̄−(s;λ)(1 − s2) ds dζ,(4.6)

RHS(λ
α
; ν, z∗) =

1
ν−1

(

ν − (ν − µ(λ
α
; ν))

P
−µ( λα ;ν)

ν−1 (z∗)

z∗ P
−µ( λα ;ν)
ν (z∗)

)

.(4.7)

In Figure 7, the graphs of LHS(λ) and RHS(λ
α
; ν, z∗) are plotted for real values of λ. It is

worthwhile to note that LHS(λ) = 288R(P =
√
1 + λ; 2, 2), as used in [5].

4.1. Immediate results: σ < 0 and γ ↓ 0. In this subsection we present the first
“immediate” implications of the developed theory for the stability of the pulse (Uh, Vh).

Theorem 4.2. Let ε > 0 be sufficiently small. For all σ < 0, there is a real zero λpos >

λ
(0)
f > 0 of the Evans function associated with the stability problem (3.1).

Proof. As λ → ∞, from (3.19) we infer that µ ≫ ν such that the ratio
P

−µ
ν−1(z∗)

P
−µ
ν (z∗)

→ 1.

Therefore, RHS(λ
α
; ν, z∗) �

µ
ν−1

1
z∗

�
1

3σu∗

√
λ as λ → ∞. Using an argument equivalent to

that in [12, Lemma 4.1(ii)], one can show that LHS(λ) increases monotonically (from −∞) to
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50 FRITS VEERMAN AND ARJEN DOELMAN

zero for λ > λ
(0)
f . Therefore, there is a λ > 5

4 for which the LHS and RHS intersect and which
therefore solves (4.5) for all parameter values when σ < 0; see Figure 7.

Corollary 4.3. A pulse with a double hump in the U -component, as shown in Figure 1(b),
is always unstable.

A direct consequence of the above corollary is that in order to obtain any stability result,
we have to confine ourselves to the interval 0 < z∗ < 1, since sgn(z∗) = sgn(σ); see (3.26). It
would be beneficial for a complete understanding of the linear stability of the constructed pulse
if more would be known about the zeroes of P−µ

ν (z∗). However, while some information can
be obtained regarding the number of zeroes of P−µ

ν (z∗) for real values of µ (see [1]; the general
case will be treated in [13]), the authors are not aware of any general analytic expressions
concerning zeroes of P−µ

ν (z∗) for complex µ. Notwithstanding, direct numerical evaluation of
P−µ
ν (z∗) for a broad parameter range has led to the following conjecture.

Conjecture 4.4. For all λ ∈ C for which Re λ > 0, P−µ
ν (z∗) �= 0 for all 0 < z∗ < 1.

Moreover, for Im λ �= 0, P−µ
ν (z∗) �= 0 for all 0 < |z∗| < 1.

Based on this observation, the study of linear stability of the pulse can be confined to the
study of solutions of (4.5). Moreover, any additional eigenvalues originating from zeroes of
P−µ
ν (z∗) would occur on the real line and be negative. Note that in the following results, this

conjecture is not needed.
Equation (4.7) can be studied for different parameter values (and limits thereof) to obtain

information about the pulse spectrum. Another direct result can be obtained by taking the
limit γ ↓ 0 to remove the influence of the slow nonlinearity in (1.7) and obtain the classical
GM equations.

As γ ↓ 0, u∗ →
√
α

3|σ| (see (2.13)), so z∗ → sgn(σ) using (3.26). Note that, while the limit

γ ↓ 0 reduces (1.7) to the “classical” GM equation—where the slow evolution in U is linear,
yielding a “simple” exponential instead of an associated Legendre function—the coordinate z
is ill-defined for γ = 0; see (3.17) in relation to (3.16). Therefore, some of the expressions in
the following will still depend on ν, while ν disappears from (1.7) as γ ↓ 0.

Since

P−µ
ν (z∗) �

1

Γ(1 + µ)

(

1− z

2

)
µ
2

as z∗ → 1,(4.8a)

P−µ
ν (z∗) �

Γ(µ)

Γ(µ− ν)Γ(1 + µ+ ν)

(

1 + z

2

)−µ
2

as z∗ → −1(4.8b)

(see [2, 1]), this means that

lim
γ↓0

RHS(λ
α
; ν, z∗(α, γ, σ, d)) = lim

z∗→sgn(σ)
RHS(λ

α
; ν, z∗) = sgn(σ) µ

ν−1

= sgn(σ)
√

1 + λ
α
.(4.9)

Moreover, P−µ
ν (z∗) can be written as P−µ

ν (z∗) =
(

1−z∗
2

)
µ
2 F (z∗), where F (z) has a regular

expansion (see [2, 1]). Near z = 1, F (z) can be expanded as F (z) =
∑∞

k=0 ak
(

1−z
2

)k
, with

(4.10) ak =
∞
∑

j=0

(

µ
2

)

k−j
(−ν)j(ν + 1)j

Γ(1 + j + µ)(k − j)!j!
.
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Since a0 =
1

Γ(1+µ) �= 0 for all µ considered, since Re µ > 0 and the limit γ ↓ 0 influences only

the value of z∗, it follows that P
−µ
ν (z∗) does not have any zeroes asymptotically close to, but

different from, z∗ = 1. The same reasoning applies for z∗ → −1. Therefore, in this particular
limit, we do not need to appeal to Conjecture 4.4. This yields the following lemma.

Lemma 4.5. For γ ↓ 0, the nontrivial pulse spectrum is to leading order given by the roots

of the equation

(4.11) 18

∫ 1

−1

∫ ζ

−1
v̄+(ζ;λ) v̄−(s;λ)(1− s2) ds dζ = sgn(σ)

√

1 +
λ

α
,

which, for σ > 0, coincides with the corresponding expression found in [5] for the classical

GM equations.

4.2. Varying α and investigating the role of d. As the parameter α occurs in both the
expression for µ and for z∗ (see (3.19) and (3.26)), it is worthwhile to study the behavior of
RHS(λ) as α changes to obtain α-parametrized eigenvalue orbits. Moreover, the parameter α
is the classical parameter to be varied, as α plays the role of µ in the classical GM equations.
In Figure 2(a), the (complex) solutions to (4.5) are plotted as a function of increasing α for
d = 2, γ = 2, and σ = 1. The eigenvalues cross the imaginary axis for α ≈ 0.83083 and
converge to λ ≈ −0.990268 ± 0.147318 i as α → ∞. The same plot, now for d = 5, is given
in Figure 2(b)–(c). The eigenvalues initially display the same behavior as in the case d = 2;
here, the imaginary axis is crossed for α ≈ 0.36654. A clear change of behavior can be seen
for increasing α; whereas the orbit seems to converge to a complex conjugate pair of stable
limit points for d = 2, for d = 5 the orbit crosses the imaginary axis again for α ≈ 90.634 and
yields a pair of unstable eigenvalues as α → ∞. Note that this behavior is essentially different
from the equivalent analysis found in [5, Figure 5.3].

The behavior for α → ∞ can be determined explicitly: since only the RHS of (4.5) is
parameter dependent, it suffices to calculate limα→∞RHS(λ

α
; ν, z∗). Since

(4.12) lim
α→∞

µ(λ;α, d) =
2

d− 1
= ν − 1

by (3.19) and

(4.13) lim
α→∞

z∗(α, γ, σ, d) =

{

0 if d > 3 ⇔ ν < 2,
sgn(σ) if d < 3 ⇔ ν > 2

by (2.13) and (3.26), we see that a dichotomy occurs at d = 3 or, equivalently, ν = 2.
For ν > 2, the RHS of (4.5) converges as α → ∞ to

(4.14) lim
α→∞

RHS
(

λ
α
; ν > 2, z∗(α)

)

= lim
µ→ν−1

lim
z∗→sgn(σ)

RHS (λ;µ, ν > 2, z∗) = sgn(σ)

using (4.8).
Following the same reasoning preceding Lemma 4.5, there are no additional zeroes of

P−µ
ν (z∗) to be taken into account, since the same limit behavior z∗ → ±1 takes place here.

The fact that a simultaneous limit is taken for µ(λ;α, d) does not change this, since the
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{ Re LHS(Λ) = 1 }

{ Im LHS(Λ) = 0 }

�1.5 �1 �0.5
Re Λ

0.1

0.2

0.3

0.4

Im Λ

Figure 8. The equation LHS(λ) = sgn(σ) is solved graphically for σ > 0. Plotted in blue is the level curve
{Re LHS(λ) = 1}, which intersects the purple level curve {Im LHS(λ) = 0} in the left half-plane for σ > 0 at
λ ≈ −0.990268 ± 0.147318 i. Since the level curves are symmetric, only the positive half-plane is shown.

coefficients of the expansion of F (z), given in (4.10), have a regular expansion in orders of
1
α
. Again, a0 = 1

Γ(1+µ) = 1
Γ(ν) + O

(

1
α

)

is not equal to zero, since ν > 1. Therefore, it is not

necessary to appeal to Conjecture 4.4 in this limit, since again it follows that P−µ
ν (z∗) does

not have any zeroes asymptotically close to, but different from, z∗ = ±1.
The solution to LHS(λ) = sgn(σ) is determined by direct evaluation of the integral (4.6);

see Figure 8 for a graphic illustration. For σ > 0, this equation has a conjugate pair of complex
solutions in the left half-plane; for σ < 0, there is a real positive solution (see Theorem 4.2).
Of course the existence of these isolated solutions can be confirmed by a rigorous numerical
winding number calculation (see [6]). Note that this both corroborates and extends the
corresponding result in [5], giving a method to calculate the “endpoints” of the eigenvalue
orbits. The above leads to the following theorem.

Theorem 4.6. Let ε > 0 be sufficiently small. For all 1 < d < 3, there is an α∗(γ, σ, d) > 0
such that for all α > α∗, the nontrivial zeroes of the Evans function associated with the stability

problem (3.1) are to the left of, and bounded away from, the imaginary axis.

When ν < 2, we need to check limz∗→0 limµ→ν−1RHS(λ
α
; ν < 2, z∗). Since P

−(ν−1)
ν (z) =

z P
−(ν−1)
ν−1 (z) (see [2, 1]), we see that RHS(λ

α
; ν < 2, z∗(α)) �

1
z2∗
, while z∗ → 0 as α → ∞.

This means that the solutions of (4.5) will either converge to the poles of LHS(λ), which lie

at λ = λ
(2)
f = −3

4 and λ = λ
(0)
f = 5

4 , or take off to infinity; see Figure 7, right. From this, it
is clear that the pulse becomes unstable for ν < 2 ⇔ d > 3 when α is large enough; see again
Figure 2 for an example.

Theorem 4.7. Let ε > 0 be sufficiently small. For all d > 3, there are α∗,1(γ, σ, d) > 0 and

α∗,2(γ, σ, d) > 0 such that for all α < α∗,1 and all α > α∗,2, the nontrivial zeroes of the Evans

function associated with the stability problem (3.1) are to the right of the imaginary axis.

Proof. The above arguments show that the pulse becomes unstable when α is large enough.
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For 0 < α ≪ 1, we see that the same approximations apply as for the case λ → ∞; see the
proof of Theorem 4.2. Moreover, combining (2.13) and (3.26) we see that z∗ → sgn(σ) as

α ↓ 0. Therefore, RHS � sgn(σ)
√
λ√
α
as α ↓ 0. As for the case α → ∞, the RHS thus has to

blow up, which yields the existence of a positive real solution close to λ
(0)
f for (4.5).

However, the eigenvalue orbit for d > 3 traverses the left half-plane for a particular α-
interval, as shown in Figure 2. That is, direct evaluation of (4.5) indicates that there also is
a nonempty region α ∈ (α∗,1, α∗,2) for which the pulse is stable. To investigate this behavior
analytically, we focus on the parameter d.

Consider the limit d ≫ 1. This is equivalent with the limit ν − 1 ≪ 1. Therefore, we

introduce an asymptotically small parameter δ and set ν = 1 + δ so that µ = δ
√

1 + λ
α
(see

(3.19)). The equation for z∗, combining (2.13) and (3.26), is

(4.15)
γ(ν − 1)

ν

( α

9σ2

) 1
ν−1 (

z2∗
)

1
ν−1 = α(1− z2∗),

which, when ν = 1 + δ, yields

(4.16)
γ δ

1 + δ

( α

9σ2

)
1
δ (

z2∗
)

1
δ = α(1− z2∗).

Substituting z2∗ = e−y, y > 0, we obtain

γ δ

1 + δ

( α

9σ2

) 1
δ
e−

y
δ = α(1− e−y);(4.17)

writing

(4.18)
α

9σ2
= eβ

this becomes

γ δ

α(1 + δ)

ey

ey − 1
= e

y−β
δ .(4.19)

When β > 0, we can rewrite this as

(4.20) y = β + δ log

[

γ δ

α(1 + δ)

ey

ey − 1

]

,

yielding y = β + δ log
(

δ γeβ

α(eβ−1)

)

+ h.o.t. When β < 0 and not asymptotically small, (4.19)

is solved by y = − log
(

1 − δ γ
α
e

β
δ

)

+ h.o.t. This means that when α
9σ2 > 1, then z2∗ =

9σ2

α

(

α−9σ2

δγ

)δ
+h.o.t., while z2∗ = 1− δ γ

α

(

α
9σ2

)δ
+h.o.t. when α

9σ2 < 1. Thus, for d ≫ 1 a sharp

transition in the value of z∗ occurs as α passes through α = 9σ2.
We will now show that at this “transition,” all zeroes of the Evans function, i.e., all

solutions of (4.5) (Corollary 3.3), must have negative real part.
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Using the same decomposition P−µ
ν (z∗) =

(

1−z∗
2

)
µ
2 F (z∗) as before, with F (z) having a

regular expansion near z∗ = 1 with coefficients given by (4.10), we see that for µ = δµ0,

ν = 1 + δ, and z∗ = 1 − 1
2y1δ to leading order, both the term

(

1−z∗
2

)
µ
2 and the coefficients

in (4.10) can be expanded in δ, yielding P−δµ0

1+δ (1 − 1
2y1δ) = 1 + 1

2µ0δ log(δ) + O(δ). From

this, we can conclude that it is not possible to choose y1 such that P−δµ0

1+δ (1 − 1
2y1δ) = 0 for

asymptotically small δ, so Conjecture 4.4 is not needed.
First we set ν = 1 + δ in RHS (4.7):

(4.21) RHS(λ
α
; 1 + δ, z∗) =

1
δ

⎛

⎝1 + δ −
(

1 + δ − δ
√

1 + λ
α

)

P
−δ

√
1+ λ

α
δ (z∗)

z∗ P
−δ

√
1+ λ

α
1+δ (z∗)

⎞

⎠ .

The above approximations yield, with the same asymptotically small parameter δ as intro-
duced above,

(4.22) RHS(λ
α
; 1 + δ, z∗) =

⎧

⎪

⎨

⎪

⎩

− γ
α
+
√

1 + λ
α
+O(δ) if α < 9σ2,

1
δ

(

1− α
9σ2

)

+ 1 +
−1+

√

1+ λ
α

z3∗
+O(δ) if α > 9σ2.

From this result, we see that for α < 9σ2, the behavior of the RHS is similar to the behavior
treated in Theorem 4.6. Moreover, for γ ↓ 0, we obtain the same result as in Lemma 4.5.

However, when α crosses the threshold α ≈ 9σ2, the behavior of the RHS changes radically.
This accounts for the sharp “turning” behavior observed in Figure 2(b). The expression for
α > 9σ2 accounts only for the limiting behavior yielding unstable eigenvalues, as described in
Theorem 4.7, since the RHS blows up: to study the intermediate regime, we must zoom in on
the situation when α ≈ 9σ2. By (4.18), we thus set β = δB + h.o.t., and we see that (4.19)
can be solved by y = δy1 + h.o.t., with y1 determined by

(4.23)
γ

α
eB = y1e

y1

so that y1 = W ( γ
α
eB), where W (z) is the Lambert W -function. Since z2∗ = e−y = 1 − δy1 at

leading order, the same approximation as for α < 9σ2 can be used, yielding

(4.24) RHS(λ
α
; 1 + δ, z∗) = −B +

√

1 + λ
α
+ h.o.t. if α

9σ2 = 1 + δB +O(δ2).

Using the previous analysis, we can go beyond the previous instability result for d > 3
and find an interval for α where the pulse is stable, and we state the following.

Theorem 4.8. Let ε > 0 be sufficiently small. There is a d∗ > 3 such that for all d > d∗,
there is an open set Ω∗ in (α, γ, σ)-parameter space such that for all (α, γ, σ) ∈ Ω∗, the

nontrivial zeroes of the Evans function associated with the stability problem (3.1) are to the

left of, and bounded away from, the imaginary axis.

Proof. For d ≫ 1, the above analysis can be applied. Taking α = 9σ2, we obtain from

(4.24) RHS(λ
α
) =

√

1 + λ
α
as a leading order expression for the RHS. Taking σ = 1, solving

LHS(λ) =
√

1 + λ
α

numerically yields Re(λ) = −1.2 < 0 for these parameter values. Note
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Figure 9. The stabilizing (a) and destabilizing (b) Hopf bifurcation values αHopf as a function of d.
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Figure 10. The stabilizing (a) and destabilizing (b) Hopf frequencies ωHopf as a function of d.

that in this asymptotic approximation, the value of γ does not play a role. Therefore, for
fixed γ = γ∗, there is a d ≫ 1 such that there is an open neighborhood of (α, γ, σ) = (9, γ∗, 1)
where the statement of the theorem holds. As observed above, since this concerns only the
numerical evaluation of a meromorphic, coefficient-free expression, this result can be confirmed
rigorously by a winding number calculation.

For fixed values of the parameter d, accurate numerical simulations and rigorous numerical
winding number calculations similar to those used in the proof of the main stability theorem in
[6] can be used. For (α, γ, σ) = (12 , 2, 1), such numerical calculations show that for d between
3 and 21, there is a pair of complex conjugate eigenvalues with real part < −0.02, where the
real part decreases as d increases. Based on these numerical calculations, we believe Theorem
4.8 holds for all d > 3.

5. Numerical simulations. A Hopf bifurcation occurs when the eigenvalues cross the
imaginary axis; this happens once for d < 3 (see Figure 2(a)) and twice for d > 3 (see
Figure 2(b)). A plot of the bifurcation value αHopf as a function of d for both stabilizing and
destabilizing Hopf bifurcations is given in Figure 9 for γ = 2 and σ = 1. The Hopf frequency
ωHopf = Im λHopf for both Hopf bifurcations as a function of d is given in Figure 10; again,
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Figure 11. The tip of the U-pulse as a function of time for α = 0.827 (a) and α = 0.829 (b). Here, d = 2.

γ = 2 and σ = 1. As the destabilizing Hopf bifurcation occurs only for d > 3, a vertical
asymptote at d = 3 can be found at both Figures 9(b) and 10(b).

For large values of d, the functions seem to converge to the indicated horizontal asymp-
totes. Based on the asymptotic d ≫ 1 analysis of the previous subsection, the asymptote
limd→∞ αHopf = 9 of Figure 9(b) can be understood by looking at the asymptotic expansion
of the RHS for ν = 1 + δ; see (4.22). If α crosses the threshold α = 9σ2, the RHS blows up,
yielding unstable eigenvalues, in a manner equivalent to the situation described in Theorem
4.2. Since the RHS blows up for asymptotically small δ, the unstable regime lies asymptoti-
cally close to α = 9σ2, which explains the horizontal asymptote αHopf = 9 in Figure 9(b).

The super- or subcriticality of both stabilizing and destabilizing Hopf bifurcations has been
checked by direct numerical simulation of the constructed pulse. The pulse was simulated on
the domain x ∈ [−10 ε−1, 10 ε−1] with homogeneous Neumann boundary conditions. Note
that in all these direct numerical pulse simulations, the position of the pulse was seen to
remain completely fixed.

In Figure 11, the tip of the U -component of the simulated pulse is plotted as a function
of time for d = 2. Here, γ = 2, σ = 1, and ε = 0.02. For these parameter values, the Hopf
bifurcation occurs at αHopf = 0.83 +O(ε). Figure 11 shows that for these parameter values,
the Hopf bifurcation is subcritical. For d = 5, the equivalent stabilizing Hopf bifurcation
occurs at αHopf = 0.37 +O(ε) for the same values of the other parameters. As can be seen in
Figure 12, this Hopf bifurcation is subcritical as well.

The destabilizing Hopf bifurcation occurs for d = 5 at αHopf = 90.634 + O(ε). In this
simulation, ε = 0.002, while still γ = 2 and σ = 1. In Figure 13 it can be seen that upon
destabilization, the pulse tip initially exhibits typical “subcritical” growth behavior. However,
for longer times, a bounded temporally oscillating pulse is observed.

Near the other Hopf bifurcations, such “breathing” pulses can also be observed. For
d = 2 and stable values of α, i.e., for α within the region in which the pulse is stable (here,
α = 0.9 > αHopf), Figure 14 shows an oscillating pulse.

In Figures 15, 16, and 3, the oscillating behavior of the pulse near the destabilizing Hopf
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Figure 12. The tip of the U-pulse as a function of time for α = 0.352 (a) and α = 0.353 (b). Here, d = 5.
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Figure 13. The tip of the U-pulse as a function of time for α = 90.61 (a) and α = 90.69 (b) and (c).
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Figure 14. The tip of the U-pulse as a function of time for α = 0.9, d = 2. Figure (a) shows the entire
simulated time domain, while (b) zooms in on a part of the time domain, showing the regularity of the pulse
tip movement.
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Figure 15. The tip of the U-pulse as a function of time for α = 85, d = 5. Figure (a) shows the entire
simulated time domain, while (b) zooms in on a part of the time domain.

bifurcation for d = 5 is studied in more detail. For parameter values relatively far in the
stable regime (here, α = 85 < αHopf = 90.634+O(ε)), simulations reveal bounded temporally
periodic behavior with a slowly periodically modulated amplitude; see Figure 15. When α is
increased towards αHopf, the frequency of the modulation increases; see Figure 16 for the pulse
behavior when α = 90.5. For parameter values even closer to αHopf, the irregular behavior as
shown in Figure 3 is observed.

Acknowledgment. The authors would like to thank Nico Temme for his help concerning
associated Legendre functions.
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Figure 16. The tip of the U-pulse as a function of time for α = 90.5, d = 5. Figure (a) shows the entire
simulated time domain, while (b) zooms in on a part of the time domain.
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