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Abstract  –  The efficient and fast control of electric power
forms part of the key technologies of modern automated
production. It is performed using electronic power con-
verters. The converters transfer energy from a source to a
controlled process in a quantized fashion, using semicon-
ductor switches which are turned on and off at fast repeti-
tion rates. The algorithms which generate the switching
functions – pulsewidth modulation techniques – are man-
ifold. They range from simple averaging schemes to in-
volved methods of real-time optimization. This paper gives
an overview.

1.  INTRODUCTION

Many three-phase loads require a supply of variable volt-
age at variable frequency, including fast and high-efficien-
cy control by electronic means. Predominant applications
are in variable speed ac drives, where the rotor speed is
controlled through the supply frequency, and the machine
flux through the supply voltage.

The power requirements for these applications range from
fractions of kilowatts to several megawatts. It is preferred
in general to take the power from a dc source and convert it
to three-phase ac using power electronic dc-to-ac convert-
ers. The input dc voltage, mostly of constant magnitude, is
obtained from a public utility through rectification, or from
a storage battery in the case of an electric vehicle drive.

The conversion of dc power to three-phase ac power is
exclusively performed in the switched mode. Power semi-
conductor switches effectuate temporary connections at high
repetition rates between the two dc terminals and the three
phases of the ac drive motor. The actual power flow in each
motor phase is controlled by the on/off ratio, or duty-cycle,
of the respective switches. The desired sinusoidal wave-
form of the currents is achieved by varying the duty-cycles
sinusoidally with time, employing techniques of pulsewidth
modulation (PWM).

The basic principle of pulsewidth modulation is charac-
terized by the waveforms in Fig. 1. The voltage waveform
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Fig. 2: Definition of a current space vector; (a) cross section
of an induction motor, (b) stator windings and stator current
space vector in the complex plane

Fig. 1: Recorded three-phase PWM waveforms (suboscilla-
tion method); (a) voltage at one inverter terminal, (b) phase
voltage usα, (c) load current isα

at one inverter terminal, Fig. 1(a), exhibits the varying
duty-cycles of the power switches. The waveform is also
influenced by the switching in other phases, which creates
five distinct voltage levels, Fig. 1(b). Further explanation is
given in Section 2.3. The resulting current waveform Fig.
1(c) exhibits the fundamental content more clearly, which
is owed to the low-pass characteristics of the machine.

The operation in the switched mode ensures that the
efficiency of power conversion is high. The losses in the
switch are zero in the off-state, and relatively low during
the on-state. There are switching losses in addition which
occur during the transitions between the two states. The
switching losses increase with switching frequency.

As seen from the pulsewidth modulation process, the
switching frequency should be preferably high, so as to
attenuate the undesired side-effects of discontinuous power
flow at switching. The limitation of switching frequency
that exists due to the switching losses creates a conflicting
situation. The tradeoff which must be found here is strongly
influenced by the respective pulsewidth modulation tech-
nique.

Three-phase electronic power converters controlled by
pulsewidth modulation have a wide range of applications
for dc-to-ac power supplies and ac machine drives. Impor-
tant quantities to be considered with machine loads are the
two-dimensional distributions of current densities and flux
linkages in ac machine windings. These can be best ana-
lyzed using the space vector approach, to which a short
introduction will be given first. Performance criteria will be
then introduced to enable the evaluation and comparison of
different PWM techniques. The following sections are or-
ganized to treat open-loop and closed-loop PWM schemes.
Both categories are subdivided into nonoptimal and optimal
strategies.

2.  AN INTRODUCTION TO SPACE VECTORS

2.1  Definitions
Consider a symmetrical three-phase winding of an elec-

tric machine, Fig. 2(a), reduced to a two-pole arrangement
for simplicity. The three phase axes are defined by the unity
vectors, 1, a, and a2, where a = exp(2π/3). Neglecting space
harmonics, a sinusoidal current density distribution is es-
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tablished around the air-gap by the phase currents isa, isb,
and isc as shown in Fig. 2(b). The wave rotates at the
angular frequency of the phase currents. Like any sinusoi-
dal distribution in time and space, it can be represented by a
complex phasor As as shown in Fig. 2(a). It is preferred,
however, to describe the mmf wave by the equivalent cur-
rent phasor is, because this quantity is directly linked to the
three stator currents isa, isb, isc that can be directly measured
at the machine terminals:

i a as sa sb sc= + +( )2
3

2i i i (1)

The subscript s refers to the stator of the machine.
The complex phasor in (1), more frequently referred to in

the literature as a current space vector [1], has the same
direction in space as the magnetic flux density wave pro-
duced by the mmf distribution As.

A sinusoidal flux density wave can be also described by a
space vector. It is preferred, however, to choose the corre-
sponding distribution of the flux linkage with a particular
three-phase winding as the characterizing quantity. For ex-
ample, we write the flux linkage space vector of the stator
winding in Fig. 2 as

  ys s s= l i (2)

In the general case, when the machine develops nonzero
torque, both space vectors is of the stator current, and i r of
the rotor current are nonzero, yielding the stator flux link-
age vector as

  ys s s h r= +l li i (3)

where ls is the equivalent stator winding inductance and lh
the composite mutual inductance between the stator and
rotor windings. Furthermore,

i a ar ra rb rc= + +( )2
3

2i i i (4)

is the rotor current space vector, ira, i rb and i rc are the three
rotor currents. Note that flux linkage vectors like y

s also
represent sinusoidal distributions in space, which can be
seen from an inspection of (2) or (3).

The rotating stator flux linkage wave y
s generates in-

duced voltages in the stator windings which are described
by

  
us

s= d
dt
y

, (5)

where

u a as sa sb sc= + +( )2
3

2u u u (6)

is the space vector of the stator voltages, and usa, usb, usc are
the stator phase voltages.

The individual phase quantities associated to any space
vector are obtained as the projections of the space vector on
the respective phase axis. Given the space vector us, for
example, we obtain the phase voltages as
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Considering the case of three-phase dc-to-ac power sup-
plies, an LC-filter and the connected load replace the motor
at the inverter output terminals. Although not distributed in
space, such load circuit behaves exactly the same way as a
motor load. It is permitted and common practice therefore

to extend the space vector approach to the analysis of equiv-
alent lumped parameter circuits.

2.2  Normalization
Normalized quantities are used throughout this paper.

Space vectors are normalized with reference to the nominal
values of the connected ac machine. The respective base
quantities are

• the rated peak phase voltage2 Uph R,
• the rated peak phase current2 Iph R, and (8)
• the rated stator frequency ωsR.

Using the definition of the maximum modulation index in
section 4.1.1, the normalized dc bus voltage of a dc link
inverter becomes ud = π/2.

2.3  Switching state vectors
The space vector resulting from a symmetrical sinusoidal

voltage system usa, usb, usc of frequency ωs is

  us s sexp j= ( )u t. w , (9)

which can be shown by inserting the phase voltages (7) into
(6).

A three-phase machine being fed from a switched power
converter Fig. 3 receives the symmetrical rectangular three-
phase voltages shown in Fig. 4. The three phase potentials
Fig. 4(a) are constant over every sixth of the fundamental
period, assuming one of the two voltage levels, +Ud/2 or –
Ud/2, at a given time. The neutral point potential unp, Fig. 3,
of the load is either positive, when more than one upper
half-bridge switch is closed, Fig. 4(b); it is negative with
more than one lower half-bridge switch closed. The respec-
tive voltage levels shown in Fig. 4(b) hold for symmetrical
load impedances.

The waveform of the phase voltage ua = uL1 – unp is
displayed in the upper trace of Fig. 4(c). It forms a symmet-
rical, nonsinusoidal three-phase voltage system along with
the other phase voltages ub and uc. Since the waveform unp
has three times the frequency of uLi , i = 1, 2, 3, while its
amplitude equals exactly one third of the amplitudes of uLi ,
this waveform contains exactly all triplen of the harmonic
components of uLi . Because of ua = uL1 – unp there are no
triplen harmonics left in the phase voltages. This is also
true for the general case of three-phase symmetrical
pulsewidth modulated waveforms. As all triplen harmonics
form zero-sequence systems, they produce no currents in
the machine windings, provided there is no electrical con-
nection to the star-point of the load, i. e. unp in Fig. 3 must
not be shorted.

The example Fig. 4 demonstrates also that a change of

Fig. 3: Three-phase power converter; the switch pairs S1 –
S4 (and S2 – S5, and S3 – S6) form half-bridges; one, and
only one switch in a half bridge is closed at a time.
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any half-bridge potential invariably influences upon the
other two-phase voltages. It is therefore expedient for the
design of PWM strategies and for the analysis of PWM
waveforms to analyse the three-phase voltages as a whole,
instead of looking at the individual phase voltages separate-
ly. The space vector approach complies exactly with this
requirement.

Inserting the phase voltages Fig. 4(c) into (6) yields the
typical set of six active switching state vectors u1 ... u6
shown in Fig. 5. The switching state vectors describe the
inverter output voltages.

At operation with pulsewidth modulated waveforms, the
two zero vectors u0 and u7 are added to the pattern in Fig. 5.
The zero vectors are associated to those inverter states with
all upper half-bridge switches closed, or all lower, respec-
tively. The three machine terminals are then short-circuited,
and the voltage vector assumes zero magnitude.

Using (7), the three phase voltages of Fig. 4(c) can be
reconstructed from the switching state pattern Fig. 5.

3.  PERFORMANCE CRITERIA

Considering an ac machine drive, it is the leakage induct-
ances of the machine and the inertia of the mechanical
system which account for low pass filtering of the harmonic
components contained in the switched voltage waveforms.
Remaining distortions of the current waveforms, harmonic
losses in the power converter and the load, and oscillations
in the electromagnetic machine torque are due to the opera-
tion in the switched mode. They can be valued by perform-
ance criteria [2] ... [7]. These provide the means of compar-
ing the qualities of different PWM methods and support the
selection of a pulsewidth modulator for a particular appli-
cation.

3.1  Current harmonics
The harmonic currents primarily determine the copper

losses of the machine, which account for a major portion of
the machine losses. The rms harmonic current

I T i t i t dth rms T
( ) ( )= −[ ]∫1

1
2 (10)

does not only depend on the performance of the pulsewidth
modulator, but also on the internal impedance of the ma-
chine. This influence is eliminated when using the distor-
tion factor

d
I

I=
−

h rms

h rms six step
(11)

as a figure of merit. In this definition, the distortion current
Ihrms (10) of a given switching sequence is referred to the
distortion current Ih rms six-step of same ac load operated in the
six-step mode, i. e. with the unpulsed rectangular voltage
waveforms Fig. 4(c). The definition (11) values the ac-side
current distortion of a PWM method independently from the
properties of the load. We have d = 1 at six-step operation
by definition. Note that the distortion factor d of a pulsed
waveform can be much higher than that of a rectangular
wave, e. g. Fig. 19.

The harmonic content of a current space vector trajectory
is computed as

I T t t t t dth rms T
( ) ( ) ( ) ( )= −( ) ⋅ −( )∫1

1 1i i i i * (12)

from which d can be determined by (11). The asterisc in (12)
marks the complex conjugate.

The harmonic copper losses in the load circuit are pro-
portional to the square of the harmonic current: PLc ∝ d2,
where d2 is the loss factor.

3.2  Harmonic spectrum
The contributions of individual frequency components to

a nonsinusiodal current wave are expressed in a harmonic
current spectrum, which is a more detailed description than
the global distortion factor d. We obtain discrete current
spectra hi  (k 

.
 f1) in the case of synchronized PWM, where

the switching frequency fs = N 
.

 f1 is an integral multiple of
the fundamental frequency f1. N is the pulse number, or
gear ratio, and k is the order of the harmonic component.
Note that all harmonic spectra in this paper are normalized
as per the definition (11):

h k f
I k f
Ii

h rms

h rms six-step
( )

( )
.

.
1

1= . (13)

They describe the properties of a pulse modulation scheme
independently from the parameters of the connected load.

Nonsynchronized pulse sequences produce harmonic am-

Fig. 4: Switched three-phase waveforms; (a) voltage poten-
tials at the load terminals, (b) neutral point potential, (c)
phase voltages
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plitude density spectra hd(f) of the currents, which are con-
tinuous functions of frequency. They generally contain pe-
riodic as well as nonperiodic components and hence must
be displayed with reference to two different scale factors on
the ordinate axis, e. g. Fig. 35. While the normalized dis-
crete spectra do not have a physical dimension, the ampli-
tude density sprectra are measured in Hz-1/2. The normal-
ized harmonic current (11) is computed from the discrete
spectrum (13) as

d h k f=
≠

∑ i
k

( )2
1

1

. , (14)

and from the amplitude density spectrum as

d h f df
f f

=
≠

∞
∫ d ( )2

0 1,
. (15)

Another figure of merit for a given PWM scheme is the
product of the distortion factor and the switching frequency
of the inverter. This value can be used to compare different
PWM schemes operated at different switching frequencies
provided that the pulse number N > 15. The relation be-
comes nonlinear at lower values of N.

3.3  Maximum modulation index
The modulation index is the normalized fundamental volt-

age, defined as

m
u

u=
−
1

1 six step
(16)

where u1 is the fundamental voltage of the modulated switch-
ing sequence and u1 six-step = 2/π .ud the fundamental voltage
at six-step operation. We have 0 < m < 1, and hence unity
modulation index, by definition, can be attained only in the
six-step mode.

The maximum value mmax of the modulation index may
differ in a range of about 25% depending on the respective
pulsewidth modulation method. As the maximum power of
a PWM converter is proportional to the maximum voltage
at the ac side, the maximum modulation index mmax consti-
tutes an important utilization factor of the equipment.

3.4  Torque harmonics
The torque ripple produced by a given switching se-

quence in a connected ac machine can be expressed as

∆T T T T= −( )max av R
, (17)

where

Tmax = maximum air-gap torque,
Tav = average air-gap torque,
TR = rated machine torque.

Although torque harmonics are produced by the harmon-
ic currents, there is no stringent relationship between both
of them. Lower torque ripple can go along with higher
current harmonics, and vice versa.

3.5  Switching frequency and switching losses
The losses of power semiconductors subdivide into two

major portions: The on-state losses

P g u ion on L= ( )1 , , (18a)

and the dynamic losses

P f U igdyn s 0 L= ⋅ ( )2 , . (18b)

It is apparent from (18a) and (18b) that, once the power
level has been fixed by the dc supply voltage U0 and the
maximum load current iL max, the switching frequency fs is

an important design parameter. The harmonic distortion of
the ac-side currents reduces almost linearly with this fre-
quency. Yet the switching frequency cannot be deliberately
increased for the following reasons:

• The switching losses of semiconductor devices increase
proportional to the switching frequency.

• Semiconductor switches for higher power generally pro-
duce higher switching losses, and the switching frequen-
cy must be reduced accordingly. Megawatt switched power
converters using GTO’s are switched at only a few 100
hertz.

• The regulations regarding electromagnetic compatibility
(EMC) are stricter for power conversion equipment oper-
ating at switching frequencies higher than 9 kHz [8].

Another important aspect related to switching frequency
is the radiation of acoustic noise. The switched currents
produce fast changing electromagnetic fields which exert
mechanical Lorentz forces on current carrying conductors,
and also produce magnetostrictive mechanical deformations
in ferromagnetic materials. It is especially the magnetic
circuits of the ac loads that are subject to mechanical exci-
tation in the audible frequency range. Resonant amplifica-
tion may take place in the active stator iron, being a hollow
cylindrical elastic structure, or in the cooling fins on the
outer case of an electrical machine.

The dominating frequency components of acoustic radia-
tion are strongly related to the spectral distribution of the
harmonic currents and to the switching frequency of the
feeding power converter. The psophometric weighting of
the human ear makes switching frequencies below 500 Hz
and above 10 kHz less critical, while the maximum sensi-
tivity is around 1 - 2 kHz.

3.6  Dynamic performance
Usually a current control loop is designed around a

switched mode power converter, the response time of which
essentially determines the dynamic performance of the over-
all system. The dynamics are influenced by the switching
frequency and/or the PWM method used. Some schemes
require feedback signals that are free from current harmon-
ics. Filtering of feedback signals increases the response
time of the loop [10].

PWM methods for the most commonly used voltage-
source inverters impress either the voltages, or the currents
into the ac load circuit. The respective approach determines
the dynamic performance and, in addition, influences upon
the structure of the superimposed control system: The meth-
ods of the first category operate in an open-loop fashion,
Fig. 6(a). Closed-loop PWM schemes, in contrast, inject the
currents into the load and require different structures of the
control system, Fig. 6(b).

4.  OPEN-LOOP SCHEMES

Open-loop schemes refer to a reference space vector u*( t)
as an input signal, from which the switched three-phase
voltage waveforms are generated such that the time average
of the associated normalized fundamental space vector us1(t)
equals the time average of the reference vector. The general
open-loop structure is represented in Fig. 6(a).

4.1  Carrier based PWM
The most widely used methods of pulsewidth modulation

are carrier based. They have as a common characteristic
subcycles of constant time duration, a subcycle being de-
fined as the time duration T0 = 1/2 fs during which any of
the inverter half-bridges, as formed for instance by S1 and
S2 in Fig. 3, assumes two consecutive switching states of
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opposite voltage polarity. Operation at subcycles of con-
stant time duration is reflected in the harmonic spectrum by
two salient sidebands, centered around the carrier frequen-
cy fs, and additional frequency bands around integral multi-
ples of the carrier. An example is shown in Fig. 18.

There are various ways to implement carrier based PWM;
these which will be discussed next.

4.1.1  Suboscillation method
This method employs individual carrier modulators in

each of the three phases [10]. A signal flow diagram is
shown in Fig. 7. The reference signals ua*, ub*, uc* of the
phase voltages are sinusoidal in the steady-state, forming a
symmetrical three-phase system, Fig. 8. They are obtained

from the reference vector
u*, which is split into its
three phase components
ua*, ub*, uc* on the basis of
(7). Three comparators and
a triangular carrier signal
ucr, which is common to all
three phase signals, gener-
ate the logic signals u'a, u'b,
and u'c that control the half-
bridges of the power con-
verter.

Fig. 9 shows the modu-
lation process in detail, ex-
panded over a time interval
of two subcycles. T0 is the
subcycle duration. Note that
the three phase potentials
ua', ub', uc' are of equal mag-
nitude at the beginning and

at the end of each subcycle. The three line-to-line voltages
are then zero, and hence us results as the zero vector.

A closer inspection of Fig. 8 reveals that the suboscilla-
tion method does not fully utilize the available dc bus
voltage. The maximum value of the modulation index mmax 1
= π/4 = 0.785 is reached at a point where the amplitudes of
the reference signal and the carrier become equal, Fig. 8(b).
Computing the maximum line-to-line voltage amplitude in
this operating point yields ua*( t1) – ub*( t1) = 3  . ud/2 =
0.866 ud. This is less than what is obviously possible when
the two half-bridges that correspond to phases a and b are
switched to ua= ud/2 and ub= –ud/2, respectively. In this
case, the maximum line-to-line voltage amplitude would
equal ud.

Measured waveforms obtained with the suboscillation
method are displayed in Fig. 1. This oscillogram was taken
at 1 kHz switching frequency and m ≈ 0.75.

4.1.2  Modified suboscillation method
The deficiency of a limited modulation index, inherent to

the suboscillation method, is cured when distorted refer-
ence waveforms are used. Such waveforms must not con-
tain other components than zero-sequence systems in addi-
tion to the fundamental. The reference waveforms shown in
Fig. 10 exhibit this quality. They have a higher fundamental
content than sinewaves of the same peak value. As ex-
plained in Section 2.3, such distortions are not transferred
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to the load currents.
There is an infinity of possible additions to the funda-

mental waveform that constitute zero-sequence systems.
The waveform in Fig. 10(a) has a third harmonic content of
25% of the fundamental; the maximum modulation index is
increased here to mmax = 0.882 [11]. The addition of rectan-
gular waveforms of triple fundamental frequency leads to
reference signals as shown in Figs. 10(b) through 10(d);
mmax 2 = 3 π/6 = 0.907 is reached in these cases. This is
the maximum value of modulation index that can be ob-
tained with the technique of adding zero sequence compo-
nents to the reference signal [12], [13].

4.1.3  Sampling techniques
The suboscillation method is simple to implement in hard-

ware, using analogue integra-
tors and comparators for the
generation of the triangular car-
rier and the switching instants.
Analogue electronic compo-
nents are very fast, and inverter
switching frequencies up to sev-
eral tens of kilohertz are easily
obtained.

When digital signal process-
ing methods based on micro-
processors are preferred, the in-
tegrators are replaced by digital timers, and the digitized
reference signals are compared with the actual timer counts
at high repetition rates to obtain the required time resolu-
tion. Fig. 11 illustrates this process, which is referred to as
natural sampling [14].

To releave the microprocessor from the time consuming
task of comparing two time variable signals at a high repeti-
tion rate, the corresponding signal processing functions have
been implemented in on-chip hardware. Modern microcon-
trollers comprise of capture/compare units which generate
digital control signals for three-phase PWM when loaded
from the CPU with the corresponding timing data [15].

If the capture/compare function is not available in hard-
ware, other sampling
PWM methods can be
employed [16]. In the
case of symmetrical
regular sampling, Fig.
12(a), the reference
waveforms are sampled
at the very low repeti-
tion rate fs which is giv-
en by the switching fre-
quency. The sampling
interval 1/ fs = 2T0 ex-
tends over two subcy-
cles. tsn are the sam-
pling instants. The tri-
angular carrier shown
as a dotted line in Fig.
12(a) is not really ex-
istent as a signal. The
time intervals T1 and T2,
which define the
switching instants, are
simply computed in real
time from the respective
sampled value u*( ts)
using the geometrical
relationships

T T u t1 s( )= +( )1
2 10

. * (19a)

T T T u t1 s( )= + −( )0 0
1
2 1. * (19b)

which can be established with reference to the dotted trian-
gular line.

Another method, referred to as asymmetric regular sam-
pling [18], operates at double sampling frequency 2fs. Fig.
12(b) shows that samples are taken once in every subcycle.
This improves the dynamic response and produces some-
what less harmonic distortion of the load currents.

4.1.4  Space vector modulation
The space vector modulation technique differs from the

aforementioned methods in that there are not separate mod-
ulators used for each of the three phases. Instead, the com-
plex reference voltage vector is processed as a whole [18],
[19]. Fig. 13(a) shows the principle. The reference vector
u* is sampled at the fixed clock frequency 2fs. The sampled
value u*( ts) is then used to solve the equations

2 f t t ts a a b b s( ). *u u u+( ) = (20a)

t f t t
s

0 a b= − −1
2 (20b)

where ua and ub are the two switching state vectors adjacent
in space to the reference vector u*, Fig. 13(b). The solutions
of (20) are the respective on-durations ta, tb, and t0 of the
switching state vectors ua, ub, u0:

t f u t1
s

s( )= 



−1

2
3 1

3
. * cos sinπ α α (21a)

t f u t2
s

s( )= 1
2

2 3. * sinπ α (21b)

t f t t0
s

1 2= − −1
2 (21c)

The angle α in these equations is the phase angle of the
reference vector.

This technique in effect averages the three switching
state vectors over a subcycle interval T0 = 1/2fs to equal the
reference vector u*( ts) as sampled at the beginning of the
subcycle. It is assumed in Fig. 13(b) that the reference
vector is located in the first 60°-sector of the complex
plane. The adjacent switching state vectors are then ua = u1
and ub = u2, Fig. 5. As the reference vector enters the next
sector, ua = u2 and ub = u3, and so on. When programming a
microprocessor, the reference vector is first rotated back by
n . 60° until it resides in the first sector, and then (21) is
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Fig. 11: Natural sampling

Fig. 12: Sampling techniques; (a)
symmetrical regular sampling, (b)
asymmetric regular sampling
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evaluated. Finally, the switching states to replace the provi-
sional vectors ua and ub are identified by rotating ua and ub
forward by n . 60° [20].

Having computed the on-durations of the three switching
state vectors that form one subcycle, an adequate sequence
in time of these vectors must be determined next. Associat-
ed to each switching state vector in Fig. 5 are the switching
polarities of the three half-bridges, given in brackets. The
zero vector is redundant. It can b either formed as u0 (-  -  -
), or u7 (+ + +). u0 is preferred when the previous switching
state vector is u1, u3, or u5; u7 will be chosen following u2,
u4, or u6. This ensures that only one half-bridge in Fig. 3
needs to commutate at a transition between an active switch-
ing state vector and the zero vector. Hence the minimum
number of commutations is obtained by the switching se-
quence

u u u u0 0 1 1 2 2 7 0t t t t2 2.. .. .. (22a)

in any first, or generally in all odd subcycles, and

u u u u7 0 2 2 1 1 0 0t t t t2 2.. .. .. (22b)

for the next, or all even subcycles. The notation in (22)
associates to each switching state vector its on-duration in
brackets.

4.1.5  Modified space vector modulation
The modified space vector modulation [21, 22, 23] uses

the switching sequences

u u u0 0 1 1 2 2t t t3 2 3 3.. .. , (23a)

u u u2 2 1 1 0 0t t t3 2 3 3.. .. , (23b)

or a combination of (22) and (23). Note that a subcycle of
the sequences (23) consists of two switching states, since
the last state in (23(a)) is the same as the first state in
(23(b)). Similarly, a subcycle of the sequences (22) com-
prises three switching states. The on-durations of the switch-
ing state vectors in (23) are consequently reduced to 2/3 of
those in (22) in order to maintain the switching frequency fs
at a given value.

The choice between the two switching sequences (22)
and (23) should depend on the value of the reference vector.
The decision is based on the analysis of the resulting har-
monic current. Considering the equivalent circuit Fig. 14,
the differential equation

d
dt l
i

u us
s i= −( )1

σ
(24)

can be used to compute the trajectory in space of the current
space vector is. us is the actual switching state vector. If the
trajectories dis(us)/dt are approximated as linear, the closed
patterns of Fig. 15 will result. The patterns are shown for the
switching state sequences (22) and (23), and two different
magnitude values, u1*  and u2*, of the reference vector are
considered. The harmonic content of the trajectories is de-
termined using (12). The result can be confirmed just by a
visual inspection of the patterns in Fig. 15: the harmonic
content is lower at high modulation index with the modified
switching sequence (23); it is lower at low modulation index
when the sequence (22) is applied.
Fig. 17 shows the corresponding characteristics of the loss
factor d2: curve  svm corresponds to the sequence (22), and
curve (c) to sequence (23). The maximum modulation index
extends in either case up to mmax2 = 0.907.

4.1.6  Synchronized carrier modulation
The aforementioned methods operate at constant carrier

frequency, while the fundamental frequency is permitted to
vary. The switching sequence is then nonperiodic in princi-
ple, and the corresponding Fourier spectra are continuous.
They contain also frequencies lower than the lowest carrier
sideband, Fig. 18. These subharmonic components are un-

desired as they produce low-fre-
quency torque harmonics. A syn-
chronization between the carrier
frequency and the controling fun-
damental avoids these drawbacks
which are especially prominent
if the frequency ratio, or pulse
number

                N
f
f= s

1
(25)

is low. In synchronized PWM,
the pulse number N assumes only
integral values [24].

When sampling techniques are
employed for synchronized car-
rier modulation, an advantage can
be drawn from the fact that the
sampling instants tsn = n /(f1 

.
 N),

n = 1 ... N in a fundamental peri-

Fig. 14: Induction motor, equivalent circuit
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Fig. 15: Linearized trajectories of the harmonic current for two voltage references u1*
and u2*: and (a) suboscillation method, (b) space vector modulation, (c) modified
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od are a priori known. The reference signal is u*( t) = m/
mmax

.sin 2π f1t, and the sampled values u*( ts) in Fig. 16 form
a discretized sine function that can be stored in the proces-
sor memory. Based on these values, the switching instants
are computed on-line using (19).

4.1.7  Performance of carrier based PWM
The loss factor d2 of suboscillation PWM depends on the

zero-sequence components added to the reference signal. A
comparison is made in Fig. 17 at 2 kHz switching frequen-
cy. Letters (a) through (d) refer to the respective reference

waveforms in Fig. 10.
The space vector modulation exhibits a better loss factor

characteristic at m > 0.4 as the suboscillation method with
sinusoidal reference waveforms. The reason becomes obvi-
ous when comparing the harmonic trajectories in Fig. 15.
The zero vector appears twice during two subsequent sub-
cycles, and there is a shorter and a subsequent larger por-
tion of it in a complete harmonic pattern of the suboscilla-
tion method. Fig. 9 shows how the two different on-dura-
tions of the zero vector are generated. Against that, the on-
durations of two subsequent zero vectors Fig. 15(b) are
basically equal in the case of space vector modulation. The
contours of the harmonic pattern come closer to the origin
in this case, which reduces the harmonic content.

The modified space vector modulation, curve (d) in Fig.
17, performs better at higher modulation index, and worse
at m < 0.62.

A typical harmonic spectrum produced by the space vec-
tor modulation is shown in Fig. 18.

The loss factor curves of synchronized carrier PWM are
shown in Fig. 19 for the suboscillation technique and the
space vector modulation. The latter appears superior at low
pulse numbers, the difference becoming less significant as
N increases. The curves exhibit no differences at lower
modulation index. Operating in this range is of little practi-
cal use for constant v/f1 loads where higher values of N are
permitted and, above all, d2 decreases if m is reduced (Fig.
17).

The performance of a pulsewidth modulator based on
sampling techniques is slightly inferior than that of the
suboscillation method, but only at low pulse numbers.

Because of the synchronism between f1 and fs, the pulse
number must necessarily change as the modulation index
varies over a broader range. Such changes introduce dis-
continuities to the modulation process. They generally orig-
inate current transients, especially when the pulse number
is low [25]. This effect is discussed in Section 5.2.3.

4.2  Carrierless PWM
The typical harmonic spectrum of carrier based pulsewidth

modulation exhibits prominent harmonic amplitudes around
the carrier frequency and its harmonics, Fig. 18. Increased
acoustic noise is generated by the machine at these frequen-
cies through the effects of magnetostriction. The vibrations
can be amplified by mechanical resonances. To reduce the
mechanical excitation at particular frequencies it may be
preferable to have the harmonic energy distributed over a
larger frequency range instead of being concentrated around
the carrier frequency.

This concept is realized by varying the carrier frequency
in a randomly manner. Applying this to the suboscillation
technique, the slopes of the triangular carrier signal must be
maintained linear in order to conserve the linear input-
output relationship of the modulator. Fig. 20 shows how a
random frequency carrier signal can be generated. Whenev-
er the carrier signal reaches one of its peak values, its slope
is reversed by a hysteresis element, and a sample is taken

m

d2
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0.2 0.4 0.6 0.8 10
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0.01

sub
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d)

c)

b)
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osm

Fig. 17: Performance of carrier modulation at fs = 2 kHz; for
(a) through (d) refer to Fig. 9; sub: suboscillation method,
svm: space vector modulation, osm: optimal subcycle meth-
od
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from a random signal generator which imposes an addition-
al small variation on the slope. This varies the durations of
the subcycles randomly [26]. The average switching fre-
quency is maintained constant such that the power devices
are not exposed to changes in temperature.

The optimal subcycle method (Section 6.4.3) classifies
also as carrierless. Another approach to carrierless PWM is
explained in Fig. 21; it is based on the space vector modula-
tion principle. Instead of operating at constant sampling
frequency 2fs as in Fig. 13(a), samples of the reference
vector are taken whenever the duration tact of the switching
state vector uact terminates. tact is determined from the solu-
tion of

t t f t t f tact act 1 1
s

act 1 2
s

( )u u u u+ + − −



 =1

2
1

2
. *

, (26)

where u*( t) is the reference vector. This quantity is different
from its time discretized value u*( ts) used in 12(a). As u*( t)
is a continuously time-variable signal, the on-durations t1,
t2, and t0 are different from the values (20), which introduc-
es the desired variations of subcycle lengths. Note that t1 is
another solution of (26), which is disregarded. The switch-
ing state vectors of a subcycle are shown in Fig. 21(b). Once
the on-time tact of uact has elapsed, ua is chosen as uact for the
next switching interval, ub becomes ua, and the cyclic proc-

ess starts again [27].
Fig. 21(c) gives an example of measured subcycle dura-

tions in a fundamental period. The comparison of the har-
monic spectra Fig. 21(d) and Fig. 18 demonstrates the ab-
sence of pronounced spectral components in the harmonic
current.
Carrierless PWM equalizes the spectral distribution of the
harmonic energy. The energy level is not reduced. To lower
the audible excitation of mechanical resonances is a promis-
ing aspect. It remains difficult to decide, though, wheather a
clear, single tone is better tolerable in its annoying effect
than the radiation of white noise.

4.3  Overmodulation
It is apparent from the averaging approach of the space

vector modulation technique that the on-duration t0 of the
zero vector u0 (or u7) decreases as the modulation index m
increases. t0 = 0 is first reached at m = mmax 2, which means
that the circular path of the reference vector u* touches the
outer hexagon that is opened up by the switching state
vectors Fig. 22(a). The controllable range of linear modula-
tion methods terminates at this point.

An additional singular operating point exists in the six-
step mode. It is characterized by the switching sequence u1
- u2 - u3 - ... - u6 and the highest possible fundamental output
voltage corresponding to m = 1.

Control in the intermediate range mmax 2 < m  < 1 can be
achieved by overmodulation [28]. It is expedient to consid-
er a sequence of output voltage vectors uk, averaged over a
subcycle to become a single quantity uav, as the characteris-
tic variable. Overmodulation techniques subdivide into two
different modes. In mode I, the trajectory of the average
voltage vector uav follows a circle of radius m > mmax 2 as
long as the circle arc is located within the hexagon; uav

six-step mode
m = 1

α
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tracks the hexagon sides in the remaining portions (Fig.
22(b)). Equations (21) are used to derive the switching
durations while uav is on the arc. On the hexagon sides, the
durations are t0 = 0 and

t Ta = −
+0

3
3

cos sin

cos sin

α α

α α
, (27a)

t T tb a= −0 . (27b)

Overmodulation mode II is reached at m > mmax 3 = 0.952
when the length of the arcs reduces to zero and the trajecto-
ry of uav becomes purely hexagonal. In this mode, the
velocity of the average voltage vector is controlled along its
linear trajectory by varying the duty cycle of the two switch-
ing state vectors adjacent to uav. As m increases, the veloci-
ty becomes gradually higher in the center portion of the
hexagon side, and lower near the corners. Overmodulation
mode II converges smoothly into six-step operation when
the velocity on the edges becomes infinite, the velocity at
the corners zero.

In mode II a sub-
cycle is made up by
only two switching
state vectors. These
are the two vectors
that define the hexa-
gon side on which uav
is traveling. Since the
switching frequency
is normally main-
tained at constant
value, the subcycle
duration T0  must re-
duce due to the re-
duced number of
switching state vec-
tors. This explaines
why the distortion
factor reduces at the beginning of the overmodulation range
(Fig. 23).

The current waveforms Fig. 24 demonstrate that the mod-
ulation index is increased beyond the limit existing at linear
modulation by the addition of harmonic components to the
average voltage uav. The added harmonics do not form
zero-sequence components as those discussed in Section
4.1.2. Hence they are fully reflected in the current wave-
forms, which classifies overmodulation as a nonlinear tech-
nique.

4.4  Optimized Open-loop PWM
PWM inverters of higher power rating are operated at

very low switching frequency to reduce the switching loss-
es. Values of a few 100 Hertz are customary in the mega-
watt range. If the choice is a open-loop technique, only
synchronized pulse schemes should be employed here in
order to avoid the generation of excessive subharmonic
components. The same applies for drive systems operating
at high fundamental frequency while the switching frequen-
cy is in the lower kilohertz range. The pulse number (25) is
low in both cases. There are only a few switching instants tk
per fundamental period, and small variations of the respec-
tive switching angles αk =2π f1 

.
 tk have considerable influ-

ence on the harmonic distortion of the machine currents.
It is advantageous in this situation to determine the finite

number of switching angles per fundamental period by op-
timization procedures. Necessarily the fundamental frequen-
cy must be considered constant for the purpose of defining
the optimization problem. A solution can be then obtained

Fig. 24: Current waveforms at overmodulation; (a) space
vector modulation at mmax 2, (b) transition between range I
and range II, (c) overmodulation range II, (d) operation
close to the six-step mode

Fig. 23: Loss factor d2 at over-
modulation (different d2 scales)
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off-line. The precalculated optimal switching patterns are
stored in the drive control system to be retrieved during
operation in real-time [29].

The application of this method is restricted to quasi steady-
state operating conditions. Operation in the transient mode
produces waveform distortions worse than with nonoptimal
methods (Section 5.2.3).

The best optimization results are achieved with switch-
ing sequences having odd pulse numbers and quarter-wave
symmetry. Off-line schemes can be classified with respect
to the optimization objective [30].

4.4.1  Harmonic elimination
This technique aims at the elimination of a well defined

number n1 = (N – 1)/2 of lower order harmonics from the
discrete Fourier spectrum. It eliminates all torque harmon-
ics having 6 times the fundamental frequency at N = 5, or 6
and 12 times the fundamental frequency at N = 7, and so on
[31]. The method can be applied when specific harmonic
frequencies in the machine torque must be avoided in order
to prevent resonant excitation of the driven mechanical
system (motor shaft, couplings, gears, load). The approach
is suboptimal as regards other performance criteria.

4.4.2  Objective functions
An accepted approach is the minimization of the loss

factor d2 [32], where d is defined by (11) and (14). Alterna-
tively, the highest peak value of the phase current can be
considered a quantity to be minimized at very low pulse
numbers [33]. The maximum efficiency of the inverter/
machine system is another optimization objective [34].

The objective function that defines a particular optimiza-
tion problem tends to exhibit a very large number of local
minimums. This makes the numerical solution extremely
time consuming, even on today’s modern computers. A set
of switching angles which minimize the harmonic current
(d → min) is shown in Fig. 25.

Fig. 26 compares the performance of a d → min scheme
at 300 Hz switching frequency with the suboscillation meth-
od and the space vector modulation method.
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Fig. 27: Optimal subcycle PWM; (a) signal flow diagram,
(b) subcycle duration versus fundamental phase angle
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4.4.3  Optimal Subcycle Method
This method considers the durations of switching subcy-

cles as optimization variables, a subcycle being the time
sequence of three consecutive switching state vectors. The
sequence is arranged such that the instantaneous distortion
current equals zero at the beginning and at the end of the
subcycle. This enables the composition of the switched
waveforms from a precalculated set of optimal subcycles in
any desired sequence without causing undesired current
transients under dynamic operating conditions. The approach
eliminates a basic deficiency of the optimal pulsewidth
modulation techniques that are based on precalculated
switching angles [35].

A signal flow diagram of an optimal subcycle modulator

is shown in Fig. 27(a). Samples of the reference vector u*
are taken at t = ts, whenever the previous subcycle termi-
nates. The time duration Ts(u*) of the next subcycle is then
read from a table which contains off-line optimized data as
displayed in Fig. 27(b). The curves show that the subcycles
enlarge as the reference vector comes closer to one of the
active switching state vectors, both in magnitude as in phase
angle. This implies that the optimization is only worthwhile
in the upper modulation range.

The modulation process itself is based on the space vec-
tor approach, taking into account that the subcycle length is
variable. Hence Ts replaces T0 = 1/2fs in (21). A predicted
value u*( ts+ 1/2Ts(u*( ts)) is used to determine the on-times.
The prediction assumes that the fundamental frequency does
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Fig. 26: Loss factor d2 of synchronous optimal PWM, curve
(a); for comparison at fs = 300 Hz: (b) space vector modula-
tion, (c) suboscillation method
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not change during a subcycle. It eliminates the perturba-
tions of the fundamental phase angle that would result from
sampling at variable time intervals.

The performance of the optimal subcycle method is com-
pared with the space vector modulation technique in Fig.
28. The Fourier spectrum lacks dominant carrier frequen-
cies, which reduces the radiation of acoustic noise from
connected loads.

4.5  Switching conditions
It was assumed until now that the inverter switches be-

have ideally. This is not true for almost all types of semi-
conductor switches. The devices react delayed to their con-
trol signals at turn-on and turn-off. The delay times depend
on the type of semiconductor, on its current and voltage
rating, on the controling waveforms at the gate electrode,
on the device temperature, and on the actual current to be
switched.

4.5.1  Minimum duration of switching states
In order to avoid unnecessary switching losses of the

devices, allowance must be made by the control logic for
minimum time durations in the on-state and the off-state,
respectively. An additional time margin must be included
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so as to allow the snubber circuits to energize or deener-
gize. The resulting minimum on-duration of a switching
state vector is of the order 1 - 100 µs. If the commanded
value in an open-loop modulator is less than the required
minimum, the respective switching state must be either
extended in time or skipped (pulse dropping [36]). This
causes additional current waveform distortions, and also
constitutes a limitation of the maximum modulation index.
The overmodulation techniques described in Section 4.3
avoid such limitations.

4.5.2  Dead-time effect
Minority-carrier devices in particular have their turn-off

delayed owing to the storage effect. The storage time Tst
varies with the current and the device temperature. To avoid
short-circuits of the inverter half-bridges, a lock-out time
Td must be introduced by the inverter control. The lock-out
time counts from the time instant at which one semiconduc-
tor switch in a half-bridge turns off and terminates when the
opposite switch is turned on. The lock-out time Td is deter-
mined as the maximum value of storage time Tst plus an
additional safety time interval.

We have now two different situations, displayed in Fig.
29(a) for positive load current in a bridge leg. When the
modulator output signal k goes high, the base drive signal
k1 of T1 gets delayed by Td, and so does the reversal of the
phase voltage uph. If the modulator output signal k goes
low, the base drive signal k1 is immediately made zero, but
the actual turn-off of T1 is delayed by the device storage
time Tst < Td. Consequently, the on-time of the upper bridge
arm does not last as long as commanded by the controling
signal k. It is decreased by the time difference Td  – Tst,
[37].

A similar effect occurs at negative current polarity. Fig.
29(b) shows that the on-time of the upper bridge arm is now
increased by Td – Tst. Hence, the actual duty cycle of the
half-bridge is always different from that of the controlling
signal k. It is either increased or decreased, depending on
the load current polarity. The effect is described by

u u u u sig iav
d st

s
s;= − = −

* ∆∆ ∆∆ T T
T , (28)

where uav is the inverter output voltage vector averaged over
a subcycle, and ∆∆∆∆∆u is a normalized error vector attributed to
the switching delay of the inverter. The error magnitude ∆∆∆∆∆u
is proportional to the actual safety time margin Td – Tst; its

direction changes in discrete steps, depending on the re-
spective polarities of the three phase currents. This is ex-
pressed in (28) by a polarity vector of constant magnitude

sig i i a i a is sa sb
2

sc( ) + ( ) + ( )= [ ]2
3 sign sign sign. . , (29)

where a = exp(j2π/3) and is is the current vector. The
notation sig(is) was chosen to indicate that this complex
nonlinear function exhibits properties of a sign function.
The graph sig(is) is shown in Fig. 30(a) for all possible
values of the current vector is. The three phase currents are
denoted as ias, ibs, and ics.

The dead-time effect described by (28) and (29) produces
a nonlinear distortion of the average voltage vector trajec-
tory uav. Fig. 30(b) shows an example. The distortion does
not depend on the magnitude u1 of the fundamental voltage
and hence its relative influence is very strong in the lower
speed range where u1 is small. Since the fundamental fre-
quency is low in this range, the smoothing action of the
load circuit inductance has little effect on the current wave-
forms, and the sudden voltage changes become clearly visi-
ble, Fig. 31(a). The machine torque is influenced as well,
exhibiting dips in magnitude at six times the fundamental
frequency in the steady-state. Electromechanical stability
problems may result if this frequency is sufficiently low.
Such case is illustrated in Fig. 32, showing one phase cur-
rent and the speed signal in permanent instability.

4.5.3  Dead-time compensation
If the pulsewidth modulator and the inverter form part of

a superimposed high-bandwidth current control loop, the
current waveform distortions caused by the dead-time ef-
fect are compensated to a certain extent. This may elimi-

Ud

T1

T2

D1

D2

k

0 0

Ud

T1

T2

D1

D2

a) b)

phuphu

Td

T st

k1
k2

k

k1
k2

Td

T st

Td Td

T 1off

T 1on

T 1off

T 1on

Fig. 29: Inverter switching delay; (a) positive load cur-
rent, (b) negative load current

i(t)

t

i(t)

t

a) b)

40 A 40 A

Fig. 31: Dead-time effect; (a) measured current trajectory
with sixth harmonic and reduced fundamental, (b) as in (a),
with dead-time compensation

Fig. 30: Dead-time effect; (a) location of the polarity vec-
tor sig(i), (b) trajectory of the distorted average voltage uav

0

0>

ia

Re 

 jIm 

avu

icib

0<

0>0<
0<

0>

a)

b)

 jIm 

*u

∆u sig(i~ s)

is
sig(is)



- 13 -

nate the need for a separate dead-time compensator. A com-
pensator is required when fast current control is not availa-
ble, or when the machine torque must be very smooth.
Dead-time compensators can be implemented in hardware
or in software.

The hardware compensator Fig. 33(a) operates by closed-
loop control [38]. Identical circuits are provided for each
bridge leg. Each compensator forces a constant time delay
between the logic output signal k of the pulse modulator
and the actual switching instant. To achieve this, the instant
at which the phase voltage changes is measured at the
inverter output. A logic signal sign(uph) is obtained that is
fed back to control an up-down counter, which in turn
controls the bridge: A positive count controls a negative
phase voltage, and vice versa.

Fig. 33(b) shows the signals at positive load current. The
half-bridge output is negative at the beginning, and sign(uph)
= 0. The counter holds the measured storage time Tst of the
previous commutation. It starts downcounting at fixed clock
rate when the modulator output k turns high. The inverter
control logic receives the on-signal k after Tst, and then
inserts the lockout time Td before k1 turns the bridge on.
The total time delay of the turn-on process amounts to Td +
Tst, and an identical delay is provided for the turn-off proc-
ess. The switching sequence gets delayed in time, but its
duty-cycle is conserved.

When Tst changes following a change of the current po-
larity, the initial count of Tst is wrongly set, and the next
commutation gets displaced. Thereafter, the duty-cycle is

again maintained as the counter starts with a revised value
of Tst.

Software compensators are mostly designed in the feed-
forward mode. This eliminates the need for potential-free
measurement of the inverter output voltages. Depending on
the sign of the respective phase current, a fixed delay time
Tst0 is either added or not to the control signal of the half-
bridge. As the actual storage delay Tst is not known, a
complete compensation of the dead-time effect may not be
achieved.

The changes of the error voltage vector ∆∆∆∆∆u act as sudden
disturbances on the current control loop. They are compen-
sated only at the next switching of the phase leg. The
remaining transient error is mostly tolerable in induction
motor drive systems; synchronous machines having sinu-
soidal back-emf behave more sensitively to these effects as
they tend to operate partly in the discontinuous current
mode at light loads. The reason for this adverse effect is the
absence of a magnetizing current component in the stator
currents. Such machines require more elaborate switching
delay compensation schemes when applied to high-perform-
ance motion control systems. Alternatively, a d-axis current
component can be injected into the machine to shorten the
discontinuous current time intervals at light loads [39].

5.  CLOSED-LOOP PWM CONTROL

Closed-loop PWM schemes generate the switching se-
quences inherently in a closed control loop, Fig. 6(b). The
feedback loop is established either for the stator current
vector or for the stator flux vector. The control is generally
fast enough to compensate the nonlinear effects of pulse
dropping and variable switching delay.

5.1  Nonoptimal methods
5.1.1  Hysteresis current control

The signal flow diagram in Fig. 34(a) shows three hyster-
esis controllers, one for each phase. Each controller deter-
mines the switching state of one inverter leg such that the
error of the corresponding phase current is maintained within
the hysteresis bandwidth +∆i. The control method is simple
to implement, and its dynamic performance is excellent.
There are some inherent drawbacks, though [40]:

• There is no intercommunication between the individual
hysteresis controllers of the three phases and hence no
strategy to generate zero voltage vectors. This increases
the switching frequency at lower modulation index.
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• There is a tendency at lower speed to lock into limit-
cycles of high-frequency switching which comprise only
nonzero voltage vectors (Fig. 34(b)).

• The current error is not strictly limited. The signal will
leave the hysteresis band whenever the zero vector is
turned on while the back-emf vector has a component that
opposes the previous active switching state vector. The
maximum overshoot is 2∆i (Fig. 34(b)).

• The modulation process generates subharmonic compo-
nents.

The amplitude density spectrum hd(f), shown in the Fig.
35, includes also discrete components hi (k.f1) at subhar-
monic frequencies; it is almost independent of the modula-
tion index. The switching frequency of a hysteresis current
controller is strongly dependent on the modulation index,
having a similar tendency as curve (a) in Fig. 40.

This effect can be explained with reference to Fig. 15. It
is illustrated there that the current distortions reduce when
the reference vector u* reaches proximity to one of the
seven switching state vectors. u* is in permanent proximity
to the zero vector at low modulation index, and in tempo-
rary proximity to an active switching state vector at high
modulation index. Consequently, the constant harmonic cur-
rent amplitude of a hysteresis current controller lets the
switching frequency drop to near-zero at m ≈ 0, and towards
another minimum value at m → mmax. This results in a
behavior as basically demonstrated in the graph Fig. 40,
showing that the switching capability of the inverter is not
sufficiently utilized. The very low switching frequency in
the lower modulation range favours the generation of sub-
harmonics.

Hysteresis controllers are preferred for operation at high-
er switching frequency to compensate for their inferior qual-

ity of modulation. The switching losses restrict the applica-
tion to lower power levels. Improvements have aimed at
eliminating of the basic deficiencies of this attractive mod-
ulation technique. The current overshoot and limit cycles
can be done away with at the expense of additional compa-
rators and logic memory [41]. In an alternative approach,
the hystesesis controllers process current error signals that
are transformed to a rotating refrerence frame [42]. Opera-
tion at constant switching frequency can be achieved by
adapting the hysteresis bandwidth. The width must be ad-
justed basically to the inverse function of Fig. 40(a), which
implies further circuit complexity [43], [44].

5.1.2  Suboscillation current control
A carrier-based modulation scheme as part of a current

control loop eliminates the basic shortcomings of the hys-
teresis controller. Fig. 36 shows that a proportional-inter-
gral (PI type) controller is used to derive the reference
voltage u* for the pulsewidth modulator from the current
error. The back-emf of the machine acts as a disturbance in
the current control loop. This voltage is free from harmon-
ics and discontinuities in amplitude and phase angle. It is
therefore possible to compensate the influence of the back-
emf through the I-channel of the PI controller. However, a
steady-state tracking error will persist [45].

The tracking error is kept low by choosing a high gain for
the PI-controller. The gain is limited, on the other hand, as
it amplifies the harmonic currents which must not impair
the proper operation of the pulsewidth modulator. This is
ensured if the slope of the current error signal is always less
than the slope of the triangular carrier signal.

The scheme cannot be simply looked at as a pulsewidth
modulator having a superimposed current control loop. This
becomes obvious when comparing its harmonic spectrum
Fig. 37(a) with that of a space vector modulator, Fig. 18.
The difference is explained by Fig. 37(b), which shows that
the current distortions exert an influence on the switching

Fig. 35: Hysteresis current control; measured harmonic
spectrum
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instants. This entails the advantage of a fast current re-
sponse, provided that the modulator can react on instanta-
neous changes of its reference signal u*. Hence, an ana-
logue circuit implementation of the suboscillation method
is the adequate solution.

When the reference signal amplitude is driven beyond
the carrier amplitude, the pulsewidth modulation is periodi-
cally interrupted and pulse dropping occurs. The  beneficial
effect is that the fundamental output voltage increases be-
yond the limit of proportional control; as compared with
overmodulation techniques (Section 4.3), the harmonic dis-
tortion is higher.

5.1.3  Space vector current control
The nonzero current error in the steady-state, inherent to

the previous scheme, may be undesired in a high-perform-
ance vector controlled drive. The error can be eliminated by
using the back-emf voltage ui and the leakage voltage
σ lsdis/dt of the machine as compensating feedforward sig-
nals (Fig. 38). The estimation is based on a machine model.
The function of the current controller is then basically re-
duced to correct minor errors that originate from a mis-
match of the model parameters or the model structure. The
dynamic performance is improved by feedforward control
based on the derivative of the current reference.

A space vector modulator is preferred in this scheme.
Since its reference signal u* is periodically sampled, Fig.
38, this signal must be free from harmonic components
which may be introduced by the current feedback signal.
These harmonics are eliminated by sampling the measured
current signal in synchronism with the space vector modu-
lator.

Figs. 15(b) and 15(c) show that the vector trajectory of
the harmonic current passes through zero while the zero
vector is on. The zero crossing occurs in the center of the
zero time interval. The respective switching sequences (22)
and (23) begin with one half of the zero vector time, such
that each subcycle starts at zero harmonic current. The
sampled current feedback signal is equals exactly the fun-
damental current is1 at this time instant. The instant is prede-
termined by the modulator. The method requires high-band-
width A/D conversion. Furthermore, the pulsewidth modu-
lator must operate in synchronism with the digital algo-
rithm computing the current controllers [19].

Note that the suboscillation method cannot provide the
time instant of zero harmonic current; it is obvious from the
harmonic patterns Fig. 15(b) that this time instant depends
on the respective operating point and cannot be determined
by a simple algorithm.
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5.1.4  Look-up Table Methods
In a closed-loop control scheme for a suitable space vec-

tor signal (stator current [46] or stator flux vector [47],
[48]), the error is also a space vector quantity, for instance
∆∆∆∆∆ i(t) = i*(t) – i(t). Limiting the magnitude |∆∆∆∆∆ i | of this error
vector, or the respective magnitudes of suitable error com-
ponents, either ∆ia and ∆iβ, or ∆y

s and ∆arg(ys), by predeter-
mined boundary values is a means to terminate an actual
switching state at time ts. The next switching state vector is
then read from a look-up table. The table is adressed by the
error vector and other state variables, like the back-emf
vector and/or the actual switching state vector (Fig. 39).

These schemes generate asynchronous pulse sequences.
Since the loss factor d2 is mostly fixed by predefined bound-
ary conditions, the performance at varying modulation in-
dex is reflected in the switching frequency. This is demon-
strated in Fig. 40(a) for a flux look-up table scheme [50].

5.2  Closed-loop PWM with real-time optimization
5.2.1  Predictive current control

Pulsewidth modulation by predictive current control, Fig.
41, has common elements with the look-up table methods
discussed above. In both methods, the switching instants
are determined by suitable error boundaries. As an exam-
ple, Fig. 42 shows a circular boundary, the location of
which is controlled by the current reference vector is*.
When the current vector is touches the boundary line, the
next switching state vector is determined by prediction and
optimization.

The trajectories of the current vector for each possible
switching state are then computed, and predictions are made
of the respective time intervals required to reach the error
boundary again. These events depend also on the location
of the error boundary, which is considered moving in the
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complex plane as commanded by the predicted current ref-
erence. The movement is indicated by the dotted circle in
Fig. 42. The predictions of the switching instants are based
on a simplified mathematical model of the machine, Fig.
14. The switching state vector that produces the maximum
on-time is finally selected. This corresponds to minimizing
the switching frequency [49]. The optimization can be ex-
tended to include the next two switching state vectors [50].

The algorithms which determine the optimal switching
state vector take about 20 µs on a DSP. Such delay is
tolerable at lower switching frequency. Higher frequencies
are handled by employing the double prediction method:
Well before the boundary is reached, the actual current
trajectory is predicted in order to identify the time instant at
which the boundary transition is likely to occur. The back
emf vector at this time instant is then predicted. It is used
for the optimal selection of the future switching state vector
using the earlier described procedure. The corresponding
signals are shown in Fig. 43 [51].

The performance of a predictive current control scheme
which maximizes the on-durations of the next two switch-
ing state vectors is illustrated in Fig. 40(b).

5.2.2  Pulsewidth control with field orientation
A further reduction of the switching frequency, which

may be needed in very-high-power applications, can be
achieved by defining a current error boundary of rectangu-
lar shape, having the rectangle aligned with the rotor flux
vector of the machine, Fig. 44. This transfers a major por-
tion of the unavoidable current harmonics to the rotor-field
axis where they have no direct influence on the machine
torque; the large rotor time constant eliminates the indirect
influence on torque through the rotor flux. The selection of
the switching state vectors is based on prediction, satisfy-
ing the objectives that the switching frequency is mini-
mized, and that switching at d-current boundaries is avoid-
ed to the extent possible. This can be seen in the oscillo-
gram Fig. 44. Using a rectangular boundary area in field
coordinates leads to a reduction of switching frequency
over what can be achieved with a circular boundary area
(Fig. 40(c)), [52].

5.2.3  Trajectory tracking control
The off-line optimization approach (Section 4.4) pro-

vides a global optimum under the restricting condition of
steady-state operation; there is no restriction as regards the
time interval of optimization, and hence all switching in-
stants can be optimized in a closed algorithmic procedure.
However, the steady-state restriction makes the dynamic
performance poor, which renders such scheme nearly im-
practicable.

On-line methods, in contrast, target at an optimization
within a restricted time interval. They rely only on the next,
at maximum on the next two switching instants as the basis
of optimization. Only a local optimum can be obtained,
therefore. Every solution depends on the actual initial con-
ditions, which are the outcome of the optimization in the
previous time interval. A small sacrifice on the optimum
criterion in one time interval might entail large benefits in
the following intervals. This explains why the global opti-
mum cannot be reached. On-line methods also fail to pro-
vide synchronous switching, which is important if the pulse
number is low. Against this, the dynamic performance of
on-line methods is excellent.

The combination of off-line optimization for the steady-
state and on-line optimization for transient operation ex-
ploits the advantages of both methods. The concept re-

Fig. 41: Predictive current control, signal flow diagram
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quires all steady-state current harmonic trajectories, in cor-
respondence to the stored off-line optimized pulse sequenc-
es, be available in the modulator and used as templates for
the actual current waveform. Once an optimal pulse pattern
is selected, the associated steady-state trajectory is used to
define a time-moving target point. The location of the tar-
get point on the trajectory is controlled by the fundamental
phase angle which is also used to determine the switching
instants from the actual pulse pattern. Note that it is not
sufficient that the actual current just follows the template
trajectory; it must exactly coincide with the moving target
point on the template [53].

The approach defines a tracking problem to be solved in
real-time. Fig. 45 shows the measured current trajectory of
a transient process. High overcurrents occur in an off-line
optimized PWM scheme (Fig. 45(a)). With the tracking
control engaged (Fig. 45(b)) the dynamic current error is
minimized and the optimal steady-state trajectory is reached
immediately after the transient.

6.  CURRENT SOURCE INVERTER

The preceeding discussions on pulsewidth modulation
techniques made reference to a power circuit configuration
as in Fig. 3, in which the dc power is delivered by a voltage
source Ud. Rectangular voltage waveforms are impressed
on the load circuit, from which current waveforms result
that depend on the actual load impedances.

Another approach, dual to the aforementioned principle
of power conversion, is the current source inverter. A
switched rectangular current waveform is injected into the
load, and it is the voltage waveforms which develop under
the influence of the load impedances. The fundamental
frequency is determined by the switching sequence, exactly
as in the case of a voltage source inverter.

There are two different principles employed to control
the fundamental current amplitude in a current sourve in-
verter. Most frequently the dc current source is varied in
magnitude, which eliminates the need for fundamental cur-
rent control on the ac side, and pulsewidth modulation is
not required. An alternative, although not very frequently
applied, consists controlling the fundamental current by
pulsewidth modulation [54]. There is a strong similarity to
PWM techniques for voltage source inverters, although
minor differences exist.

The majority of applications are based on the voltage
source principle, which is owed in the first place to favor-
ing properties of the available power semiconductor switch-
es.

7.  SUMMARY

Pulsewidth modulation for the control of three-phase
power converters can be performed using a large variety of

different methods. Their respective properties are discussed
and compared based on mathematical analyses and on meas-
ured results obtained from controlled drive systems in oper-
ation.

Performance criteria assist in the selection of a PWM
scheme for a particular application. An important design
parameter is the switching frequency since it determines
the system losses. These are hardly a constraint at low
power levels, permitting high frequency switching com-
bined with straightforward modulation methods. The im-
portant selection factors in this range are cost of implemen-
tation and dynamic performance. As the losses force the
switching frequency to be low at higher power, elaborate
techniques are preferred including off-line and on-line opti-
mization. These permit that the contradicting requirements
of slow switching and fast response can be satisfied.
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