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correlation) between the right amygdala,  pulvinar, and superior 

colliculus was observed when fear-conditioned faces were unseen, 

but not when they were seen. Morris et al. (2001) interpreted their 

results in terms of a subcortical pathway culminating in the right 

amygdala, via the midbrain (superior colliculus) and thalamus 

(pulvinar), thereby providing a route for processing behaviorally 

relevant unseen visual events in parallel to a cortical route necessary 

for conscious identification.

A second, older literature has focused on understanding the 

role of the pulvinar in visual attention. Early studies in monkeys 

and humans with pulvinar lesions suggested that this structure is 

involved in determining what is important or salient in a visual 

scene (Ungerleider and Christensen, 1979; Zihl and von Cramon, 

1979). Consistent with this notion, the activity of neurons in the 

pulvinar has been shown to be modulated by attention and/or 

behavioral relevance. For instance, pulvinar neurons respond more 

vigorously to behaviorally relevant targets than to unattended stim-

uli (Robinson and Cowie, 1997). In one study, as many as 92% of 

the cells exhibited attenuated responses when stimuli were task 

irrelevant (passively viewed) relative to when they were task relevant 

(Benevento and Port, 1995). Furthermore, the impact of attention 

on evoked responses is spatially specific; for instance, it is observed 

when a monkey attends to a stimulus falling within the receptive 

field of a cell (Petersen et al., 1985). Finally, the pulvinar appears to 

be critical when a distractor stimulus needs to be “filtered out,” as 

suggested by reversible GABA deactivation (Desimone et al., 1990). 

INTRODUCTION

The pulvinar complex is the largest nuclear mass in the primate 

thalamus and its large size is thought to be correlated with the phy-

logenetic expansion of other visual structures in primates (Grieve 

et al., 2000). Broadly speaking, there are two roughly separate lit-

eratures that have dealt with the pulvinar. Research on emotion has 

considered the pulvinar to be an important component of a sub-

cortical pathway conveying visual information to the amygdala. The 

so-called colliculo-pulvino-amygdalar pathway has been proposed 

to be a component of affective processing and responsible for giving 

rise to rapid and “automatic” processing of emotion-laden items 

(de Gelder et al., 1999; Ohman and Mineka, 2001). This proposed 

visual pathway is suggested to be analogous to a subcortical path-

way involved in auditory processing linking the medial geniculate 

nucleus of the thalamus and the amygdala in the rat (LeDoux, 

1996). As described elsewhere, the colliculo-pulvino-amygdalar 

pathway is purported to function in a way that is independent of 

attention and awareness (Pessoa, 2005). For example, concerning 

attention, it has been reported that threat-faces are processed pre-

attentively in visual search paradigms (Ohman et al., 2001), and 

that fearful faces evoke differential amygdala responses even when 

they are unattended (Vuilleumier et al., 2001), effects that may 

depend on the proposed subcortical pathway. Concerning aware-

ness, in a well-known study, Morris et al. (2001) investigated brain 

responses evoked by “unseen” faces, which had been previously 

aversively conditioned. Increased “functional coupling” (i.e., signal 
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Thus, it has been suggested that the pulvinar is involved in  attention 

and/or distractor filtering, consistent with neuroimaging and lesion 

studies in humans (Mesulam, 1981; LaBerge and Buchsbaum, 1990; 

Corbetta et al., 1991; Karnath et al., 2002; Kastner et al., 2004; 

Arend et al., 2008).

This second literature provides evidence that the pulvinar is 

important for visual awareness, too. For instance, lesion studies 

in humans have revealed that pulvinar damage is associated with 

visual neglect, as well as feature-binding deficits (Zihl and von 

Cramon, 1979; Karnath et al., 2002; Ward et al., 2002). A recent 

monkey physiology study is particularly noteworthy. Leopold and 

colleagues recorded neural activity in the pulvinar during a visual 

illusion that induced the intermittent perceptual suppression of a 

bright luminance patch (Wilke et al., 2009). Neurons in the pulvinar 

showed changes in spiking rate according to trial-by-trial stimulus 

visibility, suggesting to the authors that visual responses of pulvinar 

neurons reflected the visual awareness of a stimulus.

The above two literatures have progressed in a largely independ-

ent fashion, and point to inconsistent views of pulvinar function. 

On the one hand, the pulvinar is suggested to be part of a largely 

automatic pathway that is presumed to operate independently of 

attention and awareness. On the other hand, the pulvinar has been 

characterized as a structure not only subject to attentional modula-

tions, but also critically involved in attentional functions. Studies 

are thus needed that address this discrepancy.

In the present study, we investigated how pulvinar responses 

are involved in the processing of affectively significant stimuli. 

Importantly, we explicitly probed whether stimulus visibility  during 

attentionally challenging task conditions influenced  signals in the 

pulvinar. Subjects performed an attentional blink task during fMRI 

scanning and were asked to detect two target objects presented among 

distracters in a rapid serial visual presentation stream. Typically, a 

subject’s detection of the second target (T2) is significantly impaired 

when it closely follows the first target (T1) (Raymond et al., 1992), 

an effect that is decreased when T2 is an affectively significant item 

(Anderson, 2005). Here, aversive conditioning was employed in 

order to manipulate emotional significance. Accordingly, the experi-

mental session began with an initial learning phase during which 

houses or buildings were paired with shock (Figure 1A). During 

the main experimental runs, a slow event-related design was used, 

which allowed us to quantify the link between trial-by-trial response 

magnitude and behavioral performance (i.e., stimulus visibility). 

Here, we report the results concerning the pulvinar; other findings 

concerning the amygdala and visual cortex, among other structures, 

have been described elsewhere (Lim et al., 2009).

MATERIALS AND METHODS

SUBJECTS

Thirty right-handed subjects (20–34 years old; 15 males) partici-

pated in the present study. Two additional subjects were recruited 

but were excluded from data analysis due to problems during scan-

ning. Of these, one participant with cold symptoms reported some 

discomfort and needing to hold her breath frequently to avoid 

coughing; she also reported difficulty focusing on the task. A sec-

ond participant misunderstood the scene categories and responded 

“building” for all multi-storied stimuli. All  participants were in 

good health with no history of neurological or psychiatric disor-

ders. Participants had normal or corrected-to-normal vision.

FIGURE 1 | Experimental paradigm. (A) Affective significance was 

manipulated during an initial learning phase. In this example, building 

stimuli were paired with mild shock 50% of the time, while house stimuli 

were not paired with shock. (B) Subjects performed the attentional 

blink task, which involved reporting two target stimuli (T1: face; T2: scene) 

among a stream containing 18 distractors. T2 stimuli could be a CS+ 

(building; top panel), a CS− (house; bottom panel) or a distractor stimulus 

(not shown).
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fMRI EXPERIMENT AND FEAR CONDITIONING PROCEDURE

After the behavioral session, participants underwent two fMRI ses-

sions (three sessions were administered for two participants who 

exhibited a low number of miss trials; see below). The two fMRI 

sessions were completed within 1 week of each other (typically in 

subsequent days).

For each fMRI session, participants performed 10 conditioning 

training trials (including 2 that involved electrical stimulation) 

and 40 dual-task training trials during the initial anatomical scan. 

The main experimental phase was subdivided into two phases, 

learning and attentional blink. During the affective learning 

phase (Figure 1A), differential fear conditioning was employed 

as a manipulation of the affective significance of scene stimuli. 

During this phase, participants performed a two-choice scene cat-

egorization task (house or building?). House or building images 

were designated as the CS+ category and mild electrical stimula-

tion served as the US (the CS+ category was counterbalanced 

across participants). During conditioning trials, images of CS+ 

scenes were followed by a US according to a 50% partial rein-

forcement schedule. The US shock was administered to the distal 

phalange of the third and fourth fingers of the non-dominant 

(left) hand through a stimulator (E13-22; Coulbourn instruments, 

Whitehall, PA, USA), which included a grounded RF filter, and 

MR-compatible leads and electrodes (BIOPAC systems, Goleta, 

CA, USA). At the beginning of the MRI experiment, subjects 

were explicitly instructed of the contingency rule (i.e., the CS+ 

scene category), but were not informed about the probability 

of US delivery. The intensity of the “highly unpleasant but not 

painful” electric shock (range: 0.6–4.0 mA) was set for each par-

ticipant individually while he/she was prepared for MRI scanning. 

The subjective aversiveness of US shock was monitored between 

the functional runs via the intercom system and the intensity of 

stimulation was re-adjusted if needed. On each conditioning trial, 

images of scenes (without the superimposed grid) were displayed 

for 2 s and followed by an 8-s fixation cross. Thirty-six scene 

images were displayed at the center of the display in random 

order with the constraint that no more than two buildings or 

two houses were presented successively: 12 CS+ scenes without 

shock (CS+), 12 CS+ scenes paired with shock (CS+ with US; 

thus CS+ scenes were paired with shock 50% of the time), and 

12 CS− scenes. The US was delivered 1500 ms after the onset of a 

CS+ stimulus and co-terminated with the CS+, following a delayed 

conditioning paradigm. All trials involving electrical stimulation 

were discarded from further analyses.

After fear conditioning, participants performed dual-task tri-

als (i.e., the AB paradigm), which were identical to those during 

the behavioral session, except that a slow event-related design was 

employed with trials occurring every 14, 16, or 18 s. For each par-

ticipant, the initial temporal lag between the first and second tar-

gets was individually set to the lag that yielded 60–65% accuracy 

during the previous behavioral session. Performance during the 

fMRI session was monitored on a per-run basis and task difficulty 

was further calibrated (via changes in T1–T2 lag) to maintain T2 

detection accuracy around 60–65% for the CS− condition. Across 

two fMRI sessions, participants finished a total of 24 dual-task 

runs (36 runs for two participants with three fMRI sessions). 

Unless otherwise noted, all stimulation  parameters were identical 

BEHAVIORAL EXPERIMENT

A behavioral attentional blink experiment, which was adminis-

tered prior for scanning, consisted of both single- and dual-task 

conditions, and was used to calibrate task difficulty for the sub-

sequent fMRI sessions. During the dual-task, participants were 

asked to search for two targets presented among 18 distractor 

items in a rapid stream (Figure 1B). The first target (T1) was a 

face image and the second target (T2) was a scene image. Each 

item was displayed for 100 ms. The T1 task involved identifying 

one of three potential target faces (“Andy,” “Bill,” and “Chad”). 

The T2 task involved a categorization of scene stimuli (house, 

building, or no-scene). During the single-task condition, the 

same trial structure was employed, except that the T1 image 

was replaced with a distractor stimulus and the final T1-related 

decision display was omitted. This behavioral task lasted approxi-

mately 1.5 h and was performed in a mock scanner. As in fMRI 

sessions (see below), stimuli were presented through an LCD 

projector at a resolution of 1024 × 768 pixels and a refresh 

rate of 60 Hz. All stimuli were presented at fixation, subtended 

4.5° × 4.5° of visual angle, and were shown in black-and-white 

on a gray background. The schedule of stimulus presentation 

and data collection were controlled by Presentation software 

(Neurobehavioral Systems, Albany, CA, USA). Three neutral face 

stimuli were selected from the Karolinska Directed Emotional 

Faces (KDEF; Lundqvist et al., 1998). For scene stimuli, 84 house 

images and 84 building images were selected. A grid of thin black 

lines was superimposed on all images, because it made target 

detection more challenging, as determined during preliminary 

pilot testing (see also Marois et al., 2004). The T1 face image was 

displayed 200, 300, 400, 500, or 800 ms before the T2 scene (the 

T1–T2 lag was randomized). A T1 stimulus (face) was presented 

in every trial and a T2 stimulus (house or building) was presented 

in 78% of the trials. For scene-absent trials, an additional dis-

tractor image was used to replace the scene image. The response 

button mapping for houses and buildings was counterbalanced 

across participants. Participants were instructed to give prior-

ity to the T1 task over the T2 task during the dual-task (i.e., T1 

and T2) condition. Each trial began with a display of a green 

fixation cross for 400 ms, followed by the stimulus stream. After 

the stream, participants were asked to make a T1-related deci-

sion (Andy, Bill, or Chad?) during a 2-s response period and a 

subsequent T2-related decision (House, Building, or No scene?) 

during a 2-s response period. Dual-task trials occurred every 8 s. 

For the dual-task condition, T2 responses were analyzed only 

when the T1 response was correct to ensure proper attentional 

engagement on the T1 process (Raymond et al., 1992). Single-

task (i.e., T2 only) trials occurred every 6 s. Single- and dual-task 

conditions were performed in separate blocks with randomized 

order. A total of 960 dual-task trials were presented over eight 

blocks and a total of 96 single-task trials were presented over 

four blocks.

To familiarize participants with the three face identities labeled 

Andy, Bill, and Chad, hard copies of printed face images with their 

names were provided. At the beginning of the behavioral session, 

subjects performed a short block of a face identity task and a short 

block of a scene categorization task, during which feedback (cor-

rect/incorrect) was provided after each response.
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MEAN-RESPONSE ANALYSIS

Given our focus on understanding T2 performance, because we 

employed a slow event-related design, evoked responses of individ-

ual trials were based on the average of time points at 6 and 8 s post 

trial onset – i.e., 4–6 following T2 presentation (see Figure 2). Four 

trial types were of interest: hit: correct trial containing a house/

building stimulus, for both CS+ and CS− conditions; miss: no-scene 

response for trials containing a house/building stimulus, for both 

CS+ and CS− conditions. A 2 × 2 repeated-measures ANOVA was 

run separately on left and right pulvinar ROI mean response data 

to probe both Conditioning (CS+, CS−) and Perceptual Decision 

(HIT vs. MISS) factors. Additional comparisons were evaluated 

via paired t tests.

TRIAL-BASED ANALYSIS

To quantify the link between single-trial fMRI amplitude and 

behavior at the individual level, trial-by-trial logistic regression 

analysis was performed on the time series from left and right pul-

vinar ROIs. As in the preceding analysis, the mean response at 4 

and 6 s post T2 stimulus onset was used as an index of single-

trial response amplitude. A standard logistic regression analysis 

was performed (Hosmer and Lemeshow, 2000) separately for CS+ 

and CS− conditions by modeling the probability of a trial being a 

HIT as a function of fMRI response strength. Thus, the probability 

of trial being a HIT was modeled by

Pr(y
i
 = 1) = logit−1(b

0
 + b

1
fMRI

i
),

where y is the behavioral outcome (HIT:1, MISS: 0), the function 

logit−1 transforms continuous values to the range (0,1), which is 

necessary for probabilities (note that this is simply a logistic “sig-

moidal” curve), fMRI is the response amplitude, and i is a trial index. 

The slope of the regression fit (b
1
) indicates the relative magnitude 

of the predictive effect. Group inferences were made by assessing 

logistic slopes across participants via one-sample and paired t tests 

(random effects). Note that the contrast of CS+ and CS− logistic 

regression slopes is functionally related to a Conditioning (CS+, 

CS−) × Perceptual Decision (HIT, MISS) statistical interaction.

RESULTS

As described previously (Lim et al., 2009), T2 performance was 

61.9% correct during CS− trials and 71.9% correct during CS+ trials 

[t(29) = 5.83, P < 0.001], revealing that the affective significance of 

a T2 target counteracted the attentional blink. Behavioral effects 

were observed regardless of the CS+ category [CS− house: 64.5%, 

CS+ building: 73.3%, t(14) = 3.27, P < 0.01; CS− building: 59.3%, 

CS+ house: 71.1%, t(14) = 4.72, P < 0.01].

Visual responses in the pulvinar ROIs were analyzed accord-

ing to two Conditioning (CS+, CS−) by two Perceptual Decision 

(hit, miss) repeated-measures ANOVAs, one for each hemisphere 

(Table 1). For the left pulvinar (Figures 2A,B), a main effect 

of Perceptual Decision was detected, an effect that was quali-

fied by a Conditioning by Perceptual Decision interaction that 

reflected greater differential hit vs. miss responses during the 

CS+  relative to the CS−  condition. Subsequent tests revealed that 

evoked responses during hit trials were stronger than during miss 

trials for the CS+ condition [t(29) = 2.5, P < 0.05], but not the 

CS− condition [t(29) = 0.46, P = 0.65]. No differential responses 

to those employed during the behavioral session  administered 

in the mock scanner (including projector type). A total of 168 

CS+ dual trials and 168 CS− dual trials were performed (252 for 

participants with three fMRI sessions). In addition, 96 no-scene 

trials (T1-only) were collected for each participant (144 for par-

ticipants with three fMRI sessions). To minimize the extinction 

of conditioned responses, three additional CS+ trials with US 

were present in each dual-task run (these were discarded from 

further analyses, too). Subjects were discouraged to guess “house” 

or “building” when unsure and were encouraged instead to use 

a third option (“no scene”) in such cases. Accordingly, few false 

alarms (i.e., “house” or “building” responses during T1-only 

trials) or incorrect scene categorization responses (i.e., “house” 

response in trials containing a building, or “building” response 

in trials containing a house) were observed (1.2 and 6.5% on 

average, respectively); these trials were excluded from further 

analyses (critically, no differences were observed between CS+ 

and CS− conditions).

MR DATA ACQUISITION

Anatomical and functional scans were acquired using a Siemens 3T 

TRIO scanner (Siemens Medical Systems, Erlangen, Germany) with 

an eight-channel phased-array head coil. Structural images were 

acquired first with a high resolution MPRAGE anatomical sequence 

(TR = 1900 ms; TE = 4.15 ms; TI = 1100 ms; 1-mm isotropic voxel; 

256-mm field of view). Next, blood oxygenation level-dependent 

(BOLD) contrast functional images were acquired with gradient-

echo echo-planar T2*-weighted imaging. Each functional volume 

consisted of 34 axial slices (TR = 2000 ms; TE = 25 ms; FA = 70°; 

field of view: 24 cm; 64 × 64 matrix; 3.8 mm thickness; interleaved 

acquisition order).

GENERAL fMRI DATA ANALYSIS

Pre-processing of the fMRI data was performed using AFNI tools 

(Cox, 1996). The first six functional volumes of each run were 

removed to account for equilibration effects of magnetization. 

The following processing steps were applied: slice-time correction, 

motion correction, normalization to Talairach space, Gaussian spa-

tial smoothing (full width at half maximum: 6 mm), and inten-

sity normalization (each voxel’s mean was set to 100). Functional 

images acquired during the second (and third when needed) scan-

ning session were aligned to those collected during the first scan-

ning session by applying a transformation matrix determined by 

registering the second (and third when needed) anatomical dataset 

to the first session’s anatomical dataset.

GENERAL REGION OF INTEREST ANALYSIS

As our main goal was to assess the relationship between responses 

in pulvinar and behavior, to maximize statistical power, analyses 

were performed in a region of interest (ROI) based fashion. Left 

and right pulvinar ROIs were defined based on the standard 

anatomical mask of the pulvinar as provided by AFNI. Voxels 

were averaged together in each ROI to determine a representa-

tive time series. Prior to averaging the time series, the variance 

explained by reaction time was removed from the original time 

series of each voxel (slow-varying drifts in MR signal were like-

wise removed).
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P < 0.05], but no significant difference was observed during miss 

trials [t(29) = 0.09, P = 0.93]. The latter result reveals that affective 

modulation of evoked responses was tied to visual perception, i.e., 

occurred only when subjects correctly detected T2 scenes.

To explore the relationship between responses evoked in the 

pulvinar and T2 behavioral performance, we conducted a correla-

tion analysis (across individuals). Differential responses to hits 

(CS+ vs. CS−) were significantly correlated with improvements in 

T2 performance (CS+ vs. CS−) in the left [Figure 2C; r(30) = 0.42, 

P < 0.05] and right pulvinar [Figure 2F; r(30) = 0.46, P < 0.01].

If signals in the pulvinar are closely linked to behavioral per-

formance, fluctuations in evoked responses should be predictive 

of trial-by-trial T2 detection performance. To evaluate this predic-

tion, we performed logistic regression analysis and modeled the 

probability of a hit trial as a function of single-trial amplitude. 

Logistic fits from sample individuals are shown in Figures 3A,C 

for the left and right pulvinar, respectively. At the group level, the 

mean logistic regression slopes, which represent the strength of the 

predictive effect, were significantly greater than 0 for CS+ trials in 

both left and right pulvinar, indicating that trial-by-trial fluctua-

tions in fMRI signals reliably predicted perceptual T2 decisions 

(Figures 3B,D; Table 2). In the left pulvinar, a direct comparison 

of the CS+ and CS− conditions (see the last bar in Figures 3B,D) 

as a function of affective significance (CS+ vs. CS−) were detected 

for hit [t(29) = 1.6, P = 0.12] or miss [t(29) = −0.85, P = 0.40] tri-

als. Note also that no significant difference was detected between 

CS+ miss vs. CS− hit trials [t(29) = −1.21; P = 0.24].

For the right pulvinar (Figures 2D,E), only a main effect of 

Perceptual Decision was detected. Despite the absence of an interac-

tion effect, we tested for simple effects given their theoretical impor-

tance and previous related findings in the amygdala and visual cortex 

(Lim et al., 2009), although caution is naturally needed when inter-

preting these results (Tybout and Sternthal, 2001). Responses during 

hit trials were stronger than during miss trials for the CS+ condition 

[t(29) = 2.72, P < 0.05], but not for the CS− condition [t(29) = 0.88, 

P = 0.39]. Furthermore, responses evoked during hit trials were 

stronger for affectively significant stimuli [CS+ vs. CS−; t(29) = 2.34, 

Table 1 | Mean-response based analysis in the Pulvinar. (P-values in 

parentheses; values in bold font are statistically significant at the 0.05 level.)

ROI Conditioning Decision Conditioning × decision 

 F(1,29) F(1,29) F(1,29)

Left pulvinar 0.00 (=0.97) 5.85 (<0.05) 5.15 (<0.05)

Right pulvinar 1.49 (=0.23) 6.69 (<0.05) 1.96 (=0.17)

FIGURE 2 | Pulvinar responses. (A–C) Left pulvinar responses. (A) Average 

time-courses of evoked responses in the left pulvinar ROI as a function of 

experimental condition. Evoked responses of individual trials were based on the 

average of time points at 6 and 8 s post trial onset (see shaded area) – i.e., 4–6 

following T2 presentation (indicated schematically via the inset containing the 

house stimulus). (B) Bar plots showing the same data as in (A) based on the 

average of time points 6 and 8 s post trial onset. (C) Scatter plot illustrating the 

correlation between evoked responses in the left pulvinar ROI and behavioral 

performance across participants (percent correct difference). (D–F) Right 

pulvinar responses. Parts (D–F) correspond to parts (A–C), respectively. No error 

bars are included in (B,E) because our interest was on within-subject differences 

and, in particular, the within-subject interaction pattern.
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tive to the CS− condition). The trial-by-trial  analysis revealed that 

moment-to-moment fluctuations in response magnitude followed 

trial-by-trial detection performance, and thereby closely tracked 

target visibility. Logistic regression slopes differed as a function of 

affective significance (CS+ vs. CS−) for the left pulvinar, a result 

that paralleled the Conditioning by Perceptual Decision interaction 

observed in the ANOVA (note that logistic regression slopes are 

based on considering both hit and miss trials).

The logistic regression analysis summarized how trial-by-trial 

fluctuations in response strength were linked to behavioral per-

formance. Another aspect of the link between pulvinar responses 

and behavior was investigated by considering the influence of 

affective significance on mean responses. Participants with larger 

differential responses during hit trials (CS+ vs. CS−) exhibited 

a correspondingly larger behavioral improvement. These results, 

which were observed in both left and right hemispheres, are con-

sistent with the notion that improvements in behavioral perform-

ance were linked to how affective significance enhanced evoked 

responses in the pulvinar during hit trials.

Some of our findings differed between the left and right 

pulvinar. The significance of the differences is unclear at the 

moment, but it is noteworthy that both hemispheres exhibited 

brain–behavior correlations (Figures 2C,F). In addition, across 

individuals, trial-by-trial fluctuations in evoked responses in both 

hemispheres tracked stimulus visibility during the CS+ condition 

(Figures 3B,D).

revealed that the predictive power of the logistic regression fit 

was stronger during CS+ relative to CS− scenes [t(29) = 2.55, 

P < 0.05]; no significant difference was detected in the right pulvi-

nar [t(29) = 1.26, P = 0.22].

DISCUSSION

In this investigation, we probed pulvinar responses with the goal 

of characterizing how they are linked to affective processing and 

stimulus visibility during resource-poor conditions. Pulvinar 

responses were evaluated in two ways, first in terms of mean 

responses (via ANOVAs) and in terms of trial-by-trial response 

fluctuations (via logistic regression). The mean-response analysis 

revealed that pulvinar responses were not influenced by affective 

significance (CS+ vs. CS−) per se, but that they were closely tied to 

perception (hit vs. miss). Notably, a Conditioning by Perceptual 

Decision interaction was detected for the left pulvinar (because 

of greater differential hit vs. miss responses during the CS+ rela-

FIGURE 3 | Trial-by-trial analysis of HIT vs. MISS trials. (A,B) Left pulvinar. (A) 

Logistic regression analysis of evoked responses in the left pulvinar ROI as a 

function of affective significance (CS+ and CS−) for a sample individual. The 

slope of the logistic fit indicates the strength of the predictive effect. For clarity, 

only binned data for the CS+ condition are shown (black dots). (B) Mean logistic 

slopes across individuals for the left pulvinar. (C,D) Right pulvinar. Parts (C,D) 

correspond to parts (A,B), respectively. Error bars in (B,D) are 95% confidence 

intervals around the mean.

Table 2 | Trial-by-trial analysis of HIT vs. MISS trials in the Pulvinar. Mean 

logistic slopes are provided (P-values in parentheses; values in bold font are 

statistically significant at the 0.05 level).

ROI CS+ CS− CS+ vs. CS−

Left pulvinar 0.58 (<0.01) 0.05 (=0.70) 0.53 (<0.05)

Right pulvinar 0.44 (<0.01) 0.19 (=0.13) 0.25 (=0.22)
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pathway is involved in the processing of “biologically prepared” 

stimuli (Ohman and Mineka, 2001). Along related lines, the present 

study employed a differential conditioning procedure that is more 

complex than some of the conditioning procedures employed in 

the animal literature (LeDoux, 1996). Accordingly, it would be of 

value to test variants of the procedure employed here that utilized 

simpler conditioning procedures.

In the present study, behaviorally, the detection of the second 

target occurred more frequently during the CS+ compared to the 

CS− condition. What are the circuits by which affective significance 

influenced perception? Although our study does not answer this 

question, we suggest the following working hypothesis. In our task, 

the effect of emotion necessitates the categorization of buildings 

and houses, a process that likely depends on territories in ventral 

occipitotemporal cortex. Information from anterior aspects of the 

ventral visual stream is then conveyed to the amygdala (Amaral 

et al., 1992) – thus completing a “feedforward sweep.” The amygdala 

is suggested, then, to play a key role in determining the affective 

value of incoming stimuli (including houses and buildings in our 

task), and in modulating visual activation based on this assessment 

(Vuilleumier et al., 2004).

More generally speaking, what is the role of the pulvinar in 

emotion? Studies by Ward and colleagues help illuminate potential 

roles of the pulvinar during affective processing. For instance, a 

complete unilateral loss of the pulvinar led to a severe deficit in 

a patient’s ability to recognize fearful expressions shown in the 

contralesional field (Ward et al., 2007). In an earlier study, viewing 

In our previous report, the comparison between CS+ and 

CS− miss trials did not reveal significant differential responses 

in the amygdala or visual cortex (Lim et al., 2009). Contrary to 

suggestions of stronger automaticity of emotion-laden stimuli, 

the affective nature of a stimulus itself did not guarantee robust 

differential responses, which indicates that affective perception 

is under the control of attentional mechanisms during temporal 

“bottleneck” conditions (Stein et al., 2010) – in addition to during 

spatial manipulations of attention (Pessoa, 2005). Because of these 

prior results and their theoretical importance, here we probed 

responses during miss trials, too. No significant differences were 

observed in the left or right pulvinar. These results are of particular 

importance in the context of the putative subcortical pathway, as 

one of its central properties is that it conveys information rapidly 

and independently of attention and awareness.

Our results are thus inconsistent with a “strongly automatic” 

view of pulvinar function, one that is often encountered in the 

context of affective processing. Broadly speaking, the interpretation 

of findings of the attentional blink in general (i.e., not only in affec-

tive paradigms) is complex because both attention and awareness 

are involved in the paradigm (Bowman and Wyble, 2007; Shapiro, 

2009; Martens and Wyble, 2010), and it is becoming increasingly 

clear that even though attention and awareness are related, they 

may also be partially dissociated (Lau and Passingham, 2006; Koch 

and Tsuchiya, 2007). For instance, attention can affect perceptual 

processing and behavioral performance in the absence of aware-

ness (Kentridge et al., 2004; Bahrami et al., 2007). Here, although 

pulvinar responses tracked stimulus visibility, it was not possible 

to disentangle the contributions of the pulvinar to attention and 

awareness processes.

In the present study, as well as in our previous report (Lim 

et al., 2009), we focused on specific regions of interest given a priori 

questions of theoretical and empirical importance. Accordingly, we 

do not claim that the present findings are specific to the pulvinar. 

Indeed, many of the present results paralleled those observed in 

the amygdala and visual cortex, where trial-by-trial fluctuations in 

response magnitude closely tracked behavioral performance. More 

broadly, we anticipate that other brain regions may exhibit similar 

patterns of results, for instance attentional regions in frontal and 

parietal cortices given that responses in these regions have been 

shown to be closely linked to task performance (Pessoa et al., 2002; 

Marois and Ivanoff, 2005).

It could be argued that a role for the pulvinar in subcorti-

cal affective processing is not adequately tested in the present 

study because of the choice of stimuli employed. In other words, 

because the detection of the second target involved a house vs. 

building discrimination, detailed form processing may have been 

involved – and would presumably not be conveyed subcortically. 

Note, however, that our stimuli were selected so as to be easily dis-

criminable. Specifically, on the one hand, building stimuli involved 

images with a clear vertical elongation; houses, on the other hand, 

lacked this type of asymmetry. Consistent with the suggestion that 

the categories did not require detailed visual information to be 

told apart, low spatial-frequency versions of our stimuli are eas-

ily discriminated from each other (see Figure 4 for an example). 

Nevertheless, because of the stimuli adopted here, the present study 

is unable to assess the suggestion that the purported subcortical 

FIGURE 4 | Frequency content of T2 stimuli. Original and low spatial 

frequency content of typical house and building T2 stimuli used in this study. It 

is apparent that house and building stimuli can be discriminated easily based 

on low spatial frequency information alone. In the low-pass images, building 

stimuli exhibit a clear vertical elongation; houses, on the other hand, lacked 

this type of asymmetry.
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complex unpleasant images impaired a subsequent simple (neutral) 
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would have interfered with performance, as in the controls.
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In conclusion, our results do not support a passive role of the 

pulvinar in affective processing, as often invoked in the context 

of the subcortical-pathway hypothesis (for further discussion, 

see Pessoa, 2005). Instead, the pulvinar appears to be involved in 

mechanisms that are closely linked to attention and awareness, a 

role that may be particularly important during the processing of 

affectively significant stimuli.
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FIGURE 5 | Affective significance and the pulvinar. When weak, though 

affectively significant stimuli are encountered (as shown in the inset), 

interactions between the medial (Med) pulvinar and several brain regions 

important for the determination of “biological value” influence the flow of 

information processing, such that signals related to such items are amplified, 

thus leading to increased behavioral effects. Note that only some of the 

connections between the amygdala, orbitofrontal cortex (OFC), cingulate, and 

insula are provided (shown in purple). In contrast to the medial pulvinar, which 

is largely “associational,” the inferior (Inf) pulvinar is bidirectionally connected 

with striate and extra-striate cortex, and is thus much more “visual”.
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