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Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes
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The net flow of electrolyte induced by an ac electric potential applied to an array of asymmetric pairs of
microelectrodes has recently been reported. The interaction between the oscillating electric field and the
oscillating induced charge at the diffuse double layer on the electrodes results in a steady electro-osmotic
velocity distribution on top of the electrodes. This slip velocity distribution is anisotropic and produces a net
flow of fluid. This paper presents a theoretical analysis of the pumping phenomena based upon an electro-
osmotic model in ac fields. The electrical equations are solved numerically using the charge simulation method.
The bulk flow generated by the electro-osmotic slip velocity is calculated. The dependence of the fluid flow on
voltage and frequency is described and compared to experiments.
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I. INTRODUCTION

The last decade has seen a rapid growth in the deve
ment of integrated microanalytical devices that function a
laboratory on a chip@1#. New types of microelectromechan
cal systems@2# are also being developed. In both cases, th
is a requirement for precise control of small masses of
uids, particularly where devices are used in the field
chemical and bioanalytical sciences@3#. Many techniques
have been developed to pump liquids, including microm
chanical methods@4#, electro-osmosis@5#, electrowetting@6#,
thermocapillary pumping @7#, and electrohydrodynamic
pumping@8#. However, there are inherent drawbacks to all
these systems; some require external temperature grad
or high applied voltages, others use moving parts or prod
pulsating flow.

Recently, Brownet al. @9# have demonstrated pumping o
an electrolyte on an array of asymmetric microelectrodes
ergized by a single ac signal of the order of kHz and at l
voltage~around 1 V!. The system is, therefore, of interest
the development of micropumps. This type of pump f
lowed from the theoretical arguments regarding the unidir
tional flow resulting from spatially asymmetric applied p
tentials @10#. The physical mechanism responsible for t
flow is electro-osmosis in ac fields, where nonuniformities
the field geometry produce a nonzero time-averaged elec
osmotic slip velocity at the surface of the electrodes@11–14#.
It should be noted that this type of fluid flow is distinct fro
flow originated from electrothermal effects@8,15# which are
found at higher frequencies and generally, higher electro
conductivities.

The mechanism responsible for driving the flow is illu
trated in Fig. 1~a!, drawn for the geometry used by Brow
et al. An alternating potential difference is applied to ea
pair of asymmetric electrodes creating a nonuniform elec
field. At a certain time, the situation is as shown in the figu
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the component of the field normal to the electrode induce
charge in the diffuse double layer; the tangential compon
of the field produces a force on the induced charge. The fo
has a nonzero time average because if the sign of the
reverses, so does the sign of the charge. This force prod

FIG. 1. Schematic diagram of the physical mechanism of
electro-osmosis in an asymmetric electrode array inside a micro
idic channel.~a! A diagram showing the charge induced in respon
to applied potentials on the electrodes, the resulting electric fiel
the electrolyte, and the force on the induced charge.~b! A diagram
of the resulting bulk flow, with small rolls over the edges of th
electrodes and a large roll over the inner edge of the larger elect
that rolls over the others to produce a unidirectional flow.
©2003 The American Physical Society02-1
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the electro-osmotic slip velocity, which consists of an osc
latory and a nonzero time-averaged component. For frequ
cies in the hundreds to kHz range, it is the time-avera
velocity that is observed experimentally and gives rise to
observed fluid flow. The arrangement of coplanar asymm
ric electrodes produces a nonsymmetric local flow that ev
tually generates a global flow in the direction of broken sy
metry @9,10#.

Figure 1~b! shows a simplified schematic diagram of t
fluid flows that occur above the electrodes in the exp
ments. Rolling motion of the fluid is generated at every el
trode edge, the magnitude of the velocity depending on
tangential derivative of the electrical energy stored in
double layer at that location@11,13,14#. The double layer
accumulates electrical energy as a capacitor; the normal
rent to the interface charging the double layer. It is expec
that the normal current to the interface and the electr
energy stored in the double layer are more uniform along
small electrode than along the big electrode, since they
distributed over a shorter distance. This results in two ro
over the small electrode, which are of similar size, moving
opposite direction, and, therefore, do not contribute appre
bly to the global directional flow. The rolls over the b
electrode are more asymmetric, with the higher velocity
curring at the edge closest to the small electrode, where
electric field is stronger. This roll would be limited by th
height of the chamber and follow the path shown by
dotted arrow if the chamber were closed at the left and ri
ends. However, since the chamber is open and the other
do not extend upwards to any great height, the fluid inst
moves outwards from the inner edge of the large electro
then up and over the outer edge and the small electrode,
then down towards the next large electrode as shown s
matically. This results in a directional flow along the ele
trode array as seen experimentally@9#.

In Ref. @9#, it was shown that the fluid flow could b
partly accounted for by the analytical theories laid down
Refs.@11,13#. However, the model presented in Ref.@9# was
too simple and, if followed strictly, predicted a pumping v
locity in the direction opposite to that which is observ
experimentally. In this paper, we present a theoretical an
sis of the pumping phenomena reported in Ref.@9# in order
to predict the direction, and the frequency and voltage
pendences of the fluid flow. This is done by using the lin
electro-osmotic model presented in Refs.@13,14#. We begin
with the presentation of the electrical and mechanical eq
tions, together with the boundary conditions. The electri
equations are then solved numerically using the charge s
lation method, taking into account the periodicity of the sy
tem in the Green’s function. After calculating the electr
osmotic velocity, the stream function of the bulk fluid flow
calculated through an integration of a Green’s function
the velocity problem. Finally, the numerical results are p
sented, paying particular attention to the comparison with
experimental data presented by Brownet al.

II. FORMULATION OF THE PROBLEM

A. Equations and boundary conditions

The system used to generate the fluid flow is shown
the two-dimensional~2D! geometry depicted in Fig. 2. Ther
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is an insulating substrate~glass! onto which an infinite peri-
odic array of asymmetric pairs of electrodes is fabricat
The electrodes are considered to be infinitely long and th
so that any single pair of electrodes can be characterize
widthsW1 andW2. The gaps between consecutive electrod
areG1 andG2 as shown in the figure. The size of a repeati
basic cell is, therefore,L5W11G11W21G2. Above the
electrode array there is a solution of electrolyte, such as K
with conductivitys and permittivity«. At the interfaces be-
tween the metal and the electrolyte, and glass and electro
double layers are formed. The characteristic thickness o
double layer is given by the Debye lengthlD @16#. In most
cases, this is of the order of 10 nm, and is negligibly sm
when compared to the other lengths in the system. When
ac voltage is applied to the electrodes, an electrical curren
established in the solution. To the first approximation,
assume that the applied voltage is low enough such that e
trolysis of the electrolyte does not occur. We also assume
the frequency of the applied signal is low enough, i.
v«/s!1, so that the double layer is in quasiequilibriu
@17#. Here,«/s is the charge relaxation time of the liquid
and can be viewed as the time an ion takes to travel
Debye length by diffusion:lD

2 /D5«/s, where D is the
mean diffusion coefficient of the ions. For periods of t
applied signal much greater than the charge relaxation ti
the ions can equilibrate locally. Under these conditions,
bulk electrolyte behaves in a resistive manner and the do
layer can be considered to behave as an ideal capacitor@17#.
Therefore, the electrical potential in the bulk electrolyte s
isfies Laplace’s equation

¹2F50. ~1!

The boundary condition on the electrode surface descr
the charging of the double layer due to the current in
bulk, ]qs /]t52sEy . For sufficiently low voltage, there is
a linear relationship between the surface charge and the
age drop across the double layer. In this case, the sur
charge conservation equation can be written using phaso

FIG. 2. Cross section of the electrode array showing the as
metric pairs of electrodes and a summary of the electrical and
chanical boundary conditions.
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s
]F

]y
5 ivCDL~F2Vj !, ~2!

where CDL is the capacitance per unit of area of the to
double layer~diffuse plus compact or Stern layers!, i is the
imaginary unit,F is the potential just outside the doub
layer, andVj is the potential applied to electrodej. At the
interface between the electrolyte and the glass, a sim
boundary condition holds; however, in this case the bound
condition can be simplified. In the absence of tangential c
rents, the total normal current~free plus displacement! is
continuous,

~s1 i«v!
]F

]y
5~sg1 i«gv!

]Fg

]y
, ~3!

wheresg , «g , andFg are, respectively, the electrical con
ductivity, permittivity, and potential in the glass. Since t
conductivity of the glass is negligible, and since the angu
frequencyv!s/«,s/«g , the boundary condition on th
glass from the liquid side simplifies to

]F

]y
50. ~4!

In defining both the boundary conditions, we have implici
ignored any lateral conduction current along the dou
layer. The tangential ohmic current flux along the dou
layer is negligible because it is of the order oflD / l times the
normal current flux (l is a typical distance of the system!
@13#. Also, any current due to convection in the system h
been neglected. This imposes a limit to the validity of t
velocity solution. In effect, in order to be consistent the s
face chargeqs that is carried by convection at the doub
layer should be much smaller than the charge arriving at
electrodes through the normal current,

qsv
j l

;
qsv
vqsl

5
v
v l

!1,

wherev is the slip velocity of the fluid. For typical values
the ratiov/(v l ) is very small and so the convection curre
can be neglected safely@13#.

The boundary condition aty→` is that the potential
tends to zero. For a bidimensional problem, this is a cor
boundary condition, provided that the total electrical flux
x50 is zero over a wavelength, i.e.,

E
2L/2

L/2 ]F

]y
dx50.

This ensures that the electrical current cannot extend to
finity.

Owing to electrode polarization@17,18#, the electric field
in the bulk electrolyte is frequency dependent. When
frequency is low, most of the applied voltage is dropp
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across the double layer~across the capacitor!. Conversely,
when the frequency is high, most of the applied voltage
dropped across the bulk electrolyte. The typical transit
frequency can be estimated from simple circuit theory to
v;s/(CDLl ) @11#. This surface capacitance can be es
mated from the Debye-Hu¨ckel theory asCDL5«/lD . The
characteristic transition frequency delineating the two
treme conditions isv;(s/«)(lD / l ), which is several or-
ders of magnitude smaller than the charge relaxation
quency s/«. Fluid flow due to ac electro-osmosis
observed in the region of this characteristic frequen
@9,11,12,14#.

Once the electric potential has been solved, the elec
osmotic fluid velocity at the surface of the electrodes can
calculated. For diffuse double layers in quasiequilibrium
perfectly polarizable metal surfaces, the electro-osmotic
velocity is given by the Helmholtz-Smoluchowski formu
@14,19#

u5
«DF

h
Ex . ~5!

Here, h is the viscosity of the fluid,DF5F2F0 is the
potential drop across the diffuse double layer (F0 is the po-
tential at the nonslip plane!, andEx is the tangential electric
field outside the double layer. For our problem, bothDF and
Ex are oscillating functions of time, of frequencyv. There-
fore, the slip velocity has an oscillating component of fr
quency 2v together with a steady-state component.~There
may also be an oscillating component of frequencyv, which
originates from the product of the intrinsic charge and
applied electric field.! Since the observed fluid flow is drive
by the steady-state component@9,12,14#, we ignore the oth-
ers in any further analysis. The time-averaged horizon
fluid velocity at the interface between the double layer a
the bulk is@13,14#

^u&52
«

4h
L

]

]x
@~F2Vj !~F2Vj !* #, ~6!

where * indicates the complex conjugate andL is the ratio
of the diffuse double layer impedance to the total dou
layer impedance, given by

L5
~ ivCd!21

~ ivCDL!21
5

Cd
21

Cd
211Cs

21
5

1

11Cd /Cs
, ~7!

whereCd and Cs are the capacitances of the diffuse lay
and the Stern or compact layer, respectively. The param
L accounts for the fact that only a fraction of the total vo
age present across the double layer is dropped across
diffuse layer. For the glass-electrolyte interface, an estim
of the potential drop across the diffuse double layer sho
that this is negligibly small and, from Eq.~5!, the electro-
osmotic velocity on the glass is negligible@14#. In effect, at
the boundary
2-3
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s
]F

]y
5 ivCDL~F2Fg!5 i«gv

]Fg

]y
, ~8!

taking the second equality, an estimate of the potential d
across the diffuse double layer on the glass is

F2Fg5
«g

CDL

]Fg

]y
;

«glD

« l
Fg , ~9!

which is of the order oflD divided by the typical distance o
the system,l.

To obtain the velocity in the bulk, the Navier-Stoke
equations must be solved. For microsystems, the Reyn
number is usually very small, so that the inertial terms in
Navier-Stokes equations can be neglected. In the ste
state, and in the absence of externally applied body for
the equations reduce to

h¹2u2“p50, “•u50, ~10!

wherep is the pressure andu the velocity,u5uex1vey . The
boundary conditions for these equations aty50 are~a! the
tangential velocity is equal to the slip velocity on the ele
trodes, given by Eq.~6!; ~b! the tangential velocity is zero a
the glass; and~c! the normal velocity is zero for anyx at y
50 ~electrodes and glass!. Far from the electrodes in th
normal direction, the fluid can be considered to be free
stress, where]u/]y50 andv50. Given the periodicity of
the electrode array, we look for periodic solutions in thex
direction. A summary of the electrical and mechanic
boundary conditions is shown in Fig. 2.

If a net fluid flow occurs, the velocity tends tou5Uex for
y→`, whereU is a constant. This boundary condition pr
sumes that the upper boundary of any actual device is v
much higher than the wavelength of the problem. To obt
the velocity profile of the outer region, Eq.~10! has to be
solved withu5Uex as the boundary condition for the lowe
boundary.

Net flow in a periodic array of microelectrodes will occ
if the average value of the slip velocity over a wavelength
nonzero, i.e.,

U5
1

LE2L/2

L/2

u dxÞ0. ~11!

This equality can be proved by solving Eq.~10! in the x
direction using Fourier analysis. The Fourier component
the velocity that produces net flow in the longitudinal dire
tion is the component with zero wave number, the cons
component. The theoretical model presented in Ref.@9# does
not take this into account, and in fact, the model predict
velocity in a direction opposite to that which is observed
practice; from left to right in Fig. 2. Here, we show that b
solving the equations presented in this paper, the predi
direction of the fluid flow coincides with experimental obse
vations.
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B. General analysis of the solution

The pumping velocityU for an array of pairs of asymmet
ric electrodes as shown in Fig. 2 is

U5
1

L S E
x1

x2
u dx1E

x3

x4
u dxD

52
«L

4hL S E
x1

x2 ]

]x
uF2V1u2dx1E

x3

x4 ]

]x
uF2V2u2dxD

52
«L

4hL
~ uF2V1ux2

2 2uF2V1ux1

2 1uF2V2ux4

2

2uF2V2ux3

2 !, ~12!

wherex1 andx2 are the positions of the edges of electrode
and x3 and x4 the positions of the edges of electrode
therefore,x22x15W1 , x32x25G1 , x42x35W2, and x1
1L2x45G2.

According to Eq.~12!, the pumping velocity depends o
the values ofuF2Vj u2 at the electrode edges. Without los
of generality, we can choosex150, so thatx25W1 , x3
5W11G1, andx45W11G11W2. It is convenient to scale
lengths withW2, and potentials with the applied potenti
differenceV05V22V1. The electrical problem depends on
on four independent nondimensional parameters:W̃1

5W1 /W2 , G̃15G1 /W2 , G̃25G2 /W2, and V
5CDLvW2 /s. The parameterV comes from the boundary
condition given by Eq.~2!. The pumping velocity is there
fore

U52
«V0

2

4hL
L~ uF̃2Ṽ1u x̃2

2
2uF̃2Ṽ1u0

21uF̃2Ṽ2u x̃4

2

2uF̃2Ṽ2u x̃3

2
!, ~13!

where variables with tilde are reduced or nondimensio
quantities. This equation shows us that the prod
(hLU)/(«V0

2L) depends only onW̃1 , G̃1 , G̃2, andV. For
a given value of the applied voltage, the maximum value
the productUL as a function of frequency depends onW̃1 ,
G̃1, andG̃2. Therefore, the same value for the maximumUL
is obtained for (W1 ,W2 ,G1 ,G2) and for
(aW1 ,aW2 ,aG1 ,aG2). SinceUL is constant in this trans
formation, the pumping velocity increases as the wavelen
decreases. Greater velocities are obtained if the unit cell
is reduced or, equivalently, if the number of cells per arr
length is increased. In principle, the validity of this result
restricted to the validity of the approximations made in t
derivation, i.e.,lD / l !1, ve/s!1, andu/(v l )!1.

C. Electrical problem

The electrical potential can be numerically solved for t
periodic array using the surface charge simulation met
@20,21#. The method seeks to find charges distributed o
the boundaries that generate the potential solution in the
main of interest. The periodicity of the system can be tak
2-4
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into account by considering the potential generated by
infinite array of parallel source lines. According to Ref.@22#,
the potential due to a uniform grid of source lines of u
value, with spacingL along thex axis at positionsx50,
6L, 62L, 63L, . . . , is

f~x,y!52
1

4pe
ln@sinh2~ky/2!1sin2~kx/2!#, ~14!

wherek52p/L. The potential created by a periodic surfa
charge distribution of periodL placed aty50 is, therefore,

F~x,y!5E
2L/2

L/2

dx8qs~x8!f~x2x8,y!. ~15!

Since the surface charge is related to the normal derivativ
the potential aty501 throughqs /(2e)52]F/]y, we can
write for y.0,

F~x,y!5
1

2pE2L/2

L/2

dx8Fy~x8,0!ln$sinh2~ky/2!

1sin2@k~x2x8!/2#%, ~16!

whereFy(x8,0)5]F/]y at y501. The function

G~x2x8,y!5
1

2p
ln$sinh2~ky/2!1sin2@k~x2x8!/2#%

~17!

is the Green’s function that satisfies¹2G50 for y.0 sub-
jected to the condition]G/]y5(n52`

` d(x2x82nL) at y
501.

Putting y50 in Eq. ~16!, we arrive at the first equation
required for the numerical solution,

F~x,0!5
1

2pE2L/2

L/2

dx8Fy~x8,0!ln$sin2@k~x2x8!/2#%.

~18!

This equation relates the potential aty50 to the normal
derivative aty50, and together with the boundary cond
tion, is the governing equation forFy that has to be solved
numerically.

If, instead of a periodic array, a finite number of ele
trodes is considered, the equation equivalent to Eq.~16! is

F~x,y!5
1

2pE2`

`

dx8Fy~x8!ln@~x2x8!21y2#, ~19!

where the potential solution for a charge line placed ax
5x8, y50 has been used@20,21#.

D. Velocity problem

The Fourier components of the time-averaged veloc
and pressure are
05630
n

t

of

y

u5 (
n52`

`

un~y!eiknx, v5 (
n52`

`

vn~y!eiknx,

p5 (
n52`

`

pn~y!eiknx, ~20!

wherekn5nk52np/L andn is an integer. The Stokes equa
tions @Eq. ~10!# require that

iknun1
]vn

]y
50, ~21!

hS 2kn
2un1

]2un

]y2 D 2 iknpn50, ~22!

hS 2kn
2vn1

]2vn

]y2 D 2
]pn

]y
50, ~23!

and the boundary conditions aty50 andy→` require that

un~0!5
1

LE2L/2

L/2

u~x,0!e2 iknxdx, ~24!

vn~0!50, ~25!

lim
y→`

]un

]y
50, ~26!

lim
y→`

vn~y!50, ~27!

whereu(x,0) is either the slip velocity at the electrodes@Eq.
~6!# or zero at the glass. Combining the Stokes equations
the Fourier components, it can be shown that

S ]2

]y2
2kn

2D 2

un~y!50, ~28!

S ]2

]y2
2kn

2D 2

vn~y!50, ~29!

S ]2

]y2
2kn

2D pn~y!50. ~30!

The solution of these equations that satisfy the bound
conditions is

u5 (
n52`

`

un~0!~12uknuy!e2uknuy1 iknx, ~31!

v52 i (
n52`

`

un~0!knye2uknuy1 iknx, ~32!
2-5
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p52 i2h (
n52`

`

un~0!kne2uknuy1 iknx. ~33!

The only Fourier component of the velocity that create
nonzero net flow@*0

`un(y)dyÞ0# is u0(0)[U @23#. There-
fore, the first objective is to findU for a given electrode
array.

Defining the stream functionC by the pair of derivatives
]C/]y5u and]C/]x52v, we have

C5 (
n52`

`

un~0!yeiknx2uknuy. ~34!

The stream function can be elaborated further by inser
the definition ofun(0),

C5
1

LE2L/2

L/2

dx8u~x8,0!y (
n52`

`

eikn(x2x8)2uknuy. ~35!

The series can be summed by considering that(n51
` r n

5r /(12r ) for ur u,1, and r 65exp@k(6i(x2x8)2y)#. The
result is

C5
1

LE2L/2

L/2

dx8u~x8,0!
y sinh~ky!

cosh~ky!2cos@k~x2x8!#
.

~36!

Following some manipulation

C5E
2L/2

L/2

dx8u~x8,0!y
]G~x2x8,y!

]y
, ~37!

where the functionG was defined in Eq.~17!. Therefore, we
can obtain the stream function for the velocity in the bu
through an integral of the slip velocity previously calculat
multiplied byH(x2x8,y)5y]G/]y. Thus,H is the Green’s
function for the stream function in our problem. A physic
interpretation ofH is that it represents the stream function
an array of velocity source lines with spacingL along thex
axis at positionsx5x81nL. At y50, these velocity source
satisfy

v~x!50,

u~x!5 (
n52`

`

d~x2x82nL!. ~38!

Figure 3 shows a plot of the stream functionH for the case
x850, andL51. Forky@1, H tends toy/L i.e., the stream-
lines are parallel to thex axis. In the neighborhood ofx
5x8, y50, the stream functionH takes the form

H5
1

p

y2

y21~x2x8!2
5

sin2a

p
, ~39!

wherea is the angle in polar coordinates with the origin
x5x8, y50. The streamlines are radial lines in this neig
borhood and the flow is inwards for 0,a,p/2 and out-
05630
a

g

l

-

wards forp/2,a,p. Experimentally,H represents the lim-
iting case for the stream function generated by an array
electrodes where the electro-osmotic slip velocity is o
nonzero in a small region of each pair of electrodes.

III. NUMERICAL ANALYSIS

The starting point is Eq.~18!, which defines the potentia
at y50, F(x,0), as an integral of the normal derivative
the potential aty50 multiplied by the Green’s function. This
equality can be viewed as the potential created by a perio
surface charge distribution placed aty50. In our problem,
both the real and the imaginary parts of the potential sat
Eq. ~18!.

We now apply the boundary conditions given by Eqs.~2!
and ~4! to Eq. ~18! to give

V11
1

iV
Fy~x!5E

x1

x2
g~x2x8!Fy~x8!dx81E

x3

x4
g~x2x8!

3Fy~x8!dx8 for xP~x1 ,x2! ~40!

and

V21
1

iV
Fy~x!5E

x1

x2
g~x2x8!Fy~x8!dx81E

x3

x4
g~x2x8!

3Fy~x8!dx8 for xP~x3 ,x4!, ~41!

where

g~x2x8!5G~x2x8,0!5
1

2p
lnFsin2S p~x2x8!

L D G .
~42!

The unknown parameter is the functionFy(x) over each
electrode.V1 and V2 are not given individually, only the
differenceV0 is fixed. One additional condition is needed
complete the problem, and this is that the current flows fr
one electrode to the other, i.e., the total flux of curre
through the planey50 is zero. These two conditions ar
expressed through the relations

V22V15V0 , ~43!

FIG. 3. Streamlines for an array of velocity source lines.
2-6
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E
x1

x2
Fy~x8!dx81E

x3

x4
Fy~x8!dx850. ~44!

The set of equations~40!, ~41!, ~43!, and ~44! was solved
numerically using the Galerkin method. In order to repres
the functionFy(x) on each electrode, two types of bas
functions were used: the Legendre polynomials and
piecewise constant functions. Both techniques gave v
similar results.

Let us definef 1(x) as the Galerkin approximation to th
normal derivative of the potential for points on electrode
xP(x1 ,x2), and f 2(x) as the approximation to this norma
derivative at electrode 2,xP(x3 ,x4). The functionsf 1 and
f 2 are written as

f 1~x!5(
j 51

N1

C1 jw1 j~x!,

f 2~x!5(
j 51

N2

C2 jw2 j~x!, ~45!

wherew1 j andw2 j are the basic functions.
The equations for the Galerkin approximation are

052E
x1

x2
dxS V11

1

iV
f 1~x! Dw1 j~x!

1E
x1

x2
dxE

x1

x2
dx8g~x2x8! f 1~x8!w1 j~x!

1E
x1

x2
dxE

x3

x4
dx8g~x2x8! f 2~x8!w1 j~x!,

j 51, . . . ,N1 , ~46!

052E
x3

x4
dxS V21

1

iV
f 2~x! Dw2 j~x!

1E
x3

x4
dxE

x1

x2
dx8g~x2x8! f 1~x8!w2 j~x!

1E
x3

x4
dxE

x3

x4
dx8g~x2x8! f 2~x8!w2 j~x!,

j 51, . . . ,N2 . ~47!

This discrete set of equations, together with Eqs.~43! and
~44! represent the complete set of equations required to
fine the unknownsC1 j , C2 j , V1, andV2. In the Appendix,
the technique used to perform the Galerkin integrations
described.

In order to test the numerical solutions and estimate
error of the present numerical results, we compared the
sults with some representative finite-element solutions.
Ref. @24#, the electrical potential generated by an interdi
tated electrode array was numerically calculated using
finite-element method. In these computations, the electro
had a fixed value of the potential. In our problem, the bou
05630
t

e
ry

,

e-

is

e
e-
n
-
e
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ary condition given by Eq.~2! reduces to this whenV goes
to infinity. The electrical potential fory→` is of the form
Ae2ky. A comparison of the values of the constantA ob-
tained in the present work with those from the finite-elem
method shows a discrepancy smaller than 0.15%. These
sults were obtained for a high value ofV usingn518 Leg-
endre polynomials. Therefore, we believe that the results
sented in this paper are correct with an estimated e
smaller than 0.2%.

The numerically calculated values for the velocity we
also compared with numerical results published previou
In Ref. @14#, the slip velocity produced by a pair of symme
ric electrodes was calculated using the finite-elem
method. Figure 4 shows the reduced velocity 4hW2u/«V0

2L
versus the nondimensional frequencyV for different posi-
tions on the electrodes, measured from the edge close to
gap. The electrode widths areW15W25100 mm, and the
gap between them isG1525mm. For the sake of compari
son, the other gapG2 was chosen to be very large,G2
5103W1, for these calculations. The figure shows that t
different methods for calculating the flow velocity agree p
fectly.

IV. RESULTS AND DISCUSSION

In the following section, for the sake of simplicity, re
duced quantities will be used, except where otherwise sta
Lengths are scaled withW2, voltages are scaled withV0, and
velocities are measured in units of («V0

2L)/(4hW2).
Unidirectional fluid flow only occurs if the electrode pa

in the array is asymmetric, and again the flow velocity is
function of frequency. The derivative ofuF2Vu2 with re-
spect tox gives the slip velocity on each electrode. Figure
shows the functionuF2Vu2 for each electrode of a unit cell
where V051, W15G150.3, W25G251, and V54.12.
This is the frequency of maximum velocity for this particul
electrode array. The functionuF2Vu2 is plotted against
x/Wi , the position on the electrode scaled with the electro
width, so thatx/Wi50 is the left edge andx/Wi51 is the
right edge. AlthoughuF2Vu2 is much greater at the narrow
electrode than at the wide electrode, its derivative is n

FIG. 4. Reduced slip velocity 4hW2u/«V2L versus nondimen-
sional frequencyV at several positions on the electrode forW2

5W15100 mm, G1525 mm, G25103W1. Points give numerical
results from Ref.@14#; solid lines give results from this work.
2-7
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According to Eq. ~13!, the difference in the values o
uF2Vu2 at the edges gives the pumping velocity. The n
flow over the narrow electrode is to the left, while the flo
over the wide electrode is to the right. Figure 6 shows
slip velocity u(x) on each electrode of the cell. The sl
velocity is more symmetrical over the narrow electrode,
sulting in a smaller pumping effect than for the wide ele
trode, i.e.,u*x1

x2u dxu,u*x3

x4u dxu. Net fluid flow occurs in the

direction from the narrow electrode to the nearest wide o
i.e., to the right in Fig. 2. This is the direction observed
experiments@9#. Here, we note that the potential differen
uF2Vu is more evenly distributed in the narrow electrod
which reduces the pumping effect of that electrode. The c

FIG. 5. The functionuF2Vu2 on top of the electrodes for th
caseW15G150.3, W25G251, V051, V54.12. Curve 1, nar-
row electrode; curve 2, wide electrode.

FIG. 6. The slip-velocity functionu(x) on top of the electrodes
for the caseW15G150.3, W25G251, V051, V54.12. Curve 1,
narrow electrode; curve 2, wide electrode.
05630
t
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rent that arrives at a narrow electrode should be more ev
distributed than for a wide electrode because this is a wa
reducing the electrical resistance. SinceF2V is propor-
tional to sFy , it follows that at the narrow electrode th
pumping effect is smaller than at the wide electrode. T
model presented by Brownet al. predicts a greater pumpin
effect on the narrow electrode than on the wide one beca
the current distribution between electrodes was assu
rather than solved. This gave a current on the narrow e
trode that was not as evenly distributed as in reality. Figur
shows the streamlines produced by these slip velocity fu
tions over the electrodes. The arrows indicate the directio
the fluid flow. It shows that at sufficient height, the flu
velocity is constant and the streamlines are parallel to thx
axis. For the sake of comparison, Fig. 8 shows the stre
lines for a symmetrical electrode array. It shows that ther
no net flow because the array is symmetric. At the level
the electrodes, the flow direction is from the edges to
center of each electrode as observed experimentally@12,14#.

Figure 9 shows the pumping velocityU as a function of
frequencyV for the asymmetric array withW15G150.3,
W25G251, andV051. The velocity-frequency curve has
bell shape. The maximum occurs atV54.12 and has a value

FIG. 7. Streamlines of the fluid velocity field for the caseW1

5G150.3, W25G251, V051, V54.12.

FIG. 8. Streamlines of the fluid velocity field for the caseW1

5W25G15G251, V051, V510.
2-8
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of U50.0108. Figure 9 also shows the same functionU
5U(V), but with different values of gapG1 between elec-
trodes. AsG1 decreases, the maximum velocity increases
fixed values ofW1 , W2 , G2, andV0.

Figure 10~a! showsU multiplied byL as a function of gap
G2 for G15W150.3, W251, andV55. G2 is the separa-
tion between a pair of electrodes. This figure shows thatUL
has a maximum value for infinite separationG2. WhenG2
5G150.3, the velocity is zero; in this case there is a le
right symmetry and no preferential direction of flow. IfG2
,G1, the velocity changes sign. This should be obvio
since, in this case, the smallest gap is nowG2 and is between
a wide electrode on the left and a narrow electrode on
right. In Fig. 10~b!, the velocityU is plotted as a function o
the separationG2, with other parameters as for Fig. 10~a!. A
maximum in velocity now occurs forG2'1.

Brown et al. @9# presented experimental results showi
how the pumping velocity varied as a function of frequen
and voltage. Their experimental array of interdigitated el
trodes had the following dimensions: electrode widths
W154.2 mm andW2525.7mm, and gaps ofG154.5 mm
and G2515.6mm. The electrolyte had a conductivity ofs
51.2331023 S m21, giving a Debye length of 30 nm. Usin

FIG. 9. Pumping velocityU versus nondimensional frequenc
V for W150.3, W25G251, V051, and different values ofG1.
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nondimensional variables, these parameters can be rewr
as W150.1634,W251, G150.1751,G250.6070, andV0

51. The numerically calculated maximum velocity is the
Umax50.01888, and this occurs at a frequency ofV
56.3973. ForL51 ~no compact layer!, the corresponding
dimensional velocity is Umax5257.6Vrms

2 mm/s, where
Vrms is the rms applied voltage. The experimental val
given by Brownet al. was around 2.7 times smaller,Umax

595Vrms
2 mm/s. An estimation of the surface capacitan

can be made fromCDL5«/lD , and this gives a frequency o
maximum velocity of f 5(1/2p)(s/«)(lD /W2)V52.08
kHz, compared to a measured value of 2.9 kHz at low vo
ages. The existence of a compact layer at the electrode
face would reduce the predicted velocity and increase
predicted frequency. The experimental values are obtaine
the capacitances of the diffuse layer,Cd , and the compact
layer, Cs , are set equal toCd51.9«/lD andCs50.9«/lD .
The calculated streamlines for the electrode array used
Brown et al.are very similar to those of Fig. 7. The rolls th
form on top of the electrodes resemble the sketch of fl
profile given in Ref.@9#.

The numerical solution can be used to determine the
timum values of gap and width for the electrodes used
Brown et al. As discussed previously, reducingG1 causes
the velocity to increase, therefore we have calculated
pumping velocity for fixedG150.1751 andW251. Setting
W1 to 0.1634, an optimum value forG2 is found, which is
shown in Fig. 11~a!. Each point of this figure gives the max
mum velocity as a function of frequency for a givenG2. The
figure shows that the optimum value ofG2 is around 0.7.
However, the maximum is not very pronounced, and
tweenG250.5 andG251.2 the difference is'5% or less.
An alternative approach is to setG2 to 0.607, so that an
optimum value ofW1 can be found. In Fig. 11~b!, the maxi-
mum velocityUmax, calculated as a function of frequenc
for each value ofW1 is plotted againstW1. The optimum
value ofW1 is found to be betweenW150.2 and 0.25. The
FIG. 10. ~a! Pumping velocityU multiplied by wavelengthL versusG2 and ~b! pumping velocityU versusG2. Case:W15G150.3,
W251, V55.
2-9
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FIG. 11. ~a! Maximum pump-
ing velocityUmax as a function of
G2 for W150.1634,G150.1751,
W251. ~b! Maximum pumping
velocity Umax as a function ofW1

for G150.1751, W251, G2

50.6070.
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difference with respect to the peak velocity is less than 8
for values of W1 between 0.15 and 0.35. The value
Umax50.018 88 obtained using the experimental sizes
around 8% from a maximum valueUmax50.0204 obtained
with W150.24 andG250.8.

V. CONCLUSIONS

A theoretical analysis of the electro-osmotic pumpi
generated by an ac electric potential applied to an arra
asymmetric pairs of microelectrodes has been presented
interaction between the oscillating electric field and the
cillating induced charge at the diffuse double layer on
electrodes results in a steady electro-osmotic velocity dis
bution on top of the electrodes. The broken left-right sy
metry of the system produces a nonsymmetric slip velo
distribution that drives a net fluid flow.

The electrical equations have been solved numerically
ing the charge simulation method. The periodic nature of
system has been taken into account in the Green’s func
so that only the unit cell of lengthL has to be considered
The stream function of the bulk flow generated by t
electro-osmotic slip velocity has been calculated.

The fluid flow dependence on voltage and frequency h
been described. Optimum values for the nondimensional
rametersG2 , W1 have been calculated in order to obta
greater pumping velocities. A comparison with the expe
ments reported by Brownet al. has been made and a goo
agreement has been found.
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APPENDIX

The integrations that appear in the method of Galer
using the Legendre polynomials are of the form

E
x1

x2
dxE

x1

x2
dx8 g~x2x8!Pm~x!Pn~x8!

5S x22x1

2 D 2E
21

1

dsE
21

1

ds8g~x2x8!Pm~s!Pn~s8!,
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where x5 1
2 (x22x1)s1 1

2 (x21x1), x85 1
2 (x22x1)s81 1

2 (x2
1x1);

E
x1

x2
dxE

x3

x4
dx8g~x2x8!Pm~x!Pn~x8!

5
~x22x1!~x42x3!

4 E
21

1

dsE
21

1

ds8g~x2x8!

3Pm~s!Pn~s8!,

where x5 1
2 (x22x1)s1 1

2 (x21x1), x85 1
2 (x42x3)s81 1

2 (x4
1x3).

In the first case, the singularity that occurs whens5s8
should be taken into account. In the second case, it is alw
x(s)Þx8(s8) and the integration can be done numerica
without much problem. The singularity ats5s8 is of the
form ln(s2s8)2. We can write

E
21

1 E
21

1

dsds8g~x2x8!Pm~s!Pn~s8!

5E
21

1 E
21

1

dsds8lnS sin2@k~x2x8!/2#

~s2s8!2 D Pm~s!Pn~s8!

1E
21

1 E
21

1

dsds8ln@~s2s8!2#Pm~s!Pn~s8!. ~A1!

The first integral on the right-hand side is done numerica
since the integrand is not singular. The integral with the s
gularity is done analytically. A repeated use of the formu

E
21

1

dt tnlnux2tu5
12xn11

n11
lnu12xu2

~21!n112xn11

n11

3 lnu11xu2 (
k50

n
12~21!n11

~n11!~k11!
xn2k

~A2!

is employed to obtain the value of the integr
*21

1 *21
1 dsds8sm(s8)nln@(s2s8)2#. This together with the co-

efficients of the Legendre polynomials allow us to compu
the required integral*21

1 *21
1 dsds8ln@(s2s8)2#Pm(s)Pn(s8).
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