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Chapter 1

INTRODUCTION

1.1 Background

1.1.1 The Railways in the Netherlands at the Start of the 21st Century

Punctuality and reliability of public (rail) transport are vital components of quality of service

and passenger satisfaction. In the Netherlands, an increasing number of disruptive incidents

in conjunction with an increasingly saturated railway capacity has led to a decline of reliability

and punctuality over the last decade. In contrast to the growing national mobility and increasing

congestion on the Dutch motorways, the railways in the Netherlands hardly attract new passen-

gers. Nevertheless, the railways have a responsibility to significantly contribute to the mobility

of persons to keep the heavily populated and industrialized Randstad — the conurbation in the

western Netherlands — reachable. Reliability and capacity utilization must therefore be im-

proved considerably to accommodate this increase in train traffic volume. The Dutch railway

infrastructure is already one of the most intensely utilized national railway networks in the world

with 50,000 train kilometres per track kilometre per year [163, 179]. On an average working

day 5,000 passenger trains carry 1 million passengers, and additional freight trains carry about

100,000 ton of goods. Freight trains have currently only a small share of 7% of total railway

traffic, but at least a doubling of freight traffic is expected after opening the international railway

market for freight transport in 2008 [149].

Punctuality of railway services depends heavily on reliability of resources (railway infrastruc-

ture, safety and signalling systems, rolling stock, and personnel). Since 1995, the number of

infrastructure malfunctions increased considerably in the Netherlands [78], mainly due to in-

sufficient maintenance. Moreover, rolling stock breakdown and scarcity, as well as distress

amongst train personnel further contributed to a considerable decrease in punctuality. The dis-

astrous leaves on the railway tracks in the autumn of 2001 accumulated to a decline of annual

punctuality (percentage of trains less than 3 minutes late) to below 80%. The annual passenger

kilometres also began to show a negative trend since 2001, after years of growth during the sec-

ond half of the 1990s [148]. Many of these problems can be traced back to the Dutch railway

reform in 1995 [120, 179, 203] conform to the European Directive 91/440/EEC on the devel-

opment of the Community’s railways. In this directive and the subsequent rail infrastructure

package — directives 2001/12/EC, 2001/13/EC and 2001/14/EC — the European Union com-

misioned the decoupling of railway infrastructure ownership from train operators and opening

the national railway markets for competition between train operators [61]. This led to radical

changes in the European railway markets, where national railways used to be organized in state

monopolies.

In the Netherlands, the railway reform suffered from political uncertainty. On January 1, 1995,

the Dutch monopolist NS (Nederlandse Spoorwegen) was separated into several organizations.

1



2 Punctuality of Railway Operations and Timetable Stability Analysis

Management of the Dutch railway infrastructure was transferred to three newly founded task

organizations which were responsible on behalf of the government for maintenance (Railin-

frabeheer), traffic control (Railverkeersleiding), and capacity management (Railned). NS was

furthermore split into several divisions, including the passenger train operator NS Reizigers

(NSR), the freight train operator NS Cargo, and the rolling stock maintenance division Ned-

Train. The freight division was discharged in 1999, after a fusion of NS Cargo and the German

DB Cargo under the name Railion. Furthermore, new train operators were introduced in the

regional passenger markets (NoordNed, Syntus) and especially in the rail freight market (e.g.

ACTS, ShortLines, ERS Railways). During 1996–1999 the Ministry of Transport allowed com-

petition between NSR and the new passenger train operator Lovers Rail for running concur-

rent train services on shared tracks. The experiment drastically failed and was discontinued in

1999 [203]. The new policy of the Ministry of Transport was a concession of all main passen-

ger lines — the core network — to one operator under a performance regime, and tendering of

regional lines by regional transport authorities. In the mean time NS hesitated to invest in new

rolling stock due to the uncertainty of future operation rights. In 2001, NS finally ordered new

passenger coaches which however became only gradually available in 2002 and 2003. As a re-

sult, NSR suffered from a rolling stock shortage for several years, also because of an increasing

passenger volume in 1999–2000. On January 1, 2003, the three task organizations were again

united into the single rail infrastructure manager ProRail. The Ministry of Transport finally

granted NSR a concession for 2003–2015 to operate all passenger train lines on the core Dutch

railway network [203].

In 2003, the Dutch railway sector presented their vision in the report Benutten en Bouwen [149],

including the ambition to achieve a punctuality level of 95% in 2015, with punctuality measured

as the percentage of trains less than 3 minutes late at 32 major stations. However, the highest

measured punctuality up to date was 86.5% in 1999, and a significant increase of traffic inten-

sity is expected for 2015. Hence, such a high performance can only be achieved if the timetable

is robust to regular process time variations and stable to propagation of delays. Obviously, reli-

ability of resources is a strict requirement for punctual railway operations. The Dutch railway

sector therefore gives high priority to the improvement of the current infrastructure condition

and an incentive to preventive maintenance [149]. Still, even on a perfectly reliable infrastruc-

ture and with ditto rolling stock railway traffic will experience variations from hour-to-hour and

day-to-day that prevents the theoretical capacity from being fully used. For example, fluctuat-

ing numbers of passengers boarding and alighting at stations cause variations in station dwell

times or seasonal variations in wheel-rail adhesion due to weather conditions cause variations

in running times.

1.1.2 Railway Operations and Timetable Stability

Train operations are typically exposed to disruptions in train running times and dwell times

which result in primary delays. Moreover, once a train is delayed this may produce severe delay

propagation over the network when trains are highly interconnected. The Netherlands have a

dense railway network that is heavily operated based on an integrated periodic timetable with

highly synchronized train services at transfer stations all over the network. Interdependencies

between train services are generated from passenger connections, headway separation through

the safety and signalling systems, rolling stock connections and circulations, and train crew

transfers. Moreover, an increasing saturation of railway infrastructure capacity increases the
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Figure 1.1 Feedback loops in railway operations

probability of conflicting train paths. A railway timetable must therefore contain sufficient time

supplements and buffer times to be self-regulating with respect to minor daily disruptions and

to grant control space that dispatchers can utilize for managing larger delays, see Figure 1.1.

Feedback of operational data is essential for quantifying the necessary timetable slack and buffer

that guarantees a desired quality of service, see the upper feedback loop in Figure 1.1. The

lower feedback loop concerns larger delays that require intervention by dispatchers, who must

find effective control actions in short-time. Since the timetable must accommodate such (local)

disruptions it must have been tested a priori for recovery times and delay reduction capabilities

to avoid a collapse of the entire timetable structure.

A robust timetable must be able to deal with a certain amount of delay without traffic control

intervention. Timetable robustness therefore determines the effectiveness of schedule adher-

ence after disruptions. Analysis of real-world operations data and train performance enables

structural feedback between operations and timetabling. Evaluating a train network timetable

on stability and robustness is an important part of the timetable design process and typically

requires a computer-aided approach since it is hard to foresee how the system responds to dis-

ruptions due to the many cyclic train interdependencies over the (layered) network structure.

Stability of public transport chains and rail traffic networks is indispensable for managing ser-

vice disruptions and propagation of delays. Nevertheless, sound criteria for rail transport and

traffic network stability are practically nonexistent. The design of a robust timetable for dense

train traffic requires a careful analysis of railway operations to put just enough slack at critical

locations without being excessive. Because of the saturated railway capacity and train intercon-

nections any slightly delayed train may cause a domino effect of secondary delays across the

entire timetable, unless enough buffer time is incorporated to prevent or reduce delay propaga-

tion. On the other hand, excessive use of timetable slack increases travel times and infrastruc-

ture capacity. Moreover, excessive spare time raises the operating costs due to increased train

circulation times and additional train crews and rolling stock.

In this thesis we will exploit the usage of existing empirical data of the railway signalling and

safety system to bridge the gap between planning and realization of the railway timetable. More-
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over we will develop a mathematical model that effectively describes the network structure and

system behaviour, derive transparent stability criteria, and present an implementation of the ap-

proach in a computer application. The proposed methodology quantifies network performance

and identifies the critical services in the railway transport and traffic network, and thus gives

insight in the dynamic system behaviour, which can be utilized for improving timetable designs

and supporting disruption management.

1.2 Setting the Scene

1.2.1 The Railway Timetable

A master timetable is the backbone of scheduled railway systems and determines directly or

indirectly effective railway capacity, traffic performance, quality of transport service, passenger

satisfaction, train circulations, and schedules for railway personnel. As such the timetable con-

cerns many actors including (potential) passengers, (passenger and freight) train operators, train

personnel, dispatchers, traffic controllers, infrastructure maintenance planners, and connecting

public transport providers.

European passenger railways are typically based on a periodic railway timetable, where train

lines are operated with regular intervals throughout a day and consistent transfers are provided

at transfer stations between train lines of different type or directions. The basic cycle time is

typically one hour, which means that the same pattern of train services repeats each hour. Train

lines may have a higher service frequency and still fit the overall timetable cycle time. The line

cycle time is then simply the overall cycle time divided by the line frequency, e.g., a train line

with 4 trains per hour has a regular interval of 15 minutes. A periodic timetable is popular and

effective to transport networks with diffused origin-destination demand matrices, where train

lines are synchronized at transfer stations to offer seamless connections between many different

origins and destinations.

The annual published timetable made available to travellers gives an overview of the planned ar-

rival and departure times of all trains on the railway network for a year ahead and thus presents

the transport service supply to (potential) travellers. Apart from the scheduled departure and

arrival times, this timetable also implicitly provides information on service frequency and thus

flexibility of departure time choice, (planned) travel times, and availability of direct trips or

alternatively the number of transfers and associated transfer time. A main advantage of peri-

odic timetables is that transport chains are fixed throughout the day and travellers only have to

remember the departure time of their (first) train in a basic hour, e.g. ‘departure at 05 and 35

minutes of each hour’. Depending on transport demand the periodic timetable may be made

more (or less) dense by adding (removing) train services in peak (off-peak) periods.

The published timetable is based on a much more detailed working timetable for railway per-

sonnel and traffic management systems. The working timetable specifies for each active train

number on each day:

• Origin and destination station;

• Running tracks and stops, including station routes and platform tracks;

• Scheduled arrival and departure time at each stop;
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• Passage times at certain locations (through stations);

• Timetable speed and sometimes overtaking speed (maximum speed in case of punctual

and delayed running, respectively);

• Passenger connections at transfer stations;

• Rolling stock connections at main stations and terminals.

The working timetable may be adjusted up to the day of operation to include short-term train

path requests, such as freight trains and trains for special events (football match, pop concert).

Moreover, during operation the timetable may be adjusted in real-time by dispatchers and traffic

controllers to react on operational conditions and disruptive incidents in the train traffic system.

Because the annual passenger timetable is published a year in advance it may differ from the

actual daily working timetable.

Conventional railway timetables are in general conflict-free and allocate trains to the available

railway infrastructure in so-called train paths or time-distance graphs. If all trains adhere to their

schedule then the timetable guarantees a safe and smooth train traffic without mutual hindrance

on conflicting routes. Hence, the timetable represents a green wave of signal aspects to all trains

running according to schedule. On conventional railway lines equipped with block signals the

train driver relies completely on the trackside signals and the timetable, and has no information

nor visual clues about the progress of the preceding train due to the large headway distances

imposed by long braking distances and fixed block lengths. If a train is forced to stop at the

open track before a red signal aspect this results in a large time loss as the acceleration time of

a train from standstill to full speed is a matter of one to several minutes depending on train and

track characteristics. In particular freight trains may suffer a time loss of more than 5 minutes

when forced to an unscheduled stop.

The timetable is also the basis for dispatchers or automatic route setting (ARS) systems to set

the routes for each approaching and ready-to-depart train according to the scheduled route and

arrival/departure/through time. Also duty rosters of train crews (drivers, conductors) depend on

the timetable, and so do rolling stock circulations, including shunting at stations, deadheading

(empty running), cleaning at terminals, and periodic maintenance at depots. Hence, in case

of disruptions timetable perturbations may cause wide-spread logistic problems. Train units,

locomotives, coaches, and train crews may be in the wrong place at the wrong time resulting in

altered train compositions and an increasingly distorted rolling stock and crew allocation.

1.2.2 Infrastructure Capacity Utilization and Timetable Performance

The theoretical capacity of railway lines and station layouts is defined as the maximum number

of trains per unit of time that can be run, i.e., the reciprocal of the average minimum headway.

Theoretical capacity is determined by both infrastructure and rolling stock characteristics. In-

frastructure is characterized by the railway layout (single-track, double-track, sidings, junctions,

number of platform tracks), track speed limits (depending on e.g. curves, grades, switches), and

the signalling system (block lengths, number of signalling aspects, train protection). Rolling

stock characteristics of interest are e.g. braking and acceleration capacity, maximum speed,

train composition, and door widths.

Capacity also depends on how the traffic is organized in e.g. a timetable. The effective capacity

of railway infrastructure is therefore defined as the maximal number of trains per unit of time
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Figure 1.2 Time-distance diagrams showing the effect of traffic heterogeneity on effective

capacity

that can be operated given the traffic pattern, operational characteristics or timetable structure.

Effective capacity thus depends on the mix of train services with different characteristics (speed,

stopping pattern, frequency), train sequences and orders, and connections at stations [192, 191].

Effective route capacity is mainly determined by the mix and order of train services — the

traffic heterogeneity — and conflicting train routes at junctions. From a purely operational

perspective the most efficient use of capacity occurs when trains have similar (homogeneous)

performance characteristics, such as metro systems, see Figure 1.2. Effective station capacity

is mainly determined by conflicting train routes and platform dwell times which also depend on

scheduled train connections (transfers, rolling stock connections).

In practice part of the infrastructure capacity must also be reserved for traffic control to manage

disruptions. The percentage of (effective) capacity per time unit is called the capacity utiliza-

tion. In periodic schedules capacity utilization is measured as the ratio of cumulative blocking

time and timetable cycle time (usually one hour).

There is an important distinction between primary and secondary delays. A primary delay is a

schedule deviation caused by some disruption at any location due to variations within a process,

such as restricted acceleration and speed due to low electricity supply, an unusual high number

of boarding passengers, or behaviour of train driver, conductor and dispatcher. Primary delays

are managed by computing reliable process times including margins in running and dwell times.

On the other hand, a secondary delay is a process time extension caused by another train, e.g.

catching up a delayed slow train on an open track or waiting for a delayed feeder train at a

transfer station. Secondary delays are managed by buffer times between pairs of subsequent

train paths to prevent or reduce hindrance and delay propagation.

In the Netherlands, timetable slack is incorporated by increasing a theoretical train running

time by a given percentage — usually 7% — and adding a few minutes of recovery time at key

points on a train route, usually at transfer stations, terminals, or at meeting stations on single-

track routes. The function of these process time margins is twofold: preventing primary delays

and absorbing existing delay. Often also “pathing time” or scheduled waiting time is included in

a train schedule to avoid timing conflicts with other services in the timetable. Although slack is
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important for reliable train operations, and should be retained in some form, it should be limited

to avoid a significant reduction of capacity and speed. A satisfactory level of capacity utilization

depends on the desired level of service quality, defined as a maximum total or average amount

of primary and secondary delay over a given time period.

When the infrastructure manager and train operators together achieve a high standard of opera-

tional performance, timetable slack can be reduced and capacity utilization may be increased by

scheduling additional train paths, increasing operating speed, or providing an improved market

oriented timetable. High capacity utilization thus requires process times with small variance

and scheduled values that are highly reliable corresponding to a high percentile of the realized

process time distributions. However, there must still be sufficient spare capacity in the form of

timetable slack to accommodate a certain lateness of trains and to recover from traffic disrup-

tions.

Persistent poor performance reduces the effective capacity and thus prevents increasing the

quality of service or performing engineering work within tightly designated slots. Punctuality

and reliability are necessary prerequisites for increasing capacity utilization. Operating more

trains on a given infrastructure network reduces the amount of “white space” (eventually unused

train slots) in the timetable, which means less ability to recover from service irregularities and

smaller time windows for engineering work and infrastructure inspection between trains.

1.2.3 Social Relevance

Dispunctuality and unreliability in public (rail) transport has a disastrous effect on passenger

satisfaction. Delayed trains, missed connections and train cancellations are particularly annoy-

ing because they cause unexpected waiting time and introduce travel time uncertainty. Absence

of reliable passenger information magnifies impatience and distress even more. Most vulnerable

are transport chains where travellers have to change trains or transfer between different modes of

transport (e.g. train–bus). A small train delay of a few minutes may cause a missed connection

and thus lead to a large passenger delay of 30 or 60 minutes, depending on the frequency of the

connecting service [173]. When repeatedly confronted with delays, travellers even anticipate on

larger travel times than published and adjust their departure time choice accordingly, especially

when the arrival time at the destination is important, e.g. to attend a business meeting. Thus,

short but unrealistic scheduled running or transfer times lead to large travel time expectations of

travellers, after a transient period of annoying travel experiences [178]. Moreover, unreliability

generates negative word-of-mouth publicity, a deteriorating image of public transport and loss

of public transport travellers.

Reducing passenger waiting time is an effective means to increase the quality of service. Un-

acceptable waiting times lead to a low perception of service and in addition generates negative

word-of-mouth publicity. Whether a waiting time is judged as excessive depends on the dis-

crepancy between perceived waiting time and expected waiting time [146]. Expectation may be

distinguished in a desired/anticipated level and a tolerable level. The desired/anticipated level of

expected waiting time is based on the published timetable and past experience. The timetable

should therefore be a close reflection of the realized services. Nevertheless, passengers are

willing to accept a larger tolerable waiting time expectation in recognition of the uncertainties

involved in railway transport and traffic operations. Waiting may not be a critical issue as long

as the discrepancy between perception and expectation is within an acceptable region. When
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expectations are confirmed, cognitive assimilation occurs and the difference in perception and

expectation is reduced. For moderate levels of discrepancy in either direction, passengers ad-

just their perception of waiting time to be more consistent with their expectation. However,

when the discrepancy is beyond the region of acceptance, the contrast between perception and

expectation magnifies passenger dissatisfaction.

Reliable passenger information helps passengers to set realistic expectations of waiting time

and thus reduces the discrepancy between expected and perceived waiting time. Hence, if

actual waiting time can not be avoided train operators can still reduce passenger dissatisfaction

by providing passenger information on waiting time in case of delays. Although this has little

effect on perceived waiting time it affects judgment on the quality of service indirectly through

acceptability of waiting time [146]. Informed passengers are mentally prepared for the wait and

have control over how to spend the waiting time. This way, passengers are likely to be more

understanding and tolerant to waiting. However, if the information turns out to be unreliable

passenger satisfaction is worsened even more.

1.3 Research Objectives

1.3.1 Ex-Post Traffic Analysis: Punctuality of Railway Operations

The first research objective of this PhD Thesis concerns the ex-post analysis of railway oper-

ations to obtain reliable process times and close the feedback-loop between planning and op-

erations, see Figure 1.3. Ex-post analysis is retrospective and tries to decide what (design and

control) decisions would have been optimal given the information on what actually happened.

The results can then be utilized to improve the consistency of plan and realization.

A crucial aspect in achieving and maintaining reliable timetables is the availability of accurate

empirical data to compare the timetable design and its realization. In the construction of a new

(annual) timetable historical data may be used, but also during operation of a timetable regular

empirical evaluation should be applied to detect and manage discrepancies between plan and

realization. However, the data collection and registration method via the traffic control systems

used by (ProRail) Railverkeersleiding for punctuality analysis reports does not meet scientific

requirements on precision and accuracy. The registered arrival and departure delays are only

indicative with an absolute error up to several minutes, and moreover delays below 3 minutes

are not registered at all1 [46, 80]. A detailed punctuality analysis of train traffic requires data

with an accuracy of several seconds in order to determine small delays and even early arrivals at

a precision of at least a tenth of a minute. This leads to the first research objective of this thesis.

Research Objective 1 Developing a data mining tool to retrieve accurate and re-

liable realizations of train movements from data records of the signalling and safety

system.

A potential source of traffic data is given by train detection devices, which act as sensors of

the safety and signalling systems. This train detection data is utilized by train describers — in

1Situation in 1997
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Figure 1.3 Feedback loops in robust timetable design

the Netherlands known as TNV-systems — to monitor the progress of trains over the railway

network, and one of the functionalities of TNV-systems is to automatically keep a record of all

data traffic with communicating control systems. These TNV-logfiles therefore contain infras-

tructure and train number messages with a precision of one second. However, the infrastructure

messages only give a change in status of a certain infrastructure element, such as a track section

that gets occupied or has just been released. The message does not contain any information on

the train that triggered the state change. Hence, the challenge remained to convert TNV-logfiles

to accurate train data where infrastructure messages are coupled to train numbers.

Main railway stations are served by various train lines of different directions which are syn-

chronized to offer seamless transfer opportunities according to the ‘timed transfer’ philosophy

of periodic network timetables. These stations are therefore a potential source of disruptions

and delay propagations and thus qualify for a detailed statistical analysis of punctuality and

identification of critical train interactions. When accurate train arrival and departure data be-

comes available (Research Objective 1) such an analysis can be performed at a high level of

reliability for the first time. This is the second research objective of this thesis.

Research Objective 2 Performing a detailed punctuality analysis with the empha-

sis on fitting probability distributions of characteristic operations performance in-

dicators and quantifying disruptive train dependencies.

1.3.2 Ex-Ante Traffic Analysis: Railway Timetable Stability

The third research objective is concerned with an ex-ante analysis of candidate railway timeta-

bles. Ex-ante analysis is based on a model of the expected system behaviour, which is used

to improve design decisions before they become operational. The relation between the three

research objectives is visualized in Figure 1.3.

A new timetable or a major (annual) update of an existing timetable should be carefully tested

on stability and delay sensitivity prior to operation to assure good performance in managing
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secondary delays. In fact, a timetable should only be authorized if the planners or inframan-

agers are confident about its robust performance. However, an objective means of performance

evaluation is not yet available other than simulation, which is typically very involved and time

consuming for large networks. Hence, there is a need for an efficient and effective analytical

approach to evaluate network timetables on stability and network performance, which gives the

third research objective of this thesis:

Research Objective 3 Developing an analytical approach to evaluate and quan-

tify critical network dependencies on capacity utilization and timetable stability.

In this thesis we propose an analytical method based on max-plus algebra. Braker [21] and

Subiono [196] showed how the essential network timetable structure can be modelled as a

discrete-event dynamic system that is linear in the max-plus algebra. However, the efficiency of

a railway timetable is typically limited by the railway infrastructure (including signalling sys-

tem), which has a major effect on the train traffic dynamics. We therefore extend the modelling

approach by incorporating infrastructure constraints. Using this model we may then identify

and efficiently compute the most critical circuits — the closed paths in a periodic network with

the least average slack — and the (not necessarily cyclic) paths without any buffer time whatso-

ever, with respect to the scheduled process times, the timetable structure, and the infrastructure

constraints. The underlying idea being that in a highly-synchronized periodic railway timetable

delays initiated at some point in the network are likely to spread throughout the entire network

unless enough time reserves are built in at strategic places. We thus want to find the most

sensitive links in the network, i.e., the train paths containing the least slack to recover from

delays. The max-plus algebra framework enables us to use available and develop new highly

efficient algorithms that compute the critical circuits/paths for large-scale networks within some

seconds.

1.4 Contributions

This thesis contributes to the understanding of railway operations and timetable design aspects

that are important to construct robust timetables for reliable railway operations.

The first research objective led to the development of the software application TNV-Prepare

based on train description messages and messages from the safety and signalling systems as

recorded in TNV-logfiles. TNV-Prepare is able to match the infrastructure messages to train

numbers by which train paths through stations can be traced offline on track-circuit (or section)

level to and from the platform tracks. As a result, station arrival and departure times can be

derived with a precision and accuracy in the order of a second.

• This thesis shows that standard train describer records can be utilized to obtain accurate

data of infrastructure utilization and train punctuality by means of the developed software

TNV-Prepare.
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The developed software TNV-Prepare enabled detailed analyses of train traffic and infrastruc-

ture utilization in railway stations. A punctuality analysis of the railway traffic at station Eind-

hoven has been realized conform the second research objective.

• The tool TNV-Prepare has been applied to train detection data of station Eindhoven. This

allowed an extensive statistical analysis of punctuality revealing a structural increase of

delays due to tight train interdependencies despite long scheduled dwell times.

• Probability distributions of train events and station process times have been derived and

statistically confirmed based on the empirical train detection data.

The third research objective has been realized by extending the modelling and analysis of

railway timetables in max-plus algebra. Moreover, the algorithms described in this thesis

have led to the development of the software application PETER (Performance Evaluation of

Timed Events in Railways). PETER facilitates the accessibility of the max-plus system analy-

sis method to the railway community.

• The modelling of railway timetables in max-plus algebra is generalized and extended with

infrastructure constraints.

• Key performance indicators are defined to assess railway timetables on stability and ro-

bustness.

• Efficient algorithms have been developed that enable fast evaluation of large-scale railway

timetables on stability and effective capacity utilization.

• The understanding of the max-plus modelling and analysis approach is enhanced by mod-

elling a railway traffic system as a timed event graph in conjunction with its max-plus

state-space representation.

Significant theoretical contributions have also been accomplished in the field of max-plus alge-

bra in the following directions.

• Max-plus polynomial matrices are shown to be a key element in the performance analysis

of timed event graphs and higher-order max-plus linear systems.

• The generalized eigenstructure of any irreducible and reducible max-plus polynomial ma-

trix has been completely described.

The findings of this thesis led to the development of several software products, which facilitate

understanding and direct usage in the rail traffic management practice:

• TNV-Prepare c©: this software application enables accurate analysis of infrastructure uti-

lization by matching information from safety & signalling systems to train numbers.

TNV-Prepare may encourage feedback of realization data into the planning practice and

enables an empirical foundation to performance evaluation of railway timetables and ca-

pacity assessment of railway infrastructure.

• TNV-Filter: this MATLAB program computes accurate estimates of arrival and departure

delays at platform tracks in complex railway stations based on tables generated by TNV-

Prepare and additional information on infrastructure section lengths.

• PETER c©: this software application implements the max-plus stability analysis approach

with graphical views of computational results, which includes critical circuit analysis,

recovery time analysis, and delay propagation. A special import functionality makes

PETER compatible with DONS, the timetable design system used at NSR and ProRail.
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Figure 1.4 Thesis outline

The software applications TNV-Prepare and PETER have both been extensively evaluated at

ProRail (Railned) during their development. TNV-Prepare is fully licensed to ProRail since

2001. ProRail also has a license to PETER since the beginning of 2005.

1.5 Thesis Outline

This thesis contains four main parts, see Figure 1.4. Part I is an introduction to the problem

field including the present chapter with a general introduction (Chapter 1). Chapter 2 presents

a concise overview of the hierarchical railway planning process, the railway safety and con-

trol systems in the Netherlands, and a classification of primary and secondary delays. Chap-

ter 3 reviews the calculation methods for the various timetable components (process times) and

presents a literature review of railway timetabling and timetable evaluation.

Part II is concerned with the first main research stream corresponding to research objectives 1

and 2 on the comparison of scheduled process times with their realizations during railway op-
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erations. Chapter 4 shows that the information contained in the logfiles of TNV-systems can

be used to match infrastructure utilization to train numbers, and describes the developed tools

TNV-Prepare and TNV-Filter. In Chapter 5 the application of these tools are demonstrated in a

case study of the railway station Eindhoven. This chapter gives a detailed punctuality analysis

and shows by means of simple linear regression analysis the strong dependencies between train

services with a transfer connection and the impact of the bottleneck Eindhoven-Boxtel before

its upgrade to four tracks.

Part III deals with stability analysis on a network level conform research objective 3. Chapter 6

considers timed event graphs, a special class of Petri nets that provides a graphical modelling

approach for max-plus linear systems. A timed event graph models the interconnection structure

of events (nodes) and processes between events (arcs), and moreover denotes active processes

(e.g. train runs, transferring passengers) by assigning a token to the active processes. The to-

kens move over the graph governed by the occurrence of events, which describes the dynamic

behaviour of the modelled system. Basic building blocks and behavioural properties are pre-

sented that can be used for the synthesis of complex timed event graphs. Chapter 7 introduces

the theory of max-plus algebra and explains the relations to other mathematical disciplines

such as graph theory, Petri nets (timed event graphs), dynamic programming, Markov decision

processes, and the theory of nonnegative matrices, from which efficient algorithms have been

derived to compute characteristics of max-plus matrices and the associated graphs. Chapter 8

explains the principles of max-plus linear system theory and describes the system analysis ap-

proach to large-scale timetabled train traffic systems, as implemented in the developed software

application PETER. The software PETER is briefly described and the analysis capabilities are

demonstrated by a case study of an (hourly) periodic timetable based on the Dutch national

railway timetable of 2000/2001.

Finally, Part IV (Chapter 9) summarizes the main conclusions based on the own research con-

tributions and the recommendations for future practice and research.
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Chapter 2

FUNDAMENTALS OF RAILWAY

OPERATIONS

2.1 Introduction

This chapter gives an overview of passenger railway planning and railway safety and signalling

systems. In particular, we introduce trains lines and connections between train lines which

together with the railway network is important input to the timetabling process. The safety

and signalling systems are also of main importance to derive minimum headway constraints

that must be incorporated in the timetable design to compute a feasible timetable that coor-

dinates the train traffic with respect to train route conflicts and safe train distances. Rolling

stock circulations are another important aspect that must be taken into account in the timetable

design because the various rolling stock types have different characteristics (maximum speed,

acceleration/deceleration rate) that influence the realizability of the running times. Moreover,

(de-)coupling of rolling stock and turns at terminals are also important parameters that influence

minimum layover times and dwell times.

This chapter gives a review of the Dutch railway systems architecture including train detection,

train description, interlocking and traffic control. We emphasize the data flows between the

various safety and control systems and show that all information on infrastructure elements is

collected by the train describer systems (TNV-systems in Dutch) which is used to monitor the

movements of all trains on the network using their train descriptions (train numbers). A crucial

observation is that all infrastructure and train description events are recorded by the Dutch

train describer systems into TNV-logfiles, which will be used in the sequel of this thesis as an

essential data collection device.

We furthermore consider the capacity allocation process in the Netherlands in which the train

path requests of various train operators are coordinated by the infrastructure manager. This

capacity allocation has been initiated in Europe to grant competition between different (freight

and passenger) train operators according to directive 2001/14/EC on railway capacity allocation

of the European Union [60]. These European regulations have led to a drastic change from the

traditional monopolistic state railway companies to privatized train operators.

The outline of this chapter is as follows. Section 2.2 considers the various stages of (passenger)

railway planning, including line system planning (§2.2.3) and railway timetabling (§2.2.4). Sec-

tion 2.3 is concerned with the railway safety, signalling and control systems with an emphasis

on the architecture in the Netherlands. Section 2.4 classifies delays and considers a wide range

of sources of delays.

15
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Figure 2.1 The hierarchical railway planning process

2.2 The Hierarchical Railway Planning Process

Railway planning involves a number of steps from the estimation of transport demand to the

operational control of actual railway operations, see Figure 2.1. Each individual decision prob-

lem is already that complicated that a hierarchical approach must be pursued where in each

step decisions are made that influence the subsequent planning stages [26, 38]. In this process

iterations between several stages may be necessary to resolve capacity problems at some stage

by reconsidering decisions made at an earlier stage. In passenger railways this is typically an

ongoing process where the annual timetable is updated each year with respect to changes in

passenger flows, exploitation of new infrastructure, and allocation of new or refurbished rolling

stock.

The railway planning process typically distinguishes between three levels of different plan-

ning horizons [179]. Strategic planning is concerned with the strategic design of the scheduled

transport network and the long-term capacity management of resources or traffic means to meet

future traffic demand. The resources include sufficient infrastructure capacity, rolling stock

and train personnel to accommodate the expected traffic flows. Typically, strategic decision-

making involves large investments and long planning horizons, such as for instance building

new infrastructure, manufacturing new rolling stock, or hiring and training new personnel. The

strategic planning phase translates travel demand into transport supply (train lines) and provides

(constraints on) the traffic means for allocation to the transport services. Tactical planning is

concerned with capacity allocation of resources (traffic means) to transport services for the inter-

mediate planning horizon. Typical tactical planning problems are the allocation of infrastructure

time-distance slots, rolling stock, and crews to trains. Operational planning is concerned with
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rescheduling during operations in face of unforeseen events, disruptive incidents or accidents.

In this thesis we are mainly concerned with the analysis of timetables, which is part of the tac-

tical planning phase. We therefore assume strategic decisions as given, that is, infrastructure

and train lines are fixed. Furthermore, rolling stock circulations and crew schedules must be

consistent with the timetable and may define additional interdependencies. In the next subsec-

tions we briefly consider the successive railway planning stages with the focus on their impact

to the timetable. For alternative reviews, see e.g. Bussieck et al. [26], Cordeau et al. [38] and

Kroon [124].

2.2.1 Transport Demand

The first step of strategic planning is demand estimation. Forecasting future travel demand is an

econometric problem directed towards the determination of origin-destination (OD) matrices

partitioned by transport mode according to travel choice behaviour [157]. In particular the

modal split between individual car and public transport is of strategic demographical importance

and depends on the available infrastructure and quality of service of public (rail) transport,

which can be influenced by strategic political decisions. Each entry in a (rail transport) OD-

matrix gives (an estimate of) the number of passengers travelling from one station in the railway

network to another. The passenger transport demand in the form of an OD-matrix is the basis of

each following stage in the railway planning process and in particular to the design of network

structure and the train lines.

2.2.2 Railway Network Design

The railway network design problem aims at the determination of railway tracks and stations

given the railway transport and traffic demand. Building new railway infrastructure is very

costly and has a severe environmental, economical, and social impact for many decades. Long-

term infrastructure investments are therefore subject to political debate and based on strategic

studies that estimate future demand for and utilization of railway infrastructure. Railway infras-

tructure issues can also be considered as part of the railway network design, such as electrifica-

tion of railway lines and the choice of safety and signalling systems.

The existing railway infrastructure is a product of historically made strategic decisions. In the

Netherlands the main part of the railway lines originate from the large railway construction

projects at the end of the 19th century [62]. In the late 21th century a number of suburban

railway lines were built, such as the Zoetermeerlijn and the Flevolijn from Weesp to Almere

and Lelystad, and a large number of new suburban stations were opened at existing lines. Also

a number of rural railway lines were closed in the 21th century as they were superseded by road

traffic. Nowadays, railway engineering projects mainly focus on capacity expansions of satu-

rated infrastructure such as upgrading single-track to double-track or double-track to four-track

lines, eliminating crossings by fly-overs and extending station layouts. International develop-

ments have also led to two major recent railway infrastructure projects of the Betuweroute, a

dedicated freight route from the Rotterdam harbour to Germany, and the HSL-Zuid, the high-

speed line from Amsterdam to Belgium [102]. Current network design issues also involve

extending or replacing conventional (heavy) railway lines by light-rail lines.
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Figure 2.2 The Dutch railway network [Source: Network Statement 2003]

Figure 2.2 gives an overview of the national Dutch railway network. Most railway lines are

double-track with occasional four-track lines in the Randstad and recently between Boxtel and

Eindhoven. Single-track lines can be found in rural areas.

2.2.3 Line Systems

A train line is a train service characterized by a route from an origin station to a destination

station, the served intermediate stations along the route, and the service frequency. A train line

is operated by a fleet of trains running typically at a regular interval. A line schedule contains

the running times between the successive stations and the dwell times at the stations. The line

system or line network is an integrated set of lines defined by their characteristics and a set of

connections at transfer stations where lines meet and passengers may change lines.
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A railway network is usually operated by heterogeneous train types serving different transport

markets, such as long-distance trains and regional trains. This leads to a natural decomposition

of the line system into subsystems or supply networks according to train type. Generally, the

subsystems concurrently use the same tracks although some decisive train type features may

rule out certain parts of the railway network, e.g. electric multiple units (EMUs) require electri-

fied tracks and high-speed lines have restrictions on track curvature. Common passenger train

services in Europe are

(i) High-speed trains (HST): international passenger train services connecting major cities at

top speeds over 200 km/h.

(ii) Intercity (IC) trains: long-distance passenger trains connecting the major national stations

only.

(iii) Interregional (IR) trains: intermediate-distance passenger trains connecting major and

large stations,

(iv) Agglo/regional (AR) trains: local passenger trains serving all stations on their route.

The agglo/regional train lines are also called regional (R) train lines.

Passenger demand is usually specified in an origin-destination matrix for the complete train

service network. However, the passenger flows are distributed over the different subsystems.

Oltrogge [20] proposed a procedure for splitting the OD-matrix into separate OD-matrices for

the subsystems, the so-called system split. The method assumes a hierarchy of the subsystems

where the lowest level network has the finest grid of stops served by slow trains (as a result of the

stopping pattern), and the highest level subsystem connects only main stations with high speed.

For example, the three national passenger train subsystems in the Netherlands are arranged as IC

⊂ IR⊂ AR, i.e., the IC stations are a subset of the IR stations and the IR stations are a subset of

the AR stations. An admissible journey is then a transport chain with transfers to a higher level

network near the origin and transfers to a lower level network near the destination. The problem

then reduces to finding the shortest path over a supernetwork consisting of the supply networks

with additional transfer arcs at the stations where passengers may change to another subsystem.

Oltrogge [20] proposed a sophisticated valuation of the travel paths based on travel time, price,

level of comfort, and the number of system changes. Note that at this stage the transfer waiting

times are still unknown since a timetable is not yet available. The valuation differs with trip

purpose (e.g. business, leisure) and accordingly provides an assignment of traffic volume to the

different travel routes. The distribution of passengers over the supernetwork gives the number

of passengers or traffic load for each link in the supply networks. Aggregating over all assigned

routes and all OD-pairs gives the OD-matrix estimates for each subsystem.

Given passenger demand and railway network, the line optimization problem aims at finding

feasible lines (routes and frequencies) satisfying a set of constraints and optimizing some ob-

jective function. Constraints specify e.g. that all travellers are transported, passenger loads do

not exceed train capacities, and track capacities are not exceeded. Typical objectives are max-

imization of the number of direct trips (or minimization of transfers)[20] and minimization of

operating costs [25, 76, 77, 230]. The optimization problem is a mixed-integer programming

(MIP) problem, which is NP-complete. Branch-and-bound and heuristic algorithms have been

developed for solving practical instances of this problem [20, 24, 25, 76, 77, 230].

Based on the approach of Oltrogge [20] the program PROLOP (PROgram for Line OPtimiza-

tion) was developed for the analysis of passenger flows over a line system, which was used in the
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Netherlands by NSR and Railned [45]. PROLOP contains three modules: the line optimization

model, an assignment model, and a comparison model. NSR and Railned used mainly the last

two models to evaluate passenger flows. Input to the assignment model is the railway network,

the train lines, an OD-matrix, and optionally a timetable. The assignment model assigns trav-

ellers to train lines based on a generalized travel time utility function, as described above. The

output includes passenger loads, track load, and passenger flows at stations. The comparison

model evaluates the differences between two line systems. In 2000, NSR and Railned decided

to develop a new program with an improved interface, called TRANS (Toedelen Reizigers Aan

Netwerk Systemen). Nevertheless, the assignment method developed in PROLOP has been pre-

served in TRANS.

2.2.4 Railway Timetabling

Timetabling is the problem of matching the train line system to the available infrastructure, i.e.,

finding for each train line a feasible schedule of arrival and departure times at the consecutive

served stations taking into account constraints with respect to e.g. the safety and signalling

system, transfer connections, and regularity requirements. In this section we consider the main

timetable aspects and the timetabling process within the railway planning process. Section 3.9

gives a review of mathematical approaches of railway timetabling.

The basis of the Dutch railway timetable is a basic hour pattern (BHP)1 over the corridors

and a basic platform occupation (BPO)2 in stations. All train lines operate with a cycle time

of one hour or at regular intervals within a cycle of one hour (e.g. 30 or 15 minutes). Hence,

the arrival and departure times at all stations are essentially the same for each hour over a

day, and moreover the connections and transfer times between train lines at transfer stations

are equal over the day. This periodic timetable implies that travellers can take the same trains

and connections with equal (scheduled) travel times for each period of the day and day of the

week without consulting the timetable, which offers a great quality of service for regular train

travellers. A BHP thus consists of all arrival, departure and through times scheduled in a basic

hour. BHPs are visualized by time-distance diagrams or train path diagrams. In addition, a

BPO shows the dwell times (and arrival and departure times) and through times at the station

platform tracks during a basic hour. BPOs are visualized by platform occupation diagrams.

From a timetabling point-of-view this periodicity imposes additional restrictions to the train

schedules and their synchronization at transfer stations, since the round-trip time of each train

must be a multiple of an hour which bounds the amount of slack and buffer time that can be

built into the line schedule. Moreover, this generally holds for each closed sequence of train

runs (circuits) in the timetable (modulo the cycle time), see e.g. Odijk [154], Goverde [81] and

Peeters [159]. In the Netherlands, the system DONS is used to interactively determine a set

of feasible constraints for which then a network timetable is computed, see e.g. Hooghiem-

stra [101].

A strictly periodic daily timetable can be obtained by concatenating 24 BHPs. However, in

practice traffic demand fluctuates over a day and over the week. In a strictly periodic timetable

this would lead to crowded trains in peak periods and almost empty trains in the off-peak.

1In Dutch: basisuurpatroon (BUP)
2In Dutch: basisspooropstelling (BSO)



Chapter 2. Fundamentals of Railway Operations 21

Hence, a BHP is adapted to different periods, such as extra commuter trains in peak hours

and cutting down some train lines in off-peak hours (e.g. from 60 to 30 minutes). The annual

timetable is thus obtained by connecting variants of a BHP with particular concern for train

circulations. In the short term additional perturbations of the annual timetable may be necessary

due to e.g. maintenance or additional trains for special events (e.g., popular football matches or

concerts). This results in the daily timetable for each day of the year.

The BHP is also used in the capacity allocation of railway infrastructure to various train opera-

tors. For each annual timetable all train operators must submit a formal request for train paths

to the infrastructure manager conform directive 2001/14/EC on railway capacity allocation of

the European Union [60]. In the Netherlands these requests are submitted as a BHP according

to the Dutch annual Network Statements [165]. The BHPs are evaluated by ProRail using pre-

established planning norms [166, Appendix 25] and conflicting train path requests are resolved

with the relevant operators. After approval of the BHP the train operators may design their daily

timetables in accordance to the BHP.

In the Netherlands, the tactical timetabling and capacity allocation process is supported by the

VPT-Planning system. VPT-Planning contains a database of the railway infrastructure and the

characteristics of all used rolling stock, and consists of several subsystems for supporting the de-

sign of BHPs, annual and daily timetables, rolling stock circulations, and crew schedules [164].

During the development of VPT-Planning the Dutch Railways were still the only train opera-

tor in the Netherlands. Nowadays, the VPT-Planning system is available to all train operators

and ProRail but it is still maintained by NSR. ProRail is currently developing a new applica-

tion (PTI) which will replace VPT-Planning. Below we briefly describe the railway capacity

allocation process in the Netherlands.

Railway Capacity Allocation

Train operators must submit their requests for infrastructure capacity to the infrastructure man-

ager ProRail Capacity Allocation nine months in advance of a new operational annual timetable.

The requests must be submitted as a draft timetable in the form of a BHP using the Dutch VPT-

Planning system. Applicants who do not have access to the VPT-Planning system and are not

affiliated to operators having such access can also submit their request via a specification for

a timetable to be designed by the infrastructure manager. Freight train operators may also re-

quest specific freight paths instead of hour patterns, and may even request freight paths in the

short-term, i.e., a few days in advance. For this, freight train paths are reserved in the BHP

(and its elaboration) by the infrastructure manager. Furthermore, the infrastructure manager

also reserves capacity for maintenance work.

ProRail Capacity Allocation takes two months for evaluating the BHPs using pre-established

planning norms [166, Appendix 25], see also Chapter 3. During this evaluation period Pro-

Rail also requests cross-border (passenger and freight) train paths for the international annual

timetable at the meetings of the Forum Train Europe (FTE), the pan-European organisation for

international timetable coordination and harmonization of train paths allocation. After a month

an FTE meeting decides on the international harmonization of requests and thereby establishes

the international timetables. Around seven months before the start of the new timetable ProRail

sends a formal approval to the various train operators with possible alterations to the requested

BHPs conform the international timetable and the resolution of conflicting train paths.
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After submission of the capacity request to ProRail — nine months before the start of the

new timetable — the train operators expand the BHP to standard daily timetables supported

by the subsystem VPT-Jaarplan Dienstregeling (VPT-Year Plan Timetable). In VPT-Jaarplan

Dienstregeling the BHPs are put together to a complete 24 hour timetable with schedules for all

train numbers. The basic structure is adjusted by removing (overlapping) train paths to come

up with basic timetables for each day of the week taking into account e.g. deviating structures

at weekends and restrictions such as bridge openings at special hours. Also standard holiday

timetables are prepared. Special consideration is given to rolling stock circulations which must

be in balance at all stations during the day, i.e., at each station sufficient units are available

for the next period (early morning hours, morning peak, off-peak, evening peak, late evening

hours), see Section 2.2.5.

Seven months before the new annual timetable the train operators receive the formal approval

by ProRail including possible adjustments. This may lead to modifications of the standard daily

timetables and thus also to the assignment of rolling stock. In the next step standard week

timetables can be designed with a rolling stock assignment that is also in balance from day to

day, i.e., at each station the number of starting units at the beginning of the day must be equal

to the number of terminating units of the day before plus the amount already available at the

station, see Section 2.2.5.

Two months before operation of the new annual timetable a standard week timetable must be

available in VPT-Jaarplan Dienstregeling which is in accordance to the approved BHP. This

timetable is then published to the customers (het Spoorboekje).

During the year that a timetable is operational the daily plans may still be modified up to the

day before using the subsystem VPT-Dagplan. During the entire timetable year the successive

daily plans are kept up-to-date conform special circumstances, such as infrastructure unavail-

ability due to scheduled maintenance and running extra trains to accommodate large passenger

volumes at special events (e.g. Queen’s Day, pop concerts, football matches). This is the most

complex part of the timetabling process which requires ad-hoc adjustments of timetable, rolling

stock circulations, and crew schedules. Local shunting movements and duty rosters of train

crews are also subject to last-minute changes in the day plan depending on availability of per-

sonnel, rolling stock, and local infrastructure. The final day plan is sent to VPT-VKL as the

electronic process plan, which then contains the timetable including rolling stock schedules.

The entire railway timetabling and infrastructure coordination process takes about a year from

the design of the BHP to the daily timetables before a new annual timetable becomes opera-

tional.

2.2.5 Rolling Stock Circulations

The rolling stock planning problem assigns rolling stock units to train lines. A train line is gen-

erally operated by one type of rolling stock. However, the train length — measured in number

of carriages — may vary over the line and over a day according to passenger demand. Pas-

senger rolling stock consists of locomotive hauled carriages, electrical multiple units (EMUs)

and diesel multiple units (DMUs). A multiple unit is a train unit of several carriages with a

driving cabin at both ends, see Figure 2.3. A specific type of multiple unit may have differ-

ent subtypes with a different number of carriages, which can again be coupled into larger train

compositions to generate trains of various seating capacity. Multiple unit trains are popular in
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ICM Koploper train unit with 3 carriages

Plan T train unit with 4 carriages

Figure 2.3 Train units for intercity trains (top) and regional trains (bottom)

European passenger railways because of their efficiency in coupling, decoupling, shunting and

turning as compared to locomotive hauled carriages. In the Netherlands, passenger train lines

are nowadays mainly operated by multiple unit trains.

Rolling stock planning takes several stages. The first step is a basic assignment of rolling stock

type to each train line and a feasible allocation of train units to all trains running during a basic

(peak) hour. Abbink et al. [1] describe a binary linear programming problem to compute the

most effective allocation of rolling stock units to trains during a basic hour, where the train

capacities match the passenger demand as well as possible. In particular, the eight o’clock

cross-section is the rolling stock assignment to all trains running between 8:00 and 9:00 in

the morning, which is considered the busiest period of the day and thus requires the maximal

amount of rolling stock [1]. The constraints guarantee e.g. that the number of allocated train

units does not exceed the total available number of units and that the total length of allocated

train units to a train does not exceed the shortest platform along the route.

The next step is to expand the eight o’clock cross-section to all hours of the day and each day

of the week, where train units may be coupled or decoupled at intermediate main stations in

agreement to varying passenger demand on long train lines. The rolling stock assignment must

be in balance on each day, i.e., at each station the number of incoming units, outgoing units

and shunted units are conserved. Next, the rolling stock assignment must also be in balance

across the days for all days in a standard week: on each shunting yard the number of overnight

train units must meet the number of starting units on the next morning. Schrijver [182] showed

that in the special case of one rolling stock type (and subtype) this allocation problem can be

formulated as a min-cost circulation problem, which can be solved efficiently by standard min-

cost circulation algorithms or linear programming. Multiple rolling stock types and/or subtypes

however result in a multi-commodity flow problem, which is an integer programming problem

and takes more effort to solve [4, 65, 160, 182].

2.2.6 Crew Schedules and Rosters

The final stage in planning railway operations is crew planning of both drivers and guards,

which is again an NP-hard problem. The problem is generally decomposed in two stages: crew

scheduling and crew rostering [27]. The crew scheduling problem combines train runs into

duties. Typically, there are multiple depots and each driver and guard belongs to one depot.

A typical constraint in the railway crew scheduling problem is that all crew members start and

end in their home depot. The crew rostering problem combines sequences of duties into rosters

and assigns crew members (drivers and guards) to the rosters. Crew rostering is usually a local

planning problem for each depot. NS Reizigers use the crew planning systems CREWS and

TURNI to compute crew schedules and rosters [125].
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Crew schedules obviously generate dependencies between trains because a crew must be avail-

able before a train can depart. Rosters contain at least two duties (because of a lunch break in

between) and so drivers and guards must transfer from one train unit to another in their duty

roster. To prevent delay propagation, crew transfer times must contain buffer time. It may also

be effective to combine driver/guard pairs into rosters to prevent dependencies from multiple

‘feeder’ trains. For a wide range of practical considerations of railway crew planning in the

Netherlands, see Kroon & Fischetti [125].

2.3 Safety and Signalling Systems

Railways have unique characteristics that result in potential risks: heavy vehicles run at consid-

erable speed over fixed rails while braking capacity is small due to minimal friction between

metal wheels and rails. These characteristics generally prevent that trains can be brought to a

standstill within the distance that can safely be observed by the driver and neither is a driver able

to steer away to avoid conflicts. Therefore, railway networks are equipped with safety systems

for excluding risks of derailments (by e.g. a broken rail, open movable bridge, unlocked switch),

collisions between trains, collisions between trains and road vehicles on level-crossings, and ac-

cidents with maintenance workers.

The main interface between the safety system and the trains are the trackside signals which can

be partitioned into automatic and controlled signals. Train separation on open tracks is guarded

by automatic block systems in conjunction with automatic train protection (in the Netherlands).

Block signals protect block sections and operate completely automatically based on train de-

tection and interlinked signals. Block systems are complemented by train protection systems to

further avoid human errors or failure (of the train driver). Signals also protect routes through

station layouts to avoid head-on, end-on, and flank collisions. These signals are controlled by

dispatchers and the interlocking system. Safety and signalling systems rely on train detection

systems for track occupancy and track-free detection.

The next subsections give a concise overview of the various railway safety and signalling sys-

tems with an emphasis on the current situation in the Netherlands. More background on railway

systems can be found in e.g. Bailey [12], Fenner et al. [63], Hall [92] and Pachl [158]. Van der

Werff et al. [206] give a historical survey of the signalling systems in the Netherlands.

This section subsequently considers the following topics: train detection (§2.3.1), fixed block

systems (§2.3.2), automatic train protection (§2.3.3), train describer systems (§2.3.4), interlock-

ing systems (§2.3.5), dispatching systems (§2.3.6) and traffic control systems (§2.3.7).

2.3.1 Train Detection

In modern railways the presence of a train on a track section is automatically detected by train

detection systems, which act as the sensors to the railway safety and signalling systems. The

most common train detection devices are track circuits and axle counters. More precisely, track

circuits and axle counters are track-free detection systems. This means that they either detect

that
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• the track section is free, ór

• the track is occupied or there is a failure in the detection system.

This design of train detection is based on the fail-safe principle which prevents that a track

section is faulty detected clear.

Safety systems rely on track-free detection systems to prove that a track section is clear before

trains are given permission to enter a route, a switch can be operated, a level-crossing is released,

et cetera. Additionally, these detection devices are used as train passage detection to trigger e.g.

automatic level crossings. Passage detection is also used for non-vital functions such as train

monitoring (train description) and feeding passenger information panels.

The most used train detection device is the track circuit. A track circuit is a track section where

a weak electric current circulates over both rails and a connecting electric wire at the section

ends, which are electrically insulated from its adjacent track circuit. The current is fed into the

track circuit by a power supply at one end while at the other end the current passes through a

relay, which remains energized as long as the track is free. When a railway vehicle enters the

track section the low axle resistance causes a short circuit and diverts the current away from

the track relay which then drops indicating an occupied track. In addition, power breakdown,

a break of the rails or any bridging of the rails by an obstacle also causes loss or diversion of

current and thereby a drop of the track relay. Also track circuits using a single rail exist. Track

circuits have varying lengths ranging in the Netherlands from 25 m to 1200 m (600m for single

rail). The minimum length must exceed the longest distance between two axles to avoid loss-

of-shunt. Track circuits are usually of short length in junction and station areas, and long on

open tracks.

An axle counter is a train detection device that consists of (two) wheel detectors and a counter.

At both ends of a track section a wheel detector is attached to the rail. When a train passes over

a wheel detector each wheel is detected and stored in the counter. At the other end of the track

section the number of passing wheels are also counted and if the two counts agree the section is

assumed to be clear. Axle counters are used on non-electrified railway lines operated by (light)

diesel trainsets. Note that axle counters can not detect track obstructions.

A part of a track that is equipped with a track-free detection system is also called a (track) sec-

tion based on the track circuit terminology. A track is hence divided into sections that represent

the smallest units of train detection. This should not be confused with block sections nor train

number positions which may contain multiple track sections on a train route, see Section 2.3.4.

2.3.2 Fixed Block Signalling

Trains have to be protected against head-tail collisions on railway lines between stations (open

tracks). In modern railways this is mainly realized by Automatic Block Signalling (ABS). The

open track is here partitioned in fixed block sections, which may be occupied by only one train

at a time. Each block section is protected by a signal that gives permission to the driver to enter

the block (proceed aspect), or if the block is occupied by another train then the driver must

stop the train in front of the signal (stop aspect). The name open track refers to the proceed

aspect (green light) shown by all block signals in the absence of running trains, i.e., if a train

enters an open track and no other train is present then the train can run over the open track
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Figure 2.4 Three-aspect fixed block system

unhindered. Block signals are automatic signals operating automatically based on the train

detection devices. In contrast, the starting signal at the entry of an open track and the home

signal at the end of the open track are controlled signals, which are operated by the interlocking

system of the associated stations, see Section 2.3.5.

In the Netherlands, essentially a three-aspect fixed block system is used, see Figure 2.4. This

means that a signal shows one of three aspects: red, yellow or green3. If no trains are present on

an open track, all block signals show a proceed aspect (green light). If a train enters a block this

is detected by track circuits (or axle counters at non-electrified tracks) and the associated block

signal automatically changes to a stop aspect (red light), which instructs a (next) train driver to

stop in front of the signal. Moreover, a warning aspect (yellow light) is shown at the entry of

the preceding block to notify a train driver that the signal ahead is red and s/he must slow down

and prepare to stop. As soon as a block section is detected free and the next signal protects the

train, the block signal displays a proceed aspect again, which is yellow as long as the signal

ahead is at danger (red). This three-aspect signalling system implies that the distance between

any two trains running at unrestricted speed is at least two blocks. If the following train reaches

the leading train at a distance of two blocks it must slow down as indicated by a yellow signal.

Such a system is therefore also called a three-aspect two-block signalling system.

Table 2.1 Speed signalling aspects in the Netherlands (source: IVW [107])

Signal aspect Implication

Green Proceed at the speed indicated by trackside speed signs

Flashing green + speed indicator Proceed at the indicated speed

Flashing green Proceed at 40 km/h

Yellow + flashing speed indicator Reduce speed to the indicated speed and do not interrupt

braking when the next signal indicates a further speed re-

striction (used at blocks shorter than regular)

Yellow + speed indicator Reduce speed to the indicated speed before the next signal

Yellow Reduce speed to 40 km/h and drive on sight while prepar-

ing to stop before a red signal

Flashing yellow Drive on sight at a maximum speed of 40 km/h and prepare

to stop before any obstruction

Red Stop before signal

In the Netherlands, block signals are also employed as a speed signalling system, see Table 2.1.

In speed signalling supplementary speed indicator below the signal shows the permitted speed

in a tenth of km/h, e.g., the numeral 13 means a speed of 130 km/h. A yellow aspect and a

speed indicator 8 implies for instance that the driver must slow down to 80 km/h before the

next signal. Reductions in speed are required to e.g. stop in time for a red signal at short

3In the Netherlands there are no separate distant signals
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blocks, for permanent speed restrictions of line sections (by e.g. track curvature, switch speed

limits at station areas), or for temporary speed restrictions (e.g. maintenance sites). We refer to

Bailey [12] for an overview of the different signalling aspects used throughout Europe.

2.3.3 Automatic Train Protection

Automatic train protection (ATP) systems have been developed to support train drivers and

avoid human errors or failure. ATP shows signal information in the cabin (cab signalling),

checks whether the driver respects the signalling commands, and intervenes when necessary.

In the Netherlands, ATP is used as an additional safety layer above the automatic block system

with trackside (block) signals.

In the Netherlands, the ATB (Automatische Trein Beı̈nvloeding) system is used on all electrified

railway lines [12, 212]. ATB invokes an emergency braking up to standstill when overspeed is

detected without braking activity from the driver within two seconds. ATB supervises five speed

limits (40, 60, 80, 130, and 140 km/h) based on track-to-train transmission through a (pulse)

code in the track circuits generated by the trackside speed signalling system. The on-board ATB

system includes a cab signalling display that shows the allowed speed. However, because of

the limitation in available speed levels, the cab signal may display a higher speed than the local

maximum speed as shown by fixed trackside speed signs and signals. Therefore, the trackside

signalling is still decisive while the cab signalling is only supportive. Audible information is

given when the speed level changes (gong) and when overspeed is detected without braking

activation from the driver (continuous bell). If the brakes are activated the bell signal stops,

and when the speed is sufficiently reduced this is indicated by an intermittent bell signal. ATB

does not work for speeds below 40 km/h; in this case the driver must follow the instructions of

the trackside signals. The 40 km/h speed limit applies when no ATB-code is received. So in

the event of signalling failure and absence of ATB-code, the train driver has to rely on driving

on sight with a 40 km/h speed limit. ATB is a continuous ATP system because of the coded

track circuits, implying that a change in aspect of the next signal is immediately transmitted to

the train. A driver may therefore increase speed as soon as the cab signalling indicates a less

restrictive speed limit. Note that ATB can only be used on electrified tracks with (coded) track

circuits.

ATB-NG (ATB-New Generation) [212] is used in the Netherlands on non-electrified railway

lines and for light trainsets that are not detected well by track circuits. ATB-NG relies on axle

counters for train detection and separate beacons between the rails for data transmission. ATB-

NG applies a speed supervision in steps of 10 km/h and in particular also supervises speeds

below 40 km/h. The information received from a beacon contains the distance to the next signal

(beacon) and the maximum speed allowed at this point. Using additional static information on

the train characteristics the onboard equipment computes a braking curve that must be respected

by the driver. Hence, a train operating with ATB-NG does not have to slow down immediately

when passing a (yellow) warning signal — as in ATB — but according to a train-specific brak-

ing curve. However, ATB-NG is an intermittent ATP system, implying that track-to-train data

transmission only occurs at discrete points on the track. Intermediate aspect changes of the next

signal are therefore only received at the next beacon.

Most Dutch railway lines are equipped with conventional ATB which is nowadays also known

as ATB-EG (ATB-first generation) to distinguish from ATB-NG. ATB-NG is implemented on
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several railway lines in (mostly) the east and north-east of the Netherlands. A few local Dutch

railway lines still have no ATP-system installed [165].

2.3.4 Train Describer Systems (TNV)

Each running train is assigned a unique number by which it is recognized by the control systems

and railway personnel. The train number or train description describes the train line and starting

time: the first part denotes the train line number (characterizing the train type, terminal stations,

route, and served stations) and the last two digits represent a counter for the successive trains

over the day. As an example, consider the regional train line 5600 Utrecht-Zwolle. The first

train departs from Utrecht at 6:02 with train number 5615, the next train departs at 6:32 with

number 5617, et cetera, until the last train of 0:02 with number 5687. The even numbers are

used for the trains in the opposite direction. These numbers are also shown in the published

timetable [152] and the online train travel planner.

A train describer is a system that identifies a train at a particular position and keeps track of

its progress at discrete steps over its route. In the Netherlands, train describers are known as

TNV-systems (Treinnummervolgsystemen). The position of a train number is based on TNV-

windows. A TNV-window is a route between two (not necessarily adjacent) signals. At the

start of a train journey the assigned train number is inserted into the TNV-system at the TNV-

window of the departure platform. This insertion is either done manually by a dispatcher or

automatically (e.g. at line ends). The TNV-window in which a train number is located is called

its train number position or TNV-position. The movement and direction of a train is deduced

from received safety and signalling information of signal controls, switch detection, and track

circuits. The next TNV-position is determined by the set route after the destination signal of the

current TNV-position. A TNV-step of the train number to the next TNV-position is triggered

when the train enters the first associated track section. Hence, the TNV-position of a train

corresponds with the track circuit occupancy but moves in larger steps. See Bailey [12] for

more background on train describers.

The Dutch railway network has been partitioned into 13 TNV traffic control areas, each having

a separate TNV-system. If a train approaches an adjacent traffic control area, its number is

transmitted to the associated TNV-system. When the train enters the next traffic control area

the train number is cleared from the current TNV-system and inserted into the next.

A TNV-system must be continuously aware of the state of all relevant signalling controls and

monitoring information, including track, signal, switch, and route relays. It therefore scans and

records messages received from signalling control systems (EBP and EBS, see §2.3.5), other

TNV-systems, and manual instructions from operators. Based on this information it keeps track

of the TNV-positions of all train numbers in the system, determines TNV-steps, and inserts and

deletes train numbers. Finally, the TNV-system communicates TNV-steps to the corresponding

train traffic control system (VPT-VKL) and passenger information systems (BEPAC). Figure 2.5

shows the data flows between a TNV-system and its control environment.

A TNV-system keeps a real-time record of received inputs and TNV-events. These TNV-logfiles

contain chronological information about all signalling and interlocking events in a traffic control

area. TNV-logfiles thus contain invaluable realization data of railway operations, although quite

inaccessible by their size (about 25 MB ASCII-format per day per TNV-system). Therefore, the
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Figure 2.5 Architecture of the Dutch signalling system

TNV-Prepare application has been developed to recover appropriate events along a train route

from TNV-logfiles, see Chapter 4.

2.3.5 Interlocking

Interlocking systems ensure safe train movements at junctions or station layouts by interlocking

switches and signals to prevent conflicting or not properly set routes. Interlocking systems

essentially consist of vital and non-vital functions, which may either be integrated or separated.

Vital functions must guarantee safety of operations and are based on the fail-safe principle.

These functions include control of switches and prevent simultaneously authorizing conflicting

routes. This part of the interlocking is also called the safety system. Non-vital functions include

the user interface with dispatchers and communication with the safety systems. This part of the

interlocking is also called the control system.

In the Netherlands, the interlocking areas are remotely controlled from one of four centralized

traffic control (CTC) centres. The classic operator interface consists of a control desk or monitor

showing the track layout with push buttons for manual route setting in the appropriate places.

Indication lamps (LEDS) on the control desk or on a separate indication panel are provided

to confirm the various steps in the route setting and locking, and to indicate the passing of

a train through a set route. Routine operations are addressed by a timetable-based automatic

route setting (ARS) program. Manual route setting consists of pushing a sequence of three

buttons (either physical or via a keyboard): first one of several common buttons for respectively

a normal, automatic, or drive-on-sight route, followed by a button at entrance, and third a button

at exit. A route is manually cancelled by pushing a common button followed by pushing the
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entrance button. During the late 1990s the operator interface has been integrated in the VPT-

system, see Section 2.3.6.

After request of a route the interlocking system applies the following three steps:

(i) Route calling: the interlocking system checks the availability of the chosen route. The

availability check typically requires switches on the route in correct position or free to

move, no opposing route called, local control (for shunting) not selected, staff protection

system not in use, and no route already selected from the entrance signal.

(ii) Route setting: when a route is proved available, it is automatically set, that is, switches

move to their required position and are locked.

(iii) Route locking: immediately after the route has been set it is locked. After a proved route

locking the entrance signal is allowed to show a proceed aspect.

If a train does not traverse a set route and a conflicting route is required to be set, the original

route has to be cancelled. To ensure that a route is not released in the face of an approaching

train it is approach locked. In the Netherlands a time delay of two minutes is used during

which a set and locked route can not be cancelled. The approach locking starts immediately

after the entrance signal is cleared. As long as this signal has not yet been cleared the route

can be cancelled without delay. Normally, a route is released by a passing train according to

the sectional-release route-locking principle, which releases the route section by section after

clearance by the rear of the train. A train running over an interlocked route thus generates a

number of signalling steps:

(i) Entrance signal to danger: when the train occupies the first track circuit on the set route.

(ii) Release of approach locking: when the train occupies the first and second track circuit of

the set route.

(iii) Sectional release: the sections of a set route are successively released by track-free de-

tection.

During the passage of a train route holding makes sure that the sections not yet released remain

locked. Switches are released together with the associated section(s).

Three types of modern interlockings are currently operable in the Netherlands. The most ap-

plied configuration is EBP (Elektronische Bedienpost) in combination with NX interlocking

based on B-relays for the vital functions [202]. In EBP the non-vital relay logic is executed by

computers. The second configuration is EBS (Elektronische Beveiliging SIMIS) based on SIMIS

(Sicheres Mikrocomputer Siemens) [202]. EBS is an integrated electronic interlocking system

in which all vital and non-vital functions are executed by computer programs. EBS is consid-

ered fail-safe through a dual hardware structure. Each program is synchronously run on two

independent computers, after which both outputs are compared before further processing. Dif-

ferent output shuts down the process output and disconnects energy supply to the elements. EBS

is able to control large areas. The third configuration is EBP in combination with VPI [202].

Vital Processor Interlocking (VPI) is an electronic safety system in which the vital interlocking

circuits are represented by boolean expressions and logical rules. VPI runs on only one pro-

cessor. The fail-safe principle is obtained by running all functions twice in a main cycle and a

recheck cycle, and using code words including control numbers. VPIs are particularly applied

in smaller station areas.
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In the late 1990s, the dispatching system VPT-PRL (VPT-Procesleiding4) [171, 211] was de-

veloped containing an integrated interface over the existing interlocking systems so that each

workplace is equivalent regardless the underlying interlocking configuration. Indeed, the es-

sential interlocking features are equivalent amongst the different configurations EBP/B-Relays,

EBP/VPI, or EBS. In addition, the electronic interlocking systems VPI and EBS include a pro-

cedure to check the correct working of track circuits, taking care of occasional loss-of-shunt.

The sectional route release is here implemented by proved sequential occupation and subse-

quent clearing of tracks [12, 202].

2.3.6 Dispatching

Vervoer Per Trein (VPT) is the information, communication, and command systems architecture

of the Dutch train traffic planning and control tasks [54, 171]. The development and implemen-

tation of VPT is still an ongoing process that started in 1994. VPT is an integrated interface

over the various train control systems that enables a unified and synchronized planning and

control working environment. It consists of three subsystems: VPT-Planning, VPT-VKL (Traf-

fic Control), and VPT-PRL (Dispatching). Figure 2.5 gives an overview of the VPT systems

architecture.

VPT-Procesleiding (VPT-PRL) is the system concerned with monitoring, dispatching and pas-

senger information used by dispatchers at railway stations. The introduction of VPT-PRL es-

tablished a uniform workplace consisting of a keyboard, mouse and several monitors, which are

used to operate all underlying train control systems, see Figure 2.6. This uniform user-interface

replaced the various screens and display panels of EBS and EBP. VPT-PRL also provides a

uniform interface to the different interlocking systems (EBP/B-Relays, EBP/VPI, EBS). Each

interlocking system communicates with VPT-PRL in the same way (through the interface), by

which each location is capable of running the same software on any possible different configu-

ration [171, 211].

Various functionalities were developed and implemented in VPT-PRL to support dispatchers in

their route setting task. The route process plan contains a database of all possible routes that can

be set over the station layout between an entrance track and an exit track including the scheduled

times that train movements are to take place. A link with the traffic control system VPT-VKL

ensures that the route process plan is kept up-to-date with actual delays and cancelled trains.

The automatic route setting system ARI (Automatische RijwegInstelling) automatically sets all

routes specified in the route process plan. ARI is activated (route calling) at the specified time

in the route process plan for each arriving, departing, through, or shunting train. Routes are

accepted only if several conditions are met: the difference between the actual time and planned

time is less than a number of minutes specified by the dispatcher, the starting track contains

the correct train number, and the sequence indicated by the process plan is maintained on the

destination track (the train sequence on the open track must be respected) [171, 211].

Another feature of VPT-PRL is the Conflict Detection and Decision Support (CD/DS) utility.

Conflict Detection supports the dispatcher by highlighting inconsistencies and conflicts in the

route process plan. Conflicts include broken passenger connections, route conflicts, occupied

4VPT (Vervoer Per Tein) is the Dutch railway systems architecture developed since 1994. In the international

literature the VPT systems are also known as TRACE
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Figure 2.6 Dispatcher workplace in a centralized traffic control centre (VPT-PRL)

platform tracks (a platform can only be used simultaneously if trains are coupled), unavailable

routes (when part of infrastructure is out of service), and broken rolling stock connections.

Decision Support helps a dispatcher to resolve detected conflicts. It computes and proposes

several sets of actions to obtain a feasible route process plan. If the dispatcher selects one of the

recommendations the route process plan is changed accordingly [194].

2.3.7 Traffic Control

VPT-Verkeersleiding (VPT-VKL) is the traffic control system concerned with the daily control

of train traffic within a certain traffic control area. The VKL-systems receive daily the actual

timetable (day plan) of the day after tomorrow from VPT-Planning (VPT-Dagplan). VPT-VKL

supports the traffic controller by maintaining and displaying for any selected corridor time-

distance diagrams of the planned (day) timetable, automatically calculating and displaying train

delays based on information received by TNV-systems, and showing relevant textual messages

that are to be acknowledged [54].

Each TNV-system is linked to a VKL system to which it communicates any change in train

number positions (TNV-positions). Based on the train number and its actual TNV-position the

VKL-system searches the associated event in the actual timetable. VKL then calculates the

deviation from schedule by comparing the receiving time of the train number position message

to the scheduled event time using a correction term for the difference in the TNV-measurement

point (usually at entry or exit signals) and the associated timetable point (platform centre).

The resulting delay message (if any) is shown on the VPT-VKL message display (if it exceeds

a predefined threshold) and transmitted to the relevant local VPT-PRL systems. The traffic

controller must acknowledge any presented delay message. The calculated realization time

(time stamp of train number message and correction time) is also stored in the VKL-database

and sent to other VKL-systems if certain conditions are satisfied, as well as to the VGB database

(Vervoersgegevensbank). The VGB contains the planned and realized arrival, departure and

through times of all trains over the last two years for management information and punctuality

reports.

A monitor displays a table of current train positions with train numbers and delays (if present in

the VKL-database) for any selected corridor, which is updated each minute. Furthermore, a traf-
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fic controller can switch between (scheduled) time-distance diagrams for any route, check the

timetable of any individual train, and modify the timetable. Mutations in the timetable are au-

tomatically transmitted to all involved traffic controllers and dispatchers. The traffic controllers

are responsible for controlling the traffic at incidents (e.g. signal malfunctioning, accidents with

road vehicles at level crossings, and catenary breakdown), which results in mutations to the

timetable. The changes in the actual timetable may also necessitate modifications in train and

crew circulations. Since the split of train operators and traffic control this is the responsibility

of separate transport controllers from the relevant train operators. These transport controllers

are located separately in the traffic control centre and also have access to the VPT-VKL system.

2.4 Train Delays

2.4.1 Primary Delays

Modern railways consist of many interacting processes on a railway network that depend on a

wide range of technical devices such as rolling stock, electrification, and safety installations.

This leads to potential risks of disruptions to the traffic processes by technical malfunctions and

deterioration, e.g. failing moving parts of the infrastructure (switches), damaged door locks,

temporary speed limits due to maintenance work, problematic coupling or decoupling, failing

braking-test, ATP-application, and engine breakdown.

Train running time between stations and dwell time at stations (slightly) varies for each trip de-

pending on a wide range of factors from within the railway system and from exogenous sources.

Internal sources of process time variation are technical malfunctions but also human-related fac-

tors such as nonpaying passengers, delay by catering, and large passenger flows (alighting and

boarding times). In addition the environment presents exogenous sources of randomness like

weather conditions. These sources of random variations are difficult to forecast and form a

fundamental part of the practice of railway operations. Therefore there will always be a certain

amount of trips that exceed a scheduled process time leading to primary delays, although sched-

uled running times and dwell times usually contain some margin or slack time to compensate

for small variations.

Definition 2.4.1 (Primary delay) A primary delay is the deviation from a scheduled process

time caused by disruption within the process.

Table 2.2 gives an overview of disruptions resulting in primary delays.

Other sources of delay are major incidents such as train engine breakdown and damage to the

overhead catenary system, which result in large delays. However, these delays are not structural

and (should) occur only seldom. Trains affected by an uncommon event experience delays that

are clearly not representative to the usual stochastic behaviour. These situations are the subject

of incidence management rather than daily operations practice. From a statistical analysis point

of view these delays are usually identified as outliers.

The fluctuations in technical and environmental conditions, and behaviour of personnel and

travellers make the process times random variables. The main objective of railway traffic man-

agement is to keep variations in the process times as small as possible. Therefore, the planned
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Table 2.2 Sources of primary delays

Infrastructure: Technical Malfunctioning, Maintenance & Construction

Rail network Tracks; Switches; Structures (tunnels, bridges)

Electrification Supply; Catenary

Signalling Signals; Interlocking; Train detection (track circuits, axle counters);

Automatic level crossings

Train Operators

Rolling stock ATB-application; Malfunctioning traction, engine, brakes, running gear, doors;

Personnel Driver and conductor behaviour (experience, routine, discipline, stress, illness)

Logistics Loading/unloading; Catering

Train circulations Shunting; Cleaning; Braking test

Passengers Volume alighting and boarding; Supporting disabled; Aggression;

Nonpaying passengers

Railway Traffic Management

Systems Disposition; Traffic control; Communication; Automatic Route Setting

Personnel Dispatcher behaviour (experience, routine, discipline, stress, illness)

Plan Timetable bottlenecks; Rolling stock scarcity; Crew scarcity

External

Weather Frost; Heat; Wind; Sight; Lightning; Slipperiness (leaves on track)

Vandalism Track obstruction

Environment Incidents at level crossings; Animals on tracks; Trespassers on tracks; Suicides

process times contain margins that allow a high probability of process time adherence. Addi-

tionally, buffer times between train paths prevent or reduce hinder between trains paths.

2.4.2 Secondary Delays

Train running times are also influenced by hinder of other trains via the signalling system such

as a slow train upstream a single track section or a conflicting train movement at a junction or

crossing. This results in so-called secondary delays. Another source of secondary delays is a

scheduled transfer at a station when a connecting train waits for a delayed feeder train.

Definition 2.4.2 (Secondary delay) A secondary delay is the deviation of a scheduled process

time caused by conflicting train paths or waiting for delayed trains.

A conflicting train path may result from a deviation of another train from its scheduled train

path, which occurs both for late and early train. But also a conflict with a scheduled train path

due to a primary delay may cause a further increase of the delay. Table 2.3 gives an overview

of secondary delays.

The distinction between primary and secondary delays is fundamental. Primary delays cannot

always be avoided. On the other hand, secondary delays depend on the interactions on the

railway network and synchronization in the train service network. Secondary delays are a major

problem if the train service network is highly interconnected and served close to its capacity like

in The Netherlands. The occurrence of secondary delays can be reduced by incorporating buffer

times in the railway timetable.
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Table 2.3 Secondary delays

Type Example

Hinder Slow leading train

Conflicting train route

Occupied platform track

Synchronization Transfer connection (waiting for delayed feeder train)

Rolling stock connection (coupling/decoupling, turn)

Crew transfer

Two main classes of secondary delays can be distinguished. First, secondary delay results from

mutual hindering of trains at conflict points. This is a direct consequence of the mutual usage

of track infrastructure by different vehicles and the safety and signalling systems in railway

systems. The mutual hindering of trains can be influenced by headway buffer times in the

timetable. Other solutions are highly expensive and long-term projects: extensions of railway

infrastructure like crossovers, overtaking sections, or doubling of rail tracks at certain routes.

Substitution of the fixed-block safety system for a moving-block safety system also has a large

impact. The minimum headway between trains is then smaller, which decreases restrictions due

to crossings.

The second class of secondary delays arise due to synchronization of trains at (transfer) stations

for logistic or passenger connections. An arrival delay of a feeder train then causes a departure

delay to a connecting train that has to wait to secure the connection. Apart from the timetable,

these delays depend on the line system, crew schedule, and rolling stock circulation. A transfer

connection may be cancelled if an arrival delay is too large. Therefore, a transfer is a flexible or

soft connection. A connecting train may wait for delayed feeder trains to secure the connection.

However, if the delay is too large then the connection is cancelled and the train may depart as

scheduled. The maximum train waiting times are regulated by guidelines (the WRT).

On the other hand there are also hard connections that cannot be cancelled, for instance train

pairs that have to be (de-)coupled at an intermediate or terminal station when coaches change

lines. A hard connection thus means that a train can not depart before the connection is com-

pleted. Another hard connection arises when (part of) the crew of the feeder train has to transfer

to the connecting train. In this case the connecting train can not depart either before (some time

after) the feeder train has arrived. The difference between hard and soft constraints should be

incorporated in the timetable design process by incorporating enough buffer time in the connec-

tion times. Hard constraints are a major cause for delay propagation and can be controlled only

by expensive measures like allocating reserve crew and/or rolling stock at stations.

2.5 Conclusions

This chapter gave an overview of the complicated planning process of passenger railways, the

railway signalling systems which must guarantee safe train traffic, and the inevitable train delays

caused by the complex interaction of human behaviour and technical systems.

Due to the complexity and size of the various subproblems the railway planning process cannot

be solved all at once but is decomposed into a number of hierarchical decision problems that are
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solved sequentially where each stage is based on the decisions made earlier. The hierarchical

approach enables an iterative solution procedure where previous decisions must be adjusted to

find a feasible or optimal solution in a later stage, although each stage typically takes several

months to complete. The railway planning process is however repeated annually by which

solutions of the previous year can be evaluated and reused or improved in the current designs.

The characteristics of railway transport are well-known: the rail-wheel contact allows a minimal

friction between vehicle and track which implies an energy-efficient way of transport. However,

at the same time the braking distances of heavy vehicles running at high speed require a sophis-

ticated safety and signalling system that protects trains from collisions. We have seen examples

of such systems as used in the Netherlands, and in particular saw how trains are automatically

detected and monitored. The train description or TNV-system is an important element in the

railway systems architecture: TNV-systems inform the dispatcher and traffic control systems

on the progress of trains as they run over the network using detailed information received from

safety and signalling systems. Both received and generated information is recorded in real-

time by the TNV-systems into so-called TNV-logfiles. In Chapter 4 we will see how we can

exploit the TNV-logfiles as a reliable and accurate source for analysing the railway traffic and

infrastructure utilization.

Railway traffic relies on both human behaviour and a large amount of technical equipment

such as the infrastructure, rolling stock and control systems, which are all sources of highly

unpredictable fluctuations in performance and more severe disruptions causing primary delays.

In addition, because of the interdependencies in the timetable and shared use of infrastructure,

existing delays may propagate and thus generate secondary delays. In the next chapter we will

see how railway timetables are designed to compensate for delays and reduce or prevent delay

propagation.



Chapter 3

RAILWAY TIMETABLES

3.1 Introduction

The quality of a timetable is in first instance determined by realistic scheduled process times for

the separate processes. In practice, the individual process times will hardly be exactly the same

from hour-to-hour or day-to-day because of variations in internal and environmental conditions.

This is accounted for by the inclusion of some time supplement so that the process time can be

realized with high probability. A scheduled process time typically consists of the following

components:

• a nominal process time for ideal or average traffic conditions;

• a margin to compensate for less favourable traffic conditions; and

• scheduled waiting time to fit the process conflict-free in the timetable.

An example of scheduled waiting time is when the time-distance trajectory of a train run is

slightly bended to fit in between other reserved train paths. Another typical occurrence of

scheduled waiting time is at a station stop when a train is overtaken by a faster train. The

process time margin is usually specified as a fixed percentage of the nominal process time, e.g.,

7%. Obviously, the variation in process time realizations should be reflected in the amount

of applied margin. A timetable contains various traffic processes: running time refers to a

train run from one station to the next, dwell time relates to alighting and boarding passengers,

transfer time corresponds to transferring passengers, etc. The expression minimum process time

is generally used for the sum of the nominal process time and a margin that must be maintained

to guarantee a reliable process time. For instance, a minimum transfer time relates to the amount

of time that is necessary for a large group of passengers to transfer from the feeder train to the

connecting train including e.g. crowding effects at stairways and in pedestrian tunnels on the

route from the arrival to the departure platform, and not to the time needed by a single fast

traveller. The terminology related to running time slightly differs from all other process times:

in this case the minimum running time usually equals the nominal running time whilst the

running time margin can be used to reduce delays.

To reduce delay propagation an additional amount of slack may be provided between two pro-

cesses. This buffer time is not part of the process time but can be used to even out minor delays.

In the case of station dwell time some buffer time may be added before the next train run to

compensate for possible arrival delays. In this case the distinction between dwell time margin

and buffer time is not that clear. Often a scheduled process time is rounded up to minutes so that

the associated events are given in whole minutes. This time supplement may also be interpreted

as either margin or buffer time.

37
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In contrast to scheduled waiting time, buffer time can be used to reduce or avoid propagation

of train delays. The term buffer time is mainly reserved for time gaps between two events,

e.g., between the arrival of transferring passengers at the connecting train and the departure of

this train, or between the release of a crossing by one train and blocking the crossing by the

next train. Thus, buffer time can be seen as idle time between two train paths that prevents

direct hindrance if one of the trains deviates slightly from schedule. In this sense, buffer time

is not an integrated part of a process time but increases the interval time between two events

corresponding to the end and start of two subsequent processes.

This chapter gives a review of the various timetable components and railway timetabling. Sec-

tion 3.2 considers train running time. Section 3.3 deals with blocking times and minimum head-

way between train runs. The next sections consider process times at stations including dwell

time (§3.4), transfer time (§3.5), layover time (§3.6) and synchronization time (§3.7). Buffer

times and scheduled waiting times are explained in Section 3.8. Section 3.9 gives a literature

review of the construction and analysis of railway timetables.

3.2 Running Time

Traditionally, train running times are calculated as the sum of a nominal running time and

a running time margin [115, 180], rounded up to whole minutes [179], see Figure 3.1. The

nominal running time is calculated using a theoretical running time calculation model using

train and track characteristics, see Section 3.2.1. The running time margin is usually given as a

percentage of the nominal running time, see Section 3.2.2.
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+ running time margin
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Scheduled running time [min]

7%

Running time density function

Figure 3.1 Scheduled running time

3.2.1 Running Time Calculations

The nominal running time of a train run is calculated from the principles of train dynamics. The

change of train speed is determined from the force equilibrium equations of the tractive force
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Figure 3.2 Speed profile with coasting regime

and various resistive forces acting on the train during motion [9, 214, 223]. The total resistance

to motion is the sum of several resistance components: the running resistance (rolling resistance

and bearing resistance), air resistance, alignment resistance (curvature resistance and gradient

resistance), and acceleration resistance, and is a function of speed. Tractive effort is the sum of

tractive forces at the driving wheels — the wheels providing traction — and is also a function

of speed (for fixed control settings).

Depending on speed limit and station spacing a train run has generally five regimes: accelera-

tion, speed holding, coasting, braking, and standing, see Figure 3.2. In the acceleration regime

tractive effort exceeds total resistance. This phase starts with maximum tractive effort until the

power limit is reached. Then this maximum (constant) power is maintained until the tractive

effort equals the resistance to motion (for a particular alignment resistance). During this ac-

celeration phase, tractive effort decreases while at the same time the total resistance increases

so that the acceleration force is reduced to zero. In the speed holding phase the speed is held

constant by applying just enough traction to balance resistance. In the coasting regime power

is turned off by which the train gradually decelerates due to the resistance to motion. Finally,

controlled braking brings the train to standstill at the specified stop location. For small station

spacings the maximum speed may not be reached before braking has to be applied, by which

this regime is missing. Also the coasting regime may be excluded in the computation of the

nominal (minimum) running time. However, coasting typically slightly increases running time

at considerable energy savings.

The nominal running time on a track section is obtained by calculating a feasible speed-distance

profile over the open track for given train and track alignment characteristics. The computation

of distance as a function of speed requires numerical integration of
∫

(v/a(v))dv, where accel-

eration a(v) is a nonlinear function of speed given by the force equilibrium equations over the

various regimes and track characteristics. The associated running time as function of distance

is subsequently obtained by numerical integration of
∫

(1/v(s))ds over distance [214, 223].

3.2.2 Running Time Margin

A running time margin is generally added to the nominal running time, which serves several

purposes. First, the running time margin admits slower train speeds conform circumstantial de-

generated track conditions or lower train power than the design characteristics, see Figure 3.3.
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Figure 3.3 Time-distance diagrams demonstrating usage of running time margin: slow train
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Recall that the nominal running time assumes a maximal speed profile in mild weather condi-

tions. In practice conditions may occur that were not accounted for in the running time calcula-

tions. Moreover, conditions fluctuate for individual trains and time periods such as train mass,

electrical current, weather (wet rails, hot rails, frozen joints, short sighting distance), rolling

stock deterioration, rail wear, and driver behaviour. The running time margin hence allows a

‘slower’ speed profile that can be maintained by most trains even in worse conditions.

Second, the running time margin can be utilized as recovery time to reduce or eliminate depar-

ture delays, see Figure 3.3. If a train departs late the driver is supposed to run with maximal

speed to the next station and thus reducing the delay at arrival through an actual running time

that is smaller than scheduled. Departure delays at busy complex stations are quite common

since early departures are prohibited and hence all departures are more or less ’late’. Moreover,

at transfer stations several trains are typically present around the same time to offer transfers. In

the daily presence of arrival delays and extended dwell times conflicting inbound and outbound

routes inevitably result in mutual hindrance and delayed route settings with departure delays as

a consequence.

Third, the larger running time can be utilized for energy-efficient train running by applying

a coasting regime [72, 104], see Figure 3.3. So if the margin is not completely needed for

compensating slower acceleration or lower power, or for delay reduction, it is exploited for

a considerable energy reduction resulting in cost-effective operations. The optimal switching

location/time at which power is turned off depends on speed, delay, and remaining track align-

ment. The more a train is ahead of its schedule the earlier the coasting regime may start, to

arrive exactly on-time with minimal energy consumption. The optimal speed profile can be

computed in real-time by an onboard computer using optimal control theory, see e.g. Howlett

& Pudney [104].

The running time margin is usually a percentage of the nominal running time. The Dutch Rail-

ways NS use a margin of 7% of the nominal running time [180]. The German Railways DB

use margins ranging between 3% to 7% depending on traction type (electric, diesel), number

of carriages, and speed limit [110, 99, 115]. The running time margin is uniformly distributed

over each track section between two stops. In Germany, an exceptional running time margin is

included on top of the standard margin in the annual timetable when large construction works

are planned that inevitably lead to running time losses due to e.g. speed restrictions. These mar-

gins are however not spread evenly over the track sections but added just before large (transfer)

stations [115]. Note that since the timetable is published in advance for an entire year also
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the capacity utilization of large maintenance and construction works has to be incorporated in

advance. In the Netherlands such running time supplements are added only when necessary by

modification of the daily plan.

The total scheduled running time must satisfy some punctuality norm. For instance, NSR es-

tablished for the year 2000 that 89% of the arriving trains at a station should arrive within 3

minutes of the scheduled arrival time. The nominal running time and 7% supplement is thus

tacitly assumed to satisfy this norm, although this has not been justified by empirical data anal-

ysis.

3.3 Blocking times and Minimum Headway

Blocking time is the time interval in which a (block) section is exclusively allocated to a train

and therefore blocked for other trains [95]. The blocking time for a running train is hence the

virtual occupation time of a section and contains the following parts1 (see Figure 3.4):

• the switching time to set up an interlocking route (0 s for automatic block signals and

about 9 s for electronic interlocking),

• the reaction time of a train driver, which is the running time from the minimum sighting

distance (in clear weather) to the approach signal at maximum speed (9 s),

• the approaching time, which is the running time from the approach signal to the main

signal,

• the block running time, which is the running time between the block signals,

• the clearing time, which is the time between reaching the signal at the end of the block

and the clearance of the block by the last train axle (depending on train length),

• the switching time to release the route interlocking (on open tracks this is equivalent to

releasing the block signal at the block entrance).

Note that the approaching and block running time depend on block length and train speed.

Hence blocking time is not necessarily equal for each fixed block on an open track, and the

blocking times increase if a train runs slower than its design speed. Consequently blocking time

is a stochastic variable.

Headway is the time interval between two consecutive trains. Scheduled headway is again

partitioned in a minimum headway and a (headway) buffer time. The minimum headway is the

time interval between two trains that enables the second train to run at unrestricted speed (by

enabling proceed signals all the way).

We say that two routes are conflicting if they can not be used simultaneously. Conflicting routes

occur at merging or crossing routes at junctions or station layouts, but also include opposing

single-track routes, and a mutual route of two trains with different speeds or stopping charac-

teristics where the leading train is slower than the following train.

In general, headway constraints may be classified as follows:

1Generally also a safety margin is included corresponding to an overlap distance behind the signal. The overlap

length ranges between 0 and 200 m for the various European railways [12]. In the Netherlands, overlap is not used

except for movable bridges, so overlap is here generally 0 m.
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Figure 3.4 Blocking time for fixed block signalling

• Arrival-arrival headway between two arriving trains at a junction or on conflicting in-

bound routes at a station.

• Departure-departure headway between departing trains on conflicting outbound routes at

a station or on a mutual open track.

• Arrival-departure headway between an arriving train on an inbound route and a departing

train on a conflicting outbound route.

• Departure-arrival headway between a departing train on an outbound route and an arriv-

ing train on a conflicting inbound route.

In general, the minimum headway is determined by the blocking time of the mutual track sec-

tions and a (possible) running time to the conflicting sections. Hence, the minimum headway

depends on speed, acceleration/braking characteristics, (block) section length, and — for head-

way at stations — the distance between the platform and the conflicting sections.

The minimum headway between trains on inbound and/or outbound routes at a station layout

is the route blocking time of the first train with respect to the last conflicting section. This

blocking time can be measured as the time interval between the route locking time and the

(last) conflicting section release time of the first train, and the additional switching time to set

up the route for the second train. Hence, the realized minimum headways can be determined

using the infrastructure messages as obtained by TNV-Prepare from TNV-logfiles, cf. Chapter 4.

Recall that TNV-Prepare collects the section occupation and clearance times on the inbound and

outbound route of trains, the switch position lockings, and the aspect changes of the station entry

and exit signals.

For fixed block systems the minimum headway between two trains running in sequence over

an open track without overtaking facilities depends on the train speeds and block lengths. The

following theorem is based on Dilli [57], who derived a general minimum headway equation

for two sequential trains based on the running times to the successive blocks on the open track

and their blocking times. Recall from Section 2.3.2 that the blocking time of a block section
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includes the approaching time from the warning signal, which in the Netherlands is just the

previous main signal. In this case, the minimum headway between two consecutive trains is

defined by the following theorem.

Theorem 3.3.1 (Minimum headway on open track) Consider a track between two stations

that is divided into n blocks. Let t
(1)
i and t

(2)
i be the running time of the leading (first) and

following (second) train to the sighting distance before block i, and bi the blocking time of

block i by the first train. Then the minimum headway is given as

hmin = max
i=1,...,n−1

(t
(1)
i − t(2)i + bi+1). (3.1)

If the sighting time is equal for both trains then ti may be defined as just the running time to

block i.

Proof: Let hmin be the time interval between the departures of the first and second train.

Consider any block i. The second train arrives at block i at hmin + t
(2)
i after departure of the

first train. At this time the block must be free for an unhindered train run of the second train.

The blocking time bi+1 is exactly the time difference from the moment that the first train is at

sighting distance before block i to the signal release time after crossing block i and i + 1, see

Figure 3.4. So after the blocking time the signal before block i + 1 shows a yellow aspect and

that before block i shows a green aspect. We must thus have hmin + t
(2)
i ≥ t

(1)
i + bi+1 or after

rewriting

hmin ≥ t
(1)
i − t(2)i + bi+1.

This must hold for any block i and hence the minimum headway is determined by the maxi-

mum over all blocks, which gives (3.1). If both sighting times (running time over the sighting

distance) are equal then the difference is zero and hence the sighting time can be discarded in

the running times to block i. ✷

Feasibility of successive train paths on open tracks with fixed block signalling can be visualized

by blocking time diagrams [158]. A blocking time diagram is a time-distance diagram showing

the blocking times of the successive signals, see Figure 3.5. Theorem 3.3.1 can graphically

be interpreted as shifting the blocking time graph of the second train to that of the first until

it touches the other blocking time graph on at least one block, the critical block. Analogous

blocking time diagrams exits for any (fixed or moving block) signalling system [158].

Blocking time depends on block length but also on train length and speed of the first train. So in

general the critical block in the calculation of the minimum headway — the maximum in (3.1)

— is by no means trivial. As seen in Figure 3.5 the critical block varies depending on the train

order of slow and fast trains. If the first train is faster than the second then the critical running

time difference ∆t = max(t
(1)
i − t(2)i ) < 0. In Figure 3.5 this situation is illustrated by the first

two trains. The first block is critical. The actual headway is increased by additional buffer time

above the minimum headway. If the first train is slower then ∆t > 0. This is illustrated by the

second and third train in the figure. The one but last (the 8st) block is here critical. Note that

the running time difference is a considerable part in the minimum headway. If both trains have

the same speed then ∆t = 0 and the critical block is (or are) the one with largest blocking time.

In the figure the third and fourth train show this situation, where the second block is critical.
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The (headway) buffer time between two consecutive trains is just the scheduled headway mi-

nus the minimum headway, see Figure 3.5. The amount of buffer time (at the critical block)

between two train paths determines how much a train may deviate from its scheduled path be-

fore it hinders the other train. Table 3.1 shows the generic headway norms used by the Dutch

infrastructure manager ProRail in the capacity allocation procedures [215, 166]. These norms

include buffer time.

Table 3.1 Headway norms incl. buffer time (source: [166])

Situation headway (min)

Arrival/departure headway, 1st train passenger train 3

Arrival/departure headway, 1st train freight train 4

Arrival/departure headway, both trains minimum dwell time 4

Headway between two running freight trains 3

Headway at overtaking arriving-through train 2

Headway at overtaking through-departing train 2

Headway at crossing 3

Headway at crossing inbound route close to platform 4

Headway at crossing in station layout far from platform 5
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3.4 Dwell Time

Scheduled dwell time at stations or at stops along the open track can be partitioned into sev-

eral components, see Figure 3.6. The minimum dwell time is the necessary time for passengers

to alight and board the train, and may sometimes also include a coupling or uncoupling time.

The alighting and boarding time depends on train and infrastructure characteristics (number

and width of doors, location of the platform accesses, platform width, level difference between

platform and vehicle floor, gap between platform and vehicle) and passenger flows, and fluc-

tuates over the day, see e.g. Fiedler [64]. In a periodic timetable a train line schedule is fixed

and repeats with a regular interval (e.g. an hour). The scheduled dwell time is therefore also

constant and must be determined carefully. A tight dwell time is a source of delay, whilst large

dwell time means large travel time and high station capacity utilization. The time for opening

the train doors is also included in the minimum dwell time.

Arrival time

Operational departure time

Doors opening time

Doors closing time

Alighting &

boarding time

Reaction time

Timetable departure time

Ready-to-depart time

Minimum dwell time

Dispatching time

Dwell buffer time

Figure 3.6 Dwell time components

The closing time of doors is usually also considered as a part of dwell time since doors are (or

should be) closed while the train is still standing at the platform. However, passengers arriving

on time at the departure platform must be able to get on the train, even if they arrive just be-

fore the published departure time. This presents a discrepancy in the definition of dwell time,

although door closing time only takes a few seconds depending on train type. As shown in Fig-

ure 3.6 we distinguish between the scheduled departure time as communicated to the travellers

and an operational departure time of the working timetable that is used by the railway employ-

ees. The operational dwell time covers the published dwell time but additionally includes a

dispatching time for the departure procedure in which doors are closed and the driver prepares

for departure or waits for permission to depart. Note that although published timetables are

given in minutes, the operational timetable may be more detailed in, say, a tenth of a minute (6

seconds).

In current Dutch practice, minimum dwell time depends on train type, train length (composi-

tion), and station. Table 3.2 gives the minimum dwell time norms for short stops along the open

track or small stations. These values are exclusive time loss due to braking from and acceler-

ation to the design speed. At larger (transfer) stations dwell time depends heavily on traveller

demand. The minimum dwell time is here adapted to local circumstances and is usually 1 or 2
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Table 3.2 Minimum dwell times at short stops (source: [166])

Electric traction Dwell time (min)

SGM II 0.3

Mat 64, SGM III, SM 90 0.5

IRM, DDAR 0.6

Mat 54, ICM, ICR, DDM 0.7

Diesel traction

DE II/III, DH, DM 90 0.5

Table 3.3 Minimum (de)coupling times of Dutch passenger rolling stock (source: [166])

Trainset type Coupling time Decoupling time

(min) (min)

Multiple units 3 2

Locomotive hauled coaches 8 5

min. When rolling stock has to be coupled or decoupled the minimum dwell time is the max-

imum of the passenger and rolling stock process time. The minimum (de)coupling times are

given in Table 3.3. When transfers are scheduled the scheduled dwell time may be increased

by synchronization time, see Section 3.7. The minimum dwell time of freight trains is at least 3

min [151, 215].

3.5 Transfer Time

The minimum transfer time between a feeder train service and a connecting service is the neces-

sary time in which passengers are able to change trains (with high probability). The minimum

transfer time includes alighting time, walking time (including possible orientation), and board-

ing time. It depends on individual walking speed and acquaintance with the station, the relative

position of the arrival and departure platform (cross-platform, two platforms apart, etc.), the ge-

ography of the station (platform lengths, distances between platforms, widths of corridors and

door-ways, presence of escalators, etc.), and the pedestrian flows and densities in the station

and on the platforms. The underlying processes of the (minimum) transfer time are typically

stochastic.

In current Dutch and German practice minimum transfer time is determined by some simple

rules-of-thumb based on the relative platform positions, i.e., 2 min for a cross-platform transfer,

3 min for a transfer between trains at the same platform but at different platform-ends, 4 min

when trains are one platform apart, and 5 min for trains that are two or more platforms apart.

Depending on local station geography the minimum transfer time may differ from these guide-

lines [98, 150]. As a guide to travellers the published timetable booklet (Spoorboekje) [152]

contains the (minimum) transfer times for the most important transfer stations.

Recent developments in pedestrian flow modelling allow accurate estimations of transfer (walk-

ing) times [43, 44]. These models have been developed to evaluate pedestrian behaviour and to

support the design of efficient railway stations. However, the models could (and should) also be

utilized in the estimation of minimum transfer times and the evaluation of timetable designs.
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3.6 Layover Time

Layover time is the time a train spends at a terminal station. The minimum layover time depends

on train type and possible shunting activities. For turning multiple units (EMUs or DMUs) that

continue a train service in the opposite direction with the same driver the minimum layover time

is given by the closing time of the cabin on one end, the walking time over the length of the train,

and a preparation time for departure in the cabin on the other end. The minimum layover time of

locomotive hauled coaches (additionally) depends on possible shunting and coupling activities

of the locomotive and the possibilities of the station layout. Also the train composition may be

rearranged which requires shunting activities. Table 3.4 gives the minimum layover time norms

for various trainsets.

Table 3.4 Minimum layover times of passenger rolling stock (source: [166])

Rolling stock Layover time (min)

Mat 54, Mat 64, SGM 2 + 0.3 C + 0.5 U

ICM, IRM, DDAR 3 + 0.3 C + 1 U

DDM 6 – 7

DE II/III 3 U

DH 1/II 2 U

Locomotive hauled coaches 7 – 12

Note: U = number of units; C = number of cars within a unit

During a stay in terminals trains may also require cleaning, and toilets may be drained and pro-

vided with clean water. These activities are (largely) done in parallel to the technical processes.

The maximum of the parallel terminal processes then determines the minimum layover time.

3.7 Synchronization Time

Scheduled dwell time may be increased further by so-called synchronization time to enable a

transfer. Synchronization is the coordination of the departure of a train to arrivals of other trains

to offer a connection for transferring passengers. Synchronization time is hence the additional

time over the minimum dwell time that is necessary for the synchronization of the train de-

parture to transferring passengers, see Figure 3.7. It is the time interval from the end of the

minimum dwell time to the end of the transfer time relative to the arrival times of the connected

train pair.

Synchronization time may effectively be used to compensate for arrival delays in which case it

acts as dwell buffer time. On the other hand synchronization time may just be additional (dwell)

waiting time if a tight arrival headway links the arrivals of the two connected trains. The effect

of synchronization on performance hence depends on the ability of the synchronization time to

neutralize arrival delays, see Section 3.8.2.



48 Punctuality of Railway Operations and Timetable Stability Analysis

Minimum dwell time Minimum transfer time 1-2

Transfer buffer time 1-2

Minimum dwell time

Dispatching time

Dwell buffer time/synchronization time

Minimum transfer time 2-1

Dispatching time

Transfer buffer time 2-1

Process times train 1 Process times train 2Inter-train process times

Figure 3.7 Process times in a bilateral transfer connection

3.8 Buffer Time versus Scheduled Waiting Time

3.8.1 Buffer Time

Scheduled dwell time may also contain dwell buffer time, which can be used to compensate for

arrival delays and/or variations in alighting/boarding times. In the latter respect dwell buffer

time is an alternative to running time margins. Note however that dwell time is desired as small

as possible from a station capacity point of view. In practice, minimum dwell time is often larger

than necessary (in off-peak hours) and can thus also partly be used to reduce arrival delays. In

fact, there is no clear distinction between (or knowledge of) minimum dwell time and scheduled

dwell time (incl. buffer time). Dwell buffer time can be defined as the difference between the

(deterministic) scheduled dwell time and the (fluctuating) minimum dwell time. Viewed this

way, in peak hours (with heavy traffic) there is in theory only small or no dwell buffer time,

whereas during off-peak hours a larger part of the scheduled dwell time is dwell buffer time.

Transfer buffer time compensates for delayed feeder trains and thus reduces the probability

of missing a connection. Note that even within the punctuality norm (say 89% arrival delay

with a tolerance of 3 minutes), transfer buffer time is necessary to prevent train delays up to 3

min. Moreover, with the above norm 11% of the trains are accepted to be late for more than

3 min. The amount of buffer time should reflect the importance of a transfer, the arrival delay

distribution, and the presence of a bottleneck on the route after the station (by which a departure

delay is highly undesirable). Note that transfer buffer time presents additional slack above the

running time margin of the feeder train to secure connections without dispatching effort. The

amount of transfer time depends on the amount of dwell time and vice versa: if the arrival times

are given, fixing the dwell time of the connecting train inevitably determines the transfer time

from the feeder train. The analogue is valid if transfer time is fixed. If the scheduled transfer

time is too tight and has to be adjusted this also increases the synchronization time and thus also

the dwell time, see Figure 3.7.

The layover buffer time must guarantee stable train circulations in the sense that delays at de-
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parture from a terminal should be minimized. Thus, layover buffer time must secure reliable

layover times as opposed to relying on reserve rolling stock at the terminal. Allocating large

buffer time at terminals is a convenient measure to secure stable train round trips. In contrast

to dwell buffer time and running time margins layover buffer time does not increase passenger

travel times, although of course it increases terminal platform occupation. As a guideline for

stable train circulations NS prescribes a minimum layover time of 5 min for local trains and 20

min for long-distance trains [180]. These values include layover buffer time.

The round trip time of a train must be a multiple of the (train line) cycle time in order to fit the

periodic timetable. The total buffer time in a round trip is therefore given as the amount of time

that has to be added to the sum of all minimum process times (running time, dwell time, layover

time) to gain a multiple of the cycle time. The freedom of allocation of this buffer time over the

round trip depends on synchronization times and scheduled waiting times.

3.8.2 Scheduled Waiting Time

Scheduled waiting time is time loss in the timetable due to infrastructure restrictions. Because

of conflicting train movements running time, dwell time, or transfer time may be forced to be

longer than the minimum process time. This additional time is called scheduled waiting time.

For instance, a transfer time may be forced to be larger than the minimum transfer time due to

minimum headway constraints at arrival and departure. This additional time is called scheduled

transfer waiting time. The minimum transfer time must be respected to allow passengers to

transfer, whilst additional scheduled transfer waiting time is required because of train traffic

constraints.

Scheduled waiting time differs from buffer time in that it can not be used as recovery time

because of headway restrictions. Buffer time increases the operational dwell (or transfer) time

for on-time and early arrivals, but in case of arrival delays the dwell (transfer) time may be

reduced down to the minimum dwell (transfer) time. Hence, dwell (transfer) buffer time is

flexible, whereas on the other hand scheduled waiting time is rigid. This is best explained by

means of an example.

A typical occurrence of synchronization time is at bilateral transfer connections between trains

that share a common (partial) route, see Figure 3.8. In this figure, train 2 arrives first and

is overtaken by train 1 that arrives after a minimum (arrival) headway, stops for a minimum

amount of time, and then departs before train 2. Only then train 2 may depart after a minimum

(departure) headway. Note that if train 2 is late (and the train order is not changed) then also

train 1 arrives late because of the minimum headway restriction. Subsequently, train 1 departs

late and because of the departure minimum headway so does train 2. The dwell time of train 2,

including the synchronization time, is thus rigid and does not contain buffer time.

Headway restrictions are a source for increased delay sensitivity. Figure 3.8 shows a situation in

which the two connected trains are completely tied. Let us consider the comparable situations

in which only the headway restrictions are relaxed (and the arrival and departure times stay

fixed). If the minimum headway restriction at arrival is reduced (by e.g. a different signalling

system) or removed (by e.g. a different platform allocation, four-track route, or a flyover to

prevent conflicting routes) then slack is introduced: (part of) the synchronization time of train

2 is replaced by dwell buffer time and (part of) the scheduled transfer waiting time from train
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Figure 3.8 Scheduled dwell and transfer waiting time

2 to train 1 becomes transfer buffer time. Note that the scheduled transfer waiting time in the

opposite direction (train 1 to 2) does not change. If the minimum departure headway is also

decreased or removed then also (part of) the other scheduled transfer waiting time becomes

transfer buffer time. If both headway restrictions are completely removed then the situation is

reduced to Figure 3.7. If on the other hand only the departure headway is reduced or removed

whilst the arrival headway is still respected then only (part of) the scheduled transfer waiting

time from train 1 to 2 is replaced by transfer buffer time.

3.9 Literature Review of Railway Timetabling

A vast amount of literature is dedicated to railway timetabling [10, 38]. This section gives a

review of the existing literature on the construction and evaluation of passenger railway timeta-

bles, with an emphasis on traffic networks of scheduled train services and thus on interactions

and network dependencies between trains rather than on individual train schedules. We first con-

sider the problem of constructing feasible timetables in Section 3.9.1. Section 3.9.2 deals with

timetable optimization. Section 3.9.3 considers deterministic models for timetable performance

evaluation including methods based on max-plus algebra. Section 3.9.4 considers stochastic

models that can be used for timetable performance analysis. These methods are partitioned

in timetable-independent queueing models (§3.9.4.1) and timetable-dependent stochastic de-

lay propagation models (§3.9.4.2). Section 3.9.5 considers simulation models of network-wide

timetables.

3.9.1 Timetable Feasibility

The construction of a railway timetable has long been an intensive time-consuming and manual

task. With the advance of computer technology, many tedious routine tasks were automated,

such as e.g. running time calculations. However, a completely automatic construction of railway
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timetables is not as easy as it may seem. Scheduling trains involves sequencing of trains on open

tracks and synchronizing trains at stations, which are combinatorial difficult problems. In fact,

train scheduling belongs to the class of NP-complete problems [69], and so are related problems

as line optimization, rolling stock assignment and crew scheduling. Hence, railway planning is

still a computer-aided interactive affair that requires skills of experienced planners.

One of the main challenges in railway timetabling is the resolution of conflicting train paths.

The basic philosophy in railway planning is that a timetable is conflict-free, or feasible, in the

sense that train traffic is unhindered if each train adheres to the timetable. Feasibility of a

timetable is visualized by time-distance diagrams, where the horizontal axis corresponds to a

route of successive stations and the vertical axis corresponds to time (or vice versa). A train path

is then drawn by connecting the scheduled arrival, departure and through times at successive

stations. In this way the slope of a line between two points represents the average speed on

the associated track. The slope of a fast train is less steep than that of a slow train, and a

vertical line represents a stop. Two trains are conflicting if their paths intersect on a single-track

section. Many timetable characteristics are clearly represented by time-distance diagrams, such

as track occupancy, speed differences (different slopes), train intensity (number of trains), and

distribution of scheduled headway at timetable points. Time-distance diagrams are the main

tool in manual and computer-aided timetabling and still in use by planners and dispatchers.

Nowadays, running time calculations and drawing of time-distance diagrams are typically sup-

ported by computer software based on databases of rolling stock characteristics and the railway

infrastructure. An example is the Dutch VPT-Planning system, see Chapter 2. More advanced

computerized timetabling support systems are also able to automatically detect and interactively

resolve conflicts. An example is the system SCAN (SChedule ANalysis) [113] for scheduling

train traffic over single-track rail lines with partial double-track sections where trains can pass

(opposite trains) or overtake.

Time-distance diagrams indicate train paths based on timetable points (junctions and stations)

and scheduled event times (arrival, departure or through times), and as such do not accurately

show the infrastructure occupation times. Hence, buffer times can only be roughly estimated,

and conflicting routes in stations or critical blocks on open tracks may not be identified exactly.

The traditional time-distance diagrams are therefore no longer sufficient to represent the infras-

tructure utilization in dense network timetables, where various rail lines meet at complex station

layouts.

Brünger [23] developed the interactive scheduling system FAKTUS (FAhrplanKonstrukTion

und -UnterSuchung), in which the relation between timetable and infrastructure utilization is

captured by explicitly computing the blocking times of successive block sections at open tracks

and routes in stations. In brief, a blocking time is the time interval that a track section is exclu-

sively reserved for one train [95]. Assuming a fixed block system, the time-distance diagrams

are enhanced by showing the blocking times associated to each train path. The distance axis

now also specifies the trackside signals and route release points, and the blocking times of the

successive sections takes the form of a block step function, cf. Figure 3.5. A conflict is now

clearly visualized by overlapping blocks, which implies that a track section would be occupied

by two trains simultaneously. Hence, in a feasible timetable the time-distance blocks do never

overlap. The minimum headway between two departing or through trains is given by the min-

imum time interval between the two departures so that the block step function of the second

train just touches that of the first train. Any additional time gap at this critical block is buffer
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time. FAKTUS requires a detailed modelling of railway infrastructure, for which a separate

module SPURPLAN was developed by Deutsche Bahn (DB) [23]. In SPURPLAN the railway

infrastructure is modelled as a directed graph with node weights. The modules SPURPLAN

and FAKTUS are integrated in the system RUT (RechnerUnterstütztes Trassenmanagement),

which is now the standard timetable design tool of the German Railways (DB).

Schrijver & Steenbeek [184] use a combinatorial model for the computation of a feasible pe-

riodic timetable. Their feasibility problem is based on the Periodic Event Scheduling Problem

(PESP) introduced by Serafini & Ukovich [188]. PESP is the problem to find a feasible so-

lution to a system of periodic time window constraints. In this model the time differences

between two periodic departure times xi, xj ∈ [0, T ) are constrained by time windows, i.e.,

(xj − xi) mod T ∈ [lij , uij], where T is the period length (usually T = 60). The modulo

operation represents that the periodic (departure) events repeat each T minutes. The modular

constraints can be lifted to mixed-integer constraints by explicitly modelling the modulo oper-

ation as an integer multiple of the cycle time [183, 188]. Then the constraints take the form

xj − xi + zijT ∈ [lij , uij] with zij ∈ Z. Using these integral variables PESP is reformulated

as a mixed-integer programming (MIP) problem. Serafini & Ukovich [188] proved that PESP

is NP-complete, see also Odijk [154] in the context of the timetable feasibility problem. Char-

acteristic to the timetable feasibility problem is the large number of constraints with “wide”

time windows, i.e., [lij, uij] with 0 ≪ uij − lij ≤ T corresponding to minimum headway con-

straints. The constraint propagation algorithm developed in Serafini & Ukovich [188] does not

perform well for these instances. Schrijver & Steenbeek [184] developed an alternative pow-

erful constraint propagation algorithm, called CADANS (Combinatorisch-Algebraı̈sch Dien-

stregelingAlgoritme voor de Nederlandse Spoorwegen), which is capable of computing feasible

timetables (if they exist) for the national Dutch railway network in reasonable time (several

seconds to 15 minutes depending on the constraints). Also several other algorithms have been

developed. Odijk [153] developed a cutting plane algorithm, which was successfully applied to

small instances (large stations). Wezel et al. [225] developed a genetic algorithm for quickly

finding suboptimal solutions.

The performance of CADANS led to the development of the Dutch timetable design system

DONS (Designer Of Network Schedules) by NSR and Railned (ProRail) to support railway

planners in the construction of feasible timetables [101, 102]. The time window model is con-

sistent with the practice of railway planners, who use guidelines for e.g. a minimum dwell time

or transfer time and maximum waiting times that should not be exceeded. In the DONS interface

planners give minimum and maximum values for all process times between train runs, such as

dwell time, transfer time, coupling time, and layover time, as well as minimum (time) headway

between two train arrivals, departures, or through times at conflict points. DONS transforms the

specifications into periodic time window constraints and sends them to the solver CADANS. If

CADANS finds a feasible timetable satisfying all the constraints the timetable is returned as a

list of successive arrival and departure times for all train lines. If on the other hand no feasible

timetable exists then CADANS gives a minimal set of conflicting constraints, which should be

relaxed by the planner before a feasible solution can be found. These conflicting constraints

also indicate bottlenecks in the timetable or infrastructure.

In CADANS complex station layouts are modelled as black boxes. Hence, local feasibility

within station layouts is not taken into account. Therefore, a second module was developed to

check whether the computed network timetable is feasible with respect to local infrastructure.
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Zwaneveld [230] defined the problem of routing trains through a railway station as finding a

feasible (or optimal) assignment of trains to station routes and platforms given the station layout

and the arrival and departure times of trains. Typical constraints include capacity, interlocking

system, and cross-platform connections. Zwaneveld et al. [231] show that this station routing

problem can be modelled as a weighted node packing problem and present a branch-and-cut

algorithm, combined with efficient preprocessing and valid inequalities techniques, that is able

to solve the problem for all Dutch station instances. This algorithm is implemented in the

system STATIONS as part of DONS [230].

3.9.2 Timetable Optimization

An optimal network timetable is a feasible timetable that optimizes some objective function.

Hence, the timetable optimization problem can be seen as an extension to the timetable feasi-

bility problem. Obviously, an optimal solution to the optimization problem is also a solution to

the associated feasibility problem, but the reverse is generally not true. If the feasibility prob-

lem is NP-complete then so is the associated optimization problem. An added difficulty in the

formulation of the optimization problem is the choice of an appropriate objective function. A

typical objective is the minimization of passenger waiting time resulting in short transfer times

at transfer stations.

Weigand [220, 222] considered the problem of minimizing passenger waiting time in periodic

railway timetables. He used a graph-theoretic modelling approach by defining a directed (trans-

port chain) graph from the train line data as follows: a node is defined for each train service

between two (transfer) stations, and an arc between two nodes represents a station stop or pas-

senger transfer. A weight is assigned to each node corresponding to the associated (fixed)

running time, and arc weights correspond to minimum dwell/transfer times, which are inter-

preted as minimum waiting times. The variables are the additional “network caused” waiting

times (buffer times) on the arcs. Weigand observed that in acyclic graphs network caused wait-

ing time does not occur. However, if the graph contains cycles then at least one arc in each

cycle must contain buffer time. The total buffer time on any cycle is determined by a cycle

constraint: in a periodic timetable the oriented sum of running times (node weights), minimum

waiting times (arc weights), and buffer times (variables) on the cycle must be a multiple of the

timetable cycle time. Note that without loss of generality the node weights can be included in

the arc weights, which transforms the transport chain graph to a traditional weighted digraph

with arc weights only [81].

From graph theory it is well-known that a finite graph has a fundamental cycle basis of ν =
m − n + c linear independent cycles, where m is the number of arcs, n the number of nodes,

and c the number of strongly-connected components [16]. Any cycle can be generated by a com-

bination of cycles from this basis, and if each fundamental cycle satisfies the cycle constraint

then any cycle does. Hence, the (minimum) number of constraints on the buffer times in a pe-

riodic timetable is equal to this cyclomatic number ν. The resulting problem is a mixed integer

program (MIP) with m continuous variables (the buffer times) and ν integers corresponding to

the ν cycle constraints. The cost function is a weighted sum of buffer times, where the weights

correspond to passenger volumes. Weigand [220, 222] described a heuristic in which all buffer

time in each fundamental cycle is assigned to the cycle arc with minimal weight. This problem

is equivalent to finding a maximum spanning tree, i.e., a spanning tree that maximizes the sum
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of its arc weights (passenger flows). The arcs of this maximum spanning tree are then assigned

zero buffer time and the nontree arcs get all buffer time. Since this solution is suboptimal, the

algorithm proceeds by successively trying to improve the solution using a simplex method and

exchanging basis variables for nonbasis variables until no more (one-step) improvement can be

obtained. The heuristic performs well for small networks, but the computation time increases

exponentially with the size of the network [220] and also the error relative to the optimal solu-

tion increases with network size [193].

Stemme [193] extended Weigand’s MIP model with maximum waiting times on each arc of the

(transport chain) graph. The cost function is again the weighted sum of buffer times over all

arcs. Stemme also used the arc lower and upper bounds to compute a lower and upper bound

on the integer variable associated to each fundamental cycle. Stemme [193] describes a branch-

and-bound algorithm for solving this MIP problem to optimality. The method is applied to the

Berlin underground network giving the optimal solution in 59 CPU minutes.

Nachtigall [141, 142] formalizes the MIP with cycle constraints and proves that the problem

is NP-complete. A branch-and-bound procedure becomes more effective when inequalities are

added to the constraint system that tighten the feasible (integer) region. Therefore, Nachti-

gall [142] derived two classes of facet-defining valid inequalities and developed two polyno-

mial separation algorithms for generating strong cutting planes. These inequalities can be com-

puted in a pre-processing step and added to the constraint system to tighten the feasible region.

Nachtigall & Voget [143] also developed a genetic algorithm to find suboptimal solutions to the

MIP-problem.

An alternative MIP-formulation is the time window constraint system of PESP and CADANS.

Krista [122, 123] used this constraint formulation including minimum headway constraints as

in CADANS. The linear cost function is the weighted sum of synchronization times (dwell

and transfer waiting times) in the network timetable. The weights are defined as the number

of through (transfer) travellers at the stop (transfer), which are obtained from the traveller as-

signment model PROLOP [20] (cf. Section 2.2.3). Since the passenger flows depend on the

waiting times in the timetable, Krista proposes an iterative method of passenger assignment

and timetable optimization. However, convergence of this iterative approach is not guaran-

teed. Krista uses the commercial optimization software CPLEX to solve the MIP directly.

Lindner [128] combined the PESP formulation of timetable constraints with line optimization

constraints with the objective of minimizing the operational costs. For practical instances from

the railways in the Netherlands (NS) and Germany (DB) the resulting MIP could not be solved

directly by a commercial solver (CPLEX) within a day. Lindner therefore described several

preprocessing techniques, valid inequalities and relaxations, and developed a branch-and-bound

procedure to tackle the problem. In particular, reduction of the number of transfer constraints

is necessary to solve practical instances within a few hours. For instance, the NS-intercity net-

work and the DB-intercity network with 40 transfer constraints could only be solved in about

10 hours.

It is remarkable that the authors using the time window formulation include infrastructure

constraints, whilst in the cycle constraint formulation infraconstraints are neglected. Nachti-

gall [142] proposed to indirectly include PESP-constraints in the problem formulation using

a penalty term in the objective function. However, the MIP problems with cycle constraints

and time window constraints are mathematically equivalent and correspond to different matrix

representations of the same underlying digraph, as shown in Goverde [81]. In the time window
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constraint system the (node) event times are the decision variables and the problem is formu-

lated using the arc-node incidence matrix M ∈ {0,±1}m×n of the digraph as

l ≤Mx+ zT ≤ u, z ∈ Zm,

where x is an n-dimensional vector of (departure) event times associated to the n nodes, l, u are

m-dimensional vectors corresponding to the time-window bounds, and z is an m-dimensional

integral vector. On the other hand, the cycle constraint system is defined in the arc tension

vector y ∈ [l, u] as decision variable and using the cycle-arc incidence matrix (or cycle matrix)

Γ ∈ {0,±1}m−n+c as

Γy + zT = 0, y ∈ [l, u], z ∈ Zm−n+c.

In graph theory the event times x correspond to node potentials and the arc variables y to

potential differences or tensions [174]. For fixed integers the problem relaxes to the optimal

or feasible differential problem, which is a network programming problem solvable in O(n3)
time [174]. Odijk [153] used this relaxation of PESP in a cutting plane algorithm. The equiva-

lence between both formulations imply that solution algorithms and preprocessing approaches

developed for one problem can also be applied to the other. The cycle constraint formulation

contains less integer variables (m versusm−n+c) and is therefore favourable in direct solution

approaches such as branch and bound. Peeters [159] developed an additional class of cutting

planes for the MIP problem and did computational experiments to compare the window formu-

lation and the cycle constraint formulation, which confirmed the latter as the best formulation

from a solution algorithm point of view.

Most authors of the timetable optimization problem used a linear cost function to minimize

the dwell and transfer times in the timetable [122, 136, 141, 193, 222]. This objective gives

optimal timetables with minimal transfer times for high priority connections with large transfer

flows in case of punctual railway operations. However, in case of delays this timetable is far

from optimal: since high priority connections obtain tight transfer times arrival delays result in

either missed connections for large amounts of passengers or in many secondary delays when

trains wait for important connections. Goverde [81] therefore proposed an alternative objective

of a weighted sum of separate convex cost functions of the buffer times. For instance, a cost

measuring the risk of buffer time failure, depending on arrival delay parameters, can be used for

connections where reliability is important to guarantee e.g. stable train circulations. The cost of

a transfer connection is the mean transfer time, which depends on several parameters including

mean arrival delay, frequency, and waiting time regulations. For punctual operation the convex

functions reduce to the usual linear objective of the weighted sum of all buffer times. With

respect to arrival delays, the risk and significance of missing connections are also measured.

The distribution of buffer times in the resulting network timetable reflects the priorities between

the individual buffer time performance costs. The convexity of the cost functions guarantees

that a local optimal solution is also the global optimum. In general, optimization problems

with nonlinear objective functions are harder to solve than linear optimization problems. On

the other hand, the proposed cost functions penalize large buffer times at stops, connections,

and turns, making upper bounds on these buffer times superfluous, which relaxes the feasibility

problem [81].

Vromans [213] developed an interesting two-stage stochastic optimization model that combines

timetable optimization and simulation. The timetable constraints are based on the MIP formu-

lation of the periodic time-window constraints (see §3.9.1) with fixed integer vector (fixed train
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orders), whereas (max,+)-recursive equations (written as linear inequalities) are used to simu-

late the timetable with respect to sampled process times. The method starts with a feasible peri-

odic timetable and aims at optimally redistributing margins and buffer times over the timetable

without changing the essential timetable structure (fixed train orders). In a first step random

disturbances are assigned to the process times representing the process time realizations in con-

secutive timetable simulation periods. The process time realizations are used in the formulation

of a (large-scale) linear programming problem including both the timetable constraints and the

timetable simulation model; the event times are the decision variables and the objective is to

minimize the (weighted) average delay. The solution to the LP problem is an improved peri-

odic timetable that is optimized with respect to the sampled process times. Convergence with

respect to the number of realizations has not been addressed (except for a simple special case).

The model has been applied to a corridor of the Dutch Railways (in one direction).

A related model is the schedule synchronization problem in which the line schedules (running

and dwell times) are fixed. The problem is to determine the optimal departure times of all lines

at their starting station such that the costs of the resulting transfer times at stations where the

lines meet are minimized. This optimization problem can be formulated as a binary integer pro-

gram (BIP) [118] or an integer program (IP) [19]. However, infrastructure constraints can not be

handled trivially in these formulations. Domschke [58] proved that the problem is NP-complete.

Note that this problem can also be modelled using the time window (or PESP) constraints as a

special case with fixed dwell times, which then also allows infrastructure constraints. In fact,

Migom & Valaert [136] already developed a model resembling the time window constraints for

the Belgian intercity network but were unable to solve it. They then fixed all dwell times and

solved the remaining problem of finding the optimal departure times at the starting stations. The

schedule synchronization formulation is mainly applied to road public transport networks (bus

systems).

3.9.3 Deterministic Timetable Performance Evaluation Models

Braker [21] modelled the periodic timetable of the Dutch intercity network as a recursive system

in max-plus algebra and analysed its periodic behaviour by solving an eigenvalue problem in

max-plus algebra. The max-plus model is essentially given by precedence relations between

departure events that model running times, dwell times and transfer times. The variables are

the departure times which depend on preceding departures times and the scheduled departure

times. The model can be described as a linear system in max-plus algebra of the form x(k) =
Ax(k − 1)⊕ d(k), where x(k) and d(k) are vectors of the kth actual and scheduled departure

times, respectively, and A is a matrix of transportation times corresponding to the precedence

relations. The maximum eigenvalue can be interpreted as the minimal cycle time where all

trains depart as early as possible and the associated eigenvector gives the earliest departure

times. A necessary condition for a stable timetable is therefore that the timetable period length

T exceeds the maximum eigenvalue λ, where the difference T − λ is the available slack on a

critical circuit. Van Egmond [207] used the max-plus model to compute the delay propagation

of an initial delay. Subiono [196] extended Braker’s approach to railway timetables of mixed

train types (AR, IR, and IC), see also Olsder et al. [156].

The max-plus models of Braker and Subiono captured the essential interconnection structure of

a periodic railway timetable and enabled the analysis of network performance and delay propa-

gation over train synchronizations due to passenger transfers and logistic connections of rolling
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stock and train crews. However, these max-plus models neglect headway restrictions imposed

by the railway infrastructure and safety and signalling systems. Hence, the model results only

give a lower bound to the system performance assuming that all timetable slack time acts as

buffer time, i.e., the differences between scheduled and minimum station dwell/transfer times

can be fully utilized for compensating delays. Note that additional constraints corresponding to

infrastructure limitations may limit buffer times and show scheduled waiting times instead, cf.

§3.8.

Van Egmond [208, 209] showed that blocking time diagrams can be described by a max-plus

heap model and that the determination of capacity consumption of a given timetable (com-

pressed sequence of blocking time graphs) equals an eigenvalue problem of the associated ma-

trix. Van Egmond [208, 209] described a heaps of pieces [71] model as an automaton [71]

over the max-plus algebra. The heap model consists of a finite set of fixed-blocks (resources,

machines) and a set of train runs (tasks, jobs) specified by their time slots over the blocks cor-

responding to a blocking time diagram. More specifically, each train run between two stations

is represented by the lower and upper contour of the associated blocking time graph, i.e., the

lower (upper) contour of a train run is a vector with the i-th entry given by the start (end) of the

blocking time of block i in the railway network. The contours define a block pattern called a

piece. A schedule of an ordered sequence of pieces then corresponds to a heap obtained from

piling up the pieces starting with a zero ground (all blocks are initially available), similar to a

tetris game. The contour of a heap of pieces can be described by matrix multiplication over

the max-plus algebra. A square matrix M(a) is assigned to each piece a as follows: if the

piece (train run) uses both block i and j thenM(a)ij is the time interval from the start of the

blocking time of block i (element i of the lower contour vector) to the end of block j (element

j of the upper contour vector); if i = j is not a block on the train route thenM(a)ii = 0; and

M(a)ij = −∞ otherwise (i or j is not on the route). Reversely, a given matrix M(a) also

uniquely defines the lower and upper contour vector of a piece a (up to a vertical shift). The

matrix associated to a heap of pieces is given by max-plus multiplication of the matrices of

the pieces in given sequence order. This matrix thus corresponds to the tightest schedule with

zero buffer time between the train runs at the critical blocks. The upper contour is given by

multiplying the heap matrix with the initial vector, and the height of the heap is the maximum

of these vector elements, which corresponds to the minimum cycle time of the schedule of the

trains in the specified order. The evolution of the upper contour of a heap of pieces by piling

up pieces to the heap is given by multiplying the upper contour of the heap by the matrix of

the new piece. For periodic schedules the minimum cycle time can be computed by solving the

eigenvalue problem of matrixM(w) where w is the heap (schedule) obtained by concatenating

the pieces in the schedule (of one period). The eigenvalue gives the minimum cycle time in the

periodic regime. Van Egmond [208] also shows how buffer times can be incorporated in the

heap model and how delays propagate over the trains in the schedule.

The max-plus heap model [208, 209] explicitly models the scheduled infrastructure utilization.

However, this requires a detailed (microscopic) modelling of the signal locations at open tracks

and routes over station layouts, and the determination of the associated running times. On

the other hand, the recursive max-plus model [21] gives a macroscopic dynamic description of

departure events at stations with only precedence relations between events that model running

times, dwell times and transfer times, which are easily obtained from the railway timetable. An

interesting question is whether it is possible to combine the two model approaches to obtain a

model that describes a scheduled railway system over large networks including infrastructure
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utilization but without the extensive input data and model dimension requirements of the heap

model. This challenge is addressed in this thesis in the chapters 6–8.

A different approach to capacity assessment of periodic timetables is presented in the Swiss

deterministic analytical system CAPRES (CAPacité de RÉSeaux ferroviaires) [42, 129]. Ca-

pacity utilization of a basic periodic timetable is here analysed by saturating the timetable with

additional trains, while respecting all timetable constraints. Running times and dwell times are

specified by a minimum and maximum value, which allows some flexibility in the saturation

process. The saturated timetable depends on a list of extra trains and a saturation strategy that

determines the order in which trains are added to the timetable during the saturation process.

This approach is useful in assessing unused capacity (possible number of extra trains) and de-

tecting bottlenecks (critical constraints that prevent addition of a train). CAPRES is used at

SBB, RFF, and SNCF.

3.9.4 Stochastic Models of Railway Operations

A timetable that is feasible for punctual train services may still be sensitive to variations in

running times and dwell times, and thus perform inadequately in daily practice where running

and dwell times vary from trip to trip. Evaluating the performance of a railway timetable in

the presence of process time variations is therefore an essential aspect in timetable design. Of

particular interest is the propagation of delays over the scheduled train services and the ability

of a timetable to reduce delays by built-in running time margins and buffer times.

3.9.4.1 Queueing Models

Queueing models can be used to estimate waiting times in railway operations given a random

interarrival process. These models are capable of giving a (rough) prediction of bottlenecks

and waiting times which can be translated to the amount of buffer time needed in a timetable

with corresponding traffic intensity. Queueing models are mainly applied in strategic capacity

assessment studies when details of the future timetable are still uncertain.

Schwanhäußer and co-workers developed several queueing models to assess the capacity of

railway infrastructure in terms of train mix, frequency of different train types, and mean interar-

rival times [186]. Schwanhäußer [185] derived analytical solutions to the required mean buffer

time on open-tracks such that an acceptable level of total delay is not exceeded. He modelled

all possible delay propagations between train pairs assuming heterogeneous train traffic with

random train orders, exponential interarrival times, and priority rules between different train

types. The approach was implemented in the mid 1980s in the MS-DOS application STRELE

(Streckenleistungsfähigkeit) [186].

Wakob [217] extended Schwanhäußer’s method to the assessment of scheduled waiting time at

railway stations and adjacent open-tracks. The approach is based on a decomposition of the

station layout into separate route sections, called TFKs (TeilFahrstraßenKnoten), that can only

be claimed by one train at a time. The TFKs are modelled as single-server queues where the

minimum headway acts as service time. The model assumes random train orders, Gamma-

distributed interarrival times, and priorities between different train types. Moreover, Wakob

assumes that the TFKs are independent and therefore neglects the interaction between train
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movements over a sequence of TFKs, see also De Kort et al. [51]. Wakob’s approach has been

implemented in the MS-DOS software ALFA (Analytische Leistungsfähigkeitsermittlung der

FAhrstraßenknoten) [186], and more recently in the tool ANKE (Analytische NetzKapazitätsEr-

mittlung) [201], which is compatible to the infrastructure database SPURPLAN.

Wendler [224] developed several extensions to the queueing models of Schwanhäußer and

Wakob based on conflicts between train triples and new approximation algorithms, which im-

prove the modelling of TFKs and their interactions. However, the method again assumes ran-

dom train orders and is thus still not valid for estimating delay propagation in periodic timeta-

bles, cf. Wendler [224, §5.3].

Meng [133] extended Schwanhäußer’s delay propagation model to train connections in stations

and derived analytical solutions for the required mean (dwell and transfer) buffer time at a

railway station for Gamma-distributed interarrival times. Train arrival orders are again assumed

random and the probability that two trains are connected is proportional to the relative train type

combinations over all possibilities. Hence, Meng calculates the mean required buffer time over

all trains in a station with respect to all possible future timetables and combinations of train

connections. The method is therefore not valid for periodic timetables with fixed train orders.

Huisman et al. [105] developed a product form queueing network for (large-scale) railway net-

works. Instead of a detailed modelling of the infrastructure, the model mimics the service

and waiting times from the traffic interconnection structure with three separate components:

stations, junctions, and connecting open tracks. Only double-track (or multi-track) lines are

considered, where each direction has its own tracks. Each track is modelled by two First-

Come-First-Serve (FCFS) single-server queues connected by a tandem queue, which represent

the train runs corresponding to a given train mix on the open track. The service time of the first

and last FCFS queue corresponds to the minimum headway at departure and arrival, respec-

tively, and the total service time of the tandem queue represents the free running time on the

open track. The number of queues in the tandem and their service times are chosen such that the

mean and variance of the total service time equals that of the free running time corresponding to

the train mix. Stations are modelled by FCFS multi-server queues, where the number of servers

corresponds to the number of platform tracks and the service time corresponds to the occupa-

tion time of a platform track. Hence, it is assumed that each train may use each platform track.

Finally, junctions are modelled by either two FCFS single-server queues in case of a fly-over or

by an order-independent single-server queue for level-crossings. All service times are assumed

exponential and the arrivals into the network occur according to a Poisson process. Huisman

et al. [105] proved that the steady-state distribution of this network is given by the product of

the steady-state distributions of all isolated queues. For practical computations explicit expres-

sions are derived for the mean waiting time of each component. This queueing approach again

assumes random train orders independent of a periodic timetable.

3.9.4.2 Stochastic Delay Propagation Models

Kraft [121] developed a model for the knock-on delays on a main railway line with several

merging and diverging lines operating under a periodic timetable. He considers various cases

of headway distributions, including fixed headway, mixed headway, and stochastic headway

(shifted exponential and Erlang). The first case corresponds to a railway line with one-way

traffic running at a fixed regular interval. The second case occurs naturally when trains on
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two or more railway lines merge. For instance, when two lines with equal frequency merge

then traffic with twice this frequency results after the merging section, where the headway after

merging equals the interarrival times at the merging section. If these interarrival times are equal,

i.e., the arrival times of both lines have an offset of half their headway, then a regular headway

results after merging. If a train is delayed before the merging section then the order of merging

may be changed to minimize total delay propagation. The delay propagation depends on the

location of a primary delay: at a merging line, on the main line, or at a diverging line. For

railway networks with up to three merging routes and exponential primary delays Kraft derives

analytical expressions for the mean total delay associated to the optimal merging orders. The

model does not include opposing trains on single-track routes nor cyclic networks.

Weigand [220, 221] considers propagation of delays in scheduled (cyclic) train service networks

with a periodic timetable. He assumes exponential delays characterized by two parameters: the

mean delay and the fraction of delayed trains, the delay probability. Weigand considers one train

run at a time between the departure from one station to that of the next, and iteratively derives

analytical expressions of the change in the two delay (mean and probability) parameters. The

delay evolution is subsequently derived as the sum of an initial departure delay, a primary delay

at the open track corrected by a deterministic running time margin, and secondary connection

delays at the next station due to waiting for delayed feeder trains corrected by buffer times. All

these delays are assumed independent. The connection delay depends on the number of feeder

trains and their arrival delays. If the resulting departure delay is positive then it is used as the

initial delay in the calculation of the delay evolution of the next train run. This way the delay

propagation of all trains in the network is iteratively calculated. Weigand [220] showed that if

on the average the buffer times (including running time margins) exceed the individual primary

delays then the system reaches a stable state with a constant mean level-of-delay. For cyclic

networks this means that a stable state exists if on each circuit in the network the average buffer

time exceeds the average primary delay.

Mühlhans [137] generalized the analytical stochastic model of Weigand by using general proba-

bility distributions for the primary delays and recursively deriving cumulative distribution func-

tions (CDFs) for the evolution of delays. The delay evolution is the convolution of the initial

departure delay and independent primary delays at several locations of a train run: running

time extension at the open track, hindrance at the entrance of a station, dwell time extension,

and hindrance at departure. Running time margin is used uniformly over the track and dwell

buffer time is incorporated as a shift parameter that reduces the effect of hindrance at arrival and

dwell time extension. If the train has to wait for delayed feeder trains then the convolution up

to the departure hindrance is multiplied with the product of the individual arrival delay CDFs

(shifted by the transfer buffer times) of the feeder trains. This corresponds to the assumption

that all arrival delays are independent, in which case the CDF of the maximum delay is the

product of the individual CDFs. Finally, the departure delay at the next segment is obtained

by convolution with the CDF of the departure hindrance. The CDFs for each train run can be

computed numerically, and in the special case of exponential primary delays Mühlhans [137]

derived explicit solutions. The approaches of Weigand and Mühlhans only consider secondary

delays due to waiting for connections at transfer stations. Delays due to hinder at conflict points

or to following trains are implicitly modelled as part of the primary delay on the open track.

Carey [28] considers multiple train services on (unidirectional) single-track lines with stochastic

running and dwell times defined by general probability density functions (PDFs) and determin-
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istic minimum headway times at station arrivals and departures. Carey derives recursions for

the successive PDFs of arrival and departure times for each train and station. The recursions

include primary delays (incorporated in the running and dwell time distributions) and secondary

delays due to headway conflicts of following trains, which Carey calls ‘knock-on delays’. Fur-

thermore, Carey [28, 29] presents performance measures of travel time or schedule deviations

based on the arrival and departure time PDFs which can be used to compare alternative timeta-

bles, such as expected arrival lateness (of any train at any served station), the probability of

arriving x minutes late, and similar measures for departures. He also proves convexity prop-

erties of these cost measures with respect to scheduled arrival or departure times. Using these

costs Carey formulates an optimization problem to compute optimal arrival and departure times

with the restriction that train orders keep unchanged, which thus corresponds to optimizing the

distribution of buffer times over the train line schedules. Carey proposes a cyclic coordinate

method to solve the resulting unconstrained convex optimization problem. In a follow-up paper

by Carey & Kwieciński [30] the stochastic model is extended to networks with train connec-

tions at transfer stations and two-aspect block signalling on open tracks. The latter paper also

contains a simple example problem of optimizing the buffer times in a timetable of one train

over a single line with five stops.

Higgins & Kozan [100] present an alternative numerical-analytical stochastic model of sched-

uled urban passenger train networks. The railway network is partitioned into blocks protected

by signals, which permit only one train at a time. A minimum blocking time is assigned to each

block. If a block contains a station (platform track) then its blocking time includes dwell time.

On each block a train suffers a primary delay with certain probability, and recovers with a de-

terministic scheduled slack time (running time margin and buffer time). Secondary delay may

occur due to platform conflicts, transfer connections, turns, fixed train orders (overtaking), and

headway conflicts of following trains with different speeds when no overtaking track is avail-

able (knock-on delays). The model is a sum of implicit analytical expressions for the expected

primary and secondary delay (with incorporated slack times) over all blocks and trains, and is

solved by an iterative refinement algorithm. The model was applied to a real-life suburban train

network in Brisbane, Australia, operated by Queensland Rail (QR). This network consists of

400 km track with 557 blocks operated by 6 train lines. The considered period is the morning

peak with in total 157 trains and 148 connections. The model was validated by comparison with

stochastic simulation, since historical train delay data was only limited available (percentage of

passenger trains less than 3 and 5 minutes late). Primary delays were assumed to follow an

Erlang distribution with shape parameter 3 and mean delay of 3 minutes for all blocks, whilst

the delay probabilities were estimated depending on block type: no station (0.0001), busy sta-

tion (0.08), and nonbusy station (0.002). The analytical model was solved in 1 minute and 35

seconds, whereas the simulation model (on the same PC) required 6000 iterations in 5.5 hours.

The results of the analytical and simulation model were similar with an average absolute rela-

tive error of 8%. The analytical model was applied for an analysis of scheduled slack time in

the network timetable.

Kaminsky [114] developed a pragmatic approach to compute the optimal headway (and buffer

time) between two departing trains based on the performance criterium that a given percentage

of delayed trains — Kaminsky uses 80% — does not propagate to the second train. First, the

80th-percentile of the departure delay of the first train is determined using data of the German

train monitoring system RZÜ (Rechnergestützte ZugÜberwachung). In fact, Kaminsky uses an

approximation by assuming exponential departure delays, which gives an explicit expression in
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three parameters: the percentage of delayed trains, the mean delay of the delayed trains, and

the desired quantile (0.8). Second, Kaminsky determines the critical block for the minimum

running times and subsequently the running time margin in the planned running time up to this

block, which is then subtracted from the percentile. The result gives the buffer time between

the two trains. Hence, the method takes into account the infrastructure and block lengths, train

speed difference, running time margins at each block, and empirical delay statistics, although

it neglects a possible delay of the second train. For crossing train routes the critical block

is the one containing the crossing, and for following trains it depends on the train order and

speed difference: slow-fast, fast-slow, or equal speed. After determination of the optimal buffer

time for each train pair the scheduled departure times are adjusted interactively by the timetable

designer to represent the optimal buffer times as much as possible while maintaining the original

train sequence and respecting network constraints.

3.9.5 Network Simulation

Simulation is a popular approach to analyse complex systems when no analytical tools are

available. However, simulation is typically very time-consuming, which limits its application to

scheduled railway traffic over large-scale railway networks. Hence, in practice railway planners

are forced to concentrate on stations or rail corridors and thereby discarding network interde-

pendencies. However, with the advance of computer power a number of simulation models have

been developed which simulate railway traffic networks.

FASTA (FAhrplan STAbilität) [147] is a Swiss discrete-event macroscopic simulation system

for stability analysis of periodic network timetables. The railway network is modelled as a

directed graph where nodes correspond to stations or junctions and arcs correspond to the con-

necting tracks. Each arc is assigned an attribute specifying the number of tracks with their al-

lowed traffic direction. Train routes are modelled as paths in the graph, where the exact running

tracks are determined dynamically during simulation. Infrastructure constraints are modelled

by minimum headway restrictions between trains and the model also considers train connec-

tions at stations. Running times can be stochastic. The output consists of the delays on different

levels of aggregation.

In the Netherlands, the macroscopic simulation system SIMONE (SImulation MOdel of NEt-

works) has been developed for testing stability and robustness of railway timetables on a net-

work level [134, 135]. SIMONE is compatible with the Dutch timetable design system DONS,

by which simulation models are automatically generated from timetable and infrastructure in-

formation in the DONS-database. Additional parameters can be set for the stochastic behaviour

of dwell times and running times and simple decision rules for solving train conflicts. The

disturbances on dwell and running time create primary delays, which may cause conflicts with

other trains resulting in secondary delays. Conflicts are modelled using minimum headway at

conflict points and occupied platforms in stations. Stations are modelled as black boxes with

platform groups assigned to each train line. If the platforms are all occupied then an arriving

train has to wait before the station on the open track. The simulation output can be given in

statistics for any selection of infrastructure and trains in different levels of aggregation from the

entire network and all trains down to a specific station, track or train. Statistics include total

delay, ratio between secondary and primary delay, punctuality (percentage of trains less than x
minutes late), and percentage cancelled connections. One of the disadvantages of simulation,
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in particular for large networks, is the large simulation time. A simulation experiment of the

national Dutch network takes several days: one simulation run (20 simulated hours) already

takes several hours (including warming-up), and about 50 repetitions are minimally necessary

to obtain reliable statistics [210]. SIMONE is used at NSR and ProRail.

Microscopic simulation systems are based on a detailed modelling of infrastructure (including

signalling systems), rolling stock and timetable, which enables an accurate computation of run-

ning times and blocking times. Synchronous microscopic simulation systems give a realistic

simulation of railway operations where trains run according to the timetable and react accu-

rately to the signalling system. Also dispatching rules are specified in these simulation models

to mimic dispatchers and control centres. An example of a synchronous microscopic simulation

system is the Swiss OpenTrack [106, 144].

RailSys [53, 169] is a software system that integrates a timetable and infrastructure manager

with synchronous microscopic simulation and automatic dispatching. RailSys allows interac-

tive timetable construction using visualization of blocking time diagrams like FAKTUS/RUT.

Moreover, train path conflicts throughout the network are automatically detected and timetable

simulation can be used to evaluate the impact of the timetable conflicts. In the microscopic

simulation module the effect of (primary) stochastic dwell time delays and departure time de-

lays can be simulated. The secondary delays are computed in the simulation according to the

signalling system and timetable connections between trains. This way robustness of the con-

structed timetables can be evaluated. Recently, an automatic ‘slot search’ has been added capa-

ble of conflict-free fitting a new train path in an existing timetable [169].

Gröger [90, 91] developed the asynchronous microscopic simulation system BABSI (BAhnBe-

triebsSImulation) for automatic railway timetabling and timetable simulation. BABSI is based

on asynchronous scheduling algorithms adopting the blocking time and infrastructure modelling

approach of FAKTUS/SPURPLAN (RUT), see §3.9.1. In asynchronous scheduling, trains are

ordered by priority and conflicts are hierarchically solved by priority class, i.e., for all trains

of the same priority a feasible timetable is computed whilst discarding trains of lower priority

and keeping train schedules of higher priority fixed. BABSI uses the asynchronous schedul-

ing approach segmentwise, where the ends of a segment are determined for each train by a

scheduled stop with overtaking opportunity. Conflicts are then resolved by asynchronously

(re)scheduling all trains (of the same priority) segment by segment in chronological order,

which may sometimes require backtracking to earlier conflict resolutions. In the simulation

mode, BABSI assigns random delays to trains and subsequently simulates the railway opera-

tions where the automatic conflict resolution algorithms mimic the dispatchers. The simulation

thus demonstrates the stability of a timetable by comparing the timetable with the simulation

output (realized timetable in the simulation). The user can also specify an amount of buffer

time that must be considered between the blocking times of the train paths during conflict reso-

lution, which thus results in robust schedules. In the automatic timetabling mode, all train path

requests are inserted into BABSI where all conflicts are solved automatically using the internal

conflict resolution algorithms, which finally results in a feasible timetable. The behaviour of

the conflict resolution algorithms — and thus the resulting feasible timetable — depends on

parameters for priorities between the various measures to solve individual conflicts (rerouting,

dwell time extension, running time extension, relocation of overtakings or passings, etc.) and

rules for (dynamic) train priorities. The asynchronous automatic conflict resolution algorithms

in BABSI were developed by Jacobs [108, 109] for the automatic rescheduling tool ASDIS
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(ASynchrone DISposition) which is also based on the FAKTUS/SPURPLAN methodology.

3.10 Conclusions

Running times and dwell times are stochastic variables. Therefore, a robust timetable contains

margins and buffer times to compensate for slight variations in process times. Also buffer times

in transfer times and headway times between train pairs guarantee that small delays do not

instantaneously result in secondary delays. Intermediate delays that can not be compensated

by buffer times are the topic of operational rail traffic management. Large delays due to e.g.

track obstruction are controlled by ad-hoc planning strategies. This latter category is beyond

the scope of this thesis.

Process times in railway operations generally consist of a minimum process time and an ad-

ditional buffer time. The calculation of minimum process times is either based on calculation

models in normal conditions using mean values of parameters (running times) or by simple

experience-based norms depending on local characteristics (dwell time, transfer time, head-

way). Ex-post evaluation of process times using feedback of realization data is not (a structural)

part of the railway planning processes. Until recently the lack of accurate operations data did

not allow such an analysis.

Running time margins are computed proportionally to the running times (7%) and mainly serve

to compensate for worse (environmental) conditions than assumed in the running time calcu-

lation models. Utilization of the margins as recovery time for late departures is hence only

moderately applicable. Statistical analysis of running times may be utilized to evaluate run-

ning time performance, test dependencies on e.g. departure delay, and improve current running

times. Again, this requires availability of operations data.

This chapter furthermore gave an extensive review of existing approaches to construct feasible

timetables and to evaluate networks timetables on stability and robustness to delay propaga-

tion. The existing railway timetable and operations models can be partitioned into microscopic

and macroscopic models. Microscopic models are based on blocking times and require de-

tailed modelling of infrastructure and signalling systems. Conflicting train paths are detected

by overlapping blocking time graphs, and resolved interactively or automatically by shifting

the overlapping blocking time graphs. Sophisticated software has been developed for timetable

construction and simulation of railway operations based on these blocking time diagrams.

Macroscopic models are based on precedence relations between events using (periodic) time

window constraints. Infrastructure and signalling systems are also modelled in an abstract way

by minimum headway times between events. The resulting constraint system can be used in

(mixed-integer) mathematical programming problems to find feasible timetables or to compute

optimal timetables with respect to some given objective function. Existing mathematical pro-

gramming software can be used to compute feasible timetables of large-scale networks.

The (microscopic and macroscopic) models used for the construction of railway timetables are

deterministic. Stochastic elements are introduced for evaluation of the constructed timetables.

For the microscopic models this leads to simulation models. For the macroscopic models also

analytical approaches have been developed based on implicit recursions of distribution func-

tions. The stochastic (analytical and simulation) models obviously require input in the form of
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stochastic distributions for delays or process times. Some models assume simple (exponential)

distributions, others work for any theoretical or empirical distribution functions. Empirical re-

search on the required distributions is however rarely done, basically because of lack of data.

A major drawback of both simulation and analytical stochastic models is the extensive amount

of time needed to compute the output, even for medium-sized networks. In practice, railway

planners therefore focus on smaller subnetworks and thereby discard network dependencies.

Deterministic max-plus algebra models provide an alternative to stochastic timetable evaluation

(simulation) models. Models based on max-plus algebra compute performance properties inher-

ent to the timetable structure and identify the critical processes in large-scale networks. There

are both microscopic and macroscopic max-plus algebra models. The current macroscopic max-

plus algebra models are only based on the timetable without consideration of infrastucture con-

straints. This thesis will remedy this shortcoming and make a connection to the mathematical

programming models, i.e., the periodic time window constraints are reformulated in max-plus

algebra which gives a (max,+)-recursive system that can be used to derive timetable properties

corresponding to periodic steady-state solutions of the dynamic system and to compute delay

propagation consistent with the timetable and infrastructure constraints.

The literature review justified the research objectives stated in Chapter 1 to fill gaps in the

current knowledge and practice of railway timetabling. In particular, accurate data of railway

operations is needed to validate distributions used in stochastic models and simulation tools

(research objectives 1 & 2). Moreover, a good alternative to simulation for timetable perfor-

mance evaluation of large-scale railway networks is still missing. This thesis is concerned with

extending and improving the macroscopic max-plus algebra modelling and analysis approach

to fill this important gap in the current timetable design process (research objective 3).
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Chapter 4

TRAIN DETECTION DATA AND

TNV-PREPARE

4.1 Introduction

Quality management is essential for securing quality and reliability of train services and requires

regular evaluation of (railway) system performance. Although experienced planners usually

have an idea of possible flaws or shortcomings in the timetable, its significance to the actual

operations is unknown by a lack of quantitative support. Therefore, punctuality reports based

on a day-by-day collection of operations data must be available on a regular basis requiring

the automatic retrieval of operations data. Inadequate or deteriorating performance of certain

train services is then revealed right from the start, by which instant action can be undertaken to

identify and improve deficient processes.

In the Netherlands, ProRail Traffic Control maintains a database of scheduled and realized

train event times, the Vervoersgegevensbank (VGB), from which punctuality reports are gen-

erated [46]. The realization data in VGB are received daily from the Traffic Control System

VKL, see Section 2.3.7. The accuracy of these realization times is however in the order of min-

utes. This inaccuracy is mainly due to the mismatch of measurement location (at signals) and

the timetable points at which the scheduled event times are specified (the middle of platform

tracks). VKL uses correction terms to match the passage of the entry (exit) signal to the actual

arrival (departure) at the platform. The correction terms are specified for each signal/platform

pair (TNV-windows) and further depend on train activity (arrival, departure, or passage) only. A

correction term is thus a constant value for all trains without consideration of train type, rolling

stock characteristics, train length, speed at the signal, alternative routes, and stop position at

the platform track. In particular, arrival times suffer from significant estimation errors because

station entry signals are usually located far from the platform. Arrival time realizations may

have an error of several minutes depending on the local situation. The error in departure and

through realization times (which are related to exit signals) was about a minute, and since July

1, 2003 improved to about half a minute after removal of a filter in the registration process. The

change in the registration procedure did however not improve the inaccuracy of arrival times

which are dominated by the correction terms, see Goverde [83] for more details. The VGB is

mainly used for statistics of aggregated data and has not been developed for accurate details of

individual train activities.

In an international context similar problems have been revealed concerning automatic train data

collection. In Germany, Hermann [99] used train describer data from the RZÜ (Rechnerun-

terstützte ZugÜberwachung) Frankfurt for a statistical delay analysis. He also found a dis-

crepancy between measurement locations (at main signals) and timetable points (at platforms).

67
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Hermann approximated the time difference by constant interpolation. In Switzerland, the train

describer system SURF (Système Unifié de Régulation Ferroviaire) is used — apart from train

monitoring — for punctuality analysis and even online checking of train positions accessible to

passengers via the SBB website. Trains can be found by station or even by train number. The

website shows the actual delay (deviation from schedule) and an estimated arrival and departure

time at the desired station or at all stops on the train route. The data is also used by the timetable

analysis tool OpenTimeTable (OTT) [200]. This tool compares and visualizes scheduled and re-

alized arrival and departure times of daily train numbers in time-distance diagrams. The SBB

measurements are also taken at main signals instead of the timetable points (platforms) and cor-

rection terms are used to estimate the remaining running time. However, the realization times

of SBB have a high accuracy with an absolute error below 20 seconds, because SBB use cor-

rection terms differentiated by route, activity, and train type, and moreover locations of signals

are optimized.

Feedback of operational data to the planning process is essential for improving punctuality

and reliability of railway operations, see also Schaafsma [179]. The availability of accurate

data of process time realizations enables the fine-tuning of scheduled process times, such as

dwell times, running times, blocking times, headway at infra points, and route setting times.

In railway systems small variations in process times may cause large delays if a train has to

stop before a stop signal. Advanced statistical analysis of individual train runs and interactions

between trains thus requires operational data with an accuracy in the order of seconds. Clearly,

the accuracy of individual train event times in the VGB is too rough for such empirical analyses.

Accurate train movement and infrastructure data is available in TNV-logfiles recorded by TNV-

systems, although these logfiles are not accessible for direct analysis. This chapter considers

the developed software applications TNV-Prepare [84] and TNV-Filter [82]. TNV-Prepare has

been developed to match infrastructure events to train numbers based on TNV-logfiles. This

gives e.g. the passage times in seconds of (the front and back of) trains on section level in

addition to TNV-position level. Moreover, since TNV-Prepare generates the entire trajectory

at section level of incoming and outgoing routes, accurate speed estimates of approaching and

departing trains can be computed resulting in reliable and accurate arrival and departure time

estimates. For this latter estimation problem the accompanying TNV-Filter application has been

developed.

The outline of this chapter is as follows. Section 4.2 explains the information contained in TNV-

logfiles. The developed software application TNV-Prepare is introduced in Section 4.3 and

TNV-Filter in Section 4.4. Finally, Section 4.5 gives conclusions and further recommendations.

4.2 TNV-Logfiles

TNV-systems were already introduced in Section 2.3.4. In brief, TNV-systems are the Dutch

train describer systems that keep track of the progress of trains based on train numbers and

infrastructure messages. One of the functionalities is to keep records of received signalling

information and mutations in train number positions, which results in logfiles of about 25 MB

ASCII-code per day for each of the 13 TNV areas. Originally, these logfiles were intended for

maintenance only. In a later stadium the logfiles were used for investigation of accidents. For



Chapter 4. Train Detection Data and TNV-Prepare 69

13-SEP-1997  07:34:39  TNV_PLM  VTNR        1: Verplaatsing 1803 van EHV$4/4S.1 naar EHV$64/64S.0.
13-SEP-1997  07:34:43  TNV_PLM  VTNR        2: Invoer   1524 in EHV$FGI/FGU.0.
13-SEP-1997  07:56:45  TNV_PLM  VTNR        3: Wis   1519 in EHV$EGI/EGU.4.
13-SEP-1997  08:09:05  TNV_PLM  VTNR        4: Wijzig *00001 in EHV$2/2S.0 naar   5221.
13-SEP-1997  08:12:58  TNV_PLM  VTNR        7: Generatie van *00001 bij verplaatsing van EHV$18.
13-SEP-1997  08:26:55  TNV_PLM  VTNR        9:   6423 omgenummerd tot   6426 te EHV$302S.
13-SEP-1997  08:27:23  TNV_PLM  VGRN$TNV15  13:    821 is overgedragen aan VS_MT1.
13-SEP-1997  08:28:08  TNV_PLM  VGRN$TNV12  14:   3625 ontvangen uit VS_AH1.
13-SEP-1997  08:29:06  TNV_DLM  VTNR        103: Elementmelding aangaande BTL$1270T toestand:    BZ_BEZET.
13-SEP-1997  08:29:07  TNV_DLM  VTNR        103: Elementmelding aangaande HMDN$423AT toestand:  BZ_ONBEZET.
13-SEP-1997  08:29:09  TNV_DLM  VTNR        103: Elementmelding aangaande BTL$94 toestand:    SEI_GA.
13-SEP-1997  08:29:25  TNV_DLM  VTNR        103: Elementmelding aangaande BTL$1358 toestand:  SEI_STOP.
13-SEP-1997  08:29:30  TNV_DLM  VTNR        103: Elementmelding aangaande BTL$1351A toestand:   LR_LINKS_V.
13-SEP-1997  08:29:38  TNV_DLM  VTNR        103: Elementmelding aangaande EHV$21 toestand:  LR_RECHTS_V.

Figure 4.1 Example lines in a TNV-logfile

this purpose, the TNV-logfiles were kept for about eight days on the hard disks of the various

TNV-systems and then deleted. For the latter objective, the application TNV-Replay [162] was

developed, which reads the recorded messages one at a time and visualizes the physical events

(section occupations and clearances, signal aspects, point lockings, and TNV-positions) in a

schematic view of the station layouts on a computer screen. This application is still in use, and

is also exercised by traffic controllers to replay and analyse recent traffic situations.

A TNV-logfile contains a sequence of lines with an event logging on each line, see Figure 4.1.

A logline includes a date and time stamp, a message code, and the message. The time stamp of

a logged event is the time instant at which the event is logged and may hence differ from the

actual event time by e.g. transmission delays. The time is given with a precision of a second, or

even in decimals of a second. It is however arguable whether a precision of two decimals of a

second is still accurate with respect to transmission delays.

The two types of messages in a logfile that are of interest are train number messages and infras-

tructure messages, see Table 4.1. These are considered in detail below.

4.2.1 Train Number Events

The progress of train numbers through a traffic control area can be derived from the TNV-

logfiles by train number messages (code 1 to 14). These messages also demonstrate the opera-

tion of a TNV-system. Therefore, we here present an overview of the different messages.

Initial TNV-positions of a train number are obtained from code 2 and 4 messages. A code 2

insertion of a train number in a TNV-window is generated

• manually by a dispatcher at the origin station of a train line;

• automatically after receiving a train number from a TNV-system of a neighbouring traffic

control area (code 14);

• after the automatic generation of a train number for an unknown train (code 7);

• after uncoupling and detected shunting movement of a train unit (code 8);

• manually after an incorrect train number deletion.

A code 4 train number change is generated

• automatically after an automatic train number renumbering (code 9);

• manually by a controller after identifying an unknown train that was given a temporary

train number (code 7 message);
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Table 4.1 Events logged in TNV-Logfiles (translated from Dutch)

Train number events generated by TNV-system

Code Event Message

1 Step 1: Step of trainnumber from TNV-window to TNV-window.

2 Insertion 2: Inserted trainnumber in TNV-window.

3 Deletion 3: Deleted trainnumber in TNV-window.

4 Change 4: Changed trainnumber to trainnumber in TNV-window.

7 Generation 7: Generated trainnumber at step from TNV-window.

8 Derivation 8: ∗trainnumber derived from trainnumber in TNV-window.

9 Renumbering 9: Renumbered trainnumber to trainnumber in TNV-window.

13 Transfer 13: Transferred trainnumber to VKL-system.

14 Receiving 14: Received trainnumber from VKL-system.

Events received from safety system

Code Event Message

103 Section occupied 103: Message from element element state: OCCUPIED.

103 Section cleared 103: Message from element element state: FREE.

103 Proceed signal 103: Message from element element state: GO.

103 Stop signal 103: Message from element element state: STOP.

103 Switch left 103: Message from element element state: LEFT.

103 Switch right 103: Message from element element state: RIGHT.

• after a shunting train gets ready at its departure platform track;

• after a terminating train changes train line;

• after an incorrect train renumbering.

A code 9 message is an automatic renumbering of a train number at terminals, where a train

turns to operate the same line in reversed direction. A code 9 message is automatically followed

by a code 4 train number change. A code 7 train number generation is automatically generated

after an unknown train step from one to another TNV-window. Such a train number starts with

an asterisk (e.g. ∗00001) and as soon as a controller has identified the correct train number, this

temporary train number is changed into its standard train number by a manually generated code

4 train number change.

Once a train number position is known, code 1 messages give the train number steps over

successive TNV-windows. A final TNV-position in a control area is given by either a code 9

train renumbering (followed by a code 4 train number change) or a code 3 deletion message.

A code 3 deletion is either generated manually by a controller or automatically after a train

number transfer to the TNV-system of a neighbouring traffic control area (code 13).

4.2.2 Infrastructure Events

TNV-systems receive messages from the safety and control systems, which are logged imme-

diately after arrival. These messages correspond to a binary change in status of infrastructure

elements, and all have code 103, see Table 4.1. A section message reports the occupation of

a section or a track-free detection. A signal message announces that a signal has been set to a

stop aspect (red light) or to a proceed aspect (yellow or green light). Finally, a switch message

communicates a set and locked left or right position of a switch.
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These infrastructure events can be associated to a train number that either directly causes the

transitions by train detection (section entrance of the first train axle, section exit of the last

train axle, automatic signal aspects), or indirect via the interlocking system (route setting and

controlled signal aspects). However, an infrastructure message does not contain an explicit

train number. Recall that a TNV-system operates over a wide area with many station layouts

and open tracks. Over this entire area infrastructure messages are communicated to the TNV-

system. Hence, a train number message is surrounded by many infrastructure messages and it

is not a trivial task to find a train number associated to the infrastructure messages.

4.3 TNV-Prepare

From the TNV-logfiles the progress of train numbers over TNV-windows are easily derived.

However, the occupancy of the underlying track circuits gives a much more accurate description

of train movements. But track section messages are not matched to train numbers. Recall that

TNV-windows usually cover several track circuits (sections) that detect the presence of a train.

In this section we show that it is possible to match section occupations to train numbers by

posterior analysis of the TNV-logfiles. This method has been implemented in the software tool

TNV-Prepare.

TNV-Prepare was developed during 1998/2000 at the Transport and Planning Section of the

Faculty of Civil Engineering and Geosciences of TU Delft. It is an empirical analysis tool that

converts TNV-logfiles into tables of successive events on a route of a train line, including TNV-

steps and state changes of sections, signals, and switches. In the sequel these tables are called

TNV-tables. The program is written in Delphi and runs on MS Windows 95/98/2000/NT/XP/etc.

operating systems.

TNV-Prepare consists of three main modules as depicted in Figure 4.2: The main module TNV-

Prepare builds an internal database from TNV-logfiles and additional timetable and network

inputs. The module TNV-Report takes care of the actual database search and generation of

TNV-tables. Finally, the module TNV-View displays TNV-tables and exports tables to external

formats.

4.3.1 The Internal Database

4.3.1.1 Infrastructure Modelling

Within TNV-Prepare, the rail infrastructure is implemented as a set of coupled and connected

objects (infra elements). A railway network is basically built up from sections that act as sep-

arate train detection units —mostly track circuits. In TNV-Prepare a section is also the funda-

mental element. The model network is constructed in one direction only, by which a section

may have up to two successor sections corresponding to a boundary section (zero successors), a

track section (one successor), and a switch (two successors). A route over the network is hence

always defined in one direction, where an additional toggle determines whether or not the route

is run in reversed direction. This approach facilitates and speeds up the network building pro-

cess.
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Figure 4.2 Architecture of TNV-Prepare

Additional objects may be assigned to a section according to a geographical or logical point

of view: a switch, signal, and/or TNV-position. Coupling of these infra elements to sections

requires schematic drawings of station layouts. In the Netherlands these drawings are available

at ProRail (Railinfrabeheer), known as OKT-maps Overzicht Takken en Knopen. These maps

are computer drawings generated by the system CARE [68].

A section may embed a switch, in which case it has two successors. A signal protects one or

more routes defined as a sequence of sections. These routes have the first section in common

and the signal hence corresponds to this section. A TNV-position is attached to the last section

of a TNV-window. Recall that a TNV-step indicates which way a train is heading. So a TNV-

position corresponds to a route from the first section after the former TNV-position to the last

section of the current TNV-position. This last section hence determines the train target, whereas

the TNV-step occurs at the entrance of the first section. It must be noted that in practice several

routes —called route blocks— exist from the initial to the final section in a TNV-position. The

actual set up route is nevertheless uniquely determined by the locked switch positions at the

occurrence of the TNV-step.

4.3.1.2 Setting Up the Internal Database

The TNV-Prepare main module exhibits several functionalities as indicated in Figure 4.2. First,

the import utility reads TNV-logfiles and stores the relevant information in an internal database

to which the search algorithms apply. New TNV-logfiles can be added whenever they become
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available.

Second, the rail infrastructure has to be defined. For each train line an initial and final TNV-

position is interactively chosen. If a route between the TNV-positions has not yet been con-

structed an input session is initiated that determines the sections associated to the TNV-positions

and the possible connecting sections in between. This way the rail infrastructure is built up from

the parts of the user’s interest only. The rail infrastructure will become more complete with each

addition of a train line and/or route. Additional objects (switches and signals) can be assigned

to a section separately using the object editing utility.

After defining the route the timetable information must be provided, including frequency, the

planned arrival and departure time, the platform track section, and possible alternative route(s).

Standard routes are constructed using the route editing utility, and can be defined in terms of

predefined subroutes which relieves the manual input session. An added route is checked on fea-

sibility with respect to the rail infrastructure, i.e., it has to be a sequence of connected sections.

Routes may be defined for different periods in time according to changes in railway infrastruc-

ture, and also may depend on train number reflecting different standard platform allocations

during the day.

The TNV-Prepare module also contains utilities to edit or add objects, and to view and edit

timetable information. These functionalities can be used to adjust incorrect input or to reflect

onto changes in the infrastructure or timetable. More details can be found in the TNV-Prepare

user’s guide [111].

4.3.2 Generation of TNV-Tables

4.3.2.1 Target Events

We are interested in the state changes of subsequent route objects caused by a running train

(number), and possibly its immediate predecessor. The TNV-steps are of course the main search

events that determine the (rough) train number positions in time. The state of the other infra

elements are binary variables: a section is either occupied or free, a switch is either locked in

left or right position, and a signal state is either stop or go —where the actual signal aspect also

depends on the state of the next downstream signal. With respect to a particular train number

TNV-Prepare searches for the target events as shown in Table 4.2.

Table 4.2 Objects and target events in TNV-Prepare

Object Event 1 Event 2 Event 3

TNV-position TNV-step

Section Last clearance Occupation Clearance

Signal Last proceed Stop Proceed

Switch Left position Right position

For a TNV-position the target event is a train number appearance in the TNV-window. Generally

this corresponds to a TNV-step, but occasionally also a train number insertion or change may

be relevant, e.g. for a first train departure from a terminal. A section has three target events: the

occupation by the current train (first axle) and the clearance after the current train (last axle),
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as well as the last clearance message before occupation by the current train. Note that this

latter event corresponds to a preceding train but is worthwhile for capacity analysis. The target

signal events are similar: the last proceed message before the approach of the current train, the

stop message caused by the passing current train, and the next signal release message. The

relevant switch events are the last switch lockings in left and right position before the current

train crosses the associated switch section. The switch events are also interesting for capacity

analysis.

4.3.2.2 The Main Search Algorithm

This section explains the search algorithm for the target events from TNV-logfiles. The train

number events generated by a TNV-system (see Table 4.1) can be used to follow a train number

through a railway network. Alternative routes may be possible within the same sequence of

TNV-steps, and moreover trains of one train line may stop at different platforms from time to

time, which is indicated by alternative TNV-positions and routes.

The TNV-Report module generates TNV-tables based on the data collected by the TNV-Prepare

module. The search period for each train number can be restricted by setting two parameters

δin and δout in order to increase the computation speed for finding the event times associated to

objects along the route. For instance, a switch position may not have changed for hours and the

exact switching time is then of no interest for the current train. The search period starts at δin
minutes before the first TNV-message and ends at δout minutes after the last TNV-message of

the route. The parameters δin and δout can be set between 0 and 10 minutes. If a route event has

not been logged within this time period then the associated column entry in the TNV-table is

left empty.

Figure 4.3 Input window for generating TNV-tables

The main search algorithm is shown in Figure 4.4. First the user selects a particular train line

and a fixed period of interest (a day, a week, a month, etc.) in an input window, see Figure 4.3.

Also several train lines and/or periods can be selected. The different jobs are then put in a queue

and processed successively. This is convenient as the generation of a TNV-table may take a few

minutes to a few hours depending on the PC-speed, the required period (from a day to several

years) and route length (a local route within a station vs. a route over the entire traffic control

area covering many stations). After the first job has been started intervention of the user is no

longer required.
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Figure 4.4 Search algorithm in TNV-Prepare
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The program then reads the associated timetable information (hourly planned arrival and depar-

ture time, frequency, etc.) and selects a route. If alternative routes are available the order has

been specified in TNV-Prepare. Next all route objects are determined and a new TNV-table is

initialized, that is, columns are constructed for the events associated to each object, in the order

of subsequent sections with respect to the train running direction.

The program then searches in the database for the first TNV-message of a train number corre-

sponding to the current train line in the initial TNV-window. If this logline exists the inner-loop

train number handling starts at the TNV-message logline. First, the current logline is set back

for δin minutes — the start up time — which is necessary to find preceding events (last section

clearances, last signal releases, et cetera). A new row of the TNV-table is initialized with the

current date, train number, planned arrival time, and planned departure time. All other columns

stay empty. The subsequent loglines are read and for each route object message the TNV-table

row is updated using the procedure UPDATEROW, and a pointer is maintained to the current

section by the procedure UPDATECURRENTSECTION, both explained in §4.3.2.3. If the end

of the route is reached —marked by a TNV-step to a non-route TNV-position— a preset addi-

tional time δout is reserved for reading subsequent loglines in order to obtain possible additional

section or signal releases. If the route has been completed the generated row is added to the

TNV-table after a consistency check. Inconsistent event times are rejected resulting in empty

entries at the particular columns in the TNV-tables, like lacking data. If on the other hand the

train stepped out of the route to an alternative TNV-position then the generated row is com-

pletely rejected and the train number (and date) is added to a list of unsolved train numbers,

which are handled later as exceptions with alternative routes. This terminates the inner-loop

train number evaluation and the program proceeds with the next train number.

If no more train numbers are found or if the end of the period is reached, the list of unsolved

train numbers is checked. If this list is not empty the program checks for another available

route. If an alternative route exists the program starts all over but only with respect to the

unsolved train numbers of which pointers to the associated initial TNV-window loglines have

been memorized. If no more alternative route exists, the unsolved train numbers are stored in a

log file to the TNV-table. If required, the routes of the unsolved trains can be traced and added

to the database later using the TNV-Prepare train route analysis utility. On the other hand if the

list of unsolved train numbers is empty then the program goes to the next train line in the queue

or if the queue is empty the program terminates.

4.3.2.3 Inner Loop Update Procedures

The inner-loop procedures and UPDATECURRENTSECTION and UPDATEROW build the TNV-

table step-by-step and keep track of the current section, respectively, while going to the suc-

cessive loglines in the search period. Before describing these algorithms we first need some

notation. A logline k in a TNV-logfile can be summarized as (tk, ok, ek), where tk is the logtime

(including date), ok the object, and ek the event in line k. For the infra elements the distinction

between object (infra element) and event (state change) is clear and each object has two possi-

ble events, see Table 4.1. For a TNV-message we are only interested in the appearance of the

current train number in the TNV-position. Recalling Table 4.1, an event is hence a train number

step into the TNV-window (code 1), a train number insertion (code 2), or a train number change

(code 4). Recall that code 7 and 14 messages are followed by a code 2 message and a code 9 is



Chapter 4. Train Detection Data and TNV-Prepare 77

followed by a code 4 message, and hence these codes may be used as checks. A train number

removal (code 3) may identify the end of a route. A code 13 is again followed by a code 3

message and may thus also be used as a check.

The timetable information of a train line contains amongst others the scheduled arrival and

departure time, and the route block from an initial TNV-position to a final TNV-position given

as a sequence of sections including a platform section. Define for a given route the set of

attached objects as O = {O1 ∪ O2 ∪ O3 ∪ O4}, where O1 is the set of TNV-positions, O2 the

set of sections, O3 the set of signals, and O4 the set of switches along the route. Furthermore

define the mapping

S : O → O2

that maps an object ok to its associated section sk, with the exception of ok ∈ O1 which is

mapped to the first section of the TNV-window. Note that the TNV-step occurs at the entrance

of the first section of a new TNV-window.

A row in a TNV-table is built up from columns for each route object ordered by successive

sections. The sequence of sections on a route defines a partial ordering, i.e., s1 < s2 means that

section s1 precedes section s2 in the train running direction. Furthermore s2 = σ(s1) denotes

that s2 is the successor of section s1. Each route object generates a number of columns equal

to its associated number of events as given in Table 4.2. By event(ok, i) we denote the ith event

(column) of object ok, e.g. if ok is a particular section sk then event(ok, 3) is the third (clearance)

column associated to ok = sk. The objects associated to a section (TNV-position, signal, and/or

switch) are placed after the preceding section columns and before the next section.

Algorithm 4.3.1 shows the pseudo-code of UPDATECURRENTSECTION. An update of the cur-

rent section is only applicable at a TNV-step or section occupation message only. The 1st line

updates the current section if the logline is a TNV-step of the current train number. The current

section then becomes the first section of the associated TNV-position. If the logline is the occu-

pation of the successor of the current section then the current section is replaced by its successor

(lines 2-3).

Algorithm 4.3.1 (UPDATECURRENTSECTION)

Input: TNV-logline.

Output: Current section.

1 if ok ∈ O1 then s← S(ok); //Logline is a TNV step
2 else if ok ∈ O2 then //Logline is a section event
3 if [ek = occupied and S(ok) = σ(s)] then s← S(ok);

Algorithm 4.3.2 shows the pseudo-code of the procedure UPDATEROW. The input is a log-

line (tk, ok, ek) and the TNV-table row of the current train number. The algorithm considers

subsequently the four possible object messages. Line 1 states that if the event is an input of

the current train number into the TNV-position ok then tk is inserted as the event time in the

TNV-position column. Lines 2–11 handle a route section event. If the logline is the occupation

of section ok = S(ok) = sk and if the current section pointer s has not already passed this

section then tk is inserted as the event time in the occupation (2nd) column of object sk (line

5). Additionally the clearance columns may have to be updated if these contain an event time
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of a previous train (line 6–8). If the logline is a section clearance then tk is inserted into an

empty clearance (3rd) column of section object ok = sk (line 10) provided that the section has

already been occupied or the section lies before the current section s (line 9). If on the other

hand the section has not yet been occupied and sk precedes the current section s then the sec-

tion clearance corresponds to a previous train and tk is inserted in the 1st object column (line

11). Lines 12–21 take care of signal messages. The procedure is similar to a section message.

Finally, lines 22–24 are concerned with switch messages. A switch message is only inserted

if the switch lies after the current section (line 22), so that the final switching event is the last

before entrance of the current train. If the logline is a switch locking in the left position then tk
is inserted in the 1st column of the switch object ok (line 23), and otherwise it is inserted in the

2nd column (line 24).

Algorithm 4.3.2 (UPDATEROW)

Input: Logline (tk, ok, ek) and current TNV-Table row.

Output: Updated TNV-table row with logged event.

1 if ok ∈ O1 then event(ok , 1)← tk; //Logline is a TNV step
2 else if ok ∈ O2 then //Logline is a section event
3 if ek = occupied then

4 if s ≤ S(ok) then

5 event(ok , 2)← tk;

6 if event(ok, 3) 6= ∅ then

7 event(ok , 1)← event(ok, 3);
8 event(ok , 3)← ∅;

9 else if [event(ok, 2) 6= ∅ or S(ok) < s] then

10 if event(ok, 3) = ∅ then event(ok , 3)← tk;

11 else event(ok , 1)← tk;

12 else if ok ∈ O3 then //Logline is a signal event
13 if ek = stop then

14 if s ≤ S(ok) then

15 event(ok , 2)← tk;

16 if event(ok, 3) 6= ∅ then

17 event(ok , 1)← event(ok, 3);
18 event(ok , 3)← ∅;

19 else if [event(ok, 2) 6= ∅ or S(ok) < s] then

20 if event(ok, 3) = ∅ then event(ok , 3)← tk;

21 else event(ok , 1)← tk;

22 else if [ok ∈ O4 and S(ok) ≥ s] then //Logline is a switch event
23 if ek = left then event(ok, 1)← tk;

24 else event(ok , 2)← tk;

4.3.3 TNV-Tables

Generated TNV-tables can be displayed in the TNV-View module. Each row of a TNV-table

corresponds to a train number at a particular day. The first four columns contain the date, train

number, scheduled arrival time, and scheduled departure time. The next columns give the event

times associated to consecutive elements on the train path.
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Figure 4.5 Event times of section EHV$255T and associated objects in TNV-table

Figure 4.5 shows a part of a TNV-table as displayed by TNV-View. The first four columns show

the date, train number, and scheduled arrival and departure time. The remaining successive

columns correspond to signal 256 (columns 5-7), a TNV-step to position EHV$EB1/EB1S.0

(column 8), section 255T (columns 9-11), and switch 255 (last two columns). All objects

correspond to section 255T. Note that the empty cells in the columns associated to switch 255

imply that the switch position has not changed for about 20–30 minutes, which is the search

period up to entering the associated section 255T depending on the parameter δin. Equivalently,

an empty cell in the ‘last clearance’ column (column 9) of section 255T denotes that this section

was cleared (and hence occupied) for more than 20–30 minutes before the current occupation.

TNV-View has several viewing and export options. Route events (columns) can be hidden

leaving an overview of particular events. For instance, hiding all columns except section entries

gives a view of the progress of a train over a route, see Figure 4.6. Hidden columns are also

excluded when exporting files, by which output files are generated with various levels of detail

for further analysis. Output formats include tab-delimited or comma-separated values (CSV)

that can be opened by common spreadsheet and statistical programs. A special output format

is also available that can be read by the TNV-filter tool to estimate speed profiles and platform

arrival and departure times.

TNV-View also contains several basic spreadsheet functionalities to support visual inspection

and comparison of TNV-tables. The heading row and the first four columns can be frozen

when scrolling through the data cells. Several windows containing different TNV-tables can be

viewed simultaneously. Moreover, these windows can be coupled and jointly scrolled to easily

compare related TNV-tables. More details can be found in the TNV-Prepare user’s guide [111].
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Figure 4.6 Subsequent section occupancy times in TNV-table

4.3.4 Accuracy and Reliability of TNV-Tables

The event times in the TNV-logfiles are the time instants at which the events are logged by

the TNV-system. This logged event time may differ from the actual event time as a result

of transmission delay or noise. However, a transmission delay is usually only a fraction of a

second, and also the time necessary to log a received message is negligible. Note that event

times are given in seconds and so the maximal precision is one second.

The degree of accuracy and reliability of the (logged) event times can be evaluated by several

tests based on route logic. Two types of tests are distinguished: a consistency test, which is an

integrated part of the TNV-Report module, and a synchronicity test. The tests have been applied

on TNV-logfiles recorded during one week in Eindhoven. The sequel explains the tests and the

results of the Eindhoven TNV-logfiles.

TNV-Report performs several consistency tests in its search algorithm based on route logic. A

first test is based on the chronological ordering of events. For instance, successive sections on a

route must be occupied consecutively, and also a section can only be cleared after the entrance

of an adjacent section. TNV-Report detects and discards inconsistent data, which results in

empty cells in the TNV-tables. Thus, the generated TNV-tables only contain consistent data

with respect to the route logic. Note that the last section clearance before the passage of the

current train usually corresponds to different trains. So the last clearances of successive sections

may be caused by a train running in the opposite direction or by a crossing train route. These

events should therefore not be compared with the route logic of the current train. Empty cells

may also result from missing events. As an example, suppose that a TNV-step has been logged

but a section of the previous TNV-position has not yet been occupied. Clearly, the train has

passed the section but for some reason this has not been detected, transmitted, or recorded.

TNV-Report only generates an event in a TNV-table if a logical test guarantees its consistency.

Thus, a missing event results in one or more empty cells in the TNV-table.
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Analysis of the generated TNV-tables of the Eindhoven TNV-logfiles shows that the number of

empty cells caused by inconsistent data is negligible, even in periods of heavy (communication)

traffic. Hence, the TNV-logfiles are highly complete and correctly represent the actual events in

a consistent chronological order.

Also a synchronicity test can be applied to the TNV-tables that have been generated by TNV-

Report. This post-analysis of the generated tables is based on the fact that synchronous events

have equal occurrence times. A triple of synchronous events occurs at the first section of a

TNV-position that is located near a signal, i.e., a stop signal, a section occupation, and a TNV-

step. These events correspond to different processes that are triggered by a train entering the

first section (track circuit) of a TNV-window. First, the signal changes to a stop aspect, which is

then reported via the interlocking system to the TNV-System. Second, the section occupation is

reported via the interlocking system to the TNV-System. And third, the TNV-step is generated

by the TNV-System based on this received section occupation message.

This synchronicity has been tested on the TNV-tables that were generated from the Eindhoven

TNV-logfiles. The logged event times of each triple were observed equal for all TNV-steps

of any train at Eindhoven, with an occasional exception of one second delay of the TNV-step.

These exceptions follow from the sequential triggering of processes where the most vital in-

formation is processed first. The generation of a TNV-step and its logging follows the section

occupation logging. If the latter event is logged at the end of a clock-second, the next event is

logged at the next clock-second. Likewise, the stop signal event time is received — and hence

logged — by the TNV-system before the section occupation and TNV-step. Therefore, also the

logged stop signal may occasionally differ one second from the other two events. Thus, from

the test of the Eindhoven TNV-logfiles follows that the logged events have an accuracy of one

second. It can be concluded that the computation time of a TNV-step is negligible, and the same

holds for the recording time of an event. Moreover, it can be concluded that the transmission of

messages from the signalling systems is free of noise.

In conclusion, tests of the Eindhoven TNV-logfiles prove that the logged event times equal the

actual event times with an error smaller than one second, the events are recorded in the correct

chronological order, and missing logged events are exceptional. The TNV-tables generated

by TNV-Prepare/Report are thus highly complete and accurately represent the actual traffic

processes.

4.4 TNV-Filter

4.4.1 Filtering of Train Paths through Stations

The actual arrival and departure times at a platform stop are in general not measured and hence

not recorded automatically. The closest measured event to an arrival is the platform track section

occupancy, or even more close, the clearance of the last section before the platform track section.

Likewise, a departure can be approximated by the measured occupancy of the track section just

after the platform track section. The running time before and after the stop on the platform track

section may nevertheless be considerable depending on the local station layout (platform track

section length) and stop location at the platform track.
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Figure 4.7 Activities on a platform track section

Within the occupation time of the platform track section several activities take place: braking

until standstill at the stop location, opening of doors, boarding and alighting of passengers,

waiting at the platform track, the departure procedure, acceleration after departure, and clearing

the section after passage of the last train axle, see Figure 4.7. Let us define the arrival and

departure time as the start and end of standstill at the platform, respectively. Then the arrival

and departure time can be estimated from the platform section occupancy and the running times

before and after standstill at the platform track section.

Figure 4.8 shows the running times of equivalent trains over the same route through Eindhoven

over a distance of 435 meter from the entry signal to the platform section border. The data is

obtained using TNV-Prepare and represents a typical picture of the running time distribution

through a station. Clearly, trains run with different speeds to the platform and hence the arrival

and departure time do not only depend on the passage time at the platform section borders but

also on speed and deceleration/acceleration.

Filtering of a train path through a station therefore contains the following steps for arriving and

departing trains:

(i) Estimation of speed and acceleration/deceleration at the platform track section borders;

(ii) Estimation of the stop position at the platform track, possibly depending on train length;

(iii) Prediction of the running time at the platform track section before and after the stop

position.

Section 4.4.2 describes a least-squares estimation method for finding the speed profile and fil-

tered section passage times over the in- and outbound train route through the station, including

the average accelerations on the sections. Here the filtered passage times are feasible with re-

spect to train motion equations and correspond to the measured passage times after rounding.

The running time estimations at the platform track are considered in Section 4.4.4.

4.4.2 Speed Profile Estimation

This section presents an approach to accurately estimate the train speed profile over a route

through a station before and after the platform section. This result will then be used in the next

section to establish running times on the platform section.



Chapter 4. Train Detection Data and TNV-Prepare 83

20 25 30 35 40 45 50 55 60

Running time from section EHV$131 BT to EHV$150BT (s)

0

5

10

15

C
o

u
n

ts

Figure 4.8 Histogram of running time from the entry signal to the platform section border in

Eindhoven (IC1500 Heerlen-The Hague CS)

The speed on a train route through a station may vary due to e.g. coasting or active braking in

view of a platform or speed restrictions due to switches or track curvature. Moreover, variation

of, for example, train composition (train length) and driver behaviour causes a different speed

profile even for trains of the same type. The average speed over a part of the route is hence

not an applicable speed estimate. Furthermore, the data precision in seconds prevents using

the average speed over just the last section as an estimate for the speed at the platform section

border. Consider a track section of length lk and passage times tk and tk+1 of the first train axle

on the subsequent section borders. The average speed on this section is

v̂k =
lk

tk+1 − tk
.

Let δ be the accuracy of the passage times. Then the actual passage time is uniformly distributed

on [ti, ti + δ) for i = k, k + 1, and the absolute error of the speed estimate is the difference of

the speed upper and lower bound, that is,

|εk| =
(

lk
tk+1 − tk − δ

)

−
(

lk
tk+1 − tk + δ

)

=
2δlk

(tk+1 − tk)2 − δ2
. (4.1)

As an example consider a track section of 50 m and assume that the passage times (of the first

train axle) at the section borders are 16:05:30 and 16:05:35, respectively, with a precision of a

second. Note that the accuracy of the measurements can never be higher than the precision, so

in the best case we have δ = 1. Since, we here have tk+1 − tk = 5 s, the average section speed

is v̂k = 50/5 = 10 m/s, and the absolute speed estimation error is |εk| = (2 · 50)/(52 − 1) =
100/24 = 4.17 m/s by (4.1). The lower and upper bound on the speed estimate with respect to

the precision is vk = 50/6 = 8.33 m/s and vk = 50/4 = 12.5 m/s, respectively. The minimal

variance speed estimate is the middle of the error bounds (8.33 + 12.5)/2 = 10.42 m/s with a

maximal error of 4.17/2 = 2.08 m/s. This is an error of 20%.
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The error bounds in (4.1) can also be used as bounds on the actual speed if the accuracy of

the measurement is known. Reversely, (4.1) can be used to determine the measurement error if

accurate speed estimates are obtained from an alternative method or if speed measurements are

available.

The motion of a train is a dynamic process with three variables that change over time: the

position of a train, its speed, and the acceleration (or deceleration for negative values). The

variables are hence functions of time. In the sequel we assume that the section passage times

and section lengths are available. The passage times of sections on a route are generated by

TNV-Prepare. The section lengths must be provided by the railway infrastructure management.

In the Netherlands the positions of insulation joints between track circuits (the section borders)

are shown on OBE-maps from Railinfrabeheer. These maps used to be drawn by hand but are

currently replaced by computer drawings using the system CARE [68].

Consider a train run over a route of n track sections and assume that the n section entrance

times are available from (track circuit occupancy) measurements. The train dynamics on this

route can be described by the discrete-time version of the Newton laws of motion

{
xk+1 = xk + vk(tk+1 − tk) + 1

2
ak(tk+1 − tk)2

vk+1 = vk + ak(tk+1 − tk), (4.2)

for k = 1, . . . , n − 1. Here xk is the (known) route position of the beginning of section k, vk

is the speed at this section boundary, ak is the (average) acceleration on section k, and tk is the

measured passage (entrance) time of section k. The main problem here is that the passage times

are only approximately known, i.e., the measurements are rounded to seconds and possibly have

measurement errors. Therefore, the passage times are unknowns within some bounds. Note that

if the passage times were known precisely then (4.2) is a system of 2n−2 linear equations in the

2n−1 variables (a1, . . . , an−1, v1, . . . , vn). In this case, the only variable to be determined is the

initial speed v1: for given speed v1 (4.2) is just a system of as many linear equations as variables.

The problem then reduces to finding v1 such that this linear system has a feasible solution. If

on the other hand the train positions xk are unknown instead of the passage times then (4.2) is

a standard linear filtering problem, which can be solved by the Kalman filter, see e.g. Anderson

and Moore [8]. For the specific problem at hand however a least-squares approach is pursued.

Consider the system (4.2) with known positions xk. Note that this system is nonlinear in the

passage times tk. We are now faced with the problem to find variables vk (k = 1, . . . , n), ak

(k = 1, . . . , n− 1), and τk (k = 1, . . . , n) with τk ∈ [tk, tk + 1) such that

Jk(vk, ak, τk, τk+1; xk) := xk + vk(τk+1 − τk) +
1

2
ak(τk+1 − τk)2

is equal to xk+1 for all k = 1, . . . , n− 1. Note that xk is a known parameter in Jk(·) and not a

variable. There is some redundancy in (4.2): we only have to find the initial speed v1 and actual

passage time τk at the first section, and then subsequently in each step k must find appropriate

variables ak and τk+1, which then also fixes speed vk+1 by the second equation in (4.2). The

decision variables can therefore be reduced to the 2n variables (τ1, . . . , τn, v1, a1, . . . , an−1).

The problem can now be defined as a least-squares optimization problem that minimizes the

sum of squared errors of xk+1 − Jk(vk, ak, τk, τk+1), while satisfying τk ∈ [tk, tk + 1) for all k.

Instead of explicitly adding the passage time constraints to the optimization problem it is more
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convenient from an algorithmic point of view to extend the objective function with additional

terms that penalize large deviations from the actual passage times. We therefore consider the

following least-squares optimization problem

Minimize

n−1∑

k=1

(xk+1 − Jk(vk, ak, τk, τk+1))
2 +

n−1∑

k=1

a2
k +

n−2∑

k=1

(ak+1 − ak)
2 +

n∑

k=1

(τk − tk −
1

2
)2

(4.3)

subject to

vk+1 = vk + ak(τk+1 − τk), k = 1, . . . , n− 1. (4.4)

The first term in the least-squares cost function penalizes the deviation of the section position

xk+1 and the estimated train position at time τk+1 given by Jk(vk, ak, τk, τk+1). The second term

minimizes the necessary acceleration or deceleration. The third term expresses the assumption

that the jumps in acceleration or deceleration are as small as possible. The fourth term penalizes

the deviation of the actual passage time τk from the expected passage time tk + 1/2. Recall that

a rounded measurement tk is in fact a uniformly distributed stochastic variable on [tk, tk + 1)
with mean tk + 1/2. The constraint (4.4) implicitly determines the speeds vk (k = 2, . . . , n)

in terms of passage times and acceleration, and only serves for notational convenience. In the

actual implementation these (equality) transformations are substituted directly in the definition

of the cost function.

The terms in the cost function may also be weighted differently. Note that an absolute deviation

of 1 second of the passage time estimates τk from the measurements is allowed. However a

difference of 1 m/s2 on an acceleration estimate is unacceptable. Therefore the acceleration

terms can be multiplied by a weight of for instance 100. In this case a change in value of a

passage time τk of 1 second is in the same order as a change of 0.01 m/s2 in acceleration rate.

Nevertheless, experiments showed good performance of the least-squares estimation with cost

function (4.3) with no (or equal) weights.

If the estimated variables from the unconstrained least-squares problem exceed unrealistic limits

then constraints on the variables must be added explicitly, which results in a constrained least-

squares problem. In particular simple box constraints are applicable, i.e., where the decision

variables are bounded individually from below and above.

Passage time bounds. Assume that the passage time measurements are only subject to round-

off errors caused by the precision in seconds. Then we have the constraints

tk ≤ τk < tk + 1, k = 1, . . . , n,

where tk are the measured passage times in seconds. The bounds can be adjusted when addi-

tional measurement errors apply.

Acceleration and deceleration bounds. The acceleration and braking rates must satisfy the

train characteristics. We therefore have the constraints

a ≤ ak ≤ a, k = 1, . . . , n− 1,

where a is the maximum characteristic acceleration and a = −d is the negative maximum

characteristic braking rate d.
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Speed restriction. Speed can be limited by the maximum speed of the train characteristics or

by speed restrictions of the railway infrastructure (station layout or open track). We thus have

0 ≤ v1 ≤ v,

where v is the speed restriction on the first section. Recall that we do not consider all sec-

tion speeds explicitly as variables. If we want to incorporate speed restrictions on each section

separately the model must be slightly changed. A first possibility is to include all n speeds

in the decision variables instead of the n − 1 acceleration rates. An alternative is to define a

nonlinear constraint where the speed bounds are expressed in nonlinear constraints on acceler-

ation and passage times. The latter option means however that no longer efficient least-square

optimization algorithms can be used, but a nonlinear programming method must be pursued.

The solution to the speed estimation problem is now obtained as follows. First, (4.3) is solved by

an unconstrained nonlinear least-squares algorithm. If one or more of the variables do not satisfy

the above constraints then the constraints are added and the resulting problem is solved by a con-

strained nonlinear least-squares method. Unconstrained nonlinear least-squares problems are

efficiently solved by the Gauss-Newton method or the Levenberg-Marquardt method [35, 55].

Constrained nonlinear least-square problems are computationally more involved. These prob-

lems are tackled by general constrained nonlinear minimization algorithms, which are adapted

to take advantage of the special structure of the least squares cost function. In the Matlab Opti-

mization Toolbox [35] a trust region method is used as developed by Coleman & Li [36]. This

latter method requires at least as many terms in the cost function as variables. The variables

that have to be estimated are each τk and ak, and the initial speed v1. The problem thus has 2n
variables and the cost function (4.3) exhibits 4n− 4 terms. So the constrained problem can be

solved by this method for n ≥ 2, i.e., the considered route must contain at least measurements

of 2 track sections, which is necessary anyway to estimate the average speed on one section.

The 3rd term can be safely dropped but is included because it directs the (unconstrained) solu-

tion to more satisfying results by penalizing acceleration jumps. It is however only applicable

if n ≥ 3 so that at least the acceleration on two sections must be fit. Furthermore note that

if the acceleration terms in the cost function are dropped then we only have 2n − 1 terms and

the constraint problem with variable bounds can not be solved (by the above method). If only

the 2nd term (squared accelerations) is dropped then 3n − 3 terms remain and the constrained

problem can be solved if n ≥ 3 (section) measurements are available. It can hence be concluded

that for the method to really work at least 3 sections must be taken into account. Otherwise one

just takes the average speed on one section based on the passage times at both section borders.

It should be noted that if some bounds are too tight, the constrained problem may be infeasi-

ble and the problem has no solution. If for instance the measurements have an error because

of noise or transmission delays then the constraint system may be infeasible since the actual

passage times τk may deviate more than one second from tk. Note that a constant bias on all

measurements has no effect on the estimates. So infeasibility only occurs when the measure-

ments have fluctuating errors such as a transmission delay to only one or a few measurements.

Thus, the least-squares problem with above additional constraints can also be used to check for

possible measurement noise.
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4.4.3 Train Length Estimation

The stop location on the platform tracks may depend on the train length. We therefore also want

to be able to estimate the train length from the data. Train length can be estimated using three

quantities at a fixed track position:

• passage time of the first train axle;

• passage time of the last train axle;

• (average) speed between the first and last axle passage.

Consider a section border between section k and k + 1. The passage time of the train head

(or first axle) is measured as the time that section k + 1 gets occupied. On the other hand the

passage time of the train rear (or last axle) is measured by the clearance time of section k. If

the speed is known and constant during the passage of the section border then the train length

ℓ, approximated as the difference between the first and last axle, is given as

ℓ = v · (sk − tk+1),

where v is the (average) speed at the section border, tk+1 is the entrance time of section k + 1,

and sk is the clearance time of section k.

The accuracy of this estimate depends on the accuracy of the three variables. If the passage

times have an accuracy of 1 second, and we assume perfect knowledge of the average speed,

then the estimation error of the train length is still 2v. Furthermore, the average speed is also

not known exactly. In the last section a method was presented to estimate the speed of the train

front at each section border. Here we need the average speed during the entire passage of a

train over a section border. As we have seen the speed profile is usually not constant during

the train trip, and in particular at the approach and departure of a station. The average speed on

the section border may be approximated by (vk+1 + uk)/2, where vk+1 is the speed of the train

front at the occupancy of section k + 1 and uk is the speed of the train back at the clearance of

section k. These two values must be estimated by e.g. the method of the last section. Still, the

error in the speed estimate is not known and hence neither is the error of train length. This error

may be decreased by taking the average of several train length estimates at subsequent sections.

The least-squares model of the last section can be extended to include train length estimation.

We now must find the speed profile of both the front and rear of the train. The speed profile

estimation of the train back is also obtained from the Newton laws of motion but with respect to

the section clearance times, which are the passage times of the last axle of a train. The average

acceleration based on track clearance times can only be obtained from the second section on-

wards since no passage time of the train back is available for the beginning of the first section.

Define

Ik(uk, bk, σk, σk+1; xk+1) := xk+1 + uk(σk+1 − σk) +
1

2
bk(σk+1 − σk)

2,

where σk is the filtered clearance time of section k, uk is the speed at the end of section k
estimated from the clearance times, and bk is the average acceleration/deceleration at section

k + 1. Then we must have xk+2 = Ik(uk, bk, σk, σk+1) for all k = 1, . . . , n− 2.
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Consider again a route of n sections to which we have measurements of the occupations and

clearances. The least-squares optimization problem is now given as

Minimize

n−1∑

k=1

(xk+1 − Jk(vk, ak, τk, τk+1))
2 +

n−1∑

k=1

a2
k +

n−2∑

k=1

(ak+1 − ak)
2 +

n∑

k=1

(τk − tk −
1

2
)2

+
n−2∑

k=1

(xk+2 − Ik(uk, bk, σk, σk+1))
2 +

n−1∑

k=1

b2k +
n−2∑

k=1

(bk+1 − bk)2

+
n−1∑

k=1

(σk − sk −
1

2
)2 +

n−1∑

k=1

(ℓ− 1

2
(vk+1 + uk) · (σk − τk+1))

2 (4.5)

subject to
vk+1 = vk + ak(τk+1 − τk), k = 1, . . . , n− 1
uk+1 = uk + bk(σk+1 − σk), k = 1, . . . , n− 2.

Here tk, τk, xk, vk, and ak are as before, sk is the measured clearance time of section k, σk

is the filtered clearance time, uk is the speed of the last axle at the exit of section k, bk is the

average acceleration/deceleration of the last axle at section k+1, and ℓ is the train length. In the

cost function the first term is the squared error of the train front motion equations. The second

term minimizes the necessary acceleration or deceleration of the train front. The third term

expresses the assumption that the jumps in acceleration or deceleration are as small as possible.

The fourth term penalizes the deviation of the actual passage time τk from the expected passage

time tk + 1/2. The fifth term is the squared error of the train back motion equations. The sixth

term minimizes the acceleration or deceleration of the train back. The seventh term expresses

the assumption that the jumps in acceleration or deceleration are as small as possible. The eighth

term penalizes the deviation of the actual passage time σk of the train back from the expected

passage time sk + 1/2. And the final term is the squared error of the train length estimate. The

two constraints are functional equations that are used in the definition of the cost function.

Problem (4.5) is an unconstrained nonlinear least-squares estimation problem. Like in the last

section, the least-squares problem can be extended by weights in the cost function and additional

bounding constraints. Observe that the last term couples the estimations based on the entrance

times and the clearance times, which otherwise are two separable problems.

4.4.4 Running Time on Platform Tracks

In this section we derive analytical estimates for the running times on the platform track. The

following information is assumed available:

• train passage time and speed at the platform section borders;

• train acceleration (deceleration) at the platform sections borders;

• train acceleration and deceleration characteristics;

• platform section length;

• stop location at the platform of the train front.

The platform section passage times are obtained by TNV-Prepare with an accuracy of one sec-

ond. The estimation of train speed and acceleration is considered in the previous section. As
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Figure 4.9 Signs (blue background) indicating the stop location at a platform track for a train

with 4 coaches (left) and for any train irrespective of the number of coaches (right)

an estimate for the acceleration on the platform section border we use the average acceleration

on the section before and after the platform section. Train characteristics and platform sec-

tion lengths must be provided by the operators or railway infrastructure management. Recall

that train lines are usually operated by trains of the same type with possible varying trainset

compositions (number of train units) over different periods during the day.

The stop location at a platform depends on train composition and the location of stairways and

escalators. If the platform access facilities are located at the end of the platform (with respect

to the arriving train direction) then the stop location is invariant to train composition (length):

each train (driver) runs as close as possible to the platform end, provided that the departure

signal is not situated within less than 5 m from the end of the platform. On the other hand, if the

access facilities are located at the beginning or the centre of the platform then the stop location

generally depends on the train length. In the Netherlands, fixed trackside signs indicate the stop

locations at the platform track, see Figure 4.9. If the stop location depends on train length then

several signs indicate the relevant stop position for trains with a specified number of coaches. If

the stop sign positions or the number of coaches are unknown at the time of analysis then train

length estimation may be used to find the actual or approximate stop locations.

Let v0 > 0 (v1 > 0) be the estimated speed at the entrance (exit) of the platform section, a0

(a1) be the estimated average deceleration/acceleration on the section preceding (following) the

platform section, and dmax < 0 (amax > 0) be the maximum train-characteristic deceleration

(acceleration) rate. Assume that l is the desired stop position (of the front of the train), mea-

sured from the entering platform section border and L is the platform section length. Then the

following lemma applies.

Lemma 4.4.1 The stop location l ∈ (0, L) is feasible if

v2
0

2|dmax|
≤ l ≤ L− v2

1

2amax
. (4.6)

Proof: Consider the continuous Newton laws of motion x(t) = x(0) + v(0) · t+ 1
2
a(t) · t2 and

v(t) = v(0) + a(t) · t. For constant acceleration/deceleration a(t) ≡ a 6= 0 the 2nd equation

gives time as function of speed by t = (v(t) − v(0))/a. Substitution in the 1st equation and

rearranging gives the covered distance in terms of speed

x(t) = x(0) +
v(t)2 − v(0)2

2a
. (4.7)
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Now first consider the train arrival. The minimal braking distance is obtained by braking at

maximum capacity a = −|dmax|. Let t = 0 be the entrance time at the platform section, and

so x(0) = 0 and v(0) = v0. The minimal distance x(t) necessary for braking to zero speed

v(t) = 0 is now obtained from (4.7), which gives the lower bound on l. Now consider the train

departure. Assume that the train departs at t = 0 with maximum acceleration amax from x(0)
to the platform section border x(t) = L. This strategy accelerates from v(0) = 0 to v(t) = v1

over the shortest distance (and in minimal time). Substitution in (4.7) gives the upper bound on

l. ✷

In the sequel we assume that the bounds (4.6) in Lemma 4.4.1 are valid.

At the platform track section no more additional information is obtained from the safety sys-

tems. We therefore have to assume a certain braking and acceleration strategy and compute

the running time on the platform track accordingly. First we explore the feasible and maximal

speed profiles.

Let the maximum-braking speed function vmax
dec : [0, l] 7→ R+ and the maximum-acceleration

speed function vmax
acc : [l, L] 7→ R+ be defined on the platform track section as

vmax
dec (x) :=

√

2|dmax|(l − x) and vmax
acc :=

√

2amax(x− l).

The area {(x, v)|0 ≤ x ≤ l, 0 ≤ v ≤ vmax
dec (x)} is the area in the distance-speed plane from

which the destination (l, 0) can be reached. Likewise {(x, v)|l ≤ x ≤ L, 0 ≤ v ≤ vmax
acc (x)} is

the area in the distance-speed plane that is reachable from the stop location, see Figure 4.10.

The following lemma gives the speed profile over the platform track section with minimum

platform running time. Note that a straight line in the distance-speed plane from the platform

entry to the stop location and again straight to the platform exit is not the fastest speed profile.

Lemma 4.4.2 Let the bounds (4.6) in Lemma 4.4.1 be valid. The minimum platform running

time before arrival with initial speed v0 is

tmin
in = (umax

0 − v0)/amax + umax
0 /|dmax|

and the minimum platform running time after departure with final speed v1 is

tmin
out = (v1 − umax

1 )/|dmax|+ umax
1 /amax,

where

umax
0 =

√

v2
0|dmax|+ 2lamax|dmax|

amax + |dmax|
and umax

1 =

√

v2
1amax + 2(L− l)amax|dmax|

amax + |dmax|
.

Proof: The speed profile with minimum running time in the distance-speed plane from (0, v0)
to (l, 0) is given by accelerating with maximum acceleration until the maximum braking curve

is reached, after which this curve is followed by constant braking with maximum braking rate,

see Figure 4.10. Note that by this strategy the speed at each position is the highest possible.

The switching position l0 and associated speed can be found using (4.7). For the maximum

acceleration phase we find l0 = (v2 − v2
0)/2amax and for the maximum braking phase we have



Chapter 4. Train Detection Data and TNV-Prepare 91

Distance (m)

S
p
e
e
d
 (

m
/s

)

Max−braking curve

Max−acceleration curve

0 50 100 150 200 250 300 350 400
0

5

10

15

20

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

Distance (m)

T
im

e
 (

s
)

Figure 4.10 Speed-distance and time-distance diagrams of fastest (dashed) and predicted

(solid) platform track curves. The dark area is the feasible speed-distance region (l = 300m,

dmax = −0.5m/s2, amax = 0.7m/s2)

l − l0 = v2/2|dmax|. Substituting the first equation into the second and solving for v gives

v = umax
0 , which is hence the switching speed on the maximum braking curve. The running

time is now given as the sum of the running time to the switching point (umax
0 − v0)/amax and

the braking time from the switching point umax
0 /|dmax|.

The speed profile with minimum running time in the distance-speed plane from (l, 0) to (L, v1)
is given by following the maximum acceleration curve as far as possible and then braking with

maximum braking rate to reach (L, v1), see Figure 4.10. Similar to the running time before

arrival case, we find the switching speed umax
1 , and the running time is then given as the sum of

the running time on the maximum acceleration curve to the switching point umax
1 /amax and the

running time from the switching point to the platform end (v1 − umax
1 )/|dmax|. ✷

Lemma 4.4.3 Let the bounds (4.6) in Lemma 4.4.1 be valid. Then on the distance-speed plane

{(x, v)|0 ≤ x ≤ L, v ≥ 0} the following hold.

(i) The distance-speed trajectory of a constant-deceleration motion with deceleration a0

and initial speed v0 intersects the maximum braking curve on [0, l] if and only if a0 ≥
−v2

0/(2l).
(ii) The distance-speed trajectory of a constant-acceleration motion through (L, v1) with

acceleration rate a1 intersects the maximum acceleration curve on [l, L] if and only if

a1 ≤ v2
1/(2(L− l)).
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Proof: First consider the deceleration curve. Since the bounds in Lemma 4.4.1 are valid

(0, v0) lies in the feasible area, i.e., below the maximum deceleration curve. A train that runs

from x = 0 with initial speed v0 and constant deceleration a0 < 0 reaches zero speed at

l0 = −v2
0/(2a0). Hence, the distance-speed curve intersects the maximum braking curve only

if l0 ≥ l. So we have l ≥ −v2
0/(2a0) which proves the first part for a0 < 0. Now let a0 ≥ 0.

Then the speed does not decrease and hence must reach the boundary of the feasible region, i.e.,

it intersects the maximum braking curve on [0, l].

Now, consider the acceleration curve. The proof is similar to the first part. Because (4.6)

is valid (L, v1) lies below the maximum acceleration curve. Depending on a1 the constant-

acceleration curve through (L, v1) either intersects the maximum acceleration curve or the zero-

speed boundary on l < x < L (recall v1 > 0). The acceleration distance from zero speed to v1

with constant acceleration a1 > 0 is v2
1/(2a1). So if v2

1/(2a1) ≥ L− l then the curve intersects

the maximum acceleration curve. This proves the second part for a1 > 0. Clearly, for a1 ≤ 0
the curve has downward or zero slope and must hence intersect the maximum braking curve on

[l, L] before reaching (L, v1). ✷

Since no information is available of the processes on the platform section, we have to assume a

certain procedure to approximate the platform speed profile.

Assumption 4.1 Let a train enter a platform section with speed v0 > 0 and deceleration a0,

stop at stop location l, and exit the platform section with speed v1 > 0 and acceleration a1. For

the speed profile on the platform section the following is assumed.

(i) A train runs nonstop to the stop location l with final maximum braking phase.

(ii) Between the platform entrance and the final maximum braking phase the train runs with

constant deceleration a0 if a0 ≥ −v2
0/(2l) and with constant speed v0 otherwise.

(iii) A train departs with initial maximum acceleration phase and runs nonstop to the platform

section exit.

(iv) Between the initial maximum acceleration phase and the platform section exit the train

runs with constant acceleration a1 if a1 ≤ v2
1/(2(L − l)) and with constant speed v1

otherwise.

Figure 4.10 shows the speed-distance and time-distance graph that satisfy Assumption 4.1. The

following theorem states that the conditions in Assumption 4.1 define a unique feasible speed

profile and gives analytical expressions for the associated platform running time estimates.

Theorem 4.4.1 If (4.6) is valid the speed profile in Assumption 4.1 is feasible and uniquely

determined. The associated inbound platform running time is

trin =

{
l/v0 + v0/(2|dmax|) if dmax ≤ a0 ≤ −v2

0/(2l) or a0 = 0
(u0 − v0)/a0 + u0/|dmax| if − v2

0/(2l) ≤ a0 < 0 or a0 > 0.

and the outbound platform running time is

trout =

{
(L− l)/v1 + v1/(2amax) if v2

1/(2(L− l)) ≤ a1 ≤ amax or a1 = 0
(v1 − u1)/a1 + u1/amax if 0 < a1 < v2

1/(2(L− l)) or a1 < 0,
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where

u0 =

√

v2
0|dmax|+ 2la0|dmax|
|dmax|+ a0

and u1 =

√

v2
1amax − 2(L− l)a1amax

amax − a1

.

Proof: Feasibility follows from Lemma 4.4.1 and 4.4.3: From Lemma 4.4.3.(i) it follows that

if the condition on a0 is satisfied then the constant deceleration curve intersects the maximum

braking curve, and at this switching point the deceleration rate is switched to maximum brak-

ing, which gives a uniquely defined continuous curve in the distance-speed plane. On the other

hand, if the condition is not satisfied, the point (0, v0) still lies in the feasible region below the

maximum braking curve by Lemma 4.4.1. The curve with constant speed v0 hence must inter-

sect the maximum braking curve at v0 for a distance between 0 and l. At this switching point

the constant speed phase switches to maximum braking, which uniquely defines a continuous

curve in the distance-speed plane. An analogous reasoning holds for the departure speed profile.

If the condition in Lemma 4.4.3.(ii) is valid a unique switching point exists to switch from the

maximum acceleration curve to constant acceleration with rate a1. And if this condition is not

valid then the maximum acceleration curve is followed until speed v1 is reached at which the

speed profile switches to a constant speed phase.

We now prove the correctness of the platform running time expression. First the running time

before arrival. The expression clearly has a discontinuity at the point a0 = −v2
0/2l. Below this

value a speed-holding/maximum-braking policy is pursued, i.e., a(x) ≡ 0 if 0 ≤ x ≤ l0 and

a(x) ≡ dmax if l0 < x ≤ l, where l0 is the switching location l0 = l − v2
0/(2|dmax|), which is

the stop position l minus the maximum braking distance from v0 to zero speed. The associated

running time is the first part of the arrival running time expression. This running time represents

the time to cover a distance l with constant speed v0 and an additional time loss caused by

braking with maximum capacity to zero speed from l0 onward. Also note that the case a0 = 0
is represented by this equation since this is exactly the speed-holding phase. The second part

in the arrival running time expression represents the constant-deceleration/maximum-braking

policy, i.e., a(x) ≡ a0 if 0 ≤ x ≤ l0 and a(x) ≡ dmax if l0 < x ≤ l, where l0 is now the

switching location given by

l0 =
l|dmax| − 1

2
v2
0

|dmax|+ a0
.

The speed at this switching location is v(l0) = u0. Note that for a0 = 0 the switching positions

of both policies collide and u0 = v0. The associated running time is now the second part of the

arrival running time expression. The first term is the switching time t0 and the second term is

the additional running time to brake with maximum capacity from v(l0) = u0 to zero speed.

The proof of the expression for the platform running time after departure is completely anal-

ogous to the arrival running time. The switching position in the second departure running

time expression associated to the maximum-acceleration/constant-acceleration policy now is

l0 = (1
2
v2
1 − (L− l)a1)/(amax − a1) with speed v(l0) = u1. ✷

The following lemma states that the platform running times are smooth in a0 = 0 and a1 = 0.

As a result the running time estimates do not show a sudden jump if the initial (final) accelera-

tion varies around zero, i.e., the estimates are insensitive to parameter variations around zero.
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Lemma 4.4.4 Let trin(a0) and trout(a1) as defined in Theorem 4.4.1. The platform running time

trin is continuous in a0 = 0 and trout is continuous in a1 = 0.

Proof: The lemma is proved by application of the rule of l’Hôpital, which can be stated as fol-

lows: If f and g are differentiable in x = 0, f(0) = g(0) = 0, g′(0) 6= 0, and limx→0 f
′(x)/g′(x)

exists, then limx→0 f(x)/g(x) = limx→0 f
′(x)/g′(x). Applying l’Hôpital’s rule to the first term

in trin(a0) for a0 → 0 gives

lim
a0→0

−v0 +
√

v2
0|dmax|+ 2la0|dmax|/

√

|dmax|+ a0

a0
=

l

v0
− v0

2|dmax|
.

Note that both the denominator and numerator on the left-hand side are zero in a0 = 0, and

the derivative of the denominator to a0 is 1. Calculation of the derivative of the numerator

to a0 and substituting a0 = 0 gives the right-hand side. Hence the conditions of l’Hôpital’s

rule are satisfied. The second term of trin(a0) with a0 → 0 is calculated directly as v0/|dmax|.
Adding this to the expression for the first term derived above gives trin(0) = l/v0+v0/(2|dmax|).
Comparison with the first expression for trin(0) gives

lim
a0→0

trin(a0) = trin(0).

The trout(a1) case is proved completely analogously. ✷

4.4.5 Arrival and Departure Delays

Platform arrival and departure time estimates directly follow from the results of the previous

sections. The arrival time is simply the sum of the measured platform entrance time and the

remaining platform running time before standstill. Similar, the departure time is the platform

exit time minus the platform running time after dwelling.

Theorem 4.4.2 Let t0 and t1 be the entrance time and exit time of the train front (first axle)

on the platform section, respectively, and trin and trout the platform running times as defined in

Theorem 4.4.1. Then a feasible arrival time estimate â and departure time estimate d̂ is given

as

â = t0 + trin and d̂ = t1 − trout.

Furthermore, let a and d be the scheduled arrival time and scheduled departure time. Then the

arrival delay estimate and departure delay estimate is given as

A = â− a = t0 + trin − a and D = d̂− d = t1 − trout − d.

Note that by the above delay definition a delay can either be early (negative delay) or late

(positive delay). One may also be interested in arrival lateness only — when early arrivals are

considered on time. Arrival lateness is then defined as (A)+ = (â − a)+ = (t0 + trin − a)+,

where (a)+ = max(a, 0). Note that early departures are not allowed and hence departures

should always be punctual or (more or less) late.

The calculations in Section 4.4 have been implemented in the application TNV-Filter using the

Matlab numerical computing environment. The input to TNV-Filter is a file containing date,
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Figure 4.11 TNV-Filter graphical user interface

train number, and occupation and clearance times generated by TNV-Prepare (in the TNV-View

export utility). Section lengths and parameters (train/track characteristics) are provided by input

windows. The output is a file where each line contains subsequently date, train number, arrival

delay, dwell time, and departure delay. Alternatively, arrival times and departure times may be

included instead of the delays. TNV-Filter has a graphical user interface in which the speed

profile and time-distance graphs are displayed, see Figure 4.11. Also some calculation statistics

are shown measuring the goodness of fit. These statistics identify incorrect or irregular input to

which no feasible output can be computed. The graphs provide an additional means for visual

inspection. Hence, TNV-Filter also supports exploration of irregular behaviour, such as a stop

on the inbound (outbound) route just before (after) the platform section.

4.5 Conclusions and Recommendations

Existing data collection and registration methods are not accurate enough for detailed analysis

of railway operations. Until recently, feedback of precise operations data to the railway plan-

ning process was therefore not possible, although this feedback is essential for analysing and

improving railway operations. However, train describer records (TNV-logfiles) contain invalu-

able data — with a precision and accuracy of a second — that can be traced back to train number
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governed events using the developed software application TNV-prepare.

TNV-Prepare couples events of infra elements to train numbers, such as section occupations

and releases on open tracks and through railway stations, triggered signal changes, and switch

position lockings. From this information other interesting process times can easily be derived,

such as blocking times, running times on (block) sections, headway at infra points, route setting

times, et cetera.

The actual arrival and departure times at a platform stop are in general not recorded automat-

ically. Therefore, the tool TNV-Filter has been developed that estimates arrival and departure

times in (large) stations based on TNV-tables generated by TNV-Prepare. The speed trajectory

and train length of each train entering or departing a station is estimated on the basis of section

(track circuit) occupation and clearance times and scheduled train characteristics. Estimation er-

rors due to round-off errors (passage times are given in seconds) and deceleration (acceleration)

variations during the approach (departure) are filtered by means of a nonlinear least-squares

method taking into account possible speed limits at e.g. signals and switches. Subsequently, the

running time at the platform section before and after standstill are estimated from the filtered

inbound and outbound speed profiles, known standard deceleration and acceleration charac-

teristics per type of train, and stop location on the platform section (possibly depending on

train length). This way, the arrival and departure times of each train at the platform tracks are

determined with a precision in the order of a second.

From March 2000 the TNV-logfiles from each TNV-control area are no longer wasted after a few

days, but centrally collected each day and saved on CD-ROM for (internal) analysis purposes.

This archiving is done by AEA Technology Rail under license from ProRail, primarily for use

with TNV-Replay. The saved format is more compact and differs slightly from the raw TNV-

logfiles described in this chapter [83]. In July 2003 the import utility of TNV-Prepare was

extended to handle this format as well.



Chapter 5

STATISTICAL ANALYSIS:

THE EINDHOVEN CASE

5.1 Introduction

Until recently, empirical analysis of train delays dealt with delays of at least 3 minutes for prac-

tical reasons of operations control. However, modern train detection systems and computing

facilities now enable much more precise measurements and hence also much more accurate

data analysis opportunities, see Chapter 4. Analysis of realized process times is a crucial step

in punctuality management since operations data contain invaluable information about process

time variations – which should be small in a well-designed railway system – and train interac-

tions. Analysis of realization data reveals tight headway times or the actual amount of buffer

time at infrastructure bottlenecks and train connections.

Stations are the bottlenecks in a railway network as here trains of various lines meet and inter-

act. Delayed and/or early trains result in potential conflicting train paths — controlled by the

interlocking system — causing mutual hinder at conflict points. Delays measured at stations

represent a mixture of primary and secondary delays. Arrival delays are input delays to a sta-

tion area summarizing the train operations upstream to the station including the inbound routes.

They are a mixture of primary running time disruptions on the preceding open track and e.g.

a provoked low speed by following a slow train on the open track, and hinder at merging and

crossing inbound routes. Disruptions in the dwelling process are a source of primary delays,

e.g. extensive alighting and boarding time and a prolonged departure process. The measured de-

parture delays are the result of arrival delays, disruption in the dwelling process, and secondary

delays at departure resulting from e.g. conflicting outbound routes or waiting for delayed feeder

trains.

Statistics of process time realizations and resulting delays are a means of timetable evaluation

identifying tight process times and critical train interactions (transfer times, headway) or on

the other hand quantifying available slack and buffer times. Moreover, regression analysis can

be applied to evaluate potential dependencies between processes as a cause of delay propaga-

tion. Note that delay measurements at stations provide train delays associated to any possible

primary or secondary source. Finding the explicit source(s) of these resulting delays is hard

and requires monitoring information other than just delay measurements. Nevertheless, train

dependencies and critical process times expose possible sources of delay and give directions to

possible improvements in the timetable design.

The objective of this chapter is to find structural variations in process times caused by regular

minor disruptions and interactions. Major incidents or accidents — leading to long-term dam-

age or obstruction of rail tracks — are not structural and (should) occur only seldom, and are

97
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thus discarded in the analysis. Trains affected by an uncommon event experience delays that

are clearly not representative to the usual stochastic behaviour. These situations are the subject

of incidence management rather than daily operations practice. From a statistical point of view

these delays are usually identified as outliers.

In the Netherlands, passenger train services operate basically according to a periodic timetable,

repeating the same arrival and departure times each hour, with the exception of additional pas-

senger trains in rush hours and freight trains that are scheduled in between the regular train

services. It is hence anticipated that the traffic processes are mainly variations on a repetitive

pattern. This motivates an aggregation on train line level rather than analysing process times of

individual train numbers.

This chapter considers a case study of a statistical analysis applied to Eindhoven station. Parts of

this chapter have been published before in Goverde et al. [87] and Hansen & Goverde [93, 94],

and presented at several congresses including the 9th WCTR [86] and WCRR 2001 [85]. Over

the last years similar and other statistical analyses have been applied to various stations and

corridors [145, 199, 228]. The results presented in this chapter on Eindhoven have also been

found in the other studies.

TNV-logfiles in the traffic area Eindhoven were collected during one week in September 1997

and made available by Railinfrabeheer and Railverkeersleiding to TU Delft. Note that in 1997

TNV-logfiles were not maintained but could be saved on request. From the TNV-logfiles the

train line specific event times at railway station Eindhoven were generated by TNV-Prepare

and subsequently the platform arrival and departure times were obtained using the TNV-Filter

program (Chapter 4). In total, 1846 trains had been recorded, of which about 30% IC-trains,

30% IR-trains and 40% local (AR) trains. Freight trains have been discarded in the analysis.

The statistical analysis of this Eindhoven data has been done by means of the statistical software

package S-Plus [131].

The chapter is outlined as follows. Section 5.2 presents the characteristics of station Eindhoven.

Section 5.3 gives the derived punctuality statistics of Eindhoven. In Section 5.4 departure de-

lays are predicted from arrival delays using regression analysis, whereas the remaining noise

is attributed to human factors. Section 5.5 covers distribution assessment of the events and

processes in Eindhoven. In the final section some conclusions are presented.

5.2 Railway station Eindhoven

Eindhoven is the main intercity transfer station in the southern part of the Netherlands, where

train lines of four main directions meet: from Utrecht (and beyond) in the north, from Rot-

terdam in the west, Venlo in the east, and Heerlen in the south. Eindhoven has 6 platforms

for passengers and connects 3 double-track railway routes. A double-track route from Utrecht

and one from Rotterdam merge at Boxtel from which a double-track1 route leads to Eindhoven.

So the west- and northbound trains have a mutual double-track route between Eindhoven and

Boxtel, see Figure 5.1.

1In the mean time the corridor between Eindhoven and Boxtel has been upgraded to a four-track route as part

of the Rail 21 programme. The four-track route became fully operational at the end of 2002
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Figure 5.1 Station layout Eindhoven, shunting tracks not shown (1997)

Each (non-peak) hour 16 passenger trains arrive and depart in Eindhoven, that is, 4 trains from

and in each direction. These trains correspond to 9 train lines, including

• 3 intercity (IC) train lines,

• 1 international (INT) train line,

• 2 interregional (IR) train lines, and

• 3 local (AR) train lines.

Eindhoven is the origin/destination station of 5 train lines (6 trains per hour) and 4 train lines

stop in Eindhoven in both (forward and backward) directions (10 trains per hour), see Table

5.1. In rush hours, an extra passenger IR train line of 2 trains per hour is scheduled from/to

the direction Utrecht, resulting in 10 passenger trains per hour between Eindhoven and Boxtel.

Also additional freight trains pass Eindhoven on 4 through tracks. Between the long-distance

train lines 6 cross-platform transfers are scheduled, see Section 5.3.4.

Table 5.1 Basic timetable and platform occupation in Eindhoven (1997/1998)

Train line Frequency Forward Backward Remark

[train/hr] Track A D Track A D

IC800 Hlm-Mt 1 1 57 59 5 35 37

IC900 Hlm-Ehv 1 2 27 - 5 - 07

IC1500 Gvc-Hrl 1 1 24 29 6 05 09

INT1800 Ehv-Koln 1
2 4 - 33 4 01 - Even hours

IR1900 Rtd-Vl 1 2 54 59 6 35 39

IR2700 Ehv-Vl 1
2 4 - 33 4 01 - Odd hours

IR3500 Ut-Ehv 2 1 07 - 5 - 27 Peak hours

AR5200 Tbwt-Dn 2 2 15 17 6 14 16

AR6400 Ehv-Wrt 2 3 - 05 3 27 -

AR9600 Ut-Ehv 2 3 20 - 3 - 12
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5.3 Punctuality Analysis

5.3.1 Arrival Delay

For all train lines the arrival times at Eindhoven have been obtained using TNV-Prepare and

TNV-Filter. The resulting arrival delays are computed as the difference between the measured

arrival times and the scheduled arrival times according to the published passenger train timetable

(year plan) [152]. Hence, positive arrival delays correspond to late arrivals and negative values

to early arrivals, as experienced by the passengers.

Table 5.2 Arrival delay statistics

Late trains

Train line N/O1 Mean SD Med. F(180) Skew Perc. Mean SD

[s] [s] [s] [%] [%] [s] [s]

IC800 Hlm-Mt 109/2 83 100 83 83 0.4 76 122 81

IC800 Mt-Hlm 119/1 39 130 -6 86 1.0 46 148 115

IC900 Hlm-Ehv 116/0 138 144 98 66 0.9 84 171 133

IC1500 Gvc-Hrl 111/1 69 166 23 85 1.7 61 149 169

IC1500 Hrl-Gvc 99/3 49 85 43 93 0.5 71 88 67

INT1800 Koln-Ehv 58/2 63 97 53 86 0.7 66 112 80

IR1900 Rtd-Vl 109/0 24 118 -3 88 1.0 49 117 102

IR1900 Vl-Rtd 63/3 -46 82 -70 92 1.3 25 77 70

IR2700 Vl-Ehv 50/2 7 49 -3 96 0.8 50 48 39

IR3500 Ut-Ehv 15/2 85 124 98 69 0.2 80 132 94

AR5200 Dn-Tbwt 103/1 20 85 6 94 0.8 55 77 71

AR6400 Wt-Ehv 124/5 4 63 -16 100 1.0 40 81 74

AR9600 Ut-Ehv 139/4 -1 62 -16 96 1.1 41 62 53
1N/O: Number of Measurements/Outliers

Table 5.2 shows a summary of the arrival delay statistics. During the one week measurement

period several exceptional large arrival delays have been observed that deviated strongly from

the bulk of the data, see for example Figure 5.2. These observations were identified as outliers

and discarded in the remaining analysis (as denoted in the 2nd column of Table 5.2). This way

the statistics are not distorted by outliers. The number of observations for the IR3500 Ut-Ehv

is very small as these trains arrive from Utrecht in evening peak hours and at Sunday evening

only. The statistics for this train line are hence only indicative, e.g. the 95% confidence interval

of the mean arrival delay of the IR3500 Ut-Ehv trains is [10, 160] and the standard error is 34.4
seconds. In comparison the standard errors of the mean arrival delay of the other train lines

range between 5.5 and 16.0 seconds. For a detailed account of the statistical procedures we

refer to Goverde et al. [87].

The general view is that IC (and international) trains perform worse than IR and AR trains. The

mean arrival delay per IC/INT line varies between 1
2

and 11
2

min, with an exceptional inferior

performance of the IC900 Hlm-Ehv trains that have a mean arrival delay of 21
2

min. The IR/AR

trains have a considerable smaller mean arrival delay ranging basically from around 0 to 1
2

min,

and more than 50% of these trains arrive early. The westbound IR1900 Vl-Rtd trains even have

a mean arrival of 3
4

min early.
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Figure 5.2 Arrival delay scatterplot (left) and boxplot (right) of the IC800 Hlm-Mt trains,

identifying 2 outliers

The percentage of IC/INT trains arriving within 3 minutes after the scheduled arrival time ranges

between 83% and 86%, with the exception of the westbound IC1500 Hrl-Gvc trains (93%), and

the far worse performance of the IC900 Hlm-Ehv trains (66%). This percentage is considerably

higher for AR/IR trains, which range between 88% and 100% (not counting the extra IR3500

trains). In 1997, NS aspired after 87% on time arrivals, where a train is considered late only if

it is 3 minutes or more behind schedule. So this punctuality norm requires that F (180) ≥ 87%.

In Eindhoven, all IC/INT train lines perform inadequate, except for the IC1500 Hrl-Gvc trains.

The AR/IR trains on the other hand all perform satisfactory.

The statistics of late trains also show some notable facts. The percentage of IC/INT trains

arriving late is significantly higher than that of the AR/IR trains, and so are the mean arrival

delays of the late IC/INT trains. The mean arrival delay for late IC/INT trains ranges between

11
2

and 3 minutes. Only the IC800 Mt-Hlm trains are more often on time (or early) than late,

although the mean arrival delay of the late trains is again considerable (21
2

minutes). This

suggests a bimodal behaviour where trains are either too early or too late, see Section 5.5.1.

The same remarks apply to the IC1500 Gvc-Hrl trains. The IC900 Hlm-Ehv trains show again

inferior performance with 84% trains arriving late with a mean delay of 3 minutes. In contrast,

the AR/IR trains are more often on time (or early) than late and the late trains have a moderate

mean arrival delay around 1 minute. The late IR1900 Rtd-Vl trains have an exceptional large

arrival delay of 2 minutes, although only 49% is late. In this case the the distribution is skewed

to the right with a heavy tail, that is, although the data is centered around the scheduled arrival

time also late arrivals occur of which the frequency slowly decreases with lateness. This also

explains the large standard deviation (2 minutes) of this train line.

A general conclusion is that the arrival delays of IC/INT trains are worse than those of AR/IR

trains, and eastbound trains from the Randstad perform worse than trains originating from the

eastern part of the Netherlands.
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5.3.2 Departure Delay

Table 5.3 shows the departure delay statistics of all train lines from Eindhoven during the obser-

vation period. The IR3500 train line now corresponds to extra trains from Eindhoven to Utrecht

in the morning peak hours on working days, in the morning on Saturdays, in the afternoon on

Fridays, and in the evening hours on Sundays. The amount of IC3500 Ehv-Ut observations

is sufficient as the variation is only small; the standard error of the mean departure delay is

8.4 seconds. The mean departure standard error of all train lines ranges between 4.2 and 16.5
seconds [87].

Table 5.3 Departure delay statistics

Train line N/O1 Mean SD Median F(180) Early

[s] [s] [s] [%] [%]

IC800 Hlm-Mt 109/4 113 91 97 80 3

IC800 Mt-Hlm 119/2 120 104 71 78 1

IC900 Ehv-Hlm 128/3 100 84 73 84 0

IC1500 Gvc-Hrl 108/1 154 136 105 69 0

IC1500 Hrl-Gvc 99/3 120 69 108 78 0

INT1800 Ehv-Köln 56/1 123 103 89 77 0

IR1900 Rtd-Vl 109/0 117 94 100 78 2

IR1900 Vl-Rtd 63/3 90 58 78 96 0

IR2700 Ehv-Vl 55/0 154 122 111 69 0

IR3500 Ehv-Ut 34/5 45 45 32 98 0

AR5200 Tbwt-Dn 148/9 51 49 29 92 1

AR5200 Dn-Tbwt 103/1 83 81 52 88 0

AR9600 Ehv-Ut 210/1 98 100 61 84 1
1N/O: Number of Measurements/Outliers

The IC/INT trains have a mean departure delay of 2 minutes, with the exception of the starting

IC900 Ehv-Hlm trains (11
2

min) and the large mean departure delay of the IC1500 Gvc-Hrl

trains (3 min). The mean departure delay of the AR/IR trains is significantly smaller and ranges

between 1 and 11
2

minute, with the exception of the IR1900 Rtd-Vl trains (2 min) and the

IR2700 Ehv-Vl trains (21
2

min).

Looking at the fraction of departure delays not exceeding 3 minutes, we see again that the

IC/INT trains perform worse than the AR/IR trains. From the IC/INT trains the IC1500 Gv-Hrl

has the worst punctuality (only 69% departs within 3 min after schedule), and the starting IC900

Ehv-Hlm trains perform best (84%). This percentage for the other IC/INT train lines ranges

between 77% and 80%. In case of the AR/IR trains the IR2700 Ehv-Vl (69%) and IR1900

Rtd-Vl (78%) have the worst punctuality. Of the other AR/IR trains between 84% and 98%

departs no later than 3 minutes. In 1997, the NS aimed at a minimum of 87% trains departing

before 3 minutes after schedule. All IC/INT train lines fail to satisfy this norm, whereas 4 out

of 7 AR/IR train lines meet the 87%-norm.

A critical observation is the departure performance of train lines starting in Eindhoven. The

train line performing best is the IC900 Ehv-Hlm for the IC/INT lines, and the IR3500 Ehv-

Ut for the AR/IR lines. On the other hand, the INT1800 Ehv-Koln is the worst performing

IC/INT line (except for the much inferior IC1500 Gvc-Hrl), and the worst AR/IR lines also
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start in Eindhoven including the most inferior performing IR2700 Ehv-Vl line. Some of these

late departure cases may be explained by conflicts with other (delayed) trains. In other cases,

lack of personnel discipline appears the only explanation. In Section 5.4 we will see that the

IC900 Ehv-Hlm trains – although departing relatively punctual – blocks the following IC1500

Hrl-Gvc trains.
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Figure 5.4 Mean arrival and departure delay

Let us now compare the arrival and departure statistics. Figure 5.3 shows the share of arrival

delays and departure delays smaller than 3 minutes, whereas Figure 5.4 gives the mean arrival

and departure delays for all train lines. Note that we discard the IR3500 line since the arrivals

and departures of this line correspond to different periods (the evening and morning peak, re-

spectively) and are obviously not related. These figures clearly show that punctuality and mean
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delay at departure is generally worse than at arrival, with only two exceptions: the IC900 (which

however turns in Eindhoven with 40 min layover time), and the IR1900 Vl-Rtd (of which 75%

arrive early). Possible causes of this punctuality drop in Eindhoven are too tight dwell times or

transfer times, and conflicting train movements. In the sequel of this chapter we will explore

these delay enlargements by data analysis techniques. In particular, Section 5.4 investigates

transfer connections using regression analysis.

As an example of a potential source of hindering we consider the following case. The INT1800

Ehv-Koln and IR2700 Ehv-Vl are scheduled to depart for Venlo from platform 4 at 33 each

hour (recall that these lines run every other hour and together offer an hourly service to Venlo).

However, at 35 each hour the IC800 Mt-Hlm is scheduled to arrive at platform 5 (to offer a cross-

platform transfer). The outbound route from platform 4 to Venlo crosses the inbound route from

Maastricht to platform 5 at a distance of 1500 meter from the platforms, i.e., at about 1 minute

running time for both the inbound and outbound trains. The conflicting train routes are thus

scheduled almost simultaneously, where the inbound intercity train has priority at the crossing

over the departing INT/IR train. This scheduled situation is clearly critical: a slight delay of the

arriving IC800 train already results in hindering the departing INT1800/IR2700 train. A similar

hindrance situation over the same crossing occurs between the outbound IR1900 Rtd-Vl trains

(departure from platform 2 in Eindhoven at 59) and the inbound IC1500 Hrl-Gvc trains (arrival

at platform 6 in Eindhoven at 05), although here the outbound train is scheduled first. Tromp &

Hansen [199] give a detailed analysis of this latter case.

5.3.3 Dwell Time

Four through train lines have a stop at Eindhoven in both directions resulting in dwell times for

8 train directions. Table 5.4 shows the dwell time statistics2. The scheduled dwell times are 2

minutes (4 cases), 4 minutes (2 cases), and 5 minutes (2 cases). The mean and median dwell

time are all considerable larger than scheduled in correspondence to Figure 5.4 that shows a

delay increase during the stop in Eindhoven. Since early arrivals cause large dwell times, Table

5.4 also gives the dwell times for late trains only (see also Figure 5.5). Still the mean dwell

time is significantly larger than scheduled with an average excess of 20 to 45 seconds. These

figures are highly accurate since the confidence intervals of the mean dwell times are very tight.

The mean standard errors range between 3.9 and 10.7 s for all trains per line, and the mean

standard errors of dwell time for late trains range between 4.0 and 12.6 s (the larger standard

errors correspond to 300 s scheduled dwell time) [87].

So even for late trains the mean dwell times still exceed the scheduled time for all train lines,

although one expects the opposite if buffer time is available. It can be concluded that the

scheduled dwell times are too tight and there is no buffer time available to compensate for

arrival delays.

Exceeding the scheduled dwell time may have several causes. First, the amount of boarding

and alighting passengers may be so excessive that the scheduled dwell time is not sufficient.

A field analysis further showed that train drivers were not that concerned to depart as quick as

possible [226]. Trains often departed 30 seconds or more behind schedule, even though no more

2There was a problem to recover the inbound route of the AR5200 Tbwt-Dn at the time of analysis, by which

the associated dwell time is missing in the analysis
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Table 5.4 Dwell time statistics

Late trains

Train line N/O1 Plan Mean SD Median Perc. Mean SD

[s] [s] [s] [s] [%] [s] [s]

IC800 Hlm-Mt 109/2 120 149 40 144 76 139 36

IC800 Mt-Hlm 119/2 120 201 60 197 46 152 34

IC1500 Gvc-Hrl 108/2 300 385 111 366 61 344 91

IC1500 Hrl-Gvc 99/3 240 311 67 305 71 283 50

IR1900 Rtd-Vl 109/0 300 393 101 389 49 339 92

IR1900 Vl-Rtd 63/5 240 377 75 379 25 287 31

AR5200 Dn-Tbwt 103/1 120 171 68 168 55 141 65
1N/O: Number of Measurements/Outliers
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Figure 5.5 Dwell time of late trains

boarding of passengers took place. All this time the departure signal shows a proceed aspect

so that the locked route blocks possible other traffic. Second, a delayed feeder train may be a

source for delays when the connection is secured, see Section 5.4. Third, a route conflict may

postpone the outbound route setting, see the discussion at the end of Section 5.3.2.

5.3.4 Transfer Time

Transfer connections are one of the major sources of secondary delays. Especially in the highly

urbanized Netherlands, where intensive train services are coordinated in an integrated periodic

timetable offering good connections between any pair of stations with (cross-platform) transfer

opportunities between main lines when direct connections are not available. In Eindhoven, 6

cross-platform transfers are scheduled between train lines from all 4 directions.

Table 5.5 shows the transfer time statistics for late feeder trains. Note that these transfer times

are crucial as the connecting train may wait or the connection might be cancelled. The third
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Table 5.5 Transfer time statistics

Late feeder trains

Feeder line Connection N/O/C1 Plan Perc. Mean SD Median

[s] [%] [s] [s] [s]

IC800 Hlm-Mt IR1900 Rtd-Vl 102/6/2 120 80 134 41 128

IC800 Mt-Hlm IR1900 Vl-Rtd 60/4/1 240 32 294 36 292

IC900 Hlm-Ehv IC1500 Gvc-Hrl 102/8/1 120 83 124 27 117

IC1500 Hrl-Gvc IC900 Ehv-Hlm 95/8/3 120 69 130 37 128

IR1900 Rtd-Vl IC800 Hlm-Mt 102/6/0 300 49 331 70 314

IR1900 Vl-Rtd IC800 Mt-Hlm 63/4/3 120 21 138 32 140
1N/O/C: Number of Measurements/Outliers/Cancelled Connections

column gives the number of total transfers, the number of outliers, and the number of cancelled

connections (which are also included in the outliers). Only a fraction of the observed transfers is

cancelled due to an extremely large arrival delay of the feeder train: the percentages of cancelled

connections range from 0% to 5%. The confidence levels of the mean transfer times (for late

feeder trains) are highly accurate. The mean standard errors range from 3.1 seconds to 10.2
seconds (the latter corresponds to the 300 seconds scheduled transfer time).

Four connections have a scheduled transfer time of 2 minutes. In these cases the mean transfer

time is slightly larger. The other two connections have a larger scheduled transfer time, but still

the mean transfer time exceeds the scheduled transfer time with a 1/2 minute for the 5 minute

transfer time and 1 minute for the 4 minute transfer time. Figure 5.6 visualizes the mean transfer

time (for the late feeder trains).
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Figure 5.6 Transfer time of late feeder trains

One would expect that if a train waits for transferring passengers of a late feeder train it would

depart as soon as these passengers get on the train. However, we found that the mean trans-

fer times from late feeder trains exceed the scheduled transfer time. Several explanations are

possible, such as conflicting train movements (route settings) or headway constraints.
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Another explanation is that the scheduled transfer time is too tight for a cross-platform in Eind-

hoven as a result of dense passenger flows. If the number of transferring passengers is large, also

the alighting time from the feeder train and the boarding time in the connecting train gets large.

Moreover, opposite passenger flows and waiting passengers at the platform hinder transferring

passengers in both alighting and walking to the other train. In particular the 4 connections in-

volving the IC800 and IR1900 trains may suffer from this phenomena: when the IC800 Hlm-Mt

arrives the platform is already blocked by transferring passengers from the IR1900 train that ar-

rived shortly before, as well as travellers originating from Eindhoven. For the northbound lines,

the IC800 Mt-Hlm and IR1900 Vl-Rtd trains arrive at the same time and hence again transfer-

ring passengers in opposite directions cross each other, and they are also hindered by boarding

travellers originating from Eindhoven and alighting passengers who are heading towards the

escalator. A field analysis indeed showed crowding of waiting passengers at the platforms in

Eindhoven [226].

The transfer connections may hence explain the delay increase in Eindhoven for the 6 train lines

involved in interconnections. This is analysed in Section 5.4.

5.4 Regression Analysis

5.4.1 Introduction

The train interconnections at Eindhoven may explain (some of) the variation in a departure de-

lay, which can be explored using regression analysis. Table 5.6 summarizes the cross-platform

transfers at Eindhoven along with the transfer time from feeder to connecting train and the dwell

time of the connecting train.

Table 5.6 Cross-platform transfers in Eindhoven

Feeder train line Transfer time Connection Dwell time

[s] [s]

IR1900 Rtd-Vl 300 IC800 Hlm-Mt 120

IC800 Hlm-Mt 120 IR1900 Rtd-Vl 300

IR1900 Vl-Rtd 120 IC800 Mt-Hlm 120

IC800 Mt-Hlm 240 IR1900 Vl-Rtd 240

IC900 Hlm-Ehv 120 IC1500 Gvc-Hrl 300

IC1500 Hrl-Gvc 120 IC900 Ehv-Hlm -

Linear regression analysis aims at explaining the statistical behaviour of a certain dependent

variable by a model of predictor (or independent) variables, see e.g. Rice (1988). In this section,

we analyse the dependence of the departure delays of a pair of interconnected trains on their

arrival delays. We consider a simple linear regression model

Dtrain 1 = β0 + β1f(Atrain 1, Atrain 2),

where the first (constant) term on the right-hand side is called the intercept and the second term

consists of a function in the predictor variables (the arrival delays) multiplied by a slope param-

eter. Note that the model is linear in the unknown parameters β0 and β1, but not necessarily in
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the predictor variables. The function of the predictor variables in the regression models that we

consider is either the arrival delay of one of the trains or the maximum of both arrival delays.

The first case implies domination of the used arrival delay over the arrival delay of the other

train. In the latter case, both trains propagate their arrival delay to the connecting train.

A positive intercept in the regression models denotes the average overload (or buffer for negative

intercepts) to the scheduled dwell/transfer time when the arrival delays are zero. For a positive

intercept and a positive slope smaller than one, the departure delays grow with the arrival delays

but with a slower rate. So, from a certain arrival delay determined by the intercept and the slope,

β0

1− β1
, (5.1)

the departure delay gets smaller than the (maximum) arrival delay. A small arrival delay thus

results in an increased departure delay (the intercept dominates), whereas for a large arrival

delay the (departure) delay is reduced although the delay will never settle to zero. The latter

behaviour corresponds to the practice that trains with large arrival delays are given priority and

stop only for a minimum necessary time. If the intercept is negative then the delay is decreased

and even settles to zero for arrival delays below a value determined by the intercept and slope

given as −β0/β1.

The quality of a linear regression fit is assessed by several test statistics. Multiple R2 is the

squared multiple correlation coefficient, which can be interpreted as the proportion of the vari-

ability of the dependent variable that can be explained by the independent variables. The resid-

ual is the difference of the observed and fitted values. The residual standard error (RSE) is

therefore a measure of the variation between the observed and fitted values. The F -statistic

should be as large as possible for a good fit, and the p-value close to zero. For more details on

linear regression analysis we refer to e.g. Rice [172].

For the detection of possible outliers we applied robust LTS regression analysis, see Sec-

tion 5.4.2. The outliers were then discarded in the linear regression analysis. The main results

are summarized in Table 5.7 and detailed in the sequel. The cancelled connections mentioned

in Table 5.7 are also contained in the outliers.

Table 5.7 Linear regression results transfer connections

β0 β1

Transfer N/O/C1 R2 RSE F Val. SE t Val. SE t

IC800/IR1900 Hlm-Vl 102/11/2 0.86 31 526 41 4.2 9.6 0.76 0.033 23

IR1900/IC800 Rtd-Mt 102/2/0 0.92 36 1196 38 4.5 8.4 0.91 0.026 35

IC800/IR1900 Mt-Rtd 60/4/1 0.94 32 897 82 4.5 18.4 0.72 0.024 30

IR1900/IC800 Vl-Hlm 60/7/3 0.86 45 302 73 6.3 11.6 0.82 0.047 17

IC900/IC1500 Hlm-Hrl 102/8/1 0.94 30 1484 32 4.3 7.6 0.86 0.022 39

IC1500/IC900 Hrl-Hlm 95/8/3 0.81 25 359 46 4.7 9.9 0.85 0.045 19
1N/O/C: Number of Measurements/Outliers/Cancelled Connections

5.4.2 Robust LTS Regression

Outliers may influence the results of regression analysis. Therefore, prior to fitting a simple

linear regression model, we used a robust least trimmed squares (LTS) regression analysis to
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identify possible outliers [176, 131]. As an example we show the procedure as applied to the

regression analysis of the transfer connection from the IC800 Mt-Hlm to the IR1900 Vl-Rtd

train line.

In LTS regression the cost function is the sum of the smallest q squared residuals, where q
depends on the data size. The default value is q = max(⌊(n+p+1)/2⌋, ⌊0.9n⌋), where n is the

number of observations and p is the number of regression coefficients. For simple regression

p = 2, so that in practice 90% of the number of observations is used for the LTS regression

estimate. This corresponds to a 10% trimmed data set.

In our example the dependent variable is the IR1900 Vl-Rtd departure delay and the independent

variable is the maximum of both arrival delays. The data contains 60 observations, and hence

the LTS estimate is based on 54 observations. The LTS regression model is

DIR1900 Vl-Rtd = 79 + 0.72 max(AIC800 Mt-Hlm, AIR1900 Vl-Rtd).

We use this robust regression fit to identify possible outliers.
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Figure 5.7 Diagnostic plot of LTS Residuals vs. robust distance

Figure 5.7 shows the diagnostic plot of the standardized LTS residuals versus the robust dis-

tances computed by the minimum covariance determinant (MCD) estimates [176, 131]. This

plot allows to distinguish between regular observations, vertical outliers, good leverage points,

and bad leverage points. The plot should be read as follows. The regular observations that

behave according to the model are grouped in the left rectangle between the horizontal lines

with LTS residuals−2.5 and 2.5, and the vertical lines with MCD estimates 0 and 2.5. The four

points at the right of this rectangle between the two horizontal lines are good leverage points:

the arrival delays are much larger but the predictions still follow the model well. The points in

the areas above and below the rectangle between the two horizontal lines are regression outliers:

they generally cause a shift of the regression line in vertical direction. Finally, the points in the

two areas at the right top and right bottom are bad leverage points that have a negative influence

on the slope of the regression line.

The robust diagnostic plot in Figure 5.7 hence identifies 4 outliers. Observation 47 at the right

bottom is the missed connection, which is clearly identified as a bad leverage point. The IC800
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arrival delay is 836 s, whereas the IR1900 delay has only a small departure delay of 39 s. A

second bad leverage point is observation 34, which corresponds to 577 s arrival delay of the

IR1900 train and a departure delay of 388 s. Furthermore, two regression outliers are detected:

Observation 36 consists of a 43 s arrival delay of the IC800 train and a departure delay of 20 s.

And finally, observation 54 where both trains arrive early (63 s and 70 s, respectively) but the

departure is 200 s delayed.

The next step is to remove the 4 outliers from the data and use a simple linear regression analysis

on the remaining data to obtain a final regression fit. In Table 5.7 we see that the final regression

fit is obtained as

DIR1900 Vl-Rtd = 82 + 0.72 max(AIC800 Mt-Hlm, AIR1900 Vl-Rtd),

which differs from the LTS regression fit only in the intercept with 3 seconds. Note that these

regression coefficients may differ from the LTS regression estimate since the linear regression fit

is based on more observations, assuming that the number of outliers does not exceed 10% of the

total number of observations. Despite the relatively small number of observations (60−4 = 56)

for the above regression fit, the fit performs remarkably well with an explained variation of

R2 = 94% and a residual standard error of RSE = 32 seconds. For an interpretation of the

results see Section 5.4.4.

5.4.3 Transfers between IC800 Hlm-Mt and IR1900 Rtd-Vl

The eastbound IR1900 and IC800 trains run in this order from Boxtel to Eindhoven over the

same track. The IC800 trains are scheduled to arrive 3 minutes after the IR1900 trains after

which 2 minutes later both trains depart in their respective directions. This timing allows a

cross-platform transfer between both trains with a transfer time of 5 and 2 minutes, respectively.

The regression model that performs best in explaining the departure of the IC800 trains to

Maastricht from the arrival delays is

DIC800 Hlm-Mt = 38 + 0.91AIC800 Hlm-Mt,

where D800Hlm-Mt is the departure delay of the IC800 trains at Eindhoven in the direction

Maastricht, and A800Hlm-Mt its arrival delay, see Figure 5.8. This model explains 92% of the

variation of the departure delay with a residual standard error of 36 seconds. Detailed regression

results are presented in Table 5.7. Apparently, the departure of IC800 trains to Maastricht does

not depend on the arrival of the feeder IR1900 trains from Rotterdam. Recall however that the

IR1900 and IC800 trains approach Eindhoven in this order over the same double-track route

from Boxtel. In all observations this order is respected, and hence a large IR1900 arrival delay

also resulted in a large IC800 delay.

The regression model of the departure of the IR1900 trains to Venlo that performs best is

DIR1900 Rtd-Vl = 41 + 0.76AIC800 Hlm-Mt,

which explains 86% of the variation of the departure delay with a residual standard error of 31

seconds, see Figure 5.8. Table 5.7 contains the detailed regression results. The departure time

of the IC 1900 trains to Venlo also depends only on the arrival delay of the feeder IC 800 trains
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Figure 5.8 Linear regression model of departure delay IC800 Hlm-Mt (left) and departure

delay IR1900 Rtd-Vl (right)

from Haarlem. Further analysis showed that in only 2 cases (out of 102) the IR 1900 trains did

not wait for the IC800 trains. Hence, the arrival delay of IC800 — possibly obtained from the

IR1900 before passing Boxtel — is (back-) propagated to the IR1900 by the transfer.

The large scheduled dwell time of the IR1900 trains (5 min) is obviously the result of a synchro-

nization time to allow for a transfer with the IC800 train. Due to the infrastructure limitations

between Boxtel and Eindhoven and the scheduled transfer, the large dwell time cannot be used

as buffer time. The analogue is valid for the transfer time of 5 minutes from the IR1900 to the

IC800 trains. Moreover, the dwell time of the IC800 train (2 min) and the transfer time of 2 min

from the IC800 to the IR1900 trains are too tight and contain no buffer times, as can be seen

from the positive intercepts of both regression models. The regression models both perform

very well, i.e., the models explain most of the variation in the departure delay and the residual

errors are small. It can be concluded that in this bilateral transfer connection the IC800 trains

clearly dominate the departures.

5.4.4 Transfers between IC800 Mt-Hlm and IR1900 Vl-Rtd

The westbound IC800 and IR1900 trains are scheduled to arrive at the same time in Eindhoven

to allow a cross-platform transfer. The IC800 train departs 2 minutes later, whereas the IR1900

train has to wait 2 additional minutes before it is allowed to depart over the same open track to

Boxtel.

The linear regression model of the IC800 departure delays in the arrival delays is

DIC800 Mt-Hlm = 73 + 0.82 max(AIC800 Mt-Hlm, AIR1900 Vl-Rtd),

which explains 86% of the variation in the departure delays with a residual standard error of 45

seconds, see Figure 5.9. Details are given in Table 5.7. The regression model of the IR1900

departure delays in the arrival delays is

DIR1900 Vl-Rtd = 82 + 0.72 max(AIC800 Mt-Hlm, AIR1900 Vl-Rtd),
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Figure 5.9 Linear regression model of departure delay IC800 Mt-Hlm (left) and departure

delay IR1900 Vl-Rtd (right)

which explains 94% of the IR1900 departure variation with a residual standard error of 32

seconds, see Figure 5.9. The complete regression results are found in Table 5.7.

From these regression models we see that the transfer connection in Eindhoven between the

westbound IC800 and IR1900 trains results in a mutual dependence of the departure delays on

the arrival delays. The departing route of the IC800 and IR1900 trains coincides from Eind-

hoven to Boxtel and is scheduled in this order. In only 3 cases (out of 60) this order is changed

and the IR1900 train departs first, which results in a missed connection in only 1 of these cases.

Moreover, in only 3 (other) cases the IC800 trains do not wait for a large delayed IR1900 train.

In all other cases the transfer is secured and the departure order is respected from Eindhoven

to Boxtel. Hence, the departure of the IC800 trains to Haarlem depends on the latest of both

arrivals. This also holds for the departure of the IR1900 trains to Rotterdam, which depart after

the IC 800 trains.

The dwell time of the IC800 trains and the transfer time from the IR1900 to the IC800 trains

(both 2 min) are crucial. These process times are too tight as can be seen from the large intercept

of the IC800 departure regression model. The larger dwell time of the IR1900 trains and the

transfer time from IR1900 to IC800 (both 4 min) are not effective with respect to buffer time

but result from the headway departure constraint, which requires a safety distance of (about) 2

minutes between the IC800 and IR1900 trains.

5.4.5 Transfer IC900 Hlm-Ehv to IC1500 Gvc-Hrl

The IC900 train line from Haarlem to Eindhoven turns in Eindhoven and departs 40 minutes

later in backward direction. There is a scheduled transfer in Eindhoven to the IC1500 train line

in the direction Heerlen. The IC1500 train is scheduled to arrive first, followed 3 minutes later

by the IC900 train, after which the IC1500 departs 2 minutes later.

Regression analysis of the IC1500 departure delay in terms of the arrival delays gives the linear

regression model

DIC1500 Gvc-Hrl = 32 + 0.86AIC900 Hlm-Ehv,
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Figure 5.10 Linear regression model of departure delay IC1500 Gvc-Hrl (left) and IC1500

Hrl-Gvc (right)

which explains 94% of the variation in the IC1500 departure delay with a residual standard error

of 30 seconds, see Figure 5.10. The complete regression results are given in Table 5.7.

The departure of the southbound IC1500 train depends on the arrival delay of the feeder IC900

train only. Again, both trains share the approaching route from Boxtel, where the IC900 trains

are scheduled after the IC1500 trains. This order is changed in only 3 (out of 102) cases. In only

1 case an IC1500 train does not wait on a large delayed IC900 train. Hence the high dependence

on the feeder train.

The large dwell time of the IC1500 trains (5 min) is not effective since when a IC1500 train is

delayed then so is the IC900 - if the order from the Boxtel-Eindhoven corridor is respected -

and at Eindhoven the IC1500 train waits on its turn for the IC900 to secure the transfer. The

transfer time from IC900 to IC1500 (2 min) is slightly too tight as follows from the positive

intercept in the regression model.

5.4.6 Transfer IC1500 Hrl-Gvc to IC900 Ehv-Hlm

The IC900 trains starting in Eindhoven for Haarlem have to wait for IC1500 trains from Heerlen

with a tight transfer time of 2 minutes. It is expected that the transfer connection is the main

bottleneck for a punctual departure. Only in 3 (out of 95) cases the IC900 train does not wait for

a delayed IC1500 train. The variation in IC900 departure delays can however not be explained

satisfactorily from regression analysis with the arrival delays of the feeder train as predictor

variables.

Apparently, a large proportion of the starting IC900 trains are delayed independently of the

transfer connection. The IC900 trains arrive at platform 2 and depart 40 minutes later from

platform 5. In between, the train is parked on a shunting track. No other trains seem to interact

structurally with the departure of the IC900 trains. The shunting process may be an explanation

of the variation in departure times, including the personnel behaviour.
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When considering the departure delay of both the IC900 trains and the IC1500 trains a clear

dependence is seen, which is the result of the Eindhoven-Boxtel corridor. A simple regression

model of the IC1500 departure delay in the IC900 departure delay is

DIC1500 Hrl-Gvc = 46 + 0.85DIC900 Ehv-Hlm,

which explains 81% of the IC1500 departure delay variation with a residual standard error of

25 seconds, see Figure 5.10. Details are presented in Table 5.7. The IC1500 trains are hindered

by the IC900 trains, which are scheduled to depart first. The IC1500 train then departs after a

minimum departure headway to respect the safety distance. This hindrance may explain the low

departure punctuality of the IC1500 trains (78% departs within 3 min late), whereas the arrival

punctuality is very high (93% arrives within 3 min late), see Figure 5.3. The low departure

punctuality of the AR9600 Ehv-Ut trains may be caused on its turn by the delayed IC1500

trains.

A possible improvement of this situation is changing the timetable order of the IC900 and

IC1500 trains. This way the IC1500 trains do not have to wait for the starting IC900 trains.

However, changing this order also implies changing the order of the IC800 and IR1900 trains

to keep the regular interval timetable intact. Recall that the IC1500/IR1900 train lines and

the IC800/IC900 train lines provide a bundled half hour service on a large part of their (mu-

tual) route. Evidently, NSR also recognized this improvement, which has been realized in the

2001/2002 timetable [215]. Obviously, the problem is no longer actual since the release of the

four-track route in 2002.

5.4.7 Stability

In the previous subsections the linear regression analyses of train pairs involved in a transfer

connection showed a strong dependency of the departure delays in the arrival delays. The

only exception being the last connection (from IC1500 Hrl-Gvc to IC900 Ehv-Hlm), which is

therefore discarded in the following.

The regression models of the five transfer connections are all similar in that the intercept is

positive and the slope is between 0 and 1. Hence, for small arrival delays the intercept dominates

resulting in an increase of delay, i.e., on the average the departure delay exceeds the arrival

delay. However, from a certain threshold given by the ratio (5.1) the average departure delay

gets smaller than the arrival delay and so the delay is stabilized.

The stability ratios are shown in Table 5.8 for the five train connections along with the regres-

sion parameters with a precision of four decimals. The stabilizing behaviour reveals a decrease

Table 5.8 Stabilizing ratios of the transfer connections

Transfer β0 β1 β0/(1 − β1)
[s] - [s]

IC800/IR1900 Hlm-Vl 41.2396 0.7642 175

IR1900/IC800 Rtd-Mt 38.0116 0.9073 410

IC800/IR1900 Mt-Rtd 81.7479 0.7171 289

IR1900/IC800 Vl-Hlm 73.0933 0.8153 396

IC900/IC1500 Hlm-Hrl 32.4915 0.8629 237
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in delay for arrival delays from 3 to 7 min for the various connections. So although the con-

nections have no buffer time, the delay propagation exhibits a downward trend and the stability

ratio quantifies the delay reducing behaviour for large arrival delays.

5.5 Probability Distributions

5.5.1 Arrival Delay

The empirical arrival delay probability density functions of the various train lines are mostly

bell-shaped and (more or less) skewed to the right (having a longer right tail), see Figure 5.11.

This is easily explained as follows. Most arrival times concentrate around a mean value, al-

though some trains arrive early and other trains arrive more or less late. The early arrivals are

however constrained to a certain minimum corresponding to arriving fast trains that departed

from the preceding station without delay. On the other hand, late arrivals can get very large

corresponding to a departure delay at the preceding station or a large running time due to e.g. a

low speed or an unscheduled stop at the open track.
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Figure 5.11 Arrival delay distribution. Left: IC1500 Hrl-Gvc histogram, kernel estimate, and

normal density fit. Right: IC800 Mt-Hlm histogram and kernel estimate

Table 5.2 also gives the coefficient of skewness to each train line. A positive value implies

skewness to the right. The skewness coefficients range between +0.2 and +1.7. When the

skewness is small the arrival delay distribution is symmetric and may hence be approximated

by a normal distribution. The hypothesis that the arrival delays follow a normal distribution

is formally tested using the Kolmogorov-Smirnov (KS) goodness-of-fit test [131]. Table 5.9

shows the p-values of the KS-tests of single normality for the estimated parameters (mean and

standard deviation) of the 13 train lines as given in Table 5.2. With a significance level of 5% the

normality hypothesis is accepted for the arrival delays of 8 train lines, whereas the hypothesis

is rejected for 5 train lines. The arrival delays of the latter train lines all have a coefficient

of skewness of around +1, by which a skewed distribution may be more appropriate like a

Weibull, Erlang, or lognormal distribution. Also the stronger composite hypothesis is tested

that the arrival delays have a normal distribution with unknown parameters [172, 131]. The
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Table 5.9 Arrival delay Kolmogorov-Smirnov goodness-of-fit tests

Late trains

Train line Normal KS-test Exponential KS-test

p-value p-value

IC800 Hlm-Mt 0.7350 0.0202

IC800 Mt-Hlm 0.0016 0.2819

IC900 Hlm-Ehv 0.0450 0.1204

IC1500 Gvc-Hrl 0.0010 0.2310

IC1500 Hrl-Gvc 0.8650 0.0320

INT1800 Köln-Ehv 0.7230 0.2881

IR1900 Rtd-Vl 0.1602 0.8847

IR1900 Vl-Rtd 0.1904 0.7979

IR2700 Vl-Ehv 0.5856 0.5257

IR3500 Ut-Ehv 0.9899 0.6004

AR5200 Dn-Tbwt 0.2446 0.1923

AR6400 Wt-Ehv 0.0029 0.6493

AR9600 Ut-Ehv 0.0092 0.9582

KS-test of composite normality rejects the normal distribution for 3 more train lines (IR1900

Rtd-Vl, IR1900 Vl-Rtd, and AR5200 Dn-Tbwt) [87]. The associated skewness coefficients are

again around +1. There is hence only strong statistical evidence for a good normal fit for the 5

train lines with the lowest coefficients of skewness.

Apart from the positive skewness another observation is that the arrival delay densities are more

or less bimodal for about half of the train lines, see Figure 5.11. A possible explanation is that

slightly delayed trains ‘loose’ their scheduled inbound route setting to a conflicting train and

hence have to stop at the open track before a stop signal near the station, by which the delay is

further increased. This premise is easily checked using the signal event times on the train route

tables as generated by TNV-Prepare. Another alternative is to check the order of this arrival and

the arrival/departure of possible conflicting trains. Tromp & Hansen [199] consider a particular

case in Eindhoven (based on the same Eindhoven data set), where IR1900 Rtd-Vl trains depart

from platform 2 to Venlo and IC1500 Hrl-Gvc trains arrive 6 minutes later from Heerlen at

platform 6. The outbound and inbound routes cross at about 2 minute running time distance

from the platforms leaving a tight buffer time on the crossing.

Graphical means like a histogram and a kernel estimate clearly show any peculiarity in the shape

of an empirical probability density, such as the bimodal shapes in Figure 5.11. In contrast, the

distribution shape is hard to detect from (arrival delay) statistics only. This motivates using

visual exploratory analysis of empirical distributions to find any structural data properties as a

complement to computing basic statistics.

In the analysis of e.g. delay propagation and connection reliability late arrivals are of prime

interest, whereas early arrivals are simply treated as ‘on time arrivals’. Therefore, we also con-

sider the distribution of arrival lateness. The histogram and empirical density of arrival lateness

suggest a good fit by a negative-exponential distribution, see Figure 5.12. This hypothesis is

formally tested using the KS goodness-of-fit test of single exponentiality for the estimated pa-

rameter (1/mean), with the mean as given in Table 5.2. Table 5.9 shows the computed p-values

for each train line. With a significance level of 5%, the exponential distribution of late arrival
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delays is accepted for all train lines except the IC800 Hlm-Mt and the IC1500 Hrl-Gvc. The

fraction of late arrivals for the latter two train lines is very high (76% and 71%, respectively),

and so the empirical distribution looks like a normal distribution truncated to the left about a

minute before the mode (mean delay). Recall that a normal distribution is a good model for all

(early and late) arrival delays in case of these two train lines. Hence, the late arrival delays of

these train lines constitute most trains instead of just the right tail.
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Figure 5.12 Late arrival delay distribution: IR1900 Rtd-Vl histogram and exponential fit

From the Eindhoven data we conclude that in general an exponential distribution is a good

model to train arrival lateness. Only when almost all trains are late this distribution may no

longer be acceptable.

5.5.2 Departure Delay

Since early departures are prohibited, departure delays are expected to follow an exponential

distribution, i.e., a train departs after the scheduled departure time with a random delay whose

probability decreases as time elapses. The departure delay histograms also suggest a good

exponential fit, see Figure 5.13. This hypothesis is formally tested by a Kolmogorov-Smirnov

goodness-of-fit test of single exponentiality for the estimated parameter (1/mean) of the 13 train

lines as given in Table 5.3. Table 5.10 shows the computed p-values. On a 5% significance level

the hypothesis is accepted for all train lines, except for 3 lines: the IC1500 Hrl-Gvc, the IR1900

Vl-Rtd, and the AR5200 Dn-Tbwt.

The 3 train lines for which the exponential departure delay model is rejected have in common

that they depart close after another train over the Eindhoven-Boxtel track. In Section 5.4.6 we

have already seen that the IC1500 Hrl-Gvc is hindered by the IC900 Ehv-Hlm that is scheduled

to depart 2 minutes before in the same direction to Boxtel. The IC1500 Hrl-Gvc departure delay

is hence conditioned on the IC900 Ehv-Hlm departure delay and the departure headway, by

which the departure delay distribution does no longer represent a random delay. An analogous

situation holds for the IR1900 Vl-Rtd that is scheduled to depart 2 minutes after the IC800

Mt-Hlm through the corridor to Boxtel. Section 5.4.4 already showed the dependence between

the IC800 Mt-Hlm and the IR1900 Vl-Rtd trains through a bilateral transfer connection. The
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Figure 5.13 Departure delay distribution: IC900 Ehv-Hlm histogram and exponential fit

Table 5.10 Departure delay Kolmogorov-Smirnov goodness-of-fit tests

Train line Exponential KS-test

p-value

IC800 Hlm-Mt 0.1445

IC800 Mt-Hlm 0.0576

IC900 Hlm-Ehv 0.3214

IC1500 Gvc-Hrl 0.9113

IC1500 Hrl-Gvc 0.0000

INT1800 Ehv-Köln 0.1538

IR1900 Rtd-Vl 0.1526

IR1900 Vl-Rtd 0.0030

IR2700 Ehv-Vl 0.7900

IR3500 Ehv-Ut 0.9962

AR5200 Tbwt-Dn 0.2257

AR5200 Dn-Tbwt 0.0032

AR9600 Ehv-Ut 0.8150

AR5200 Dn-Tbwt trains depart in schedule 4 minutes after the AR9600 Ehv-Ut trains over the

same open track to Boxtel, which also may influence the departure delay distribution.

It can be concluded that an exponential distribution is in general a good stochastic model for

train departure delays, as long as the departure is not restricted by some headway constraint of

a closely scheduled train departing slightly sooner over the same route.

5.5.3 Dwell Time

The dwell time of an early train is larger than scheduled since an early departure is not allowed.

On the other hand, late trains may have a dwell time smaller than scheduled if the composite

process of alighting, boarding, and departing takes less time than scheduled. However, in Sec-

tion 5.3.3 we have seen that the observed mean dwell time is significantly larger than scheduled,

even when considering late trains only.
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Figure 5.14 Dwell time distribution: IR1900 Rtd-Vl histogram, kernel estimate, and normal

density fit (left), and idem for late IR1900 Rtd-Vl trains (right)

The histograms and kernel estimates of dwell time suggest a normal distribution, both for all

trains and for late trains only, see Figure 5.14. The normal hypothesis is formally tested using

the Kolmogorov-Smirnov test with the estimated parameters of Table 5.4. Table 5.11 shows the

computed p-values. On a 5% significance level, a normal dwell time is accepted for all train

lines, both in case of all trains and for the subset of late trains only. In general dwell time is thus

evenly spread around a mean value that is larger than the scheduled dwell time.

Table 5.11 Dwell time Kolmogorov-Smirnov goodness-of-fit tests

Late trains Excess dwell time

Train line Normal KS-test Normal KS-test Exponential KS-test

p-value p-value p-value

IC800 Hlm-Mt 0.8454 0.6355 0.1831

IC800 Mt-Hlm 0.3073 0.6784 0.5

IC1500 Gvc-Hrl 0.5944 0.3157 0.3171

IC1500 Hrl-Gvc 0.5003 0.8201 0.0489

IR1900 Rtd-Vl 0.9325 0.6711 0.5

IR1900 Vl-Rtd 0.8429 0.7405 0.1403

AR5200 Dn-Tbwt 0.6027 0.0717 0.1633

Another interesting point is the distribution of dwell time excess of late trains. It appears that

this extra dwell time above the scheduled dwell time follows a negative-exponential distribution,

see Figure 5.15. This hypothesis is tested using the KS-test of composite exponentiality, which

tests the hypothesis that the data is exponential with unknown parameter. The p-values are also

shown in Table 5.11. On a 5% significance level, the exponential distribution is accepted by

all train lines except for the IC1500 Hrl-Gvc, whose p-value is slightly smaller than the 5%

significance level. Therefore, we also applied the KS-test of single exponentiality for given

mean dwell time excess, which accepts the specified exponential distributions for all train lines

including the IC1500 Hrl-Gvc. Hence, there is strong statistical evidence that an exponential

distribution is a good model for the excess dwell time of late trains.
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Figure 5.15 Distribution of the excess dwell time of late trains: IR800 Hlm-Mt histogram and

exponential density fit

5.5.4 Transfer Time

The transfer time empirical distributions of each connection suggest good normal fits, although

some are skewed to the right, see Figure 5.16. The hypothesis of a normal transfer time dis-

tribution has been tested formally using the KS-test of single normality. Table 5.12 shows the

computed p-values. There is no statistical evidence to reject a normal distribution to the transfer

time data on a 5% significance level, and this also holds for the subsets of late trains only. So a

normal distribution is a good probabilistic model for the transfer time.
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Figure 5.16 Transfer time distribution: IC900 Hlm-Ehv/IC1500 Gvc-Hrl histogram, kernel

estimate, and normal density fit (left), and idem for late feeder trains (right)

5.6 Conclusions

Based on TNV-logfiles and the software tool TNV-Prepare (Chapter 4), train arrival and depar-

ture delays in Eindhoven have been analysed for a period of a week in September 1997. It has
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Table 5.12 Transfer time Kolmogorov-Smirnov goodness-of-fit tests

Late feeder trains

Feeder line Connection Normal KS-test Normal KS-test

p-value p-value

IC800 Hlm-Mt IR1900 Rtd-Vl 0.4171 0.0878

IC800 Mt-Hlm IR1900 Vl-Rtd 0.3896 0.9427

IC900 Hlm-Ehv IC1500 Gvc-Hrl 0.2245 0.2566

IC1500 Hrl-Gvc IC900 Ehv-Hlm 0.3069 0.7781

IR1900 Rtd-Vl IC800 Hlm-Mt 0.8789 0.5901

IR1900 Vl-Rtd IC800 Mt-Hlm 0.9849 0.9698

been shown that the mean dwell time of each train line is larger than scheduled, even when

considering late trains only. As a result, the mean train delay increased in Eindhoven. IC/INT

trains arrived on average about 1 minute late but the mean departure delays increased to about

2 minutes. The AR/IR trains arrived generally quite punctual but the mean departure delay in-

creased to about 11
2

minute late. The exceptions on these general observations have even worse

performance: The large mean arrival delay of the IC900 Hlm-Ehv trains (over 2 min), and the

large mean departure delays of the IC1500 Gvc-Hrl and IR2700 Ehv-Vl trains (over 21
2

min

both).

The mean arrival and departure delays at Eindhoven are thus less than 3 minutes for each train

line and the train are therefore not delayed according to the NS norm. However, looking at

the fraction of trains that are less than 3 min late, we also see a significant punctuality drop

from arrival to departure. About 85% IC/INT trains arrived less than 3 min late, whereas this

percentage is less than 80% at departure. In 1997, NS had a desired punctuality norm of 87%

trains less than 3 min late. Only 1 arriving IC train line satisfies this performance (the IC1500

Hrl-Gvc with 93%), and none of the departing IC/INT trains. The AR/IR arrivals on the other

hand all satisfy the punctuality norm: here the percentage trains arriving within 3 min late

ranges between 88% and 96%; with the exception of the extra peak hour trains IR3500 Ut-Ehv

(69%). The AR/IR departures are again less punctual: 4 AR/IR train lines have an acceptable

percentage trains departing less than 3 min late ranging from 88% to 98%; for the other 3

departing AR/IR train lines this percentage is 84% or lower.

The decrease in punctuality at Eindhoven could be explained by simple linear regression mod-

els. A range of different factors were found to be responsible for departure delays, including

• Departing trains of 3 eastbound train lines are mainly delayed by a cross-platform trans-

fer in Eindhoven, in combination of running over the same open track from Boxtel to

Eindhoven in fixed order (IC800 Hlm-Mt, IC1500 Gvc-Hrl, IR1900 Rtd-Vl);

• Departing trains of 3 westbound train lines are mainly delayed by a cross-platform trans-

fer connection in Eindhoven, followed by running over the same open track to Boxtel in

fixed order (IC800 Mt-Hlm, IC1500 Hrl-Gvc, IR1900 Vl-Rtd);

• Departing trains of 2 train lines are hindered by arriving trains that cross the outbound

route (INT1800 Ehv-Koln, IR2700 Ehv-Vl);

• Starting trains seem a major source of primary delay (IC900 Ehv-Hlm);

• Departing trains are hindered by delayed preceding trains on the open track to Boxtel

(AR9600 Ehv-Ut).
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For the scheduled dwell and transfer buffer times of the interconnected trains we moreover

obtain the following conclusions:

• A transfer connection of two trains that arrive over the same open track in fixed order

results in a large dwell time (synchronization time) for the first arriving train and also in

a large transfer time for transferring passengers of this train. However, these large dwell

and transfer times do not contain effective buffer time for arrival delay compensation.

• A transfer connection of two trains just before a common open track results in a large

dwell time (synchronization time) for the last departing train, without effective buffer

time.

A generic conclusion is that the function of Eindhoven as a transfer station in combination

with the Eindhoven-Boxtel corridor results in large scheduled dwell and transfer times that still

lack buffer time, and hence enforces a strong source of delay propagation. During the last

few years the corridor between Boxtel and Eindhoven has been upgraded to four-tracks, which

became fully operational at the end of 2002. The above results indicate that this infrastructure

construction leads to a considerable capacity improvement, shorter dwell (and travel) times, and

increased punctuality. An ex-post analysis of the new situation would be interesting to quantify

the gains of this infrastructure investment.



Chapter 6

TIMED EVENT GRAPHS

6.1 Introduction

Train arrivals at main stations initiate several concurrent activities: alighting and boarding of

passengers, passenger transfers to connecting trains departing in different directions, and exiting

passengers walking to their final destination or continuing their journey in another transport

mode. Likewise, train departures synchronize activities of through, starting and transferring

passengers. Rolling stock connections show similar structures: trains from different directions

may be coupled to continue as one combined train or a train may be decoupled after which

the front and back continue in different directions. The railway infrastructure and safety and

signalling systems cause a different kind of synchronization between trains on conflicting routes

which must run in sequence over the shared infrastructure in some decided order.

The main complexity in railway timetable design is due to settling of concurrency by choos-

ing certain priority rules such as specifying routing and/or train sequence orders [154, 231].

The theory developed in the forthcoming may then be used to evaluate the consequences of

these choices in terms of performance. When the timetable has been settled by a higher-level

scheduling policy the resulting railway traffic system is mainly characterized by trains running

concurrently over partially shared tracks and synchronization of trains at stations and junctions.

The dynamics of such traffic systems can be modelled by timed event graphs [11], a subclass in

the theory of Petri nets [139, 218]. In these discrete-event systems the state evolution depends

on causal relations between activities and discrete events in contrast to conventional dynamical

systems where dynamics are governed by difference or differential equations [189].

Various classes of Petri nets have been used for modelling and analysing railway systems, see

e.g. Ren & Zhou [170], Sakaguchi & Tomii [177], Van der Aalst & Odijk [205] and Zhu [229].

In general, simulation can be used to derive properties of highly complex Petri net models. In

the special case of timed event graphs a rich analytical theory has been developed to prove

structural and behavioural properties [139] as well as performance properties [11, 32]. In this

chapter we will be concerned with modelling timed event graphs and deriving structural and

behavioural properties. Performance evaluation is based on a state-space representation of timed

event graphs which gives a linear system description in max-plus algebra. This will be the topic

of Chapters 7 and 8.

In the sequel we assume that a basic network timetable structure has already been designed in

an earlier stage of the planning process and analyse the properties of the resulting structure.

We thus assume full knowledge of the timetable (arrival and departure times of all train lines),

minimum process times (running times and dwell times of all train lines, passenger transfer

times between train lines at transfer stations, layover times of train circulations at line termi-

nals, connection times of rolling stock connections (coupling/decoupling times), and transfer

123
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times of train crews or other logistic connections), and minimum headway times between train

paths. This information determines all train interconnections, infrastructure restrictions and

train orders at conflict points. The strength or vulnerability of the imposed timetable structure

furthermore depends on the amount and distribution of process time supplements and buffer

times over the timetable.

The outline of this chapter is as follows. Section 6.2 formally introduces Petri nets and the spe-

cial subclass of timed event graphs. Section 6.3 explains how timed event graphs can be used

to model typical railway system issues, including timetable and infrastructure structures. Sec-

tion 6.4 is concerned with behavioural properties of timed event graphs. Section 6.5 describes

the synthesis of a timed event graph based on the railway timetable and (global) infrastructure

data. Conclusions are given in Section 6.6.

6.2 Petri Nets and Timed Event Graphs

6.2.1 Basic Definitions

A Petri net is a special bipartite directed graph introduced by Petri [161] as a general graphical

and mathematical modelling tool for describing relations between conditions and events. Since

this pioneering work many authors contributed to the development of the Petri net theory, see

the excellent review and tutorial paper by Murata [139]. Event graphs are a subclass of Petri

nets which are able to efficiently describe synchronization structures in networks. As opposed

to general Petri nets event graphs cannot model choice or decisions, in favour of superior an-

alytical and computational power. In particular, the state representation of timed event graphs

corresponds to linear systems in max-plus algebra, which will be the topic of Chapter 7 and 8.

This section formally defines the structure of timed event graphs.

Definition 6.2.1 (Petri net) A Petri net is a tuple PN = (T ,P, E , µ), where

(i) T = {t1, . . . , tn} is a finite set of transitions;

(ii) P = {p1, . . . , pm} is a finite set of places;

(iii) P ∩ T = ∅ and P ∪ T 6= ∅;

(iv) E ⊆ T × P ∪ P × T is a set of arcs from transitions to places and vice versa;

(v) µ ∈ Nm
0 is an initial marking of the places.

Graphically, places are depicted as circles and transitions as rectangles or bars. The initial

marking is represented by drawing µ(pk) = µk dots (tokens) in the circle representing place

pk, see Figure 6.1. A transition is called an input transition to a place if there is an arc from

the transition to the place and an output transition if the arc is reversed. Analogously, a place

adjacent to a transition is called an incoming place if there is an arc from the place to the

transition and an outgoing place if the arc is reversed.

Definition 6.2.2 (Event graph) An event graph is a Petri net in which each place has exactly

one input and one output transition.
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a. Before firing b. After firing

i i

Figure 6.1 Transition firing rule in a timed event graph

In an event graph each place together with its incoming and outgoing arc can be interpreted as

an arc itself, connecting the input and output transition directly. An event graph can thus be

represented as a weighted digraph G = (T ,P, µ), with node set T = {1, . . . , n} and arc set

P ⊆ T × T where each place pk ∈ P corresponds to a marked arc pk = (j, i, µk), 1 ≤ k ≤ m.

An event graph is therefore also known as a marked graph [139]. In the sequel, we will denote

an event graph by its marked graph representation G = (T ,P, µ).

A timed Petri net has an additional deterministic time delay attached to places (holding times)

or to transitions (firing times), reflecting processing times in places and durations of transition

firings, respectively. In an event graph time delay may be associated freely to either its transi-

tions or its places, since either form can easily be transformed to the other [11, §2.5.2]. Without

loss of generality, we therefore assume that time delays are associated to places corresponding

to the interpretation of places as processes that obviously are time-consuming.

Definition 6.2.3 (Timed event graph) A timed event graph is a quadruple G = (T ,P, µ, w),
where (T ,P, µ) is an event graph and w ∈ Rm

+ a weight vector of holding times associated to

the places.

A timed event graph is a discrete event dynamic system (DEDS), where transitions correspond

to events and places represent processes. A token in a place represents an active process, and

the holding time of a place is the minimum time that a token is occupied in the place. The

distribution of tokens over places represents the state of the system, and the dynamic behaviour

of the modelled system can be studied by the movements of tokens over the places governed by

the occurrence of events obeying the following rule, see Figure 6.1.

Definition 6.2.4 (Firing rule) A marking µ in a timed event graph G = (T ,P, µ, w) dynami-

cally changes according to the following two-step firing rule:

(i) A transition i is enabled if each incoming place contains a token and the associated

holding times have elapsed;

(ii) A firing of an enabled transition i removes one token from each incoming place and adds

one token to each outgoing place.

We also say that a transition is firable if each incoming place contains at least one token. The

firing rule also explains the difference between a marking and a holding time of a place, the

latter being the minimum time that a token must spend in a place before enabling the outgoing

transition.

A transition without predecessors is called a source transition. A transition without successors

is called a sink transition. A sink transition consumes tokens but does not produce any. An
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autonomous event graph is an event graph without sources. A loop is a place pj = (i, i), where

i is both input and output transition to the place pj. In a loop a token is simultaneously removed

and added to pj , but the new token becomes available to the output transition only after again

the holding time has elapsed.

Remark The first four properties in Definition 6.2.1 define a net N = (T ,P, E), which is a

bipartite directed graph (V,E) with node set V = T ∪ P that is partitioned in two kinds of

elements called transitions and places, respectively. The marking defined by the 5th property

together with the firing rule extends the net to a place/transition net or Petri net PN = (N , µ).
An event graph is also called a decision-free Petri net or marked graph [139]. It is decision-free

in the sense that the flow of tokens through a place is generated by only one input transition and

there is no choice between more than one output transition. Note that if a place has two output

transitions then a decision must be made about which transition is fired. If one of the transitions

fires, the token is removed from the place and the other transition is no longer enabled. In an

event graph this situation is not applicable since each place has exactly one input and output

transition. ✷

A timed event graph may also be thought of as a bivalued directed multigraph G = (T ,P, µ, w),
where both weights are associated to the arcs. In this digraph, the nodes correspond to transi-

tions, the arcs to places, the first arc weight to the initial marking, and the second arc weight to

the holding time. This means that a timed event graph can be stored in a computer using effi-

cient weighted digraph representations and manipulated by standard data structures. For small

dense networks a (weighted) adjacency or incidence matrix representation can be used, whereas

for large-scale sparse networks an arc list, adjacency list or forward/reverse star representation

may be used [3, 39]. We will generally represent a timed event graph G = (T ,P, µ, w) as a

(marked) arc list

pk = (in(pk), out(pk), µ(pk), w(pk)), 1 ≤ k ≤ m,

where in(pk) is the input transition of pk, out(pk) the output transition, µ(pk) = µk the initial

marking, and w(pk) = wk the holding time. The transitions are just numbered from 1, . . . , n.

This representation takes onlyO(m) storage place. The adjacency list representation of a timed

event graph is a list (or array) of the transitions, where each transition points to a list of all its

outgoing places. This representation takesO(n+m) storage place and is useful when traversing

the timed event graph. In general, there may be multiple places between a pair of transitions.

Nevertheless, without loss of generality we may assume that parallel places with the same input

and output transition have different markings. Indeed, if two or more parallel places have the

same initial marking then the one with the highest holding time dominates the others and so the

places can be combined to a single place with the maximum holding time. In Chapter 7 we will

also introduce a matrix representation of a timed event graph that will be useful for algebraic

manipulations.

6.2.2 Building Blocks of Timed Event Graphs

The topology of event graphs allows sequential and parallel processes that are connected by

three primitive transitions:

(i) Sequential transitions model a succession of processes or stages of processes, which

each consume some holding time before the next stage is enabled, see Figure 6.2.a. An



Chapter 6. Timed Event Graphs 127

a. Sequential transition

b. Concurrent transition c. Synchronization transition

i

i i

Figure 6.2 Primitive transitions in a (timed) event graph

example is a sequence of train runs and stops that are enabled by an alternating sequence

of train arrivals and departures.

(ii) Concurrent transitions initiate several concurrent processes simultaneously, see Fig-

ure 6.2.b. An example is the arrival of a train, which enables transfer flows to several

connecting trains.

(iii) Synchronization transitions model events that are enabled by two or more parallel pro-

cesses, see Figure 6.2.c. An example is the departure of a train that has to wait for several

feeder trains.

From these three building blocks complex interconnection structures can be built as explained

in the next section. The main restriction in the modelling power of timed event graphs stems

from the requirement that places are not allowed to have more than one input and output tran-

sition (Definition 6.2.2). Indeed, as already remarked in the last section, this condition implies

that all firing sequences are fixed a priori, by which the Petri net is conflict-free or decision-

free. This is exactly what we aim for: a timetable structure is unambiguously modelled by a

timed event graph, and therefore the properties of the (timed event graph) model depend on the

characteristics of the timetable design only. Note that a railway timetable structure should be

feasible (or conflict-free) and implicitly represents a wide range of design choices (train orders

on open tracks, speed differences, connections, etc.).

Places correspond to processes and dependencies between events, such as train runs, train stops,

transfer flows at stations, and headway between trains on conflicting routes. The interpretation

of a place depends on the interpretation of its input and output transition. Viewed in isolation

of its environment, a place is just a precedence relation from its input to its output transition. Its

particular implication becomes only clear in perspective to the overall interconnection structure.

This is in contrast to high-level coloured Petri nets (CPNs), where different types (“colours”)

of tokens are identified [218]. We will not pursue this approach, since our main interest is the

powerful analysis properties of timed event graphs and their max-plus state-space representa-

tion.



128 Punctuality of Railway Operations and Timetable Stability Analysis

A1, -1n D1, -1n
A1,n

D2, -1n
A2, -1n D2,n

Stop

Stop

D1, 1
A1, 2

A2, 1 D2, 2

D1, 2

A2, 2

StopRun Run

RunStopRun

TurnTurn

Figure 6.3 Timed event graph of a train circulation

6.3 Basic Modelling Approach of Railway Systems

This section presents the modelling potential of timed event graphs to railway systems. Along

the way we touch a range of structural and behavioural issues that are analysed in Section 6.4,

and in the next chapters in the framework of max-plus algebra.

6.3.1 Train Circulations

A timed event graph is a discrete event dynamic system, where the transitions are the discrete

events. From an analysis point of view, only events have to be modelled that interact with

other events in a nontrivial way. In particular, series compositions can be collapsed into one

process. The remaining variables are then arrival and departure events of train lines at stations

(or timetable points).

In the sequel, we denote by Di,j the departure of train line Li from station Sj , and likewise Ai,j

denotes the arrival of train line Li at station Sj . A train line is then modelled as a sequence

of runs and stops over the railway network from an origin terminal to a destination terminal.

Passenger train lines are usually operated in both directions which are modelled by two separate

train lines. If trains turn at the terminals and proceed in the opposite direction, then a layover

time at both terminals completes the train circulations, see Figure 6.3, where line 2 denotes

the return direction of line 1. In this figure the identification of transitions and places is for

illustrational purpose only.

A train run is modelled by a place between a departure transition and an arrival transition. This

place can be interpreted as the occupation of the open track between two stations by a train of a

specified train line. The holding time of the place is the running time between the stations. The

presence of a token means that a train is running on the open track. A stop is modelled by a

place between an arrival and a departure transition. The holding time is the associated minimum

dwell time, which may depend on train line and station. This place can be interpreted as the

platform track occupation of a given train line. The presence of a token means that the train is

standing at the platform track.

The initial marking of the places in a train circulation must be consistent with the line cycle

time (1/frequency) and the timetable (if any). The determination of a consistent initial marking

is considered in Section 6.5. Also more advanced rolling stock assignments are possible. At line

ends, rolling stock may switch train lines because of a more efficient rolling stock assignment.

Also coupling or decoupling units at intermediate stations along the route may be applicable if
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Figure 6.4 Timed event graph of a train interconnection structure

e.g. the passenger load is not equal over the entire route. This leads to interconnections between

train lines, which is considered in the next section.

The absence of tokens in a place modelling a train run does not mean that the associated open

track or platform track is free! If another train line runs over the same track, then this is modelled

as a separate place. Hence, a given open track is free if and only if all places associated to this

open track have zero tokens. The simultaneous presence of two trains on the same open track

within a specified minimum headway is implicitly prevented by precedence constraints in the

topology of the timed event graph. This is explained in Section 6.3.3.

Likewise, the absence of tokens in a place modelling a train stop does not mean that the associ-

ated platform track is free. If another train line stops at the same platform then this is modelled

as a separate place, and the platform track is free if and only if all places associated to this

platform have zero tokens. The model interconnection structure guarantees that an occupied

platform is blocked for other trains, except when explicitly modelled otherwise, such as for the

coupling of two train units.

A place may contain more than one token. For instance, several trains of the same line may

run on an open track at some time distance apart. The tokens then act according to the first-

in first-out (FIFO) principle, i.e., overtaking in a place is not allowed. Moreover, a transition

fires only once at a time. The holding time of each token starts immediately after being fired

into the place. Hence, multiple tokens in a place enable the output transition at different time

instances. In Section 6.4 we will consider behavioural properties of a timed event graph, such

as boundedness of the number of tokens in a place and the cycle time between two transition

firings.

6.3.2 Train Synchronizations

The interconnection structure between train lines at shared stations may arise from passenger

transfers or logistic connections. The latter include coupling or decoupling of train units, turns

at terminals, and crew transfers. Figure 6.4 illustrates two interconnected train lines through a

bilateral passenger transfer. The places between the events have three different interpretations:

a running train, a dwelling train, and transferring passengers. From an event graph point of

view these processes just represent several stages in a transport chain, which must satisfy some

precedence constraints.

A transfer is modelled by a place between an arrival transition of a feeder line and a departure

transition of the connecting line. The holding time is the minimum transfer time. This place is
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interpreted as a passenger flow from the feeder train to the connecting train. The presence of a

token implies that the feeder train has arrived. The absence of tokens means that the connecting

train has departed.

The topology of the timed event graph in Figure 6.4 models a bilateral transfer of two train lines.

The upper sequence D1,1 → A1,2 → D1,2 → A1,3 models the subsequent events of train line 1.

The lower sequence D2,1 → A2,2 → D2,2 → A2,3 does the same for train line 2. The (transfer)

places connecting the two lines represent the actual transfers and model the dependence of both

departures D1,2 and D2,2 on the arrivals A1,2 and A2,2. The stop place ensures the causality that

a train cannot depart before it has arrived, and the transfer place secures that the connection

waits for its feeder train.

6.3.3 Headway Constraints

Figure 6.5 shows an event graph that models a minimum time separation and fixed firing order

between two transitions (here transitions i and j). The ordering mechanism between transitions

i and j is provided by a circuit over the places pij and pji containing exactly one token. The

output transition of the place containing the token is enabled first. In the case of Figure 6.5

place pij with output transition i contains the token and hence i is enabled as soon as the holding

times of all incoming places have been completed, whereas j is only enabled after i has fired

and subsequently the holding time of pji has elapsed. The minimum time separation between

transitions i and j is thus controlled by the holding times in places pij and pji.

i

j

pij pji

Figure 6.5 Minimum headway structure in timed event graphs

This minimum headway structure can be used to model a fixed order and time separation at con-

flicting routes imposed by railway infrastructure and safety and signalling systems. A conflict-

ing route typically occurs at stations, crossings, merging or diverging junctions, and overtaking

sections at open tracks. The following practical cases can be identified:

• Arrival headway between two arriving trains over conflicting inbound routes at a station

layout.

• Departure headway between two departing trains over conflicting outbound routes at a

station layout or to a shared open track.

• Arrival/Departure headway of two trains over a conflicting inbound and outbound route

at a station layout.

• Overtaking of a slow train by a fast following train at an overtaking track or station stop.

• Meeting and passing of opposite trains at a meet-and-pass section or station on a single-

track route.
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Figure 6.6 Timed event graph model of a meet-and-pass station of opposite train traffic over a

single-track route

Headway constraints are bilateral interactions between pairs of trains. Headway (time) gener-

ally includes running time to the approach signal protecting the conflict point and blocking time

of the conflicting route sections, see Section 3.3. An arrival headway constraint is formulated

in terms of a pair of arrival transitions giving a sequence ordering and time separation of two

arriving trains at a station according to interlocking of inbound routes. A departure headway

constraint relates to a pair of departing trains that share a track section in either a station layout

or a junction some distance away from the departure station(s). In the latter case the running

time to and over the junction is a major part of the headway. An arrival/departure headway con-

straint acts on an arrival and a departure transition. The minimum headway from the arriving

train is based on interlocking of the inbound route. The headway in the other direction depends

on whether the departure takes place at the same station of the arriving train or another station.

In the former case the headway is based on interlocking of the outbound route. In the latter case

the running time from the departure station to and over the conflict point constitutes a major

part of the headway.

Figure 6.6 shows an example of a meet-and-pass structure. Trains of line 1 and 2 run in opposite

directions over a single-track. At station S2 the trains meet and pass, i.e., a train that has arrived

at this station must wait for the arrival of the opposite train before it is allowed to depart. The

holding time of e.g. the place from A1,2 to D2,2 represents the switching time of the outbound

route setting after the release of the critical point section by the opposite inbound train.

Example 6.1 The behavioural properties of a timed event graph depend on its topology and

initial marking. In particular the infrastructure constraints narrow the flexibility of concurrent

processes. This example examines in detail the token dynamics or token game of an overtaking

station.

Figure 6.7 shows an extension to the interconnection example of Figure 6.4, where intercity

trains (line 2) overtake local trains (line 1) during the stop at station S2. So the two train lines

run over the same open track and the running order is changed at station S2. The holding times

of the places are also shown. The minimum dwell time of both train lines at S2 is 1 minute. The

scheduled transfers at station S2 from line L1 to L2 and vice versa, have 2 minutes minimum

transfer time. Trains that approach or depart station S2 must respect a minimum headway of 2

minutes, which is a common infrastructure restriction.

The flow of tokens in the timed event graph of Figure 6.7 is completely deterministic for the

specified initial marking in the headway circuits. Figure 6.8 shows the successive stages of

the markings in the timed event graph that are reachable from the initial marking. At each
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Figure 6.7 Minimum headway structure in a timed event graph model of an overtaking station

stage the active places are indicated together with the transitions that will be enabled next. We

assume that the transitions D1,2 and D2,1 have just been fired. Hence, in the initial marking

(Figure 6.8.a) trains of both lines approach station S2.

Because of the arrival headway constraint, a local train (of the upper line L1) must arrive first,

followed by an intercity train (of the lower line L2) with a minimum headway of 2 minutes.

In the mean time, the transferring passengers from the local train have already arrived at the

intercity platform and are ready to board right after the arrival of the intercity. The intercity

has to depart first after 1 minute minimum dwell time. Only 2 minutes after this departure the

local train is also allowed to depart because of the departure headway constraint. One minute

earlier the transferring passengers from the intercity train have already boarded the local train. If

the transitions fire as early as possible then the local train has 5 minutes dwell time, including a

scheduled dwell waiting time of 4 minutes caused by the overtaking intercity. The transfer times

are 3 minutes in both directions, and thus both contain 1 minute scheduled transfer waiting time.

The intercity has only 1 minute dwell time. The firing sequence at station S2 is thus prescribed

as A1,2 → A2,2 → D2,2 → D1,2. ✷

Example 6.1 showed that capacity utilization not only depends on the minimum process times

but is also strongly determined by the interconnection structure and initial marking, and in

particular the scheduled order at conflicting train routes.

6.4 Behavioural Properties

The behavioural properties of a timed event graph describe the possible dynamic behaviour of

tokens in the timed event graph with respect to the initial marking. In fact, the token dynamics of

an autonomous timed event graph for a given initial marking is completely deterministic (since

it is decision-free). In Section 6.3.3 we showed that a token game obtained from executing the

timed event graph gives a visualization of the possible firing sequences. This is an example of

a discrete-event simulation. In this section we present analytical methods to prove behavioural

properties of a timed event graph.

6.4.1 Liveness

A first question that comes into mind is how to decide whether or not all transitions are firable.

This is related to a deadlock situation where the system state prohibits any occurrence of events.

Clearly, such a state should be avoided.
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Figure 6.8 Token flow in a timed event graph of an overtaking station
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Definition 6.4.1 (Liveness) A transition is live if it is firable at the initial marking or can get

firable through some firing sequence from the initial marking. An event graph is live for an

initial marking if all its transitions are live. An event graph that is not live is called deadlocked.

The most well-known example of deadlock is a single-track route occupied by a train heading

for a meet-and-pass station of which all platforms are occupied by opposite trains. Another

example of a deadlocked scheduled railway system occurs when a train waits for a feeder train

that never arrives. Note that if this train also has connections at following stations these con-

necting trains eventually also keep on waiting, and so on. Finally, no train in the railway system

(or a strongly connected subsystem) will ever be able to depart.

A circuit in an event graph is a directed path of transitions and places where the first and last

transition coincides. The following basic lemma states that the number of tokens on a circuit in

an event graph does not change by firing [37].

Lemma 6.4.1 The number of tokens in any circuit of an event graph G is invariant to any firing

sequence.

Proof: Consider any circuit in an event graph. A token in a place on the circuit can only be

generated and consumed by transitions that also belong to the circuit since in an event graph

each place has only one input and one output transition. Moreover, if a transition in the circuit is

fired then a token is removed from the incoming place but simultaneously added to the outgoing

place in the circuit, by which the number of tokens in the circuit does not change after firing. ✷

Commoner et al. [37, Th. 1] proved the following necessary and sufficient condition for an

event graph to be live, which provides a simple liveness test of an event graph.

Theorem 6.4.1 (Liveness) An event graph G = (T ,P, µ0) is live if and only if each circuit

contains at least one token in the initial marking µ0.

Proof: If a circuit of an event graph has zero tokens in the initial marking then this circuit

remains free of tokens by Lemma 6.4.1. But then the transitions on this circuit will never be

enabled. Therefore, each circuit in the initial marking should have at least one token to be live.

Conversely, assume there exists a transition i that is not live. Then i must have an incoming

place without tokens and this place must be restrained from tokens by any firing sequence. This

means that the input transition of this incoming place may never be enabled. Since the number

of places in an event graph is finite, backtracking on token-free incoming places either ends in

a source (which is firable by convention), or at a circuit which contains a marked place by the

condition in the theorem. This contradicts that i is not live. ✷

Note that a live marking remains live after firing as a consequence of Theorem 6.4.1 and

Lemma 6.4.1

6.4.2 Reachability

Firing an enabled transition changes the distribution of tokens (marking) in an event graph

according to the firing rule in Definition 6.2.4. A sequence of firings thus results in a sequence
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of markings. We are now interested in determining whether a certain desired or undesired

marking can be reached, or more general, in determining the possible markings that can be

reached from an initial marking.

Definition 6.4.2 (Reachability, reachable set) A marking µ is reachable from a marking µ0

if there exists a firing sequence transforming µ0 to µ. The reachable set of an event graph

G = (T ,P, µ0) is the set of all possible markings reachable from the initial marking µ0, and is

denoted as R(µ0).

The topological structure of a timed event graph can be characterized in terms of its inci-

dence matrix. Let G = (T ,P, µ0, w) be a timed event graph. A matrix representation G is

the transition-place incidence matrix M ∈ {0,±1}n×m defined as

[M ]ij =







1 if out(pj) = i
−1 if in(pj) = i

0 otherwise.

From the firing rule immediately follows that the negative entries in row i correspond to the

incoming places from which a token is removed if transition i fires, and the positive entries

correspond to the outgoing places to which a token is added. Each column j has two nonzeros

corresponding to the input and output transition of place pj . The incidence matrix M equals the

node-arc incidence matrix of the underlying digraph where each place pj is identified with an

arc from transition in(pj) to out(pj).

The marking evolution over an event graph can be described by a dynamic equation of succes-

sive markings. Let µ(k) be the marking after k transition firings in an event graph (T ,P, µ0)
with incidence matrix M ∈ {0,±1}n×m. The firing vector σ(k) ∈ {0, 1}n denotes the enabled

transitions that fire simultaneously at the kth firing, i.e., σi(·) = 1 if i fires and σi(·) = 0
otherwise. A necessary and sufficient condition for transition i to be enabled at marking

µ = (µ1, . . . , µm)⊤ ∈ Nm
0 is

µj ≥ (−M)ij for all j = 1, . . . , m.

In particular this inequality must be valid for all j associated to predecessor places pj of transi-

tion i for which (M)ij = −1. The inequality is trivially satisfied for all other pj . The marking

dynamic equation in an event graph is given by

µ(k) = µ(k − 1) +M⊤σ(k), k ∈ N,

where µ(0) = µ0 and M⊤ is the transposed incidence matrix. Now suppose that a marking µ is

reachable from the initial marking µ0 through a feasible firing sequence {σ(1), σ(2), . . . , σ(l)}.
Then marking µ = µ(l) is determined by

µ = µ0 +M⊤y, (6.1)

where y =
∑l

k=1 σ(k) ∈ Nn
0 is the firing count vector, i.e., yi is the number of times that i

must fire to reach µ from µ0. Hence, a necessary condition for a marking µ to be reachable is

that there exists a valid firing count vector y satisfying (6.1). However, (6.1) is not a sufficient

condition, since y may not correspond to a legal firing sequence, i.e., a firing sequence that
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satisfies the firing rule. In particular, both µ and y are constrained to be nonnegative integral

vectors.

A necessary and sufficient condition for a reachable marking is obtained in terms of the fun-

damental cycle matrix of an event graph. The following is a straightforward generalization of

graph theoretic concepts to event graphs. Basic references on graph theory are Berge [16] and

Bollobás [18]. A cycle in an event graph is a sequence of transitions and places, where the first

and last transition coincide. In a cycle the orientation of places may be arbitrary. Recall that a

circuit is a cycle in which all places are oriented in the same direction. An elementary cycle is

a cycle where each transition occurs only once, i.e., a cycle having no subcycles. In the sequel,

we will always assume that a cycle is elementary. A cycle is represented by its place incidence

vector γ = (γ1, . . . , γm)⊤ ∈ {0,±1}m, defined as γk = 1 if pk is a forward place w.r.t. the cycle

orientation, γk = −1 if pk is a backward place, and γk = 0 otherwise. The sum of two cycles is

again a cycle and indeed the set of all cycles is a subspace of Rm with dimension ν = m−n+c,
where c is the number of strongly-connected components of the event graph.

A cycle basis is a set of independent cycles that spans the cycle space, i.e., each cycle in the

event graph can be obtained by a linear combination of the cycles in the cycle basis. A cycle

basis is obtained by the following graph algorithm. First, assume that G = (T ,P) is strongly

connected, i.e., c = 1. Then there exists a spanning tree S = (T ,PS) over the transitions of G
with PS ⊆ P . By definition, a spanning tree does not contain cycles and adding a nontree place

pk ∈ P \ PS generates a cycle in G with a path on the spanning tree from the output transition

of the nontree place to its input transition. The number of places in a spanning tree is n − 1
as any additional place gives a cycle. Hence, the number of nontree places is m − (n − 1) =
m − n + 1. Each cycle generated by a nontree place and a path on a spanning tree is called

a fundamental cycle. The orientation of a fundamental cycle is defined by the direction of the

nontree place. The set of m− n + 1 fundamental cycles form a fundamental cycle basis. Note

that a fundamental cycle basis is not unique but depends on the choice of the spanning tree.

Now consider the general case of an event graph with c components. Then we may consider

each strongly-connected component separately, or equivalently, find a spanning forest F with

n − c places. The number of places in G − F is the cyclomatic number ν = m − n + c, and

each of these places generates a fundamental cycle associated to the spanning forest F . From

this algorithm follows that the dimension of the cycle space is ν since each fundamental cycle

contains exactly one unique place that is not contained in any other fundamental cycle.

Above we presented an algorithm for finding a fundamental cycle basis. By definition each cy-

cle can be represented by a linear combination of these fundamental cycles. The (fundamental)

cycle matrix of an event graph is now the cycle-place incidence matrix Γ ∈ {0,±1}ν×m, where

each row is the incidence vector of a fundamental cycle,

[Γ]ij =







1 if pj is a forward place in fundamental cycle i
−1 if pj is a backward place in fundamental cycle i

0 otherwise.

Recall that the direction of a place on a cycle depends on the orientation of the cycle.

Murata [138] proved a necessary and sufficient condition for a reachable marking using a circuit

theoretic analogy. We give a new simple proof based on polyhedral theory [181]. We need the

following important definition. A matrix A is called totally unimodular if the determinant of
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each square submatrix of A takes values in {0,±1}. The following lemma is a basic result in

polyhedral theory [181, §19.1].

Lemma 6.4.2 Let A ∈ {0,±1}m×n be a totally unimodular matrix and b ∈ Zn an integral

vector. Then the polyhedron {x ∈ Rm | x ≥ 0, Ax = b} is integral, that is, all of its extreme

points are integral vectors.

We can now prove the following theorem.

Theorem 6.4.2 (Reachability) Let G = (T ,P, µ0) be a live (timed) event graph. Then a mark-

ing µ is reachable from the initial marking µ0 if and only if

Γµ = Γµ0, (6.2)

where Γ is the fundamental cycle matrix of G.

Proof: If µ is reachable from µ0 then there must be a legal firing sequence with firing count

vector y satisfying (6.1), or equivalently

M⊤y = ∆µ (6.3)

where ∆µ = µ − µ0. This means that the vector ∆µ is a linear combination of the columns of

M⊤ (or rows of M), or equivalently, ∆µ is an element in the range of M⊤. From linear algebra

it is well-known [195] that (6.3) has a solution y iff ∆µ is orthogonal to the kernel of M , i.e.,

ξ⊤∆µ = 0 for all ξ ∈ {ξ ∈ {0,±1}m |Mξ = 0}. From graph theory it is known that the rank of

an incidence matrix M is n−c, where c is the number of strongly-connected components of the

(event) graph, and the dimension of its kernel is the cyclomatic number ν = m− n+ c. In fact

the kernel of an incidence matrix is the cycle space spanned by ν independent cycles [16, Ch. 4].

Now, the cycle matrix Γ is the matrix where each row corresponds to an independent cycle from

a cycle basis of the graph G. Hence, the rows of Γ span the kernel ofM , and therefore Γ∆µ = 0
is a necessary condition for the existence of a solution y to (6.3).

Conversely, let µ ∈ {µ ∈ Rm | µ ≥ 0,Γµ = Γµ0}. It is well-known that a cycle matrix Γ
is totally unimodular. Moreover, since both µ0 and Γ are integral, also Γµ0 is integral. From

Lemma 6.4.2 then follows that there is an integral vector µ such that Γµ = Γµ0. Therefore,

∆µ = µ − µ0 is integral. It is also well-known that an incidence matrix M (and its transpose

M⊤) is totally unimodular. Then again by Lemma 6.4.2 {y ∈ Rn | y ≥ 0,M⊤y = ∆µ} is an

integral polyhedron. Hence, the condition Γµ = Γµ0 is sufficient for the existence of an integral

vector y ≥ 0 satisfying (6.3). ✷

The roles of µ0 and µ in (the proof of) Theorem 6.4.2 can be interchanged. Hence we obtain

the following.

Corollary 6.4.1 Let G = (T ,P, µ0) be a live (timed) event graph. Two markings µ0 and µ are

mutually reachable if and only if (6.2) holds.

Commoner et al. [37] proved a necessary and sufficient condition for a reachable marking µ in

the case of a live and strongly-connected event graph. In a strongly-connected (event) graph
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(a basis of) the set of all cycles can be generated from (a basis of) the set of all circuits and

vice versa [16]. Therefore the following result of Commoner et al. [37, Th.11] is a corollary to

Theorem 6.4.2.

Corollary 6.4.2 Let G = (T ,P, µ0) be a live and strongly-connected (timed) event graph.

Then a marking µ is reachable from the initial marking µ0 if and only if the token count on each

(directed) circuit in G = (T ,P, µ) is equal to that of G = (T ,P, µ0).

The reachable set of an event graph is now completely described by the following corollary to

Theorem 6.4.2.

Corollary 6.4.3 (Reachable set) The reachable set of a live event graph G = (T ,P, µ0) is

R(µ0) = {µ ∈ Nm
0 | Γµ = Γµ0},

where Γ is a fundamental cycle matrix of G.

Thus, for any marking µ0 all timed event graphs G = (T ,P, µ, w) with initial marking µ ∈
R(µ0) are equivalent in the sense that they are interchangeable by some legal firing sequence.

Hence, all behavioural properties of a timed event graph G = (T ,P, µ0, w) are invariant to

changing the initial marking in any marking µ ∈ R(µ0).

6.4.3 Periodicity

A (timed) event graph G = (T ,P, µ0) is consistent if there exists a finite firing sequence from

µ0 back to µ0 in which each transition fires at least once. Formally, this is defined as follows.

Definition 6.4.3 (Consistency) A (timed) event graph G = (T ,P, µ0) is consistent if there

exists a positive firing count vector y ∈ Nn such that M⊤y = 0, where M is the incidence

matrix of G.

Consistency is indifferent to loops in the event graph since any firing of the associated transition

both removes and adds a token to the place in the loop. Hence, consistency can be defined

without loss of generality in terms of incidence matrices although they do not represent loops.

Definition 6.4.4 (Synchronousness) A consistent event graph is called synchronous if the tran-

sitions of any firing sequence transforming µ0 back to itself are fired the same (nonzero) number

of times.

Lemma 6.4.3 (Synchronousness) A strongly-connected (timed) event graph G = (T ,P, µ0)
is synchronous.

Proof: If marking µ0 is reachable from µ0 then (6.1) with µ = µ0 gives M⊤y = 0. The

rows of M⊤ have exactly two nonzeros 1 and −1, and so y = (1, . . . , 1)⊤ ∈ Nn is a solution

to M⊤y = 0. Moreover, the (transposed) incidence matrix M (M⊤) of a strongly-connected

digraph has rank n − 1, and therefore the kernel of M⊤ has dimension 1. Hence, the only

vectors satisfying M⊤y = 0 are multiples of y = (1, . . . , 1)⊤ ∈ Nn, which spans the kernel. ✷
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Synchronousness is more restrictive than consistency: the latter requires the existence of a firing

sequence returning to the initial marking, whereas synchronousness assumes that in such a firing

sequence all transitions have fired the same time. A consistent timed event graph exhibits a

periodic behaviour if a suitable sequence of firings is repeated. This is the basis of a periodic

timetable which in fact determines such a suitable order of train departures.

The cycle time of an event is the asymptotic steady-state interval between two successive oc-

currences of the event. Formally, this is defined as follows.

Definition 6.4.5 (Cycle time) Consider a timed event graph G = (T ,P, µ0, w). Let xi(k) be

the time at which transition i ∈ T fires for the k-th time. Then the cycle time χi is defined for

each transition i ∈ T by

χi = lim
k→∞

xi(k)

k
.

If all transitions have the same cycle time then we say that the timed event graph is periodic. For

any (closed) path ξ denote by w(ξ) and µ(ξ) the weight and marking of the path, respectively.

Hence,

w(ξ) =
∑

pk∈ξ

wk and µ(ξ) =
∑

pk∈ξ

µk.

Theorem 6.4.3 (Periodicity) A live strongly-connected timed event graph G = (T ,P, µ0, w)
is periodic and the common cycle time equals the maximum cycle mean η defined as

η = max
ξ∈C

w(ξ)

µ(ξ)
, (6.4)

where C is the set of all elementary circuits in G.

Proof: By liveness of G each transition is firable by some firing sequence from the initial

marking. Moreover, because G is strongly connected it is synchronous by Lemma 6.4.3 and

therefore each transition has fired the same number of times before a next cycle of firings starts.

Hence, G is periodic and the cycle time is determined by the transitions on a circuit with the

largest mean weight, which is given by (6.4). ✷

If a (departure) transition in a strongly-connected event graph is deadlocked then the entire

system is deadlocked, i.e., the cycle time is undefined. On the other hand if the strongly-

connected event graph is live then the system is periodic. In the next chapter we will give an

efficient algorithm to compute the minimum cycle time as the solution of an eigenvalue problem

in the max-plus algebra.

6.4.4 Boundedness

A synchronous timed event graph also implies that the event graph is bounded.

Definition 6.4.6 (Boundedness) A place p is said to be k-bounded, with k ∈ Z+, if the number

of tokens in p never exceeds k for any marking reachable from the initial marking µ0. A (timed)

event graph is called k-bounded if each of its places is k-bounded. A place (or event graph) is

said to be bounded if it is k-bounded for some integer k > 0.
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In a strongly-connected timed event graph each place is by definition contained in a circuit

and by Lemma 6.4.1 the number of tokens in a place can never exceed the minimum number of

tokens in any circuit over this place. Hence, a strongly-connected timed event graph is bounded.

However, a stronger result is valid when the timed event graph is in its periodic steady-state.

Theorem 6.4.4 Let G = (T ,P, µ0) be a live strongly-connected (timed) event graph, and k =
maxi(µ0i

) the maximum initial marking of any place. Then G is asymptotically (k+1)-bounded.

Proof: Since G is strongly connected by definition each place belongs to at least one circuit.

Moreover, by Theorem 6.4.3 each transition has the same cycle time. Therefore, in each period

a place obtains one token from its input transition and passes one token to its output transition.

So the number of tokens in a place can be at most the initial number plus one. Hence, the

number of tokens in each place is at most k + 1, and so G is (k + 1)-bounded. ✷

6.5 Synthesis of Scheduled Railway Systems

The basic modelling approach has already been introduced in Section 6.3. Here we give an

algorithm to construct a timed event graph associated to a periodic network timetable, and

prove the behavioural properties of the constructed timed event graph.

6.5.1 Input Data

To model a train service network as a timed event graph input data must be available on the

timetable, train lines, connections between train lines, and headway constraints. The timetable

contains the arrival and departure times of each train line at the stations they serve. Train line

information includes routes, served stations, frequency, running times, minimum dwell times,

and minimum layover times (if applicable). Information on connections includes train pairs

and station and the minimum transfer or connection times. The data of headway constraints

contains pairs of train events and conflict point, and the minimum headway in both directions

that has to be respected at the conflict point.

In Section 6.3 we considered both arrival and departure events. However, since we are con-

cerned with deterministic running times, the arrival times of train runs are trivially expressed

in their departure times. Therefore we may concentrate on departure times only without loss of

generality. Note that this reduces the number of modelled transitions by a factor two.

Timetable Points

We adopt a macroscopic view of a railway network consisting of timetable points and tracks

between these points. A timetable point is a location on the railway network where interacting

or conflicting events may occur. Examples of timetable points are main railway stations, inter-

mediate stops on the open track, crossings, merging and diverging junctions, shunting yards,

freight yards, and movable bridges. Timetable points are denoted by variables Si and can be in-

terpreted as (virtual) stations. The set of all timetable points is denoted by S = {S1, . . . , S|S|}.
The timetable points can be defined in a file TimetablePointData where each row char-

acterizes a timetable point as

TimetablePointData(i) = (Si, xi, yi, typei),
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where Si is the station name, xi and yi are the coordinates with respect to a map of the railway

network, and typei is the type of the timetable point. We distinguish between the following

types: intercity station (IC), interregional station (IR), regional station (AR), freight or shunting

yard (F), junctions (J), and movable bridges (BR). Like the coordinates, the timetable point

types are essentially only used for visualizing the railway network. Different types of timetable

points may be visualized by different objects or objects of different size. In the PETER software

(see Chapter 8) passenger stations are visualized by circles of varying size (IC>IR>AR), freight

and shunting yards by squares, and junctions/bridges by dots.

By definition all events on a railway network occur at timetable points. Routes over timetable

points are implicitly determined by line constraints as considered below. Conflicting routes and

platform capacity within railway stations are also implicitly modelled by headway constraints

as considered below. Headway conflicts on the open tracks are only considered at timetable

points. Signals and blocks on open tracks are thus not explicitly included in the model. Never-

theless, because we assume deterministic running times feasibility at the open track is ensured

by headway constraints at the beginning and end of the open track (departure and arrival head-

way constraints) and possible headway constraints at intermediate timetable points.

This macroscopic modelling of the railway network by headway constraints has the advantage

that the timed event graph is independent of particular safety and signalling systems. Hence,

the modelling approach is applicable for hybrid railway networks with a mixture of any fixed

block and moving block signalling systems.

Line Data

A train line is determined by a sequence of line segments between successive timetable points

on the line route. Timetable points are either stations where the train line stops or intermedi-

ate passing points. The former generates arrival and departure events, whilst the latter gives

passage or through events. The through events are included to define possible headway con-

straints. For instance, an intercity train may have a scheduled overtake of a regional train at a

local station without stopping. The minimum headway constraints between the dwelling train

and through train are then defined between the arrival and departure event of the regional train

and the passage event of the intercity train. If for instance the intercity train is delayed then the

minimum headway constraint between the intercity passage event and the local departure event

guarantees that the regional train waits for the passage of the intercity train.

Train lines with a frequency f > 1 per timetable cycle time are modelled by f separate train

lines. Likewise, train lines operated in both forward and return direction are modelled by two

different train lines. For instance, consider the Dutch railway timetable with cycle time T = 60
minutes and the regional train line 6300 from The Hague CS to Haarlem and vice versa that is

operated twice per hour in both directions. We model this by 4 train lines named 63xy using

a digit x ∈ {0, 1} for the forward (0) or return (1) direction and a digit y ∈ {1, . . . , f} for the

subsequent trains starting from the terminals within one timetable period. Hence, 6301 is the

train line from The Hague CS to Haarlem corresponding to the first departure from The Hague

CS at 06 each hour, 6302 is the train line departing from The Hague CS 30 minutes later at 36

each hour, 6311 is the train line from Haarlem to The Hague CS departing from Haarlem at 03

each hour, and 6312 is the train line Haarlem–The Hague departing from Haarlem at 33 each

hour.

The train lines are defined in a file LineData. The rows in this file contain the successive train
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line segments of the train lines, where each row i contains the following objects:

LineData(i) = (Li, S
1
i , S

2
i , Ai, di, t

run
i , tmin

i ),

with Li the train line number, S1
i the origin station of the line segment, S2

i the destination station

of the line segment,Ai ∈ {S, P,E} the activity type at the destination S2
i being either a stop (S),

a passage (P) or an ending E, di ∈ [0, T ) the scheduled event time at the origin S1
i , trun

i ≥ 0 the

running time from S1
i to S2

i , and tmin
i ≥ 0 the minimum process time at S2

i . For a stop activity

the minimum process time tmin
i corresponds to the minimum dwell time at S2

i . For a passage

activity tmin
i = 0. The event at the destination station is either an arrival or passage depending

on the activity Ai. Likewise, the scheduled event time di at the origin is either a departure time

or a through time depending on the activity at S1
i .

By definition the successive rows in LineData satisfy the following continuity assumption:

if Li = Li+1 then S2
i = S1

i+1.

So, if two successive rows i and i + 1 correspond to the same train line then the destination

station of row i is the origin station of row i+ 1. Hence, LineData consists of blocks of subse-

quent rows corresponding to a train line route from one terminal to the other. We furthermore

assume that all train lines start with a departure from a terminal and the last line segment of

each train line is an end. Hence,

if Li 6= Li+1 then Ai = E.

Turns are assumed to be part of the synchronization constraints, which facilitates the description

of complex train circulations over different train lines.

Synchronization Data

At transfer stations train lines may be synchronized to allow passenger or crew transfers or

rolling stock connections. Likewise, at terminal stations trains may turn to continue in the

opposite direction or switch to another train line. These synchronization constraints are defined

in a file SynchData, where each row k corresponds to a single transfer, connection or turn

from one train line to another characterized by the following objects:

SynchData(k) = (L1
k, L

2
k, Sk, t

min
k ),

with L1
k the feeder train line number, L2

k the connecting train line number, Sk the shared con-

nection station, and tmin
k ≥ 0 the minimum transfer, connection or layover time at Sk.

Each synchronization constraints is defined from an arrival event of the feeder train to the de-

parture event of the connecting train, both at the same station Sk. Hence, there is no need to

further specify the event types of the train lines in a synchronization constraint.

Headway Data

Finally, HeadwayData contains a list of minimum headway constraints between train lines.

Each row k corresponds to a minimum headway constraint and contains the following objects:

HeadwayData(k) = (L1
k, S

1
k, L

2
k, S

2
k , hk, E

1
k , E

2
k),

where L1
k and L2

k are the conflicting train line numbers with origin station S1
k and S2

k , respec-

tively, hk ≥ 0 is the minimum headway time from the first train to the second train, and the
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event types E1
k , E

2
k ∈ {D,A} denote whether the headway constraint must be evaluated at the

outbound route of a departure (D) from the origin station or at the inbound route of an arrival

(A) at the destination station of each line segment. For example, (L1
1, S

1
1 , L

2
1, S

2
1 , 2,A,D) is

an AD-headway constraint, where the departure of train 2 must respect a 2 minute minimum

headway after the arrival of train 1 (in a periodic pattern). For through trains the arrival and

departure time are equivalent and combined in the passage time. However, note that an arrival

over the incoming route of a through train refers to the destination station at the end of a line

segment and therefore equals the departure over the outbound route at the origin station of the

next line segment.

6.5.2 Timed Event Graph Construction

Based on the input data defined in the previous section we construct the timed event graph in

three steps. First, the train line sequences are generated. Second, train lines are connected by

events with synchronization constraints, and third, train lines are interconnected between event

pairs with headway constraints. We first define the data structure of the timed event graph.

Transitions are stored as a list with four elements

T (i) = (Li, Si, Ei, di) (6.5)

where Li is the train line of event i, Si is the timetable point, Ei ∈ {A,D, P,E} the event type,

and di the scheduled event time. The event type is either an arrival (A), departure (D), passage

(P), or termination/ending (E), and depending on the event type the event time is an arrival,

departure, through or termination time. Furthermore, a line end corresponds to one of three

situations: a turn to operate a train line in the opposite direction, a switch to operate on another

train line or a run out of the modelled area. Note that the triple (Li, Si, Ei) uniquely identifies

an event whilst the event time di gives additional information about the timetable. Moreover,

if two distinct transitions (Li, Si, Ei) and (Lj , Sj, Ej) satisfy Li = Lj ànd Si = Sj then either

Ei = A and Ej = D or vice versa.

Places are stored as a list of four elements

pk = (in(pk), out(pk), µ(pk), w(pk)) (6.6)

corresponding to the input transition, output transition, initial marking, and holding time of

place pk. The input and output transition in(pk) and out(pk) are represented by an integer

corresponding to an index of the transition list. So, in(pk) = i implies a link to transition

T (i) = (Li, Si, Ei, di). The data structure (6.6) is a simple arc list representation of a timed

event graph. We may also obtain an adjacency list representation by extending the transition

list (6.5) with one more object corresponding to (a link to) a list of all places pk with in(pk) = i.
For more information on data structures we refer to e.g. Aho et al. [2] or Cormen et al. [39].

We use the notation di ∈ [0, T ) for the scheduled event time associated with transition i, and T
is the cycle time (or period length) of the timetable (usually T = 60 minutes). If the scheduled

event times are given in whole minutes then obviously di ∈ {0, 1, . . . , T − 1}.
Algorithm 6.5.1 gives the basic algorithm for constructing the timed event graph. Here we used

the ceiling function ⌈a⌉ giving the least integer larger than or equal to a real number a. Line 1
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Algorithm 6.5.1 (TIMEDEVENTGRAPHCONSTRUCTION)

Input: LineData, SynchData and HeadwayData.

Output: Arc list of timed event graph (T ,P, µ, w).
1 T ← ∅; P ← ∅; i← 1; n← 1; //Step 1. Train lines
2 while LineData(i) exists do

3 T (n)← (Li, S
1
i , D, di); //Add line start event

4 while Ai 6= E do

5 if Ai = P then

6 T (n + 1)← (Li+1, S
1
i+1, P, di+1); //Add through event

7 µ← ⌈(trun
i + di − di+1)/T ⌉;

8 P ← P ∪ {(n, n + 1, µ, trun
i )}; //Add run place

9 n← n + 1;

10 elseif Ai = S then

11 a← di + trun
i (mod T );

12 T (n + 1)← (Li+1, S
1
i+1, A, a); //Add arrival event

13 T (n + 2)← (Li+1, S
1
i+1, D, di+1); //Add departure event

14 µ1 ← ⌈(trun
i + di − a)/T ⌉;

15 µ2 ← ⌈(tmin
i + a− di+1)/T ⌉;

16 P ← P ∪ {(n, n + 1, µ1, t
run
i )}; //Add run place

17 P ← P ∪ {(n + 1, n + 2, µ2, t
min
i )}; //Add stop place

18 n← n + 2;

19 i← i + 1;

20 a← di + trun
i (mod T );

21 T (n + 1)← (Li, S
2
i , E, a); //Add terminal event

22 µ← ⌈(trun
i + di − a)/T ⌉;

23 P ← P ∪ {(n, n + 1, µ, trun
i )}; //Add run place

24 n← n + 1;

25 i← i + 1;

26 k ← 1; //Step 2. Synchronization
27 while SynchData(k) exists do

28 find i = (L1
k, Sk, A) and j = (L2

k, Sk, D);
29 µ← ⌈(tmin

k + di − dj)/T ⌉;
30 P ← P ∪ {(i, j, µ, tmin

k )}; //Add synchronization place
31 k ← k + 1;

32 k ← 1; //Step 3. Headway constraints
33 while HeadwayData(k) exists do

34 find i = (L1
k, S

1
k , Ei) with Ei ∈ {D, P};

35 find j = (L2
k, S

2
k , Ej) with Ej ∈ {D, P};

36 if E1
k = A then i← i + 1;

37 if E2
k = A then j ← j + 1;

38 µ← ⌈(hk + di − dj)/T ⌉;
39 P ← P ∪ {(i, j, µ, hk)}; //Add headway place
40 k ← k + 1;
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initializes the lists T and P of transitions and places, respectively, as well as the two counters i
and n. The counter i points at the current row in LineData and n denotes the current size of the

transition list. Lines 2–25 generate all transitions and places corresponding to a train line from

terminal to terminal. Each train line starts with a departure event from a terminal (line 3). For

a passage activity lines 5–9 generate a through event and a place from the previous transition

to this new transition corresponding to a train run. Likewise, for a stop activity lines 10–18

generate an arrival and a departure event and two cascade places from the previous transition

over the two new transitions corresponding to a train run and stop, respectively. The algorithm

iterates over the inner loop of line 5–19 until the current input row contains an end activity.

Lines 20–24 generate a terminal event and a place corresponding to the train run on the final

line segment of the current line. The algorithm then proceeds with the next train line in the

outer loop (line 2), and this procedure repeats until the last row of LineData has been reached.

The synchronization constraints are considered in lines 26–31. For each row k in SynchData

the corresponding arrival and departure transitions are connected by a place with holding time

equal to the minimum transfer/connection/layover time.

Finally, lines 32–40 generate the places corresponding to minimum headway constraints. Some

explanation is in order to the procedure of finding the correct transitions in lines 34–37. If the

event type isE1
k = D then the associated transition may either be a departure or through event at

station S1
k . Note that either (L1

k, S
1
k ,D) or (L1

k, S
1
k , P) may exist but not both since an (outbound)

event is either a departure or a passage. On the other hand, if the event type is E1
k = A then the

associated transition is either an arrival, through or terminal event at the next timetable point

after S1
k on the route of line L1

k. To locate the corresponding transition in the transition list T
observe that an arrival, passage or terminal event at the destination station of a line segment in

the transition list T is the successor of the departure or passage at the origin station of this line

segment, i.e., if the latter transition is located in T (i) then the former transition is located in

T (i+ 1). The analogue holds for event E2
k .

We assume that the input data is such that the timed event graph generated by Algorithm 6.5.1

satisfies the following condition.

Assumption 6.1 On any circuit ξ with weight w(ξ) = 0 there is at least one place pk =
(j, i, l, 0) ∈ ξ such that di 6= dj.

This assumption is no limitation in practice but guarantees that each circuit has at least one

proper precedence relation that determines a firing sequence order. Given this assumption the

timed event graph constructed by Algorithm 6.5.1 satisfies the following basic behavioural prop-

erties.

Theorem 6.5.1 (Initial marking) Let (T ,P, µ, w) be the timed event graph constructed by

Algorithm 6.5.1, where the initial marking in each place pk = (i, j, µk, wk) ∈ P is defined by

µk =

⌈
wk + di − dj

T

⌉

, (6.7)

with d ∈ [0, T )n the scheduled departure time vector (modulo T ). Then G = (T ,P, µ, w) is

live and µ is the minimal marking such that each event i is firable at time di with cycle time T .
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Proof: First note that the initial marking equation (6.7) defines nonnegative markings µk =
⌈(wk + di − dj)/T ⌉ ≥ 0 only, since (wk + di − dj)/T > (wk − T )/T ≥ −T/T = −1. We

next prove that each circuit of the constructed timed event graph contains at least one token and

therefore by Theorem 6.4.1 the timed event graph is live. Consider first any circuit ξ with at

least one place pk ∈ ξ with wk > 0 and thus w(ξ) > 0. Then

∑

pk∈ξ

µk =
∑

pk∈ξ

⌈
(wk + din(pk) − dout(pk))/T

⌉

≥
⌈
∑

pk∈ξ

(wk + din(pk) − dout(pk))/T

⌉

=

⌈

1

T

∑

pk∈ξ

wk

⌉

> 0. (6.8)

Now consider the case w(ξ) = 0, i.e., wk = 0 for all pk ∈ ξ. Then

∑

pk∈ξ

µk =
∑

pk∈ξ

⌈
(wk + din(pk) − dout(pk))/T

⌉
=
∑

pk∈ξ

⌈
(din(pk) − dout(pk))/T

⌉
≥ 1

by Assumption 6.1. We next prove that (6.7) is the minimal marking for which the timed event

graph is executable with a cycle time T and firing instants di (mod T ). Consider any place

pk = (i, j). If transition i fires at time instant di ∈ [0, T ) then the token added to pk is available

to j at time instant di +wk. The timetable requires that j fires at time instants dj + l ·T (l ∈ N0)

and so at these time instants a token should be available in pk. The token fired by i is only

available after a number of cycles given by

µk = min{l ∈ N0 | dj + lT ≥ di + wk}
= min{l ∈ N0 | l ≥ (di + wk − dj)/T}. (6.9)

Thus, the initial marking of pk must contain at least this amount of tokens to be able to fire at the

scheduled time instants before the first token from transition i becomes available. The minimal

marking l ∈ N0 in (6.9) is exactly the right-hand side of (6.7). ✷

It is interesting to look at the strongly-connected components in the timed event graph con-

structed by Algorithm 6.5.1. Rolling stock is often exclusively allocated to one train line in both

directions, i.e., trains turn at the terminal stations and continue in the opposite direction. In other

cases rolling stock alternates between train lines at a common terminal station. Hence, rolling

stock circulations ‘close’ the train lines by which each complete train line is contained in at

least one strongly-connected component. Moreover, bidirectional transfers between train lines

at a mutual transfer station connect two components into one larger component, and likewise

headway constraints between two train lines in both directions also combine strongly-connected

components. It is therefore not surprising that the timed event graph may be largely strongly

connected with separate components only at some disconnected regional railway lines. The

strongly-connected components have several behavioural properties as stated in the following

theorem.

Theorem 6.5.2 Let (T ,P, µ, w) be the timed event graph constructed by Algorithm 6.5.1 and

let p be the maximum initial marking in any place, p = maxk µk. If G = (T ,P, µ, w) is

strongly connected then it is autonomous, live, (p+ 1)-bounded and periodic with a cycle time

smaller than or equal to T .
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Proof: By definition of strongly connectedness each transition in the event graph is contained

in a circuit and thus has an incoming place, which implies that G is autonomous. Liveness

follows directly from Theorem 6.5.1. By Theorem 6.4.3 and strongly connectedness, G is pe-

riodic and the cycle time equals the maximum cycle mean η. Let ξ be an arbitrary circuit. If

w(ξ) = 0 for all circuits ξ then trivially T ≥ η = 0. On the other hand, if w(ξ) > 0 then

T ≥ (
∑

pk∈ξ wk)/(
∑

pk∈ξ µk) by (6.8) and therefore also T ≥ η. Finally, G is p + 1-bounded

by Theorem 6.4.4. ✷

In the timed event graph of Algorithm 6.5.1 the timetable is implicitly incorporated in the de-

termination of the initial marking, cf. (6.7) and the timed event graph is executable with respect

to the timetable d, although the transitions do not wait for the scheduled departure times before

firing. Instead the transitions fire as early as the initial marking and holding times allow. By

Theorem 6.5.2 the strongly-connected components then operate periodically with cycle time

smaller than T after possibly some transient behaviour. This will be detailed in Chapter 8.

The timed event graph can be forced into a periodic behaviour in accordance with the peri-

odic timetable by explicitly including the latter into the model. This essentially means that the

transitions do not fire as early as possible but wait for their scheduled event time. Hence, the

timetable realizes additional buffer times between successive departures. Moreover, if the timed

event graph is not connected then inclusion of the timetable also has a coordinating function be-

tween the various strongly-connected components.

The periodic timetable with cycle time T can be implemented in the timed event graph as

follows. First, add a loop to the timed event graph consisting of transition n + 1 which is both

input and output transition to a place pn+1,n+1 = (n+1, n+1) with one initial token and holding

time wn+1 = T . Hence, transition n + 1 fires with a cycle time T and may be interpreted as

a clock that synchronizes the start of the next period for all transitions. Second, add a place

pi,n+1 = (n+ 1, i) for all i = 1, . . . , n. The place pi,n+1 has zero initial tokens and the holding

time is defined as wi,n+1 = di, where di ∈ [0, T ) is the timetable event time of transition i. If

transition n + 1 fires at time instant t = 0 then each i in the timed event graph is enabled at

xi(k) = di + k · T for k ∈ N0. Thus, the resulting (autonomous) scheduled timed event graph

Ḡ is given in arc list representation as

Ḡ = G ∪ {(n+ 1, n+ 1, 1, T )} ∪ {(n+ 1, i, 0, di)|i = 1, . . . , n}. (6.10)

This corresponds to the timed event graph Ḡ = (T̄ , P̄, µ̄, w̄), where

T̄ .
= T ∪ {n+ 1},

P̄ .
= P ∪ {(n+ 1, n+ 1)} ∪ {(n+ 1, i)|i = 1, . . . , n},

µ̄
.
= (µ⊤, 1, 0, . . . , 0)⊤ ∈ Zm+1+n

+ ,

w̄
.
= (w⊤, T, d⊤)⊤ ∈ Rm+1+n

+ .

Theorem 6.5.3 (Scheduled timed event graph) Let Ḡ = (T̄ , P̄, µ̄, w̄) be the scheduled timed

event graph defined in (6.10) and let p be the maximum initial marking in any place, p =
maxk µ̄k. Then Ḡ is autonomous, live, (p+ 1)-bounded, and periodic with cycle time T .

Proof: By construction transition n+1 is a predecessor to all transitions, including n+1 itself,

and therefore Ḡ is autonomous. The original timed event graph G is live by Theorem 6.5.1. The
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event graph Ḡ differs from G by one additional transition n + 1, a place (n + 1, n + 1), and

places from the new transition n + 1 to each other transition. The loop (n + 1, n + 1) contains

one token and transition n+ 1 has no other incoming places, by which the new transition n+ 1
is live. Furthermore, the loop (n+1, n+1) is the only new circuit generated by the new places.

Hence, Ḡ is live. By Theorem 6.5.2 all strongly-connected subgraphs of G are periodic with

cycle time not exceeding T . The added places from n + 1 to all original transitions do not

change the strongly-connected components. Hence, the components in Ḡ are those of G plus

the additional loop (n + 1, n+ 1). Moreover, transition n + 1 has cycle time T and has access

to all other transitions. Therefore, any transition in Ḡ is slowed down to the cycle time of n+1,

i.e., the complete timed event graph is synchronous with cycle time T . Finally, Ḡ is (p + 1)-

bounded since each transition in Ḡ has the same cycle time and so each place receives at most

one token before again consuming a token during one period. Note that the loop (n+ 1, n+ 1)
is 1-bounded and p > 0 since Ḡ is live. ✷

In the scheduled event graph (6.10) we incorporated the timetable integrally over all transitions.

However, in general only departures must be strictly adhered to, whilst arrivals and passages

are also allowed to be early. Hence, we can alternatively add the timetable places to departure

events only, i.e.,

G′ = G ∪ {(n+ 1, n+ 1, 1, T )} ∪ {(n+ 1, i, 0, di)|i ∈ D}, (6.11)

where

D .
= {i ∈ T | Ei = D}.

Each arrival, through or terminal event at the destination station of a line segment has a pre-

decessor in T corresponding to the departure event at the origin station of this line segment.

Therefore, the proof of Theorem 6.5.3 is also valid for the timed event graph G′ and so Theo-

rem 6.5.3 also holds for G′ instead of Ḡ.

Comparing Theorem 6.5.2 and 6.5.3, we see that an integrated periodic timetable has an impact

on the properties of a timed event graph comparable to strongly connectedness. In Chapter 8 we

will study the performance properties of a timed event graph — including the dependence on

the internal structure of strongly-connected components — in terms of its max-plus state-space

realization using the max-plus algebraic eigenvalue theory that will be introduced in Chapter 7.

6.5.3 Event Domain Description

The timed event graph can alternatively be described in the event domain, where the variables

are the event times associated to the transitions i ∈ T . Let xi(k) denote the kth occurrence

time of event i (e.g. departure i of train line Li from station Si). We assume that all trains run

at an integrated regular interval T (usually T = 60 minutes). If the discrete event system is

synchronous, the counter k represents the period (hour) in which the event occurs. If a train line

has a frequency f > 1 trains per cycle time T then the f trains in a basic period are modelled by

separate train lines with a cycle time T each. Without loss of generality we furthermore assume

that the first timetable period is [0, T ), the 2nd period is [T, 2 · T ), and in general the kth period

is [(k − 1) · T, k · T ).

Consider a timed event graph G = (T ,P, µ, w). Then each place p ∈ P with out(p) = i
generates a constraint on the event time xi(k) given by

xi(k) ≥ xin(p)(k − µ(p)) + w(p),
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since i may only fire for the kth time if the activity initiated by event in(p) in µ(p) periods

before has been completed. Denote by Πi the set of incoming places to transition i, so

Πi
.
= {p ∈ P | out(p) = i}.

Then if transitions fire as soon as they are enabled, we obtain the following equation for the

event times

xi(k) = max
p∈Πi

(
xin(p) (k − µ(p)) + w(p)

)
for all i ∈ T . (6.12)

If events are not allowed to occur before their scheduled event times then additional timetable

constraints must be taken into account defined as

xi(k) ≥ di(k) for all i ∈ T ,

where di(k) is the scheduled event time of event i in period k. In a periodic timetable with

cycle time T the scheduled event time of event i over successive periods k ∈ N is given by

di(k) = di(0) + k · T , where di(0) is an initial scheduled departure time. The general dynamic

event time equations of the scheduled timed event graph then becomes

xi(k) = max

(

max
p∈Πi

(
xin(p)(k − µ(p)) + w(p)

)
, di(k)

)

for all i ∈ T . (6.13)

The dynamic equations (6.12) and (6.13) are the state-space realizations of the (homogeneous)

timed event graph and scheduled timed event graph, respectively. This description is used in

the performance evaluation of timed event graphs, see Chapter 8. It is interesting to note that

the discrete-event dynamic equations (6.12) and (6.13) are nonlinear because of the maximum

operation. Nevertheless, the equations become linear when evaluated in the appropriate algebra,

the so-called max-plus algebra, where the fundamental operations are the maximum and sum,

see Chapter 7.

Example 6.2 Consider the timed event graph of Figure 6.7. The line constraints are

A1,2(k) ≥ D1,1(k) + 11

D1,2(k) ≥ A1,2(k) + 1

A1,3(k) ≥ D1,2(k) + 12

A2,2(k) ≥ D2,1(k) + 9

D2,2(k) ≥ A2,2(k) + 1

A2,3(k) ≥ D2,2(k) + 10,

the transfer constraints are

D1,2(k) ≥ A2,2(k) + 2

D2,2(k) ≥ A1,2(k) + 2

and the headway constraints are given by

A1,2(k) ≥ A2,2(k − 1) + 2

A2,2(k) ≥ A1,2(k) + 2

D1,2(k) ≥ D2,2(k) + 2

D2,2(k) ≥ D1,2(k − 1) + 2.
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From these constraints we obtain the following discrete-event dynamic system description in

the event domain:

A1,2(k) = max (D1,1(k) + 11, A2,2(k − 1) + 2)

D1,2(k) = max (A1,2(k) + 1, A2,2(k) + 2, D2,2(k) + 2)

A1,3(k) = D1,2(k) + 12

A2,2(k) = max (D2,1(k) + 9, A1,2(k) + 2)

D2,2(k) = max (A2,2(k) + 1, A1,2(k) + 2, D1,2(k − 1) + 2)

A2,3(k) = D2,2(k) + 10.

Now suppose that a train on line L1 departs from station S1 at 0 and a train of line L2 follows

after 5 minutes, i.e., D1,1(1) = 0 and D2,1(1) = 5. Moreover, assume that these are the first two

trains of a day and therefore no events have occurred for k < 1 which can be modelled by taking

the event times x(0) sufficiently small, or in particular we may take initiallyA2,2(0) = −∞ and

D1,2(0) = −∞. Then we can simply compute the event times from the recursions above,

evaluated in the appropriate order, giving

A1,2(1) = max (D1,1(1) + 11, A2,2(0) + 2) = max (0 + 11,−∞+ 2) = 11

A2,2(1) = max (D2,1(1) + 9, A1,2(1) + 2) = max (5 + 9, 11 + 2) = 14

D2,2(1) = max (A2,2(1) + 1, A1,2(1) + 2, D1,2(0) + 2) = max (14 + 1, 11 + 2,−∞+ 2) = 15

D1,2(1) = max (A1,2(1) + 1, A2,2(1) + 2, D2,2(1) + 2) = max (11 + 1, 14 + 2, 15 + 2) = 17

A2,3(1) = D2,2(1) + 10 = 15 + 10 = 25

A1,3(1) = D1,2(1) + 12 = 17 + 12 = 29.

If the successive departure times D1,1(k) and D2,1(k) from station S1 are given for each k ≥ 1
then we can analogously compute the successive event times for each period k ∈ N. ✷

6.6 Conclusions

A railway timetable and the shared infrastructure utilization generate train interdependencies

that leads to scheduled waiting times and delay propagation during operations. In general,

a timetable represents a (cyclic) network structure of train circulations and synchronization

of trains at main railway stations imposed by passenger transfers, rolling stock connections

or crew transfers, and in addition the railway infrastructure and safety and signalling systems

cause headway restrictions between successive trains. This intrinsic network structure and the

train traffic dynamics within this structure can be modelled and analysed by a graphical and

mathematical structure called timed event graphs.

Structural properties of timed event graphs concern the topology or interconnection structure.

We showed how the primitive structures of timed event graphs (sequential, concurrent and syn-

chronization transitions) can be connected to model typical timetable structures and infrastruc-

ture restrictions. Structural properties are independent of the initial marking. On the other hand,

behavioural properties of timed event graphs are those characteristics that depend on the initial

marking. We showed that timed event graphs have a tendency of becoming periodic driven by

the circulation of tokens over circuits in the timed event graph.
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This chapter also described the input data necessary for the synthesis of a timed event graph that

models the essential features of a scheduled railway system. Line data contains the line sched-

ules and train process times, synchronization data contains passenger and logistic connections

between train lines, and headway data consists of all headway restrictions between event pairs

corresponding to conflicting train routes. An algorithm has been presented for systematically

constructing a timed event graph based on this input data. The timetable and process times

contained in the timetable, synchronization data and headway data have been used to derive a

consistent initial marking. So far, the analysis of the timetable structure has been mainly struc-

tural and behavioural. The next step is performance related issues which will be considered in

Chapter 8 after explaining the fundamental mathematics in Chapter 7.
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Chapter 7

MAX-PLUS ALGEBRA

7.1 Introduction

This chapter deals with max-plus algebra. Max-plus algebra is a particular example of an idem-

potent semiring, or dioid, originating from the 1960s as a formal algebraic structure for solving a

range of path problems in graph theory. Many graph algorithms are equivalent to classical algo-

rithms for solving linear systems of equations when formulated in the appropriate algebra [75].

Cuninghame-Green [40] gave a first systematic treatment of max-plus algebra showing many

counterparts to linear algebra with interpretations in path problems over graphs. In 1985, Co-

hen et al. [32] showed that timed event graphs can be represented by (recursive) linear systems

in max-plus algebra and explained how the periodic steady-state behaviour of these discrete-

event systems are characterized by solving an eigenproblem in max-plus algebra. This led to

a renewed interest in max-plus algebra accumulating to a max-plus linear system theory of

discrete-event dynamic systems as presented in Baccelli et al. [11], in analogy to linear system

theory of dynamic systems governed by differential and difference equations. Current research

issues include the geometric description of max-plus semimodules, see e.g. Cohen et al. [34].

This chapter introduces max-plus algebra, its connection to path problems, and the eigen-

problem of max-plus matrices. The eigenstructure of irreducible max-plus matrices is well-

known [11, 40]. Gaubert [70] developed a full description of the eigenstructure of reducible

max-plus matrices. Cochet-Terrasson et al. [31] introduced a generalized eigenproblem of max-

plus polynomial matrices and described the max-plus policy iteration algorithm for solving this

problem. A max-plus polynomial matrix can be viewed as a formal representation of a timed

event graph. The paper of Cochet-Terrasson et al. [31] therefore motivated the approach in this

chapter to develop a complete description of the generalized eigenstructure of reducible max-

plus polynomial matrices. In Chapter 8 we will use the polynomial matrix in the state-space

description of the timed event graph. Hence, a polynomial matrix is not only a formal represen-

tation of timed event graphs but can also be used to describe the firing dynamics of the timed

event graph.

The outline of this chapter is as follows. Section 7.2 defines the max-plus semiring as well

as polynomials and matrices over this semiring, which are themselves also semirings. The

relation between max-plus matrices and precedence graphs is explained, as well as that of max-

plus polynomial matrices and timed event graphs. Section 7.3 is concerned with max-plus

semimodules, which represent the counterpart of vector spaces in max-plus algebra. Section 7.4

considers the eigenproblem of max-plus matrices and extends this theory to the generalized

eigenproblem of max-plus polynomial matrices. This section also explains the max-plus policy

iteration algorithm. Longest path algorithms are considered in Section 7.5. Finally, Section 7.6

presents some conclusions.

153
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7.2 Max-Plus Semirings

7.2.1 Basic Definitions: Semirings, Semifields, Dioids

Max-plus algebra is one of the main examples of algebraic structures called dioids or idem-

potent semirings. This subsection formally defines these structures before zooming into the

particular class of max-plus algebra. More background on classical algebra can be found in e.g.

Lang [127].

First, let us recall some basic algebra, see also Table 7.1. A semigroup (S, ·) is a nonempty set

S equipped with a binary operation · which is associative:

∀a, b, c ∈ S : a · (b · c) = (a · b) · c.

A monoid (S, ·) is a semigroup containing a neutral element e ∈ S, such that

∀a ∈ S : a · e = e · a = a.

A group (S, ·) is a monoid wherein each element has an inverse element:

∀a ∈ S, ∃a−1 : a · a−1 = a−1 · a = e.

A semigroup (monoid, group) (S, ·) is commutative or abelian if

∀a, b ∈ S : a · b = b · a.

A monoid or group may also be denoted by (S, ·, e) to indicate the neutral element explicitly.

Table 7.1 Properties of algebraic structures (S, ·)
Associative Neutral element Inverse Commutative Idempotent

Semigroup
√

- - - -

Monoid
√ √

- - -

Semilattice
√

- × √ √

Group
√ √ √

- ×
Legend:

√
= characteristic; − = optional; × = prohibitive

Definition 7.2.1 (Semiring) A semiring (S,⊕,⊗) is a nonempty set S equipped with two bi-

nary operations called addition (⊕) and multiplication (⊗) satisfying the following conditions:

(i) (S,⊕, ε) is a commutative monoid, where ε is called the zero element.

(ii) (S,⊗, e) is a monoid, where e is called the unit (or identity) element.

(iii) Muliplication is (left- and right-) distributive over addition:

∀a, b, c ∈ S : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).

(iv) The zero element is absorbing:

∀a ∈ S : a⊗ ε = ε⊗ a = ε. (7.1)
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A semiring may also be denoted by (S,⊕,⊗, ε, e) to indicate the zero and unit element explic-

itly.

If (S,⊗) is also commutative then (S,⊕,⊗) is a commutative semiring. From the definition

directly follows that any semiring has at least one element, namely the zero element ε. More-

over, if a semiring (S,⊕,⊗) has more than one element, |S| > 1, then it contains both a zero

and unit element and e 6= ε by the absorption law. Indeed, for all a ∈ S we have a ⊗ e = a (e
is the identity) and a ⊗ ε = ε (ε is absorbing), whence if e = ε then we must have a = ε or

equivalently S = {ε}. This proves that e = ε if and only if |S| = 1. Furthermore, the neutral

elements are unique, since if both e and e′ are a zero element then e = e⊕ e′ = e′. Likewise, if

ε and ε′ are both a unit element, then ε = ε⊗ ε′ = ε′.

Definition 7.2.2 (Semifield) A semifield (S,⊕,⊗, ε, e) is a semiring in which (S \ {ε},⊗, e)
is a group.

In a commutative semifield (S,⊕,⊗, ε, e) each nonzero element has a (multiplicative) inverse,

i.e., ∀a ∈ S\{ε}, ∃a−1 : a⊗a−1 = a−1⊗a = e. In general we may distinguish between a right-

and left-inverse, but in a commutative semifield they coincide. Obviously, ε is not invertible

since the zero element ε in a semiring is absorbing. This is similar to the ordinary field of real

numbers, where 0 has no multiplicative inverse. The inverse multiplicative operation is called

division and is denoted by ⊘.

Definition 7.2.3 (Idempotency, dioid) Let (S,⊕,⊗) be a semiring. An element a ∈ S is called

(additively) idempotent if a⊕a = a. A semiring (S,⊕,⊗) is idempotent if ∀a ∈ S : a⊕a = a.

An idempotent semiring is also called a dioid.

A commutative idempotent semigroup (S,⊕) is also called a semilattice [40], cf. Section 7.2.7.

Hence, addition in an idempotent semiring (or dioid) can also be characterized as a semilatice

with zero element. An example of an idempotent operation is the pairwise maximum operation,

since max(a, a) = a for any a ∈ R.

Proposition 7.2.1 An idempotent semiring (semigroup, monoid) has exactly one additive in-

vertible element, which is the zero element ε.

Proof: Assume that a has an additive inverse b such that a ⊕ b = ε. Then a = a ⊕ ε =
a⊕ a⊕ b = a⊕ b = ε and likewise b = ε⊕ b = a⊕ b⊕ b = a⊕ b = ε. Thus, a = b = ε. ✷

Idempotency thus prevents the existence of (additive) inverse elements, and therefore an idem-

potent semiring (semifield) can not be embedded in a ring (field), wherein addition is a group.

Semirings may therefore be classified into two essentially different classes according to whether

or not addition is idempotent. An example of a semiring (in fact, a semifield) that is not idem-

potent is R+ = ([0,∞),+, ·, 0, 1), the nonnegative real numbers with conventional addition and

multiplication. Clearly, this semiring can be extended to a ring (or field) by adding the negative

real numbers. Such semirings therefore correspond to the nonnegative elements of a ring, which

can be symmetrized with negative elements. In contrast, addition in idempotent semirings (or

dioids) is neither invertible nor can be made invertible in the classic sense, since idempotent

addition simply does not allow the existence of inverse elements (other than the trivial zero
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element) because of Proposition 7.2.1. Therefore, alternative notions of inversion have been

developed for solving linear equations (and monotone functional equations) over a dioid based

on residuation theory of (semi)lattices [11, 40]. We will not deliberate this here any further, but

refer to Cuninghame-Green [40] and Baccelli et al. [11] for details.

Definition 7.2.4 (Subsemiring) Let (S,⊕,⊗, ε, e) be an (idempotent) semiring. A subset T ⊆
S is a subsemiring of (S,⊕,⊗, ε, e) if

(i) ε ∈ T and e ∈ T .

(ii) T is closed under addition and multiplication, i.e., ∀a, b ∈ T : a⊕ b ∈ T and a⊗ b ∈ T .

A subsemiring T of a semiring (S,⊕,⊗, ε, e) inherits the addition and multiplication of the

latter and (T,⊕,⊗, ε, e) is itself a semiring. If (S,⊕,⊗, ε, e) is idempotent (or commutative)

then so are its subsemirings.

7.2.2 The (max,+)-Semifield

Max-plus algebra is the study of the algebraic structure Rmax
.
= (R ∪ {−∞},⊕,⊗) of the set

R ∪ {−∞} equipped with two binary operations called addition (⊕) and multiplication (⊗),

which are defined for all a, b ∈ R ∪ {−∞} by

a⊕ b .= max(a, b), a⊗ b .= a+ b. (7.2)

The algebraic structure Rmax = (R∪{−∞},⊕,⊗) is a semifield. In the forthcoming, the scalar

operations ⊕ and ⊗ will always mean the (max,+) operations defined by (7.2).

Proposition 7.2.2 Rmax = (R ∪ {−∞},⊕,⊗, ε, e), with ⊕ = max, ⊗ = +, zero element

ε = −∞ and unit element e = 0 is a commutative idempotent semifield.

Proof: The proposition is easily verified by checking the axioms. ✷

Rmax = (R ∪ {−∞},max,+) is known as the (max,+)-semiring or (max,+)-semifield. In

literature also the names path algebra [75] and schedule algebra [73] are used corresponding

to applications to path and schedule problems over directed graphs. In the sequel, we will

use the notation ε = −∞ and e = 0 to emphasize the special meaning of these elements in

Rmax. We also denote by Rε
.
= R ∪ {ε} the set of real numbers extended by ε. Because of

distributivity, ⊗ has priority over ⊕ and so we also just write ab instead of a ⊗ b, as is also

common in conventional algebra. Since the zero element in Rmax is ε we will also refer to a

nonzero element as a finite element. Division in Rmax is defined for all a ∈ Rε and b ∈ R by

a⊘ b .= a− b.

A power a⊗l in max-plus algebra is defined by repeated multiplication of l factors, i.e., for all

a ∈ Rmax and l ∈ N

a⊗l .= a⊗ · · · ⊗ a
︸ ︷︷ ︸

l times

= l · a,
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where · is the conventional multiplication. The superscript ⊗ may be omitted if there is no

confusion that the power must be evaluated in max-plus algebra. Powers of a ∈ Rmax are not

restricted to integers but can more generally defined by a⊗l .= l · a for any real number l ∈ R,

and by convention ε⊗0 = e. Products of powers satisfy ak⊗al = ak⊗l, since akal = k ·a+l ·a =
(k + l) · a = ak⊗l. A (positive) power of a sum satisfies (a⊕ b)k = ak ⊕ bk for all k ∈ N, since

(a ⊕ b)k = k · max(a, b) = max(k · a, k · b) = ak ⊕ bk. By induction this identity is easily

generalized to a power of a finite series of elements ai ∈ Rmax as

(
n⊕

i=1

ai

)k

=

n⊕

i=1

ak
i for all k ∈ N.

The notation of the inverse a−1 should not be confused with the power of a to −1, although

incidentally a⊗−1 = −a is the inverse of a 6= ε.

The following examples illustrate the arithmetics in Rmax.

2.4⊕ 3 = 3 2.4⊗ 3 = 5.4 4⊕ 8⊗−3 = 5
2⊕−3 = 2 2⊗−3 = −1 3−8 = −24
e⊕ 3 = 3 e⊘ 3 = −3 2⊗ 4−3 ⊗ 5 = −5

−2⊕−3 = −2 −2⊗−3 = −5 (2⊕ 3)2 = 6
ε⊕ 3 = 3 ε⊗ 3 = ε (−1⊕−4)3 = −3.

If we are interested in integers only we may also work in the dioid Zmax = (Z ∪ {ε},⊕,⊗).
Zmax is a subsemiring of Rmax and therefore itself an idempotent semiring (see Definition 7.2.4),

which is easily proved as follows. Clearly, ε, e ∈ Zmax and for any two integers a, b ∈ Z also

a ⊕ b = max(a, b) and a ⊗ b = a + b is an integer. Furthermore, a ⊕ ε = a and a ⊗ ε = ε.
The multiplicative inverses a−1 = −a of all nonzero elements are also contained in Z. Hence,

Zmax is a commutative idempotent semifield. Another subsemiring of Rmax (and of Zmax) is

(N ∪ {0, ε},⊕,⊗), which is a commutative idempotent semiring, but not a semifield.

7.2.3 Max-Plus Polynomials

In this section we look at polynomials over the (max,+)-Semiring.

Definition 7.2.5 (Max-plus polynomial) A (formal) max-plus polynomial in an indeterminate

X is a finite sum
⊕p

l=0 alX
l for some integer p ∈ N and al ∈ Rmax. The set of max-plus

polynomials is denoted as Rmax[X].

The elements al of a polynomial f =
⊕p

l=0 alX
l ∈ Rmax[X] are called the coefficients of

f . The support of a polynomial f is the index set of the finite coefficients of f , denoted as

supp(f) = {0 ≤ l ≤ p | al > ε}. The degree of a polynomial f ∈ Rmax[X] is the highest

power of X (or highest index) with al > ε, and denoted as deg(f) =
⊕

l∈supp(f) l. Two

polynomials
⊕p

l=0 alX
l and

⊕p
l=0 blX

l are equal if and only if al = bl for all l = 0, . . . , p.

On the set of formal max-plus polynomials Rmax[X] we define addition and multiplication as

follows. Let f =
⊕p

l=0 alX
l and g =

⊕q
l=0 blX

l. The sum ⊕ of two polynomials is defined
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componentwise, i.e.,

f ⊕ g =

deg(f)⊕deg(g)
⊕

l=0

(al ⊕ bl)X l. (7.3)

If the support of the polynomials f and g differs then we treat the missing coefficients as ε. Note

that the degree of h = f ⊕ g ∈ Rmax[X] is the maximal degree of f and g, deg(h) = deg(f)⊕
deg(g) = max(deg(f), deg(g)). The product ⊗ of two polynomials is defined according to the

sup-convolution rule:

f ⊗ g =

deg(f)⊗deg(g)
⊕

l=0

(
⊕

i⊗j=l

ai ⊗ bj
)

X l. (7.4)

The degree of the product of two polynomials is the product of the degree of its factors, deg(f⊗
g) = deg(f)⊗ deg(g) = deg(f) + deg(g).

It is easily verified that the set of polynomials Rmax[X] with addition and multiplication as

defined in (7.3) and (7.4), respectively, satisfies the axioms of a semiring with the constant

polynomials ε and e acting as zero and unit, respectively. Note that the neutral elements can be

understood as the polynomials of degree 0, i.e., ε = εX0 and e = eX0. More generally, we

define the set S[X] of polynomials in the indeterminate X over a semiring (S,⊕,⊗) with addi-

tion and multiplication defined by (7.3) and (7.4) evaluated over S. The proof of the following

theorem is a straightforward exercise in checking the axioms of a semiring.

Theorem 7.2.1 Let (S,⊕,⊗, ε, e) be an (idempotent) semiring. Then the algebraic structure

(S[X],⊕,⊗, ε, e) of polynomials over S with addition ⊕ and multiplication ⊗ as defined in

(7.3) and (7.4), respectively, is an (idempotent) semiring.

In particular, the sets of max-plus polynomials Rmax[X] and Zmax[X] are idempotent semirings.

The definition of polynomial addition and multiplication is consistent with algebraic manipu-

lations in Rmax when considering the indeterminate as a variable in Rmax. By the following

proposition we may substitute an element x ∈ Rmax for the indeterminate X . Hence, to each

polynomial f ∈ Rmax[X] we can associate a polynomial function f : Rmax → Rmax defined by

f(x) =
⊕p

l=0 alx
l.

Theorem 7.2.2 Let (S[X],⊕,⊗, ε, e) be a polynomial semiring over a commutative semiring

S. Then for any x ∈ S the valuation mapping ϕ : f 7→ f(x) is a homomorphism from S[X]
into S.

Proof: We must prove that ϕ(f ⊕ g) = ϕ(f)⊕ ϕ(g) and ϕ(f ⊗ g) = ϕ(f)⊗ ϕ(g). We may

assume without loss of generality that two polynomials have the same degree by taking any

missing coefficients equal to ε. So let f(X) =
⊕p

i=0 aiX
i and g(X) =

⊕p
j=0 bjX

j . Then for
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addition we have

ϕ(f)⊕ ϕ(g) = f(x)⊕ g(x)
= (

⊕p
i=0 aix

i)⊕
(
⊕p

j=0 bjx
j
)

= a0 ⊕ a1x⊕ . . .⊕ apx
p ⊕ b0 ⊕ b1x⊕ · · · ⊕ bpxp

= (a0 ⊕ b0)⊕ (a1x⊕ b1x)⊕ · · · ⊕ (apx
p ⊕ bpxp) (by associativity)

= (a0 ⊕ b0)⊕ (a1 ⊕ b1)x⊕ · · · ⊕ (ap ⊕ bp)xp (by distributivity)

=
⊕p

l=0(al ⊕ bl)xl

= (f ⊕ g)(x) (by(7.3))

= ϕ(f ⊕ g).
For multiplication we have

ϕ(f)⊗ ϕ(g) = f(x)⊗ g(x)
= (

⊕p
i=0 aix

i)⊗
(
⊕p

j=0 bjx
j
)

distr.
= a0

(
⊕p

j=0 bjx
j
)

⊕ a1x
(
⊕p

j=0 bjx
j
)

⊕ · · · ⊕ apx
p
(
⊕p

j=0 bjx
j
)

comm.
= a0

(
⊕p

j=0 bjx
j
)

⊕ a1

(
⊕p

j=0 bjx
j+1
)

⊕ · · · ⊕ ap

(
⊕p

j=0 bjx
j+p
)

=
⊕p

i=0

(

ai ⊗
(
⊕p

j=0 bjx
i+j
))

=
⊕p

i=0

⊕p
j=0(ai ⊗ bj)xi+j

=
⊕p⊗p

l=0

⊕

i⊗j=l(ai ⊗ bj)xi⊗j

(7.4)
= (f ⊗ g)(x)
= ϕ(f ⊗ g).

Here the third equality follows from distributivity of multiplication over addition and in the

fourth equality we used the multiplicative commutativity assumption of S. ✷

The valuation homomorphism ϕ : Rmax[X] → Rmax is not an isomorphism, since e.g. the two

polynomialsX2⊕X⊕e andX2⊕e are different by definition, but for the associated polynomial

functions we have x2 ⊕ x⊕ e = max(2x, x, 0) = max(2x, 0) = x2 ⊕ e for all x ∈ Rmax.

7.2.4 Max-Plus Matrices

In this section we consider matrices over the (max,+)-semiring. The scalar max-plus opera-

tions are extended to matrices in a standard way. Let Rm×n
max be the set of m × n matrices with

entries in Rmax. Then matrix addition⊕ is defined componentwise for A,B ∈ Rm×n
max as

[A⊕B]ij = aij ⊕ bij = max(aij, bij), (7.5)

and matrix multiplication⊗ is defined for matrices A ∈ Rm×n
max and B ∈ Rn×r

max as

[A⊗ B]ij =

n⊕

k=1

aik ⊗ bkj = max
k=1,...,n

(aik + bkj), (7.6)
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where A = (aij) and B = (bij). The matrix of all entries equal to ε acts as a zero matrix, i.e.,

A ⊕ Em×n = Em×n ⊕ A = A for all A ∈ Rm×n
max , where Em×n is the m × n matrix with all

elements equal to ε. For square matrices the square matrix defined as [E]ii = e and [E]ij = ε
for j 6= i acts as an identity matrix. The set of square matrices Rn×n

max is an idempotent semiring

by the following theorem.

Theorem 7.2.3 Let (S,⊕,⊗, ε, e) be an (idempotent) semiring. Then the algebraic structure

(Sn×n,⊕,⊗) of square matrices over S is an (idempotent) semiring for addition defined as

[A⊕B]ij = aij⊕bij and multiplication defined as [A⊗B]ij =
⊕n

k=1 aik⊗bkj . The zero matrix

E and identity matrix E are given as

En×n
.
=






ε · · · ε
...

...

ε · · · ε




 and En×n

.
=






e ε
. . .

ε e




 .

Proof: The axioms in Definition 7.2.1 are easily verified, and so is idempotency. In particular

En×n is absorbing since A⊗ En×n = En×n ⊗A = E for all A ∈ Sn×n. ✷

The zero matrix En×n is also denoted as E , where the dimension is chosen appropriately, and

likewise the identity matrix En×n is also denoted as E. Obviously, since Sn×n is a semiring we

can simply denote the zero and unit as ε and e, respectively. However, for the sake of clarity

we will restrict the notation ε and e to scalar semirings and E and E to matrix semirings. Note

that S can be viewed as a special case of Sn×n with n = 1. There is no ambiguity in using the

same symbols ⊕ and ⊗ for both scalar operations and matrix operations, since they relate to

two different objects (scalars and matrices).

For square matrices a matrix power is defined recursively by

A⊗0 = E, A⊗l = A⊗ A⊗l−1 for all l ∈ N.

So e.g. A⊗3 = A⊗ A⊗2 = A⊗ A⊗ A. We will also just write Al = A⊗l when it is clear from

the context that we are working in max-plus algebra. Multiplication of two matrix powers over

the same matrix satisfies Ak ⊗ Al = Ak⊗l. Matrix powers in max-plus algebra have a special

meaning in terms of paths in graphs as we will see in Section 7.2.5

The transpose of a matrix A = (aij) is defined as A⊤ = (aji). A permutation matrix P ∈
Rn×n

max is an identity matrix with possibly some exchanged rows (or columns). Hence, each

column (row) of a permutation matrix is a unit vector ei with entry e at row (column) i and

ε elsewhere. A permutation matrix satisfies P ⊗ P⊤ = E and therefore each permutation

matrix has an inverse P−1 = P⊤. The set of all permutation matrices in Rn×n
max is a group for

matrix multiplication, but it is not a (sub)semiring because there is no zero matrix (E is no

permutation matrix). Premultiplying a matrix A ∈ Rn×n
max by P results in exchanging the rows of

A, whereas postmultiplying by P rearranges the columns of A. For example, if P is obtained

by swapping row i and j of E then row (column) i and j of A will be swapped by the product

PA (respectively AP ). The matrix P⊤AP is a simultaneous permutation of rows and columns

of A corresponding to a coordinate transformation. The mapping A → P⊤AP is a similarity

transformation.
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Example 7.1 Let A ∈ R3×3
max and assume we want a coordinate transformation such that the

indices (1, 2, 3) are exchanged to (3, 1, 2), by which e.g. a12 becomes a31. This is obtained by a

transformation P⊤AP with P = [e3 e1 e2]. For example, if

A =





11 12 13
21 22 23
31 32 33



 and P =





ε e ε
ε ε e
e ε ε





then

P⊤ ⊗ A⊗ P =





ε ε e
e ε ε
ε e ε



⊗





11 12 13
21 22 23
31 32 33



⊗





ε e ε
ε ε e
e ε ε





=





ε ε e
e ε ε
ε e ε



⊗





13 11 12
23 21 22
33 31 32





=





33 31 32
13 11 12
23 21 22



 .

Note that the matrix elements are rearranged but not changed. ✷

An r × q block matrix is a matrix that is partitioned into r × q rectangular submatrices, called

blocks. In particular, locations of zero blocks (submatrices containing zeros only) are of combi-

natorial and computational interest. A matrix with a particular useful block structure is a lower

block triangular matrix

A =






A11 E
...

. . .

Ar1 · · · Arr




 ,

with square blocks Aii on the diagonal, and zero blocks Aij = E for j > i for all 1 ≤ i ≤
r. Analogously, an upper block triangular matrix has only zeros below the block diagonal.

Matrices having the same block (triangular) structure are called conformable block matrices.

Note that block triangular matrices are square matrices because their diagonal blocks are square.

Proposition 7.2.3 The set of conformable (lower or upper) block triangular matrices in Rn×n
max

is a subsemiring of Rn×n
max .

Proof: Clearly, E and E are lower and upper block triangular, since all off-diagonal elements

are zero. The structure of zero entries is clearly preserved under (componentwise) addition.

Multiplication of two conformable r × r block matrices A and B with square diagonal blocks

yields a matrix C with the same block partitioning, determined by Cij =
⊕r

k=1Aik ⊗ Bkj ,

1 ≤ i, j ≤ r. Note that the block multiplications are well-defined since by the square diagonal

blocks the number of columns of each block Aik equals the number of rows of Bkj. Now, if

A and B are lower block triangular matrices then Aik = E for k > i and Bkj = E for k < j,
and therefore AikBkj = E whenever i < k or k < j. Hence, Cij =

⊕i
k=j Aik ⊗ Bkj if j ≤ i

and Cij = ε for j > i, which is exactly the lower block triangular structure. The proof for

upper block triangular matrices is similar, but can also be derived as follows. If A and B are
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conformable upper block triangular matrices then their transposes A⊤ and B⊤ are lower block

triangular matrices, which we just proved to be closed under matrix addition and multiplication.

Hence, A ⊕ B = (A⊤ ⊕ B⊤)⊤ and A ⊗ B = (B⊤ ⊗ A⊤)⊤ are transpositions of lower block

triangular matrices, which are again upper block triangular. ✷

Definition 7.2.6 (Reducibility, Irreducibility) A matrix A ∈ Rn×n
max is called reducible if there

exists a permutation matrix P such that P⊤AP is lower block triangular, i.e.,

P⊤AP =

[
A11 E
A21 A22

]

, (7.7)

where A11 and A22 are square matrices. If a matrix is not reducible it is called irreducible.

Note that any (finite) sum and product of a reducible matrix is again a reducible matrix because

of Proposition 7.2.3. For instance, the lth power of (7.7) for any integer l ∈ N is

(P⊤AP )l =

[
A11 E
A21 A22

]l

=

[
Al

11 E
⊕l−1

k=0A
k
22A21A

l−k−1
11 Al

22

]

.

It will be useful to extend the internal matrix operations (addition and multiplication) by scalar

multiplication, defined as componentwise multiplication by a scalar of the underlying semiring.

So on any matrix semiring Sn×n we define [cA]ij = c⊗aij for all c ∈ S and A = (aij) ∈ Sn×n.

This extended structure is called a semialgebra. As is common in conventional linear algebra we

will be using the same symbol for scalar-matrix multiplication as for multiplication of scalars

and matrices. The context defines without ambiguity how the operation should be interpreted.

Definition 7.2.7 (Semialgebra) A semialgebra over a semiring (S,⊕,⊗) is a set X equipped

with two internal binary operations ⊕ : X × X → X (addition) and ⊗ : X × X → X
(multiplication), and an external operation⊗ : S ×X → X (scalar multiplication), satisfying

the following conditions:

(i) (X,⊕,⊗, εX , eX) is a semiring;

(ii) Scalar multiplication satisfies

∀a, b ∈ S, ∀x ∈ X : (a⊗ b)⊗ x = a⊗ (b⊗ x) and e⊗ x = x.

(iii) Scalar multiplication is distributive over addition:

∀a, b ∈ S, ∀x, y ∈ X : a⊗ (x⊕ y) = a⊗ x⊕ a⊗ y and (a⊕ b)⊗ x = a⊗ x⊕ b⊗ x.

(iv) The zero εX is absorbing:

∀a ∈ S, ∀x ∈ X : a⊗ εX = ε⊗ x = εX .

We also denote the zero and unit elements of a semialgebra over a semiring simply as ε and e, or

in the case of a matrix semialgebra by E and E. If the semialgebra has an idempotent addition

then it is called an idempotent semialgebra.
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Proposition 7.2.4 A semialgebra (X,⊕,⊗) over an idempotent semiring (S,⊕,⊗) is an idem-

potent semialgebra.

Proof: For the idempotent unit element e ∈ S we have x⊕x = e⊗x⊕ e⊗x = (e⊕ e)⊗x =
e⊗ x = x for all x ∈ X . ✷

Theorem 7.2.4 Let (S,⊕,⊗, ε, e) be an (idempotent) semiring. Then the algebraic structure

(Sn×n,⊕,⊗) of square matrices over S is an (idempotent) semialgebra for addition defined

as [A ⊕ B]ij = aij ⊕ bij , multiplication defined as [A ⊗ B]ij =
⊕n

k=1 aik ⊗ bkj, and scalar

multiplication defined as [c ⊗ A]ij = c ⊗ aij with A,B ∈ Sn×n and c ∈ S. The zero matrix is

E and the identity matrix is E.

Proof: We already know from Theorem 7.2.3 that if S is an (idempotent) semiring then so is

Sn×n. The remaining axioms easily follow from the semiring properties of S and the fact that

scalar multiplication is defined componentwise. Let c, d ∈ S and A = (aij), B = (bij) ∈ Sn×n.

Then by associativity of multiplication in S we have [(c⊗d)A]ij = (c⊗d)⊗aij = c⊗(d⊗aij) =
c⊗ [dA]ij. By distributivity of S we obtain [c(A⊕B)]ij = c⊗ (aij ⊕ bij) = c⊗ aij ⊕ c⊗ bij =
[cA]ij ⊕ [cB]ij , and likewise [(c⊕ d)A)]ij = (c⊕ d)⊗ aij = c⊗ aij ⊕ d⊗ aij = [cA]ij ⊕ [dA]ij .

Finally, [c⊗ E ]ij = cε = ε, [ε⊗ A]ij = ε⊗ aij = ε, and [e⊗A]ij = e⊗ aij = aij = [A]ij . ✷

In particular, Rn×n
max is an idempotent semialgebra over Rmax, and so multiplication of a matrix

A ∈ Rn×n
max by a scalar c ∈ Rmax is well-defined. Likewise for Zn×n

max

7.2.5 Precedence Graphs and Path Matrices

A square max-plus matrix can be viewed as the adjacency matrix of a weighted directed graph

(or digraph). A weighted digraph is denoted by (V,E, w), where V is the set of vertices (or

nodes), E ⊆ V × V is the set of arcs, and w ∈ R|E| is a vector of arc weights.

Definition 7.2.8 (Precedence graph) The precedence graph G(A) associated to a matrix A ∈
Rn×n

max is a weighted digraph G = (V,E, w) with V = {1, . . . , n} and an arc (j, i) ∈ E with

weight w(j, i) = aij for each aij 6= ε.

Hence, aij = ε implies that there is no arc from j to i in the digraph G(A). By definition, the

precedence graph is a simple digraph, i.e., there is at most one arc (i, j) from any node i to j.
As a corollary, any simple weighted digraph G = (V,E, w) is the precedence graph of a square

matrix A ∈ R
|V |×|V |
max with entry aij = w(j, i) for each arc (j, i) ∈ E, and aij = ε otherwise. For

digraphs with multiarcs (multigraphs) we may also associate a square matrix A ∈ R
|V |×|V |
max by

defining aij as the maximum weight of parallel arcs from j to i, i.e., aij =
⊕

l wl(j, i), where

wl(j, i) is the weight of the lth parallel arc from j to i. However, the one-to-one correspondence

between the digraph and its associated max-plus matrix is now lost: only the maximum arc

weights are stored in the max-plus matrix.

In the sequel, we need some terminology of graph theory. An arc (i, j) is an ordered pair of

nodes, where i is its tail and j its head. A path in a digraph is a sequence of adjacent arcs

ξ = (ξ1, . . . , ξm) such that the head of ξi is the tail of ξi+1 for i = 1, . . . , m− 1. Hence, all arcs

on a path have the same orientation. The length l(ξ) of a path ξ is the number of arcs it contains,
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so if ξ = (ξ1, . . . , ξm) then l(ξ) = m. In a weighted digraph the path weight is the product of

arc weights, i.e., w(ξ) =
⊗

ξi∈ξ wi, where wi is the weight of arc ξi. Note that this corresponds

to the conventional sum of arc weights. By convention, a path of length 0 has weight 0. A path

of length 0 corresponds to staying at a node, and should not be confused with a loop from a

node to itself, which has length 1.

A matrix power in max-plus algebra has a special meaning in terms of paths in digraphs. By

definition (7.6) of matrix multiplication, we have [A2]ij = maxk=1,...,n(aik + akj), which equals

the largest weight of all paths with exactly two arcs from j to i. In general, Am is the matrix of

the maximum weights of all paths with length m, i.e.,

[Am]ij is the maximum weight of all paths from j to i with m arcs.

Now, letA(m) .=
⊕m

l=0A
l be the matrix of the maximum weights of all paths with length smaller

than or equal to m, i.e.,

[A(m)]ij is the maximum weight of all paths from j to i with at most m arcs.

The following proposition shows that the matrices A(m) can also be determined by a max-plus

matrix power.

Proposition 7.2.5 For any A ∈ Rn×n
max and any m ∈ N

m⊕

l=0

Al = (E ⊕ A)m. (7.8)

Proof: Clearly, for m = 1 we have E⊕A = A0⊕A1. Now assume that (7.8) holds for m = k
then it also holds for m = k + 1, since

(E ⊕ A)k+1 = (E ⊕A)⊗ (E ⊕ A)k

= (E ⊕A)⊗⊕k
l=0A

l (induction step)

=
⊕k

l=0(A
l)⊕⊕k

l=0(AA
l) (by distributivity)

=
⊕k

l=0(A
l)⊕⊕k+1

l=1 (Al)

= E ⊕⊕k
l=1(A

l)⊕⊕k
l=1(A

l)⊕ Ak+1

= E ⊕⊕k
l=1(A

l)⊕ Ak+1 (by idempotency)

=
⊕k+1

l=0 A
l.

Hence, by induction (7.8) is valid for all m ∈ N. ✷

Let

A+ .
=

∞⊕

l=1

Al = A⊕A2 ⊕ A3 ⊕ . . . . (7.9)

Then [A+]ij is the maximum path weight from j to i over all paths of any length (> 0). There-

fore, A+ is also called the (longest) path matrix1. The entry [A+]ii is the maximum path weight

1In the min-plus semiring (Rn×n ∪ {∞}, min, +) this matrix is known as the shortest path matrix
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from i back to i over paths with length at least one. A related matrix sum is the (Kleene) star of

A, defined as

A∗ .
=

∞⊕

l=0

Al = E ⊕ A⊕A2 ⊕ . . . . (7.10)

The matrix A∗ is also known as the quasi-inverse or matrix closure of A [73]. The matrices

A∗ and A+ are equal except possibly for the diagonal elements. Consider a node i in the

precedence graph G(A). If i is not contained in any circuit then [A+]ii = ε. If on the other hand

i is contained in circuits with negative weight only then [A+]ii < e. In both cases [A∗]ii = e.

The closure A∗ for any matrix A ∈ Rn×n
max satisfies a range of properties that follow immediately

from its definition. In particular, A+ = AA∗ and A∗ = E ⊕ A+ = E ⊕ AA∗. Furthermore,

from (7.10) and (additive) idempotency of Rn×n
max follows A∗A∗ = A∗, which means that A∗ is

both additive and multiplicative idempotent.

In general, the infinite sums in (7.9) and (7.10) do not have to converge. However, the following

proposition gives a necessary and sufficient condition for finite convergence of these infinite

sums.

Proposition 7.2.6 Let A ∈ Rn×n
max be such that the associated precedence graph G(A) has no

circuits with positive weight. Then the limitsA∗ and A+ exist and are reached by the finite sums

A∗ =

n−1⊕

l=0

Al and A+ =

n⊕

l=1

Al. (7.11)

Proof: In a digraph with n nodes, any path from node j to i, j 6= i, of length n or more

necessarily consists of an elementary path with length strictly less than n and one or more

circuits. Since by assumption any circuit has nonpositive weight, the inclusion of a circuit to

an elementary path will never increase the path weight, by which follows that the maximum-

weight path between any two distinct nodes has length at most n − 1. Moreover, a path from

any node i to itself is by definition a circuit and thus has nonpositive weight by assumption.

Therefore, for all i, j there is an integer l ∈ {0, . . . , n − 1} such that [Al]ij ≥ [Am]ij for all

integers m ≥ n. Hence,
n−1⊕

l=0

Al ≥ Am for all m ≥ n, (7.12)

proving the finite convergence of A∗. Note that by the assumption on the circuit weights the

diagonal entries of A∗ are all e. In the case of A+, a diagonal entry [A+]ii corresponds to

the maximum-weight circuit over i. Clearly this must be an elementary circuit by the same

reasoning as above. An elementary circuit in a digraph of n nodes has at most n nodes, whence
⊕n

l=1A
l ≥ Am for all m ≥ n+ 1. ✷

If A ∈ Rn×n
max satisfies the condition of Proposition 7.2.6, i.e., G(A) has no positive-weight

circuits, then in particular A∗ = (E ⊕ A)m for any m ≥ n − 1 because of (7.12) and Proposi-

tion 7.2.5.

By definition an acyclic graph has no circuits and we therefore obtain the following corollary

to Proposition 7.2.6.
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Corollary 7.2.1 If A ∈ Rn×n
max has an acyclic precedence graphG(A) then A∗ and A+ exist and

are defined by (7.11).

The matrices A+ and A∗ can be computed by efficient graph algorithms due to the equiva-

lence to the all-pairs longest (or shortest) path problem. The well-known Floyd-Warshall al-

gorithm [66, 39] computes A+ in O(n3) time using a special implementation of the repeated

max-plus matrix multiplication, see Section 7.5.1. For large sparse matrices the repeated short-

est path algorithm of Johnson [112, 39] is even more efficient, see Section 7.5 for more details.

If we have computed A+ then we also have A∗ = E ⊕ A∗, by simply setting each negative

diagonal entry to 0, since [A∗]ii = e⊕ [A+]ii = max(0, a+
ii).

Lemma 7.2.1 Let A,P ∈ Rn×n
max , where P is a permutation matrix. Then

(P⊤AP )+ = P⊤A+P and (P⊤AP )∗ = P⊤A∗P.

Proof: A permutation matrix P satisfies PP⊤ = P⊤P = E and therefore (P⊤AP )2 =
P⊤APP⊤AP = P⊤A2P . By induction we obtain (P⊤AP )l = P⊤AlP for any integer l ≥ 1,

and thus

(P⊤AP )+ =
∞⊕

l=1

(P⊤AP )l =
∞⊕

l=1

P⊤AlP = P⊤ ⊗
(

∞⊕

l=1

Al

)

⊗ P = P⊤A+P.

The proof of (P⊤AP )∗ = P⊤A∗P is similar, with the additional term (P⊤AP )0 = E =
P⊤P = P⊤EP = P⊤A0P . ✷

A directed graph G(A) is strongly connected if there is a path from any node j to any node

i in G(A). In terms of the matrix A this means that for all indices 1 ≤ i, j ≤ n there exists

an integer l ∈ N such that [Al]ij > ε, or using the path matrix we simply have A+ > ε. The

following proposition gives a graph interpretation of an irreducible matrix A. We assume that

n ≥ 2.

Proposition 7.2.7 Let A ∈ Rn×n
max with associated precedence graph G(A). Then A is irre-

ducible if and only if G(A) is strongly connected.

Proof: We prove the contraposition that A is reducible if and only if G(A) is not strongly

connected. First, assume that G(A) = (V,E) is not strongly connected. Then there exists a

nonempty subset of nodes W ⊂ V , such that no arcs go from W to V \W . Without loss of

generality, we may assume that the nodes are numbered such that the last |W | nodes correspond

to W . But then A has the block triangular form (7.7), where A11 corresponds to the arcs in the

component (V \W ), A22 to the arcs between nodes in W , and the block A12 = E corresponds

to aij = ε for (j, i) ∈W × (V \W ).

Conversely, assume that A is reducible. Then there exists a permutation matrix P , such that

P⊤AP has block triangular form (7.7). By Proposition 7.2.3 this block triangular structure is

preserved for any sum and power, whence (P⊤AP )+ =
⊕∞

l=1(P
⊤AP )l is also block triangular

and so is P⊤A+P by Lemma 7.2.1. Thus, A+ ≯ ε and so G(A) is not strongly connected. ✷
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7.2.6 Polynomial Matrices and Timed Event Graphs

Since Rmax[X] and Rn×n
max are idempotent semirings we can also consider square matrices with

entries in Rmax[X], or polynomials with square matrices as coefficients. This leads to the idem-

potent semiring Rn×n
max [X] of max-plus polynomial matrices, which will play a central role in the

theory of max-plus linear systems of Chapter 8.

Definition 7.2.9 (Polynomial matrix) A polynomial matrix in an indeterminateX over a semi-

ring S is a finite sum

A =

p
⊕

l=0

Al ⊗X l (7.13)

for some integer p ∈ N and matrix coefficientsAl ∈ Sn×n. The set of n×n polynomial matrices

is denoted as Sn×n[X].

In particular, Rn×n
max [X] is the set of max-plus polynomial matrices in an indeterminate X over

the semiring Rmax with elements
⊕p

l=0Al ⊗X l, where Al ∈ Rn×n
max .

Theorem 7.2.5 Let (S,⊕,⊗) be an (idempotent) semiring. Then the set Sn×n[X] of square

polynomial matrices over S is an (idempotent) semiring for addition defined as

A⊕ B =

deg(A)⊕deg(B)
⊕

l=0

(Al ⊕ Bl)X
l (7.14)

and multiplication defined as

A⊗ B =

deg(A)⊗deg(B)
⊕

l=0

⊕

r⊗s=l

(Ar ⊗ Bs)X
l. (7.15)

The zero and unit elements in Sn×n[X] are the zero matrix E and identity matrix E.

Proof: If S is an (idempotent) semiring then Sn×n is an (idempotent) semiring by Theo-

rem 7.2.3. The addition defined in (7.14) is simply the polynomial addition over the (idempo-

tent) matrix semiring Sn×n and the multiplication (7.15) is just polynomial multiplication over

Sn×n. Hence, Theorem 7.2.1 can be applied, by which Sn×n[X] is an (idempotent) semiring.

The zero and identity matrix can be interpreted as the constant polynomial matrices EX0 and

EX0. ✷

In Definition 7.2.9 a polynomial matrix is defined as a polynomial with matrix coefficients. An

alternative definition of a polynomial matrix is a matrix A ∈ (Rmax[X])n×n with polynomial

entries Aij =
⊕p

l=0 a
(l)
ij X

l, where a
(l)
ij ∈ Rmax for all 1 ≤ i, j ≤ n and 0 ≤ l ≤ p. In fact,

we will show that the algebraic structures Rn×n
max [X] and (Rmax[X])n×n are indistinguishable or

isomorphic, by which it is mathematically justified to interpret a polynomial matrix either as a

polynomial with matrix coefficients or as a matrix with polynomial entries. For example,

A =

[
ε e
3 e

]

⊕
[
ε e
e 2

]

X =

[
ε e⊕X

3⊕X e⊕ 2X

]

.
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Theorem 7.2.6 Let (S,⊕,⊗) be an (idempotent) semiring. Then the set (S[X])n×n of square

matrices A with polynomial entries Aij =
⊕p

l=0 a
(l)
ij X

l in an indeterminate X over S is an

(idempotent) semiring for addition defined as

(A⊕B)ij = Aij ⊕ Bij =

deg(Aij)⊕deg(Bij )
⊕

l=0

(

a
(l)
ij ⊕ b(l)ij

)

X l, (7.16)

and multiplication as

(A⊗ B)ij =

n⊕

k=1

(Aik ⊗ Bkj) =

n⊕

k=1

deg(Aik)⊗deg(Bkj)⊕

l=0

⊕

r⊗s=l

(

a
(r)
ik ⊗ b

(s)
kj

)

X l. (7.17)

The zero and unit elements in (S[X])n×n are the zero matrix E and identity matrix E.

Proof: If S is an (idempotent) semiring then S[X] is also an (idempotent) semiring by Theo-

rem 7.2.1. The addition defined in (7.16) is simply the (componentwise) matrix addition over

the (idempotent) semiring S[X] and the multiplication (7.17) is just matrix multiplication over

S[X]. Hence, Theorem 7.2.3 can be applied, by which Sn×n[X] is an (idempotent) semiring. ✷

Note the similarity between the proof of Theorem 7.2.6 and that of Theorem 7.2.5. Sn×n[X]
is the semiring of polynomials with matrix coefficients and (S[X])n×n is the semiring of ma-

trices with polynomial entries. The resulting semiring structure is algebraically equivalent as

presented in the following theorem.

Theorem 7.2.7 Let (S,⊕,⊗) be an (idempotent) semiring. Then the (idempotent) semirings

Sn×n[X] and (S[X])n×n are isomorphic.

Proof: Define the mapping ψ : Sn×n[X]→ (S[X])n×n as

ψ

(
p
⊕

l=0

AlX
l

)

= A with Aij =

p
⊕

l=0

[Al]ijX
l for all 1 ≤ i, j ≤ n.

It is easily seen that ψ is bijective and maps each entry of a matrix coefficient uniquely onto a

coefficient of a polynomial matrix entry, i.e., [Al]ij = a
(l)
ij for all 1 ≤ i, j ≤ n and 0 ≤ l ≤ p.

Hence, the inverse mapping ψ−1 : (S[X])n×n → Sn×n[X] is well-defined. Addition (7.14) on

(S[X])n×n is exactly (7.16) by identifying [Al]ij = a
(l)
ij , i.e., A ⊕ B = ψ(ψ−1(A) ⊕ ψ−1(B)).

Likewise, multiplication (7.17) is just the elementwise formulation of (7.17) with [Al]ij = a
(l)
ij ,

that is, A ⊗ B = ψ(ψ−1(A) ⊗ ψ−1(B)). Then clearly ψ is an isomorphism from Sn×n[X]
to (S[X])n×n and so (S[X])n×n is isomorphic to Sn×n[X]. Moreover, this isomorphism also

implies that (S[X])n×n is an (idempotent) semiring if and only if Sn×n[X] is. ✷

Because of Theorem 7.2.7 we may identify by both Sn×n[X] ∼= (S[X])n×n the n×n polynomial

matrix semiring in an indeterminate X over the semiring S.

In particular, Rn×n
max [X] and Zn×n

max [X] are idempotent semirings, with addition and multiplication

understood as matrix addition and multiplication over the semiring Rmax[X]. As an example in

R2×2
max[X] we have

[
2 X

e⊕ 1X X2

]

⊕
[

3X 1X
3 1⊕ 2X

]

=

[
2⊕ 3X 1X
3⊕ 1X 1⊕ 2X ⊕X2

]
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and

[
2 X

e⊕ 1X X2

]

⊗
[

3X 1X
3 1⊕ 2X

]

=

[
5X 3X ⊕ 2X2

3X ⊕ 4X2 1X ⊕ 2X2 ⊕ 2X3

]

.

Analogous to a max-plus polynomial function associated to a max-plus polynomial, we asso-

ciate a matrix polynomial function A : Rmax → Rn×n
max to each matrix polynomialA ∈ Rn×n

max [X]
by substituting an element x ∈ Rmax for the indeterminate X .

Theorem 7.2.8 Let (Sn×n[X],⊕,⊗, E , E) be the semiring of polynomial matrices over a com-

mutative semiring S. Then for any x ∈ S the valuation mapping ϕ : A 7→ A(x) is a homomor-

phism from Sn×n[X] into Sn×n.

Proof: The proof is analogous to that of Theorem 7.2.2 by showing that ϕ(A⊕B) = ϕ(A)⊕
ϕ(B) and ϕ(A⊗B) = ϕ(A)⊗ϕ(B) hold entrywise. Without loss of generality we assume that

all polynomial entries have the same degree by taking any missing coefficients equal to ε. So

let Aij =
⊕p

l=0 a
(l)
ij X

l and Bij =
⊕p

l=0 b
(l)
ij X

l. Then for addition we have

ϕ(A)⊕ ϕ(B) = A(x)⊕ B(x)

= (
⊕p

i=0Aix
i)⊕

(
⊕p

j=0Bjx
j
)

= A0 ⊕ A1x⊕ . . .⊕ Apx
p ⊕ B0 ⊕ B1x⊕ · · · ⊕ Bpx

p

= (A0 ⊕ B0)⊕ (A1x⊕ B1x)⊕ · · · ⊕ (Apx
p ⊕Bpx

p) (by associativity)

= (A0 ⊕ B0)⊕ (A1 ⊕ B1)x⊕ · · · ⊕ (Ap ⊕ Bp)x
p (by distributivity)

=
⊕p

l=0(Al ⊕Bl)x
l

= (A⊕ B)(x)

= ϕ(A⊕ B).

For multiplication we have

ϕ(A)⊗ ϕ(B) = A(x)⊗B(x)

= (
⊕p

i=0Aix
i)⊗

(
⊕p

j=0Bjx
j
)

distr.
= A0

(
⊕p

j=0Bjx
j
)

⊕ A1x
(
⊕p

j=0Bjx
j
)

⊕ · · · ⊕ Apx
p
(
⊕p

j=0Bjx
j
)

comm.
= A0

(
⊕p

j=0Bjx
j
)

⊕ A1

(
⊕p

j=0Bjx
1+j
)

⊕ · · · ⊕Ap

(
⊕p

j=0Bjx
p+j
)

=
⊕p

i=0

(

Ai ⊗
(
⊕p

j=0Bjx
i+j
))

=
⊕p

i=0

⊕p
j=0(Ai ⊗Bj)x

i⊗j

=
⊕p⊗p

l=0

⊕

i⊗j=l(Ai ⊗Bj)x
l

= (A⊗ B)(x)

= ϕ(A⊗B).
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Figure 7.1 Graph representations of a max-plus polynomial matrix

Here the third equality follows from distributivity of multiplication over addition and in the

fourth equality we used the scalar multiplication of a matrix and the multiplicative commuta-

tivity assumption of S. ✷

Viewed as a matrix with polynomial entries the valuation homomorphism is consistent with

the internal multiplication in (S[X])n×n. However, the evaluation in a polynomial with matrix

coefficients requires scalar multiplication of the matrix coefficients. Hence, in the latter case

we need to consider Sn×n as a semialgebra, with scalar multiplication as external product.

Theorem 7.2.8 is a generalization of Theorem 7.2.2, which corresponds to the special case that

n = 1. Note that a matrix (semi)ring Sn×n is in general not (multiplicative) commutative,

except for the scalar case n = 1. Hence, the condition of Theorem 7.2.2 is not satisfied for

a polynomial semiring Sn×n[X] over a semiring Sn×n for n > 1. However, Theorem 7.2.8

shows that commutativity of the base semiring S is sufficient for the valuation mapping to be a

homomorphism, as a consequence of mapping the indeterminate to a scalar.

A polynomial matrix A ∈ Rn×n
max [X] is associated to a timed event graph G(A) = (T ,P, µ, w),

analogous to a precedence graph associated to a matrix A ∈ Rn×n
max , cf. Section 7.2.5.

Definition 7.2.10 (Graph representation of a polynomial matrix) A polynomial matrix A ∈
Rn×n

max [X] corresponds to the timed event graph G(A) = (T ,P, µ, w) with transitions (nodes)

T = {1, . . . , n} and a place (marked arc) (j, i) ∈ P with initial marking µ(j, i) = l and

holding time w(j, i) = [Al]ij for each [Al]ij 6= ε.

According to this definition each matrix coefficient Al of a polynomial matrix A defines a

precedence graph G(Al) corresponding to a subgraph of G(A) where each place has l tokens.

Of particular interest is the subgraphG(A0), which must be acyclic for a live timed event graph,

cf. Section 6.4. If on the other hand we look at a polynomial matrix as a matrix of polynomials

then each nonzero (finite) polynomial entry [A]ij = [A0]ij⊕[A1]ijX⊕[A2]ijX
2⊕. . .⊕[Ap]ijX

p

defines multiple places (or a multiarc) from node j to i corresponding to the polynomial support

supp([A]ij). Hence, a polynomial arc weight translates into |supp(Aij)| parallel marked arcs

according to the interpretation of ⊕ as synchronization mechanism, see Figure 7.1.

All definitions on matrices A ∈ Rn×n
max also hold for polynomial matrices A ∈ Rn×n

max [X]. Ma-

trix powers Al, finite series
⊕m

l=0Al, A+, A∗, etc. have the same meaning as before but are

now interpreted in terms of timed event graphs. For example, [A+]ij is the longest path from

transition j to i with respect to the holding times of the places. The other way around, prece-

dence graphs of max-plus matrices A ∈ Rn×n
max may be viewed as timed event graphs where
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all arcs have the same marking. Permutation matrices P ∈ Rn×n
max [X] are the same as in Rn×n

max

(like the identity matrix), and P⊤AP is just a coordinate transformation of the indices of the

matrix A. A reducible polynomial matrix is defined analogous to Definition 7.2.6 as a polyno-

mial matrix A that can be written in lower block triangular form by an appropriate coordinate

transformation, where now of course blocks are rectangular polynomial submatrices. In fact,

(ir)reducibility is a combinatorial matrix property that only depends on the support of the matrix,

supp(A) = {(j, i) | [A]ij 6= ε}, that is, the pattern of nonzero entries. The support is preserved

by the valuation homomorphism for finite values of the variable X . Hence, A ∈ Rn×n
max [X] is

(ir)reducible if and only if A(e) ∈ Rn×n
max is, or any A(x) with fixed x ∈ Rmax \{ε} for that

matter, where A(x) is the valuation homomorphism of A in x. In particular, G(A) is strongly

connected if and only if A(e) is irreducible. Indeed, for fixed x = e the polynomial matrix

function reduces to a max-plus matrix, where the associated precedence graph is obtained from

the timed event graph by replacing the multiple places from a transition j to i by a single arc

from node j to i with weight aij = maxl=0,...,p[Al]ij . Note that strongly connectedness is invari-

ant to (the weights of) parallel places. An algebraic characterization of an irreducible square

polynomial matrix A ∈ Rn×n
max [X] is that for all i, j there exists an integer m ∈ N, such that

[Am]ij 6= ε, or such that [Am(e)]ij 6= ε. This corresponds to strongly connectedness of the

associated timed event graph, i.e., a path exists between any two transitions.

7.2.7 Partially Ordered Semirings

Definition 7.2.11 (Partial order, total order) A binary relation ≤ on a set S 6= ∅ is called a

partial order on S if the following axioms are satisfied for all a, b, c ∈ S:

(i) Reflexivity: a ≤ a.

(ii) Antisymmetry: if a ≤ b and b ≤ a then a = b.

(iii) Transitivity: if a ≤ b and b ≤ c then a ≤ c.

A partial order is called a total order if it additionally satisfies

• Comparability: for all a, b ∈ S, either a ≤ b or b ≤ a.

If ≤ is a partial order on S then (S,≤) is called a partially ordered set. Likewise, if ≤ is a total

order on S then (S,≤) is called a totally ordered set.

Given a partially ordered set (S,≤), we define a ≥ b as the equivalence of b ≤ a. If a ≤ b and

a 6= b we also write a < b, and similarly a > b⇔ (b ≤ a ∧ a 6= b).

Definition 7.2.12 (Partially ordered semiring) Let (S,⊕,⊗, ε, e) be a semiring and (S,≤) a

partially ordered set. Then (S,⊕,⊗,≤) is called a partially ordered semiring if the following

monotony laws are satisfied for all a, b, c ∈ S:

(i) Additive monotony: if a ≤ b then a⊕ c ≤ b⊕ c.
(ii) Multiplicative monotony: if a ≤ b and ε ≤ c then a⊗ c ≤ b⊗ c and c⊗ a ≤ c⊗ b.

If moreover ≤ is a total order on S then (S,⊕,⊗,≤) is called a totally ordered semiring.
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Thus, in a partial ordered semiring the order is preserved under addition and multiplication.

The nonnegativity condition c ≥ ε in the multiplicative monotony law of Definition 7.2.12 is

redundant if ε is a least or bottom element of S, i.e., an element that is smaller than any other

element of S. In the (max,+)-semiring the zero is ε = −∞, which is obviously a least element

with respect to the natural ordering of an idempotent semiring.

Theorem 7.2.9 (Natural ordering) An idempotent semiring (S,⊕,⊗) is naturally partially or-

dered by

a ≤ b⇔ a⊕ b = b. (7.18)

Proof: First, we prove that (7.18) defines a partial order. By idempotency a ⊕ a = a for all

a ∈ S and hence a ≤ a (reflexivity). If a ⊕ b = b and b ⊕ a = a then by commutativity of

addition b = a ⊕ b = b ⊕ a = a (antisymmetry). Finally, if a ⊕ b = b and b ⊕ c = c then by

associativity a⊕ c = a⊕ (b⊕ c) = (a⊕ b)⊕ c = b⊕ c = c (transitivity).

We now prove the monotony laws of addition and multiplication. If a⊕ b = b then for all c ∈ S
we have (a⊕c)⊕(b⊕c) = (a⊕b)⊕(c⊕c) = b⊕c, where we used commutativity, associativity

and idempotency of addition. The multiplicative monotony law follows from distributivity of

multiplication over addition: if a ⊕ b = b then (a ⊗ c) ⊕ (b ⊗ c) = (a ⊕ b) ⊗ c = b ⊗ c
for all c ∈ S, including c = ε, which is well-defined since ε is absorbing. Analogously,

(c⊗ a)⊕ (c⊗ b) = c⊗ (a⊕ b) = c⊗ b. ✷

By definition a zero element in a semiring S satisfies ε ⊕ a = a for all a ∈ S, and therefore

ε ≤ a for all a ∈ S with the natural order (7.18). Thus, we have the following corollary.

Proposition 7.2.8 (Nonnegativity) Let (S,⊕,⊗) be an idempotent semiring with the natural

partial order ≤ defined by (7.18). Then all elements a ∈ S are nonnegative, i.e., ε ≤ a for all

a ∈ S.

In lattice theory the zero element ε is called a bottom element of S [11]. In particular, matrices

over the max-plus algebra are nonnegative by definition. As a consequence, the spectral analysis

of matrices in Rn×n
max resembles the classical theory of nonnegative matrices A ∈ Rn×n

+ , as we

will see in Section 7.4.

By Theorem 7.2.9 idempotent semirings have a natural order relation, which is preserved un-

der the addition and multiplication operations of the semiring. In particular, on the semirings

encountered so far we have the following natural orders.

(i) (Rmax,≤) is a totally ordered semifield, where the total order ≤ is consistent with the

natural order of the real numbers (R,≤).

(ii) (Rn×n
max ,≤) is a partially ordered semiring, where A ≤ B is defined elementwise as aij ≤

bij for all 1 ≤ i, j ≤ n with the (scalar) natural order of (Rmax,≤). We write A < B if

aij < bij for all 1 ≤ i, j ≤ n. This order is not total as is easily seen by a counterexample.

Let

A =

[
1 1
ε 1

]

, B =

[
1 2
ε 1

]

, C =

[
1 1
ε 2

]

.

Then we have A ≤ B and A ≤ C, but B 6≤ C and C 6≤ B.
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(iii) (Rmax[X],≤) is a partially ordered semiring, where
⊕p

l=0 alX
l ≤ ⊕q

l=0 blX
l is defined

elementwise by al ≤ bl for all 0 ≤ l ≤ p ⊕ q. If the polynomials do not have the same

support then the nonexisting coefficients are understood to be zero (ε). For example,

2⊕ 2X ⊕ 2X3 ≤ 2⊕ 2X ⊕ 1X2⊕ 2X3, but 2 6≤ 2X and 2X 6≤ 2, so≤ is a partial order

but not a total order.

(iv) (Rn×n
max [X],≤) is a partially ordered semiring, where

⊕p
l=0AlX

l ≤⊕q
l=0BlX

l is defined

elementwise as [Al]ij ≤ [Bl]ij for all 1 ≤ i, j ≤ n and 0 ≤ l ≤ p⊕ q. For example, let

A =

[
X2 X
ε 3X ⊕ 2X2

]

, B =

[
X2 1X
ε 3X ⊕ 2X2

]

, C =

[
X2 X
e 3X ⊕ 2X2

]

.

Then A ≤ B and A ≤ C, but B 6≤ C and C 6≤ B.

A partially ordered set (S,≤) is called a sup-semilattice (or join-semilattice) if the supremum

(or least upper bound) sup(a, b) exists for all a, b ∈ S. Hence, each subsemiring S of Rmax is

a sup-semilattice, since a ⊕ b = max(a, b) = sup(a, b) exists for each a, b ∈ S ⊆ Rmax by

Definition 7.2.4 of a subsemiring.

7.3 Max-Plus Semimodules

7.3.1 Semimodules over the (max,+)-Semiring

The analogue of a vector space over a field or a module over a ring in conventional algebra [127]

is a semimodule over a semiring. The elements of a semimodule are vectors with elements in a

semiring, where addition is defined componentwise and where vectors can be multiplied by an

element of the semiring, see e.g. Dudnikov & Samborskiı̆ [59] and Golan [73].

Definition 7.3.1 (Semimodule) A (left) semimodule (V,⊕) over the semiring (S,⊕,⊗, ε, e) is

a set V equipped with an internal addition⊕, and an external multiplication⊗ defined on S×V
to V , satisfying the following axioms:

(i) (V,⊕) is a commutative monoid, where the zero is denoted as εV .

(ii) The external multiplication satisfies

∀a, b ∈ S, ∀x ∈ V : (a⊗ b)⊗ x = a⊗ (b⊗ x) and e⊗ x = x.

(iii) The external multiplication is distributive over addition:

∀a, b ∈ S, ∀x, y ∈ V : a⊗ (x⊕ y) = a⊗ x⊕ a⊗ y and (a⊕ b)⊗ x = a⊗ x⊕ b⊗ x.

(iv) The zero εV is absorbing:

∀a ∈ S, ∀x ∈ V : a⊗ εV = ε⊗ x = εV .

A right-semimodule is defined similarly for external multiplication from the right, i.e., ⊗ :
V ×S → V . A semimodule (V,⊕) over an idempotent semiring (S,⊕,⊗, ε, e) is an idempotent

semimodule, since x ⊕ x = e ⊗ x ⊕ e ⊗ x = (e ⊕ e) ⊗ x = e ⊗ x = x for all x ∈ V ,
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cf. Proposition 7.2.4. An idempotent semimodule over an idempotent semiring is also called a

moduloid [11].

An important class of semimodules is the set Sn = S × · · · × S of vectors with entries in a

semiring S and pointwise addition and scalar multiplication.

Theorem 7.3.1 Let (S,⊕,⊗, ε, e) be an (idempotent) semiring and n ∈ N. Then (Sn,⊕) of

n-dimensional vectors over (S,⊕,⊗) is an (idempotent) (left) semimodule for componentwise

addition [x⊕ y]i = xi ⊕ yi and external (left) multiplication [c⊗ x]i = c⊗ xi for all x, y ∈ Sn

and c ∈ S. The zero vector is ε = (ε, . . . , ε)⊤ ∈ Sn.

Proof: The semiring properties are inherited by addition and scalar multiplication on the semi-

module as they are both defined componentwise. Hence, if (S,⊕) is associative, commutative,

and/or idempotent then so is (Sn,⊕), and if ε is an absorbing zero of (S,⊕,⊗) then the vector

with each component equal to ε is an absorbing zero of (Sn,⊕,⊗). Likewise, the 2nd semi-

module axiom directly follows from associativity and the unit e of (S,⊗), and distributivity of

scalar multiplication over addition is a consequence of distributivity in (S,⊕,⊗). ✷

A right-semimodule (Sn,⊕) over (S,⊕,⊗) is defined analogously by componentwise right-

sided scalar multiplication [x ⊗ c]i = xi ⊗ c. If S is commutative then these left- and right-

semimodules are equivalent and we just say that (Sn,⊕) is a semimodule over (S,⊕,⊗).

In particular, Rn
max is an idempotent semimodule (moduloid) of vectors over Rmax equipped

with componentwise addition





x1
...

xn




⊕






y1
...

yn





.
=






x1 ⊕ y1
...

xn ⊕ yn




 =






max(x1, y1)
...

max(xn, yn)






and two-sided scalar multiplication

a⊗






x1
...

xn





.
=






a⊗ x1
...

a⊗ xn




 =






a+ x1
...

a + xn




 =






x1 ⊗ a
...

xn ⊗ a





.
=






x1
...

xn




⊗ a,

with x, y ∈ Rn
max and a ∈ Rmax.

Definition 7.3.2 (Subsemimodule) Let (V,⊕) be a semimodule over a semiring (S,⊕,⊗). A

nonempty subset W ⊆ V is a subsemimodule of (V,⊕, ε) if it is closed under addition and

external multiplication: ax⊕ by ∈W for all x, y ∈W and a, b ∈ S.

Let εV be the zero of a semimodule V over a semiring (S,⊕,⊗, ε, e). Then εV ∈ W for any

subsemimodule W of V , since W 6= ∅ and if x ∈ W then also ε ⊗ x = εV ∈ W by definition

of a subsemimodule. Hence, a subsemimodule is itself again a semimodule.

7.3.2 Linear and Weak Independence

In this section we consider semimodules of vectors over Rmax. We will show that the usual

notion of linear independence of a set of vectors is no longer satisfactory in Rn
max and introduce
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the concept of weak independence as proposed by Wagneur [216], which allows an intrinsic

notion of dimension and basis of semimodules.

Let X = {xi}i∈I be a family of vectors of Rn
max. A linear combination of elements of X is

a finite sum
⊕

i∈I cixi, where {ci}i∈I is a family of elements of Rmax with finite support, i.e.,

the set supp(I) = {i ∈ I | ci 6= ε} is finite. The elements ci are called the coefficients of

the linear combination. The set of all linear combinations of vectors {xi}i∈I = X ⊂ Rn
max is

a subsemimodule of Rn
max called the span of X and denoted as span(X). If M = span(X)

we say that X is a generating family or spanning set of the semimodule M . A semimodule

M ⊂ Rn
max is finitely generated if it has a finite generating family X = {x1, . . . , xm} ⊂ M . In

this case, M = span(x1, . . . , xm) with

span(x1, . . . , xm)
.
=

{
m⊕

i=1

cixi | c1, . . . , cm ∈ Rmax

}

.

A family {xi}i∈I of Rn
max is linearly independent if for all families {ai}i∈I and {bi}i∈I in Rmax

with finite support

⊕

i∈I

aixi =
⊕

i∈I

bixi implies ai = bi for all i ∈ I.

A linearly independent generating family {xi}i∈I is a basis and a semimodule that admits a

basis is called a free semimodule. The dimension of a free semimodule is the cardinality of

its basis, with the convention that if the basis is not finite then the dimension is infinite. By

definition, each vector x in a free semimodule M with basis {xi}i∈I can be written uniquely as

x =
⊕

i∈I cixi for some family {ci}i∈I of Rmax with finite support.

For any n ∈ N the semimodule Rn
max is a finitely-generated free semimodule with dimension

n. A basis is given by the n unit vectors {e1, . . . , en}, where the jth unit vector is defined as

ej = (δ1j , . . . , δnj)
⊤ with δij the Kronecker delta translated to max-plus algebra:

δij =

{
e if i = j
ε if i 6= j.

For example, any x ∈ R4
max can be written uniquely as

x = c1







e
ε
ε
ε






⊕ c2







ε
e
ε
ε






⊕ c3







ε
ε
e
ε






⊕ c4







ε
ε
ε
e






.

with ci ∈ Rmax, 1 ≤ i ≤ 4. A finitely-generated free semimodule is also called a finite-

dimensional free semimodule or finite free semimodule.

However, in a semimodule this notion of linear independence is too strong. For instance, con-

sider the semimodule M = span(x1, x2) ⊂ R2
max with x1 = (1, e)⊤ and x2 = (e, ε)⊤. Then

{x1, x2} is a minimal finite generating family of M . For example, the vector (3, e)⊤ is uniquely

determined by the linear combination (3, e)⊤ = (1, e)⊤ ⊕ 3(e, ε)⊤. But {x1, x2} is not a basis

of M , since e.g. x1 ⊕ c2x2 = x1 for all c2 ∈ [ε, 1].

Wagneur [216] introduced an alternative definition of weak independence as follows.
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Figure 7.2 Semimodules in R2
max spanned by two weakly-independent finite vectors

Definition 7.3.3 (Weak independence, weak dependence) A vector y ∈ Rn
max is weakly de-

pendent on a set X = {xi}i∈I with xi ∈ Rn
max if y can be written as a linear combination

y =
⊕

i∈I

aixi

for some coefficients ai ∈ Rmax, i ∈ I . Otherwise, y is weakly independent on X . A nonempty

set X = {xi}i∈I is weakly independent if each xj ∈ X is weakly independent on X \ {xj}, and

X is weakly dependent otherwise.

In conventional vector spaces weak independence is equivalent to linear independence, but in

semimodules over Rmax (or over any other proper semiring) weak independence does not imply

linear independence.

A weakly-independent generating family is a weak basis. Wagneur [216] proved that each weak

basis of a semimodule has the same cardinality, which therefore justifies the definition of weak

dimension of a finitely-generated semimodule as the cardinality of its weak basis. The following

theorem was proved by Wagneur [216] and states that each finitely-generated semimoduleM ⊂
Rn

max has a weak basis.

Theorem 7.3.2 Let M ⊂ Rn
max be a finitely-generated semimodule. If x1, . . . , xm are weakly

independent vectors of M and M = span(x1, . . . , xm), then M has weak dimension m and

{x1, . . . , xm} is a weak basis of M .

A weak basis of a semimodule M is thus both a minimal spanning set —a smallest set of

vectors that still spans the semimodule — and a maximal weakly-independent set — a largest

set of vectors of M that still is weakly independent.

Example 7.2 Consider the semimodule M1 = span(x1, x2) ⊂ R2
max with x1 = (1, e)⊤ and
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Figure 7.3 Semimodules in R2
max spanned by a finite vector and a unit vector

x2 = (3, e)⊤. Clearly, x1 and x2 are weakly independent. Hence, {x1, x2} is a weak basis of M
and its weak dimension is 2. Figure 7.2.a shows the generated semimodule. Each vector xi ∈
R2

max generates a one-dimensional line through xi with slope 1, and two weakly-independent

vectors span a 2-dimensional strip bounded by the lines generated by x1 and x2, respectively.

Let x3 = (5, e)⊤ and consider M2 = span(x1, x2, x3) ⊂ R2
max with x1 and x2 as above. Now,

x2 = x1⊕−2x3, whence x2 is weakly dependent on {x1, x3}, see Figure 7.2.b. Hence, {x1, x3}
is a weak basis of M2, the weak dimension is again 2, and M2 = span(x1, x3).

Now consider the semimodule M3 = span(x1, e1) ⊂ R2
max with x1 = (1, e)⊤ as before and

the unit vector e1 = (e, ε)⊤. Clearly, {x1, e1} is weakly independent and by definition spans

M3. Hence, {x1, e1} is a weak basis of M3 and its weak dimension is 2. Figure 7.3.a shows

the semimodule span(x1, e1). It is the halfspace bounded above by the line through x1 with

slope 1, that is, the boundary corresponding to the one-dimensional semimodule span(x1).
The difference with the former examples is that the second basis vector has a zero entry, and

therefore has no full support, by which the semimodule is only bounded at one side.

The semimoduleM4 generated by x1 and the other unit vector e2 = (ε, e)⊤ is the 2-dimensional

semimodule span(x1, e2) bounded below by span(x1), see Figure 7.3.b. The remaining case is

the free semimodule M5 = span(e1, e2) = R2
max spanned by the two unit vectors. ✷

Example 7.2 gave a complete description of the geometry of subsemimodules of R2
max, which

can take four different forms: (i) a line with slope 1 corresponding to a one-dimensional sub-

semimodule; (ii) a two-dimensional strip bounded by two lines corresponding to two finite

weakly-independent vectors; (iii) a two-dimensional halfspace bounded by one line correspond-

ing to a finite vector and a (partially finite) unit vector; and (iv) the two-dimensional free semi-

module spanned by two weakly-independent unit vectors. Mairesse [130] gives a geometric

description of subsemimodules in R3
max using an orthogonal projection to the hyperspace or-

thogonal to the vector (1, 1, 1)⊤.
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7.3.3 Linear Mappings

Any max-plus matrix A ∈ Rm×n
max can be identified with a linear map A : Rn

max → Rm
max defined

by A : x 7→ Ax. These linear maps will be the main topic in the remainder of this thesis.

Definition 7.3.4 (Linear map) Let V,W be two idempotent semimodules over Rmax. Then a

mapping f : V → W is called a linear map from V to W if for all x, y ∈ V and for all

c ∈ Rmax, we have

• Additivity: f(x⊕ y) = f(x)⊕ f(y),
• Homogeneity: f(cx) = cf(x).

Because of homogeneity a linear map f maps the origin to the origin: with c = ε we have

for all x ∈ V : f(ε ⊗ x) = f(εn) = ε ⊗ f(x) = εm. If V and W are finitely-generated free

semimodules over Rmax with dimension n and m, i.e., V = Rn
max and W = Rm

max, then the

linear map f : V → W can be represented by a matrix A ∈ Rm×n
max as f(x) = Ax. Conversely,

any matrix A ∈ Rm×n
max can be identified with a linear map A : Rn

max → Rm
max defined by

A : x 7→ Ax. Note that A(x ⊕ y) = Ax ⊕ Ay and A(cx) = cAx for all x, y ∈ Rn
max and

c ∈ Rmax.

The image of a matrix (map) A : Rm
max → Rn

max is defined as

im(A) = {Ax | x ∈ Rn
max} ⊆ Rm

max.

Hence, the image of a matrix map is the subsemimodule generated by the columns of A, also

called the column space or range of A. Indeed, we may write Ax =
⊕n

i=1[A]· ix
(i) where [A]· i

is the ith column of A and x = (x(1), . . . , x(n))⊤. The number of weakly-independent columns

of A is called the weak column rank of A and thus im(A) is a finitely-generated semimodule

with weak dimension equal to the weak column rank.

The image of a given matrix A ∈ Rm×n
max consists of m-dimensional vectors and so im(A) is a

subsemimodule of Rm
max. However, the weak dimension of im(A) may exceed m if n > m ≥ 3,

which is distinct from conventional linear algebra. In general, there are max-plus semimodules

V ⊂ Rm
max of arbitrary large weak dimension as a result of the following theorem. For a proof

see Cuninghame-Green [40, Theorem 16.4] or Cuninghame-Green & Butkovič [41].

Theorem 7.3.3 (Cuninghame-Green [40]) Let m ≥ 3. Then for any n ∈ N there exist n finite

(weakly) independent vectors v1, . . . , vn ∈ Rm
max.

In their proof of this theorem Cuninghame-Green & Butkovič [41] show that the vectors vi =
(e, ci, c

−1
i )⊤ = (e, ci,−ci)⊤ ∈ R3

max with distinct ci ∈ R, i = 1, . . . , n, are (weakly) indepen-

dent. In particular, we may take ci = i for i ∈ N. Then for all n ∈ N the max-plus matrix

A ∈ R3×n
max defined as

A =





e e · · · e
e 1 · · · n− 1
e −1 · · · −(n− 1)



 ,

has weak column rank n. This generalizes to matrices with row dimension m ≥ 3, by simply

adding rows with value e (like the first row above). The above also implies that the weak
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column rank of a max-plus matrix may differ from its weak row rank — the weak dimension of

the semimodule generated by the (independent) rows of A — including square matrices.

The kernel of a matrix A ∈ Rm×n
max may be defined as ker(A) = {x ∈ Rn

max| Ax = ε} ⊆ Rn
max,

see Golan [73]. However, this generally gives a trivial kernel: if A has no zero columns then

ker(A) = {ε}. Cohen et al. [33] give an alternative definition of the kernel, see also Cohen et

al. [34]. Nevertheless, the dimension theory of max-plus matrices is still an open research topic

and far from the elegant fundamental dimension theorem of conventional linear algebra [195].

In the next section we will consider invariant subsemimodules of square matrices A ∈ Rn×n
max ,

that is, vectors v ∈ im(A) satisfying Av = v or more generally vectors v ∈ im(A) satisfying

A ⊗ v = λ ⊗ v for some λ ∈ Rmax. Finding all such vectors is the max-plus eigenproblem

which is well-understood and considered in detail in the next section.

7.4 Max-Plus (Generalized) Eigenproblems

7.4.1 Introduction

The eigenproblem associated to a square matrix A ∈ Rn×n
max is the problem of finding a scalar

λ ∈ Rmax and a nonzero vector v ∈ Rn
max\{ε}, such that

A⊗ v = λ⊗ v. (7.19)

If a solution (λ, v) exists then λ = λ(A) is called an eigenvalue, v is a (right) eigenvector of A
associated to the eigenvalue λ, and (λ, v) is an eigenpair of A. The set of all eigenvalues is the

spectrum of A, denoted as spec(A) = {λ ∈ Rmax | ∃v 6= ε : Av = λv}. The eigenstructure of

a square matrix is the spectrum and the associated eigenvectors.

The case that λ = ε is an eigenvalue of a matrix A ∈ Rn×n
max is the least interesting and is dealt

with in the following lemma.

Lemma 7.4.1 A max-plus matrix A ∈ Rn×n
max has a zero eigenvalue λ = ε if and only if A has a

zero column.

Proof: If the ith column of A is zero, [A]· i = ε, then [A]· iei = ε, where ei ∈ Rn
max is the ith

unit vector. Thus, λ = ε is an eigenvalue of A with eigenvector ei 6= ε. Conversely, suppose

λ = ε is an eigenvalue of A with associated eigenvector v 6= ε. Then there is an entry vi > ε
and because v must satisfy Av = ε it follows that [A]· i = ε. ✷

In the sequel assume that λ > ε. Then the inverse λ−1 exists since Rmax is a semifield, and we

may multiply both sides of (7.19) by λ−1 to obtain the reformulation λ−1 ⊗ A⊗ v = v. Using

the polynomial matrix A = AX ∈ Rn×n
max [X] evaluated at x = λ−1, the eigenproblem can be

rewritten as the fixed-point problem A(λ−1) ⊗ v = v. This motivates the following definition

of the generalized eigenproblem of square max-plus polynomial matrices A =
⊕p

l=0AlX
l ∈

Rn×n
max [X]: find a nonzero scalar λ ∈ Rmax\{ε} and a nonzero vector v ∈ Rn

max\{ε}, such that

A(λ−1)⊗ v = v. (7.20)
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Clearly, for A = AX we retain the original eigenproblem (7.19) with the extra condition λ >
ε. Another way to interpret (7.20) is that (e, v) is an eigenpair of A(λ−1). For A = AX
this interpretation reads (Aλ−1)v = λ−1Av = λ−1λv = ev. In the forthcoming, we will

consider the generalized eigenproblem for square max-plus polynomial matrices, which embeds

the eigenproblem of square matrices as a special case.

In max-plus algebra any (polynomial) matrix is nonnegative, cf. Section 7.2.7. As a result,

many concepts from the Perron-Frobenius theory of nonnegative matrices [14, 17] also ap-

ply to matrices in max-plus algebra, see e.g. Cuninghame-Green [40], Baccelli et al. [11] and

Bapat [13]. The max-plus (generalized) eigenproblem is fundamental to the max-plus linear

system theory to be developed in Chapter 8. Therefore, this section gives an in-depth account

of the (generalized) eigenproblem, which cumulates in the celebrated policy iteration algorithm

of Cochet-Terrasson et al. [31] that solves max-plus generalized eigenproblems in ‘no time’

even for large-scale matrices.

7.4.2 Eigenstructure of Irreducible Matrices

We start this section with a fundamental theorem that states that an irreducible max-plus poly-

nomial matrices has a unique eigenvalue which has a nice interpretation in terms of the cycle

time of the associated timed event graph. An alternative proof is given in Baccelli et al. [11,

Theorem 3.28].

Theorem 7.4.1 (Generalized eigenvalue) Let A =
⊕p

l=0AlX
l ∈ Rn×n

max [X] be an irreducible

polynomial matrix with acyclic G(A0). Then A has a unique generalized eigenvalue λ > ε and

finite eigenvectors v > ε such that A(λ−1)⊗ v = v, and λ is equal to the maximum cycle mean

of the associated timed event graph G(A),

η = max
ξ∈C

w(ξ)

µ(ξ)
, (7.21)

where C is the set of all elementary circuits in G(A), w(ξ) is the weight of circuit ξ, and µ(ξ)
is the number of tokens in circuit ξ.

Proof: The irreducibility of A implies that G(A) is strongly connected and so by definition

contains circuits, and the acyclic assumption on G(A0) implies that each circuit in G(A) con-

tains at least one token, µ(ξ) ≥ 1 for all ξ ∈ C. Hence, the maximum cycle mean η defined

in (7.21) is well-defined and finite. We next prove that this means that also any eigenvector

v ∈ Rn
max is finite. Assume v is only partially finite and let v = (ε, u)⊤ be a partitioning of v

with u > ε. PartitioningA accordingly gives
[
A11(λ

−1) A12(λ
−1)

A21(λ
−1) A22(λ

−1)

]

⊗
[
ε
u

]

=

[
ε
u

]

,

and therefore A12(λ
−1) ⊗ u = ε, which implies A12(λ

−1) = ε since by assumption u > ε.
However, this contradicts the irreducibility of A and we conclude that v must be finite.

It remains to prove that λ equals the maximum cycle mean η. In conventional notation the

generalized eigenproblem becomes

max
j=1,...,n

(wij − µijλ+ vj) = vi for all i = 1, . . . , n, (7.22)
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where

µij = µij(λ) = arg max
l=0,...,p

([Al]ij − lλ) and wij = [Aµij
]ij.

Note that the maximal polynomial term (or marked arc) depends on λ. From (7.22) we obtain

wij + vj − vi ≤ µijλ for all 1 ≤ i, j ≤ n,

where equality holds for at least one pair (j, i) for each 1 ≤ i ≤ n. The terms vj − vi vanish by

summation over any circuit ξ and therefore

λ ≥
∑

(j,i)∈ξ(wij + vj − vi)
∑

(j,i)∈ξ µij

=

∑

(j,i)∈ξ wij
∑

(j,i)∈ξ µij

=
w(ξ)

µ(ξ)
for all ξ ∈ C. (7.23)

Now consider the (saturation) graph Gs(A(λ−1)) = (V s, Es) with node set V s = {1, . . . , n}
and arc setEs = {(j, i) | wij−µijλ+vj = vi}. This graph contains a circuit because each node

i has at least one incoming arc by (7.22). Furthermore, each circuit ξ0 in Gs(A(λ−1)) satisfies

w(ξ0)/µ(ξ0) = λ and by (7.23) it follows that λ is the maximum cycle mean, and therefore

unique. ✷

In the special case of A = AX the condition on A0 is redundant and the token count on any

circuit is just the circuit length. Hence, we obtain the following corollary to Theorem 7.4.1.

Corollary 7.4.1 (Eigenvalue) Let A ∈ Rn×n
max be an irreducible matrix. Then A has a unique

eigenvalue λ > ε and finite eigenvectors v > ε such that A⊗ v = λ⊗ v, and λ is equal to the

maximum cycle mean of the associated precedence graph G(A),

η = max
ξ∈C

w(ξ)

l(ξ)
, (7.24)

where C is the set of all elementary circuits in G(A), w(ξ) is the weight of circuit ξ, and l(ξ) is

the length of circuit ξ.

The theorem presented here as corollary 7.4.1 is the analogue in max-plus algebra of the Perron-

Frobenius theorem for nonnegative matrices [17, 187]. It is one of the classical results in max-

plus algebra, see Gondran & Minoux [74], Cuninghame-Green [40, Chapter 25], Baccelli et

al. [11, Theorem 3.23] and Bapat [13]. Theorem 7.4.1 is a generalization of this result to max-

plus polynomial matrices.

In the first-order case A = AX the maximum cycle mean (7.24) can alternatively be written in

matrix notation as

λ =

n⊕

k=1

(
tr(Ak)

)1/k
,

where the trace of a matrix A = (aij) ∈ Rn×n
max is defined as

tr(A) =

n⊕

i=1

aii.

A critical circuit is a circuit with maximum cycle mean. By Theorem 7.4.1 and Corollary 7.4.1

the (generalized) eigenvalue depends on the critical circuits in the underlying (timed event)
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graph. A graph may contain several critical circuits, which by definition have the same (maxi-

mum) cycle mean. The nodes of a critical circuit are called critical nodes. Of course, a critical

node may be contained in many circuits but at least one of them has a cycle mean equal to the

maximum cycle mean.

In the sequel our main concern is the polynomial function A(x) valuated at a fixed scalar ν−1 ∈
Rmax. The resulting matrix will henceforth be denoted as

Aν
.
= A(ν−1) =

p
⊕

l=0

Alν
−l,

where ν ∈ Rmax is a fixed scalar. We also write A+
ν = [A(ν−1)]+, A∗

ν = [A(ν−1)]∗, et cetera.

Note thatAν ∈ Rn×n
max and if ν = λ is a generalized eigenvalue ofA ∈ Rn×n

max [X] with eigenvector

v then (e, v) is an eigenpair of Aλ, since Aλ ⊗ v = A(λ−1)⊗ v = v.

Lemma 7.4.2 Let A ∈ Rn×n
max [X] be an irreducible polynomial matrix with generalized eigen-

value λ(A), ν ∈ Rmax\{ε} a finite scalar, and Aν = A(ν−1) =
⊕p

l=0Alν
−l ∈ Rn×n

max . Then

λ(Aν) ≤ e if and only if ν ≥ λ(A).

Proof: First note that since λ(A) exists, A0 must be acyclic by Theorem 7.4.1. We next prove

that λ(Aν) is a decreasing function of ν. Let ν1 ≥ ν2. Then c⊗ ν−l
1 < c⊗ ν−l

2 for any c > ε and

l ∈ N, and so we have [A(ν−1
1 )]ij =

⊕p
l=0[Al]ij⊗ν−l

1 ≤
⊕p

l=0[Al]ij⊗ν−l
2 = [A(ν−1

2 )]ij, where

equality holds iff [A0]ij ≥
⊕p

l=1[Al]ij ⊗ ν−l
2 (which includes the trivial case [A(ν−1)]ij = ε).

Hence, each polynomial entry [A(ν−1)]ij is a nonincreasing function of ν, and moreover each

polynomial entry [A(ν−1)]ij with degree 1 or higher is decreasing in ν. Because A0 is acyclic,

each circuit inG(Aν) contains at least one arc with a polynomial weight of degree one or higher,

and therefore all circuit weights and cycle means inG(Aν) are decreasing in ν. The generalized

eigenvalue λ(Aν) is then a (strictly) decreasing function of ν by Theorem 7.4.1.

For ν = λ(A) we have Aλv = A(λ−1)v = v for some (generalized) eigenvector v and so Aλ

has eigenvalue e. Hence, for any ν ≥ λ we have λ(Aν) ≤ λ(Aλ) = e, and so ν ≥ λ is a

sufficient condition. Moreover, if λ(Aν) > e = λ(Aλ) then ν < λ, and therefore ν ≥ λ(A) is

also a necessary condition. ✷

Theorem 7.4.2 (Generalized eigenvectors) Let A ∈ Rn×n
max [X] be an irreducible polynomial

matrix with generalized eigenvalue λ. Then any column i of A+
λ such that [A+

λ ]ii = e is a

generalized eigenvector of A associated to λ.

Proof: Let (λ, v) be a generalized eigenpair of A. Then (e, v) is an eigenpair of Aλ and

the precedence graph G(Aλ) is strongly connected with maximum cycle mean equal to e. The

longest path matrix A+
λ =

⊕n
l=1A

l
λ is well-defined by Proposition 7.2.6, and by irreducibility

A+
λ > ε. Let ξ0 be a critical circuit of G(Aλ) and i be any node on ξ0. Then any path from i to

itself in G(Aλ) has weight at most e, and since i belongs to ξ0, there is at least one such path

with weight e. Hence, [A+
λ ]ii = e and therefore the i-th column of A+

λ is equal to that of A∗
λ.

Let v = [A+
λ ]· i = [A∗

λ]· i, where A· i denotes the i-th column of matrix A. Then

Aλ ⊗ v = Aλ ⊗ [A+
λ ]· i = Aλ ⊗ [A∗

λ]· i = [Aλ ⊗A∗
λ]· i = [A+

λ ]· i = v,

which proves that (λ, [A+
λ ]·i) is a generalized eigenpair of A. ✷
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The indices i satisfying the condition in Theorem 7.4.2 are exactly the critical nodes of the

precedence graph G(Aλ), i.e., the nodes on a critical circuit of G(Aλ).

In the case of a square max-plus matrix A ∈ Rn×n
max with eigenvalue λ ∈ Rmax\{ε} we have

[Aλ]ij = [A ⊗ λ−1]ij = aij − λ. Clearly, the support of A, supp(A) = {(j, i) | aij > ε, 1 ≤
i, j ≤ n}, is preserved in Aλ. Furthermore, the precedence graphs G(A) and G(Aλ) are equal

except for the arc weights, and in particular the critical circuits in both graphs are the same, with

the maximum cycle means η(A) = λ and η(Aλ) = e. Hence, we have the following corollary

to Theorem 7.4.2.

Corollary 7.4.2 (Eigenvectors) Let A ∈ Rn×n
max be an irreducible matrix with eigenvalue λ.

Then any column i of [λ−1A]+ such that [λ−1A]+ii = e is an eigenvector of A associated to λ.

If v1, v2 ∈ Rn
max are two generalized eigenvectors of A corresponding to the generalized eigen-

value λ ∈ Rmax then for any c1, c2 ∈ Rmax also c1v1 ⊕ c2v2 is a generalized eigenvector ofA
corresponding to λ, since

A(λ−1)⊗ (c1v1 ⊕ c2v2) = A(λ−1)⊗ (c1v1)⊕A(λ−1)⊗ (c2v2)

= c1(A(λ−1)⊗ v1)⊕ c2(A(λ−1)⊗ v2)

= c1v1 ⊕ c2v2.

This argument is easily expanded to any linear combination of generalized eigenvectors. In gen-

eral, the generalized eigenvectors corresponding to a generalized eigenvalue λ of a polynomial

matrix A ∈ Rn×n
max [X] span a subsemimodule of Rn

max:

V(λ) = {v ∈ Rn
max | A(λ−1)v = v} =

⊕

i∈I

ci[A
+
λ ]· i

with ci ∈ Rmax and I = {1 ≤ i ≤ n | [A+
λ ]ii = e}. This semimodule is called the eigensemi-

module of A corresponding to the generalized eigenvalue λ or also simply the eigenspace of

λ(A). Unlike the classical Perron-Frobenius theory where an irreducible nonnegative matrix

has a unique eigenvector (up to a constant multiple), the dimension of the eigenspace of a max-

plus (polynomial) matrix depends on the interconnection structure of the critical circuit(s) of

G(Aλ).

Lemma 7.4.3 Let A ∈ Rn×n
max [X] be an irreducible polynomial matrix with generalized eigen-

value λ. If the precedence graph G(Aλ) has a unique critical circuit then all generalized eigen-

vectors associated to λ are weakly dependent, and the one-dimensional eigenspace is given by

V(λ) = span([A+
λ ]· i) for any index i ∈ {1 ≤ i ≤ n | [A+

λ ]ii = e}.

Proof: By Theorem 7.4.2 we know that the set V(λ) of generalized eigenvectors is generated by

the critical columns of A+
λ . By definition [A+

λ ]· i is a critical column if and only if i is contained

in a critical circuit of G(Aλ), i.e., [A+
λ ]ii = e. It remains to prove that under the condition of a

unique critical circuit all generalized eigenvectors are proportional and thus weakly dependent.

In general, [A+
λ ]lj ≥ [A+

λ ]li[A
+
λ ]ij for each 1 ≤ l ≤ n, with strict equality only if the longest

path from j to l passes node i. If i, j are any two nodes on a critical circuit of G(Aλ) then

[A+
λ ]ji[A

+
λ ]ij = [A+

λ ]jj = e. Therefore, for all 1 ≤ l ≤ n

[A+
λ ]li[A

+
λ ]ij ≤ [A+

λ ]lj = [A+
λ ]lj[A

+
λ ]ji[A

+
λ ]ij ≤ [A+

λ ]li[A
+
λ ]ij
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and so [A+
λ ]· j = [A+

λ ]· i[A
+
λ ]ij = [A+

λ ]ij [A
+
λ ]· i, which proves that [A+

λ ]· j and [A+
λ ]· i are weakly

dependent for any pair of indices i and j on the same critical circuit. ✷

If there is more than one critical circuit then the eigenspace may be generated by several weakly-

independent generalized eigenvectors. The general result requires the notion of the critical

graph.

Definition 7.4.1 (Critical graph) Let A ∈ Rn×n
max [X] be a polynomial matrix with generalized

eigenvalue λ. The critical graph Gc(Aλ) = (V c, Ec) is the digraph with node set V c = {1 ≤
i ≤ n | [A+

λ ]ii = e} and arc set Ec = {(j, i) | [Aλ]ij > ε, i, j ∈ V c}.

Note that the critical graph Gc(Aλ) = (V c, Ec) is a cyclic subgraph of the precedence graph

G(Aλ) = (V,E), with V c ⊆ V and Ec = E ∩ (V c × V c). If λ is known the critical graph can

be computed using Algorithm 7.5.3 of Section 7.5.3. This algorithm computes the diagonal of

the matrix A+
λ . Selecting all diagonal entries equal to e gives the node set V c and subsequently

Ec is determined by selecting all arcs (j, i) corresponding to [Aλ]ij 6= ε with both j, i ∈ V c.

If Gc(Aλ) is not strongly connected then the node set can be decomposed into critical classes

Kc
i associated to the strongly-connected components, V c = Kc

1 ∪ . . . ∪ Kc
c , where c is the

number of components, and Kc
i ∩ Kc

j = ∅ for i 6= j. The next theorem characterizes the

eigenspace of an irreducible max-plus (polynomial) matrix by its weak basis.

Theorem 7.4.3 (Eigenspace) LetA ∈ Rn×n
max [X] be an irreducible polynomial matrix with gen-

eralized eigenvalue λ. If the critical graph Gc(Aλ) has c connected components then the

eigenspace V(λ) ⊆ Rn
max of generalized eigenvectors associated to λ is a finitely-generated

semimodule of weak dimension c, given by

V(λ) = span([A+
λ ]·i1, . . . , [A

+
λ ]·ic), (7.25)

where the indices are arbitrarily selected from each critical class ik ∈ Kc
k for all k = 1, . . . , c.

Proof: By Theorem 7.4.2 we know that the set V(λ) of generalized eigenvectors is generated

by the critical columns of A+
λ , and by Lemma 7.4.3 the generalized eigenvectors from the same

critical classes are weakly dependent. We now prove that a maximal weakly independent set

of generalized eigenvectors is obtained by selecting one critical column of A+
λ for each critical

class Kc
1, . . . , K

c
c , which then constitutes a weak basis of V(λ). Let I = {i1, . . . , ic} be a

representative set of indices from each class Kc
1, . . . , K

c
c . Then we must prove that for each

i ∈ I the vector [A+
λ ]· i is weakly independent on the set {[A+

λ ]· k | k ∈ I \{i}}. We argue by

contradiction. Suppose

[A+
λ ]· i =

⊕

k∈I\{i}

ck ⊗ [A+
λ ]· k (7.26)

for some coefficients ck ∈ Rmax, k ∈ I \ {i}. Concentrating on the ith row of (7.26) we have

[A+
λ ]ii =

⊕

k∈I\{i} ck[A
+
λ ]ik = e, since i is a critical node. Hence, there must be at least one

index j ∈ I\{i} with cj = [A+
λ ]−1

ij , such that e = cj [A
+
λ ]ij = [A+

λ ]−1
ij [A+

λ ]ij. Then by (7.26) we

have [A+
λ ]· i ≥ [A+

λ ]−1
ij [A+

λ ]·j . In particular, on the jth row this gives [A+
λ ]ji ≥ [A+

λ ]−1
ij [A+

λ ]jj =

[A+
λ ]−1

ij e = [A+
λ ]−1

ij . However, in general we have [A+
λ ]ij[A

+
λ ]ji ≤ e or equivalently [A+

λ ]ji ≤
[A+

λ ]−1
ij with equality only if i and j are on the same critical circuit. But by construction i and j

correspond to distinct critical classes and we thus have a contradiction. ✷
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Theorem 7.4.3 is a generalization of the eigensemimodule for irreducible square max-plus ma-

trices A ∈ Rn×n
max as described by Gondran & Minoux [74], Cuninghame-Green [40], and Bac-

celli et al. [11, Theorem 3.101].

We end this section with a relaxation of the generalized eigenproblem that will be useful in the

sequel. Consider a polynomial matrix A ∈ Rn×n
max [X] and a fixed scalar T ∈ Rmax. A vector

u ∈ Rn
max\{ε} satisfying the inequality A(T−1)⊗ u ≤ u is called a generalized subeigenvector

of A associated to T . If this inequality is satisfied for some subeigenvector then T is called a

generalized supereigenvalue of A.

Theorem 7.4.4 (Subeigenvector) Let A ∈ Rn×n
max [X] be an irreducible polynomial matrix with

generalized eigenvalue λ(A), and T > ε a finite scalar. Then there exists a finite vector u >
ε ∈ Rn

max such that

A(T−1)⊗ u ≤ u (7.27)

if and only if T ≥ λ(A). Moreover, T = λ(A) if and only if A(T−1)⊗ u = u.

Proof: We first prove sufficiency of the condition T ≥ λ(A) for the existence of some vector

u ∈ Rn
max such that (7.27) holds. So assume T ≥ λ(A). Then AT = A(T−1) has eigenvalue

smaller than or equal to e by Lemma 7.4.2 and if (7.27) is valid for some u then A(T−1)ku =
A(T−1)k−1A(T−1)u ≤ A(T−1)k−1u for any k ∈ N, and so by induction A(T−1)k ⊗ u ≤ u.

Now suppose that at least one entry of u is zero, say ui = ε. Then for any k ∈ N

n⊕

j=1

[A(T−1)k]ijuj ≤ ui. (7.28)

Since u 6= ε there is an entry uj > ε for some 1 ≤ j ≤ n, and because A(T−1) is irreducible

there exists a k ∈ N such that [A(T−1)k]ij > ε for this j. But then the left-hand side of (7.28) is

finite and therefore ui > ε. This contradicts the hypothesis ui = ε, and so we must have u > ε.

Conversely, assume there is a vector u > ε satisfying (7.27). Then the inverse u−1
i exists

for each 1 ≤ i ≤ n and therefore (7.28) can be written as
⊕n

j=1[A(T−1)k]ijuju
−1
i ≤ e.

In particular, for all 1 ≤ i ≤ n and k ∈ N we obtain [A(T−1)k]ii ≤ e, and therefore
⊕n

k=1[A(T−1)k]ii = [A(T−1)+]ii ≤ e for all 1 ≤ i ≤ n. This implies that AT = A(T−1)
has maximum cycle mean smaller than or equal to e, or λ(AT ) ≤ e. By Lemma 7.4.2 we thus

have T ≥ λ(A), which proves the necessity of this condition. ✷

In the special case A = AX , the inequality becomes Au ≤ Tu, which was also proved by

Gaubert [70, Lemma IV.1.3.8]. In this case, Theorem 7.4.4 is the max-plus algebra analogue

of the Subinvariance Theorem of nonnegative matrices, see e.g. Seneta [187, Theorem 1.6].

Theorem 7.4.4 is a generalization to max-plus polynomial matrices.

7.4.3 State Classification and the Reduced Graph

The eigenstructure of a reducible (polynomial) matrix depends on the interconnection structure

of the associated (timed event) graph, and in particular on accessibility relations between events.

Again there is a strong connection to the theory of nonnegative matrices. Rothblum [175]

generalized the Perron-Frobenius theorem to reducible square nonnegative matrices motivated
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by the theory of Markov chains, see also Berman & Plemmons [17]. Gaubert [70] considered

the analogous generalization of the Perron-Frobenius theorem to square max-plus matrices, see

also Bapat [13]. In this section and the next we will develop the theory for max-plus polynomial

matrices and associated timed event graphs, which generalizes the theory of max-plus matrices

and their precedence graphs. The present section introduces a classification of events similar to

state classification of Markov chains [17, 175].

Let A ∈ Rn×n
max [X] be a max-plus polynomial matrix with associated timed event graph G(A) =

(T ,P, τ, µ), where T = {1, . . . , n} corresponds to the indices of A. We say that event j has

access to event i, denoted as j → i, if there is a path from j to i in G(A), or equivalently, if there

is an integer l ≥ 0 such that [Al]ij > ε. If both j has access to i and i has access to j then we

say that j and i communicate, denoted as j ↔ i, where by convention each event communicates

with itself (∀i ∈ T : i ↔ i). Communication is an equivalence relation on the set of events T
(or on the index set of A).

Definition 7.4.2 (Equivalence relation) A binary relation↔ on a set T 6= ∅ is an equivalence

relation on T if the following axioms are satisfied for any i, j, k ∈ T :

(i) Reflexivity: i↔ i.

(ii) Symmetry: if i↔ j then j ↔ i.

(iii) Transitivity: if i↔ j and j ↔ k then i↔ k.

For any i ∈ T the associated set of communicating events {j ∈ T | j ↔ i} is called an

equivalence class (or a class). Note that a class corresponds to a strongly-connected component

in the corresponding (timed event) graph. It is well-known that an equivalence relation partitions

a set in (nonempty disjoint) equivalence classes T = T1∪ . . .∪Tc, whereTi∩Tj = ∅ if Ti 6= Tj

and c is the number of communication classes [15]. If Tj and Ti are two classes and an event in

Tj has access to an event in Ti then all events in class Tj have access to all events in Ti and we

say that class Tj has access to class Ti, denoted as Tj → Ti. By definition, if class Tj has access

to class Ti and vice versa then Tj = Ti. A class is called initial if no other class has access to it,

and it is called final if it has access to no other class. Each square max-plus (polynomial) matrix

has at least one initial and one final class.

The interconnection structure between the communication classes of a polynomial matrix A or

its associated event set T is visualized by the reduced graph [2, 11].

Definition 7.4.3 (Reduced graph) Let A ∈ Rn×n
max [X] be a polynomial matrix with associated

timed event graph G(A) = (T ,P , τ, µ) and let T =
⋃c

i=1 Ti be a partitioning in communication

classes. Then the reduced graph Gred(A) = (Vred, Ered) is the acyclic digraph with node set

Vred = {T1, . . . , Tc} and arc set Ered = {(Tj, Ti) | Tj → Ti, i 6= j, 1 ≤ i, j ≤ c}.

Each class in the timed event graph is thus contracted to a node in the reduced graph and the arcs

in the reduced graph represent the accessibility relations between classes. The reduced graph

is also known as the component graph [39] and in Markov chain theory as the communication

graph [17].

The accessibility relation defines a partial order (see Definition 7.2.11) on the communication



Chapter 7. Max-Plus Algebra 187

classes according to

Tj � Ti ⇔ Tj → Ti.

We also denote by Tj � Ti the equivalence of Ti � Tj . If Tj � Ti and Tj 6= Ti then we also

write Tj ≺ Ti, and similarly Tj ≻ Ti iff Ti � Tj and Tj 6= Ti. An alternative interpretation of

Tj � Ti is that Tj precedes or equals Ti in the reduced graph, and likewise Tj ≺ Ti means Tj

precedes Ti. Similarly Tj � Ti (respectively Tj ≻ Ti) means that Tj succeeds (or equals) Ti in

the reduced graph.

A (polynomial) matrix is irreducible if it has only one class. Hence, in an irreducible matrix all

events communicate, which is consistent with Proposition 7.2.7. Note that each communication

class corresponds to the events (transitions, nodes) in a strongly-connected component of the

associated (timed event) graph, and the number of classes c is just the number of strongly-

connected components. Hence, finding all classes in a (polynomial) matrix is equivalent to

finding all strongly-connected components in a (timed event) graph, which is solvable in linear

O(n + m) time by Tarjan’s algorithm [198] based on depth-first search, see also Cormen et

al. [39]. Here, n = |T | is the number of events (number of rows) and m = |P| is the number

of places (marked arcs, nonzero entries).

Let A ∈ Rn×n
max [X] be a reducible max-plus polynomial matrix with c classes. Then, possibly

after a suitable coordinate transformation P⊤AP , A takes the form of a lower block triangular

(polynomial) matrix with irreducible square diagonal blocks, called the Frobenius normal form:

A =






A11 E
...

. . .

Ac1 · · · Acc




 . (7.29)

Here Aii ∈ Rni×ni
max [X] are irreducible square blocks corresponding to the classes Ti with cardi-

nality ni = |Ti|, and obviously n1 ⊗ · · · ⊗ nc = n. Expressed in the Frobenius normal form,

a class Tj has access to Ti if and only if Aij 6= E , where Aij ∈ R
ni×nj
max [X] is the block to the

left of Aii and below Ajj. If Aij = E for all blocks at the left of Aii then Ti is an initial class,

and if Aij = E for all blocks below Ajj then Tj is final. In particular A11 is an initial class and

Acc is a final class. A block Aii (and associated class) is called isolated if it is both initial and

final. An isolated class has no access to any other class nor does any other class have access to

an isolated class. An empty row corresponds to an initial class of a single (source) event, and

likewise an empty column corresponds to a final class of a single (sink) event.

Example 7.3 Consider the polynomial matrix in Frobenius normal form

A =











ε 30X ε ε ε ε
28 55X ε ε ε ε

ε 5 40X ε ε ε

3 ε ε ε 25X ε
ε ε 20 25 ε ε

ε 5 ε ε ε 58X











,

where the block structure is emphasized by solid lines. The associated timed event graph

G(A) = (T ,P, τ, µ) is shown in Figure 7.4. A has four classes (depicted by the dashed boxes

in Figure 7.4): an initial class T1 = {1, 2}, a transient class T2 = {3}, and two final classes
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Figure 7.4 Timed event graph and communication classes

T1 T2 T3 T4T1 T2 T3 T4

Figure 7.5 Reduced graph

T3 = {4, 5} and T4 = {6}. Figure 7.5 shows the reduced graph, which clearly visualizes the

accessibility relations between the communication classes. T1 has access to all classes and T2
has access to T3 (and itself). Since the other two classes are final they have only access to them-

selves. We thus have T1 ≺ T2 ≺ T3 and T1 ≺ T4. This example also shows that the induced

partial order between communication classes is not total, since e.g. T2 6� T4 and T4 6� T2. ✷

7.4.4 Eigenstructure of Reducible Matrices

The spectrum of reducible square max-plus (polynomial) matrices depends on the (general-

ized) eigenvalues of the communication classes and the interconnection structure of the reduced

graph. We start this section with the observation that the spectrum of a (polynomial) matrix is

invariant to a similarity transformation.

Lemma 7.4.4 Let A ∈ Rn×n
max [X] be a polynomial matrix and P ∈ Rn×n

max a permutation matrix.

Then λ ∈ spec(A) if and only if λ ∈ spec(P⊤AP ).

Proof: The generalized eigenequation of P⊤AP is defined as P⊤A(λ−1)Pv = v. Premulti-

plying both sides of this matrix equation by the permutation matrix P just reorders the rows of

the matrix equation, but leaves the n generalized eigenequations unchanged. Thus,

P⊤A(λ−1)Pv = v ⇔ PP⊤A(λ−1)Pv = Pv ⇔ A(λ−1)Pv = Pv.

Here we used the identity PP⊤ = E for any permutation matrix P . Hence, if (λ, v) is a gen-

eralized eigenvalue of P⊤AP then (λ, Pv) is a generalized eigenpair of A, and vice versa. Or
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equivalently, if (λ, u) is a generalized eigenpair of A then (λ, P⊤u) is a generalized eigenvalue

of P⊤AP , and vice versa. ✷

Without loss of generality we thus may assume that a reducible (polynomial) matrix is in Frobe-

nius normal form (7.29), where the event set (or index set) T = {1, . . . , n} is partitioned

into c classes T =
⋃c

i=1 Ti. The number of events in class Ti is denoted as ni = |Ti|, with
⊗c

i=1 ni = n.

Each class Ti corresponds to an irreducible polynomial submatrix Aii ∈ Rni×ni
max [X] of A and

thus has a unique generalized eigenvalue λ(Aii) by Theorem 7.4.1. However, this class gener-

alized eigenvalue may be dominated by a preceding class with larger generalized eigenvalue.

Moreover, if the class has access to a class with larger generalized eigenvalue then its general-

ized eigenvalue is not contained in the spectrum of the full matrix A, as we will see below.

For any subset I ⊆ T let Γ(I) be the set of events that are accessible from I , i.e.,

Γ(I)
.
= {j ∈ T | ∃i ∈ I : i→ j}.

A subset I ⊆ T is a closed set if I = Γ(I).

Lemma 7.4.5 Let A ∈ Rn×n
max [X] be a polynomial matrix and let T =

⋃c
i=1 Ti be a partitioning

of the event set in communication classes. Then Ki = Γ(Ti) is a closed set for each 1 ≤ i ≤ c.

Proof: For any class Ti ⊆ T the set Γ(Ti) 6= ∅ since Ti ⊆ Γ(Ti) for all 1 ≤ i ≤ c.
Furthermore, if Ti � Tj then by definition Tj ⊂ Γ(Ti). Hence, Ki = Γ(Ti) contains all classes

accessible from Ti and is thus a closed set for each 1 ≤ i ≤ c. ✷

The following theorem was proved by Gaubert [70] for square max-plus matrices A ∈ Rn×n
max .

Theorem 7.4.5 (Generalized eigenpair) Let A ∈ Rn×n
max [X] be a polynomial matrix in Frobe-

nius normal form with c classes,

A =






A11 E
...

. . .

Ac1 · · · Acc




 .

Then λ is a generalized eigenvalue ofA if and only if there exists a class Ti such that λ = λ(Aii)
and

λ(Aii) =
⊕

Tj⊆Γ(Ti)

λ(Ajj). (7.30)

Moreover there exists a generalized eigenvector v = (v1, . . . , vn)⊤ ∈ Rn
max associated to

λ(A) = λ(Aii) with support Γ(Ti), given by

vj =

{
[A+

λ ]jl if j ∈ Γ(Ti)
ε otherwise,

(7.31)

for any l ∈ Ti with [A+
λ ]ll = e.
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Proof: Assume that λ = λ(Aii) is a generalized eigenvalue ofA but (7.30) is violated. Hence,

there exists a class Tk ⊂ Γ(Ti) with λ(Akk) > λ(Aii). Let the generalized eigenvector v ∈ Rn
max

associated to λ be partitioned conform the block partitioning of A, i.e., v = (v1, . . . , vc)
⊤ ∈

Rn
max with vj ∈ R

|Tj |
max, 1 ≤ j ≤ c. Then the kth block row of the generalized eigenequation

A(λ−1)⊗ v = v becomes
⊕

j 6=k

Akj(λ
−1)⊗ vj ⊕ Akk(λ

−1)⊗ vk = vk,

and therefore in particular Akk(λ
−1)vk ≤ vk, which implies that vk is a subeigenvector of

Akk associated to λ = λ(Aii). Then by Theorem 7.4.4 we must have λ ≥ λ(Akk), but this

contradicts the assumption λ(Akk) > λ(Aii). Thus, (7.30) is a necessary condition.

Conversely, assume (7.30) is valid. By Lemma 7.4.5 the set Ki = Γ(Ti) ⊆ T is closed. Hence,

possibly after a similarity transformation, A can be written in block triangular form

A =

[
A[K̄i|K̄i] E
A[K̄i|Ki] A[Ki|Ki]

]

,

where K̄i = T \ Ki is the complement of Ki in T , and A[I|J ] ∈ R
|I|×|J |
max [X] denotes the

submatrix of A corresponding to row index set I and column index set J . Assume (λ, v) is a

generalized eigenpair of the principle submatrix A[Ki|Ki] with v ∈ R
|Ki|
max. Then (ε, v)⊤ ∈ Rn

max

is a generalized eigenvector of A associated to λ, since
[
A[K̄i|K̄i](λ

−1) E
A[K̄i|Ki](λ

−1) A[Ki|Ki](λ
−1)

] [
ε
v

]

=

[
ε

A[Ki|Ki](λ
−1)v

]

=

[
ε
v

]

. (7.32)

Hence, we may restrict ourselves to the generalized eigenvalue of the principle submatrix B =

A[Ki|Ki] ∈ R
|Ki|×|Ki|
max [X] of A. Because of (7.30), λ is the maximum generalized eigenvalue

of B. Let Bλ = B(λ−1). Then Bλ has eigenvalue e and so the precedence graph G(Bλ) has

no circuits with positive weight. By Proposition 7.2.6 the matrices B+
λ and B∗

λ are then well-

defined, and by definition Bλ[B
∗
λ]· l = [B+

λ ]· l for any 1 ≤ l ≤ |Ki|. If l is contained in a critical

circuit of G(B) then [B+
λ ]ll = e, and so [B+

λ ]· l = [B∗
λ]· l. Hence, for any critical index l the vector

[B+
λ ]· l is an eigenvector of Bλ associated to the eigenvalue e, and therefore also a generalized

eigenvector of B associated to λ, since B(λ−1)[B+
λ ]· l = Bλ[B

+
λ ]· l = [B+

λ ]· l. This proves that

(7.30) is also a sufficient condition.

It remains to prove that (7.31) defines a generalized eigenvector v ofA. From (7.32) and the fact

that Ki = Γ(Ti) is closed it follows that a generalized eigenvector v associated to λ = λ(Aii)
exists with supp(v) = Ki = Γ(Ti). Consider again the generalized eigenvector [B+

λ ]· l of B.

If A is already in the form (7.32) then we simply have v = (ε, [B+
λ ]· l)

⊤ = [A+
λ ]· l. If the form

(7.32) is obtained after a similarity transformation P⊤AP then we have v = P⊤⊗ (ε, [B+
λ ]· l)

⊤,

analogous to the proof of Lemma 7.4.4, which is exactly (7.31). ✷

Corollary 7.4.3 Let A ∈ Rn×n
max [X] be a polynomial matrix in Frobenius normal form (7.29)

with c classes. Then the set of all generalized eigenvalues of A is characterized by

spec(A) =






λ(Aii) ∈ Rmax | λ(Aii) =

⊕

Tj⊆Γ(Ti)

λ(Ajj), 1 ≤ i ≤ c






. (7.33)
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Classes that satisfy the condition in Theorem 7.4.5 are obviously of particular importance, and

will be called principle in the sequel. So if A ∈ Rn×n
max [X] is a polynomial matrix in Frobenius

normal form (7.29) then Ti is a principle class if λ(Aii) ≥ λ(Ajj) for all Tj ∈ Γ(Ti). A class

with (generalized) eigenvalue equal to the maximum (generalized) eigenvalue is called basic,

and any other class is nonbasic. Clearly, all basic classes are principle. Moreover, all final

classes are trivially principle. Thus, we have the following corollary to Theorem 7.4.5

Corollary 7.4.4 Let A ∈ Rn×n
max [X] be a polynomial matrix in Frobenius normal form with c

classes T1, . . . , Tc. Then

(i) λ0 =
⊕c

i=1 λ(Aii) ∈ spec(A).
(ii) λ(Aii) ∈ spec(A) for each final class Ti ⊆ T .

Remark Theorem 7.4.5 is formulated according to the convention in max-plus algebra that the

ij-th entry of a (polynomial) matrix corresponds to the (marked) arc (j, i) in the precedence

graph (timed event graph) [11]. In conventional graph theory an arc (j, i) corresponds to the

the ji-th entry of the adjacency matrix [16, 18]. The ‘reversed arc’ convention in max-plus

algebra enables a familiar linear system equation x(k) = Ax(k − 1) with column vectors x(·),
as opposed to a dynamic equation y(k) = y(k − 1)M for row vectors y(·) (which is however

customary in Markov chain theory). The “reverse” statement of the theorem is the following:

the set of eigenvalues is determined by the maximum eigenvalue of all classes that are accessible

from a given class [13, 31]. ✷

According to Theorem 7.4.5 any principle class Ti of a (polynomial) matrix, or its index set,

defines a (generalized) eigenvector with finite entry vj only if j is accessible from class Ti, in

which case it is the weight of a longest path from a selected critical node l ∈ Ti to j in the

precedence graph G(Aλ). If the critical graph Gc(A[Ti|Ti](λ
−1)) restricted to the nodes of class

Ti has several disconnected critical circuits then Ti defines several weakly-independent (gener-

alized) eigenvectors associated to the generalized eigenvalue λ(A) = λ(Aii), analogous to an

irreducible (polynomial) matrix. However, these (generalized) eigenvectors have the same sup-

port. More important are (generalized) vectors resulting from distinct principle classes with the

same (generalized) eigenvalue, which have access to different classes conform the precedence

ordering in the reduced graph.

Define for each λ ∈ spec(A) the set of principle classes with eigenvalue λ as

K(λ) =






Ti | λ(Aii) = λ, λ(Aii) =

⊕

Tj⊆Γ(Ti)

λ(Ajj), 1 ≤ i ≤ c






. (7.34)

Then the events that are accessible from any principle class with generalized eigenvalue λ ∈
spec(A) is

Kλ = Γ(K(λ)) =
⋃

Tk∈K(λ)

Γ(Tk) = {1 ≤ j ≤ n | ∃Tk ∈ K(λ) : Tk → j}. (7.35)

Theorem 7.4.6 (Eigenspace) Let A ∈ Rn×n
max [X] be a polynomial matrix in Frobenius normal

form with c classes T1, . . . , Tc, λ ∈ spec(A), and define Āλ = A[Kλ|Kλ](λ
−1) ∈ RKλ×Kλ

max . If the
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critical graph Gc(Āλ) has υ strongly-connected components with index sets Kc
1, . . . , K

c
υ then

the eigenspace V(λ) ⊆ Rn
max of generalized eigenvectors associated to λ is a finitely-generated

semimodule of weak dimension υ with weak basis {vi1 , . . . , viυ} defined as

vj
ik

=

{
[A+

λ ]jik if j ∈ Kλ

ε otherwise,
(7.36)

where the indices ik ∈ Kc
k are arbitrarily selected from each critical component for all k =

1, . . . , υ.

Proof: The classes in Kλ have maximum generalized eigenvalue λ corresponding to the prin-

ciple classes in K(λ). Therefore, analogous to Lemma 7.4.2 Āλ = A[Kλ|Kλ](λ
−1) ∈ RKλ×Kλ

max

has maximum eigenvalue e. For all (critical) nodes i on a critical circuit of a principle class, we

then have [Ā+
λ ]ii = [A+

λ ]ii = e and therefore the critical graph Gc(Āλ) is the union of the criti-

cal graphs of the principle classes. Moreover, the critical circuits of different principle classes

are by definition separate components in the critical graph, and so there are υ ≥ c number

of components in the critical graph. From Theorem 7.4.3 it then follows that the generalized

eigenvectors associated to the nodes in the critical graph Gc(Āλ) span the eigensemimodule

V(λ), i.e.,

V(λ) =
⊕

i∈I

civi with I = V c = {1 ≤ i ≤ n | [A+
λ ]ii = e},

where ci ∈ Rmax and the vectors vi are defined by (7.36). Recall that Kλ is the union of Γ(Tk)
over the principle classes Tk ∈ K(λ) by (7.35), whence (7.36) coincides with (7.31). It remains

to prove that a weak basis of V(λ) is obtained by selecting an arbitrary node ik from each

component Kc
k in Gc(Āλ), 1 ≤ k ≤ υ.

We first prove that generalized eigenvectors of different classes are weakly independent. Con-

sider the accessibility relations between the classes T1, . . . , Tc conform the reduced graph asso-

ciated to A, see Section 7.4.3. We are interested in the principle classes Ti ∈ K(λ) and their

descendants in the reduced graph, which are exactly the classes accessible from the principle

classes in K(λ), i.e., Γ(K(λ)) = Kλ. For any sequence Tk1
≺ Tk2

≺ Tk3
in the reduced graph

we have Γ(Tk1
) ⊃ Γ(Tk2

) ⊃ Γ(Tk3
). Now, consider any principle class Tk ∈ K(λ), which

generates a generalized eigenvector vik with support Γ(Tk) by (7.36). Then there does not ex-

ist a linear combination of generalized eigenvectors associated to the other principle classes in

K(λ)\Tk with the same support, which is proved as follows. For any preceding class Tj ≺ Tk

in the reduced graph we have Γ(Tk) ⊂ Γ(Tj), and in particular Tj 6⊆ Γ(Tk). Thus, a generalized

vector associated to a preceding class has larger support than vik and a linear combination in-

cluding such a vector will also have larger support unless the associated coefficient is ε. On the

other hand, for all succeeding classes Tj ≻ Tk in the reduced graph we have Γ(Tk) ⊃ Γ(Tj), and

in particular Tk 6⊆ Γ(Tj) for all Tj ≻ Tk. Hence, vik cannot be written as a linear combination

of generalized eigenvectors associated to classes succeeding Ti. This proves that vik is weakly

independent of the generalized eigenvectors from other (principle) classes.

Finally, if a class has more than one component in the critical graph then the generalized eigen-

vectors associated to each component have the same support but are weakly independent, which

is proved as follows. Partition the vectors according to v = (v[Tk], v[T̄k]), where T̄k = T \Tk. By

Theorem 7.4.3 the partial vectors corresponding to Tk are weakly independent, and they remain

weakly independent regardless of a dimension expansion. ✷
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By Theorem 7.4.6 a generalized eigenvector associated to a generalized eigenvalue λ ∈ spec(A)
has maximum support Kλ = ∪Ti∈K(λ)Γ(Ti). In particular we have the following.

Corollary 7.4.5 Let A ∈ Rn×n
max [X] be any reducible polynomial matrix. Then A has a finite

generalized eigenvector v > ε if and only if all initial classes are basic.

A consequence of this corollary (or of Theorem 7.4.6) is that if a polynomial matrix has several

distinct generalized eigenvalues with maximum generalized eigenvalue λ0 then all generalized

eigenvectors associated to some λ ∈ spec(A) with λ < λ0 have zero entries ε.

Example 7.4 Consider the following matrices in R2×2
max:

A =

[
4 ε
ε 5

]

, B =

[
4 ε
2 5

]

, C =

[
4 2
ε 5

]

.

All three matrices are reducible and have 2 classes, T1 = {1} and T2 = {2}. Matrix A consists

of two isolated classes with eigenvalue λ(A11) = 4 and λ(A22) = 5. Hence, spec(A) = {5, 4}.
The unit vector (ε, e)⊤ is an eigenvector associated to λ0(A) = 5 and (e, ε)⊤ is an eigenvector

associated to λ1(A) = 4. MatrixB has the same classes asA, but now class T1 = {1} has access

to class T2 = {2} with λ(B11) = 4 < 5 = λ(B22), and therefore by Theorem 7.4.5 the local

eigenvalue λ(B11) is not an eigenvalue of B. Hence, B has only one eigenvalue, spec(B) =
{5}, corresponding to the final basic class T2 = {2} and an associated eigenvector is the unit

vector (ε, e)⊤. Matrix C has two classes T1 ≻ T2 with λ(C11) = 4 and λ(C22) = 5. Both

class eigenvalues are eigenvalues of C by Corollary 7.4.4, since T1 is final and T2 has maximum

eigenvalue. Indeed, the final class T1 trivially satisfies Theorem 7.4.5 because Γ1 = T1 = {1}.
For class T2 we obtain Γ2 = {1, 2}, and therefore λ(C22) = 5 ≥ λ(C11)⊗λ(C22) = 4⊗ 5 = 5.

Hence, spec(C) = {5, 4} by Theorem 7.4.5. Two distinct eigenpairs of C are (4, (ε, e)⊤) and

(5, (3, e)⊤). The latter eigenpair also illustrates Corollary 7.4.5. Moreover, since B = C⊤, this

example also proves that in max-plus algebra we can have spec(B) 6= spec(B⊤) in contrast to

conventional linear algebra. ✷

Example 7.5 Consider again the polynomial matrix A ∈ R6×6
max[X] of Example 7.3 with associ-

ated timed event graph shown in Figure 7.4. The generalized eigenvalues of the four irreducible

classes can be computed using Theorem 7.4.1. T1 has two circuits with maximum cycle mean

η1 = (28⊗ 30)1 ⊕ 55 = max(28 + 30, 55) = 58; T2 has one circuit with cycle mean η2 = 40;

T3 has one circuit with cycle mean η3 = (25 ⊗ 25)1 = 50; and T4 has one circuit with cycle

mean η4 = 58. Using Theorem 7.4.5 we obtain spec(A) = {58, 50}. The maximum general-

ized eigenvalue is λ0 =
⊕4

i=1 ηi = 58 corresponding to the initial basic class T1 and the final

basic class T4. The other generalized eigenvalue 50 corresponds to the nonbasic final class T3.

Class T2 with generalized eigenvalue 40 does not contribute to spec(A), since T2 ≺ T3 and

λ(A22) = 40 ≤ λ(A33) = 50. Hence, the generalized eigenvalue of T2 is “disguised” by the

accessibility relations between the communication classes.

We next determine the generalized eigenvectors associated to the maximum generalized eigen-

value λ0(A) = 58. First, we compute the valuated polynomial function Aλ0
= A(58−1) =
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Figure 7.6 Critical graph of Example 7.5

A(−58) and its associated longest path matrix:

Aλ0
=











ε −28 ε ε ε ε
28 −3 ε ε ε ε

ε 5 −18 ε ε ε

3 ε ε ε −33 ε
ε ε 20 25 ε ε

ε 5 ε ε ε e











and A+
λ0

=











e −28 ε ε ε ε
28 e ε ε ε ε
33 5 −18 7 ε ε
20 −8 −13 −8 −33 ε
53 25 20 25 −8 ε
33 5 ε ε ε e











.

By Theorem 7.4.6 the columns of the longest path matrix with diagonal entries equal to e are

generalized eigenvectors of A associated to the maximum eigenvalue λ0 = 58, which are here

the columns 1, 2 and 6 of A+
λ0

. The first two columns are obviously weakly dependent, since

[A+
λ0

]·1 = 28 ⊗ [A+
λ0

]·2. Figure 7.6 shows the critical graph Gc(Aλ0
) which clearly consists

of two strongly-connected components V c = Kc
1 ∪ Kc

2 , with Kc
1 = {1, 2} and Kc

2 = {6}.
By Theorem 7.4.6 the eigenspace associated to λ0 is generated by the remaining two weakly

independent vectors and is therefore

V(λ0) = c1 ⊗











e
28
33
20
53
33











⊕ c2 ⊗











ε
ε
ε
ε
ε
e











. (7.37)

This eigenspace is a two-dimensional subsemimodule of R6
max.

The generalized eigenvectors associated to the second generalized eigenvalue λ1 = 50 is by

Theorem 7.4.6 obtained from the principal submatrix Āλ1
= A[T3|T3](λ

−1
1 ) and its associated

longest path matrix,

Āλ1
=

[
ε −25

25 ε

]

and Ā+
λ1

=

[
e −25

25 e

]

.

Both diagonal entries of Ā+
λ1

are zero and therefore both columns of Ā+
λ1

correspond to general-

ized eigenvectors. The columns belong to the same circuit and therefore are weakly dependent,

[Ā+
λ1

]· 1 = 25⊗[Ā+
λ1

]· 2. Applying Theorem 7.4.6 a generalized eigenvector associated to λ1 = 50
is (ε, ε, ε, e, 25, ε)⊤ and the eigenspace V(λ1) associated to λ1 = 50 is the one-dimensional sub-

semimodule of R6
max spanned by this generalized eigenvector. ✷

7.4.5 The Cycle Time Vector

The maximal performance of a periodic system is determined by the slowest component in the

interconnection structure. Therefore we define the cycle time vector χ = (χ1, . . . , χn)T where
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each χi equals the maximal generalized eigenvalue of the irreducible classes that have access

to event i. For a polynomial matrix A in Frobenius normal form with c classes T1, . . . , Tc this

gives

χi =
⊕

Tk→i

λ(Akk) for all 1 ≤ i ≤ n. (7.38)

Moreover, we define a generalized eigenmode of a polynomial matrix A as a pair (χ, v) of a

cycle time vector χ and an associated bias vector v that satisfies for all 1 ≤ i ≤ n:

vi =
n⊕

j=1

p
⊕

l=0

(
[Al]ij ⊗ χ−l

j ⊗ vj

)
.

If A ∈ Rn×n
max [X] is an irreducible polynomial matrix then the bias vector is equivalent to the

eigenvector, and this is also true for reducible polynomial matrices with a constant cycle time

vector, i.e., when the initial classes are also basic. In the general reducible case however the

cycle time vector may have different entries. If the bias vector is partitioned accordingly then

the partial bias vectors augmented with zero entries are generalized eigenvectors corresponding

to the various cycle time entries. Hence, if I ⊆ {1, . . . , n} is an index set of equal cycle

time entries then this cycle time is a generalized eigenvalue of A with associated generalized

eigenvector x ∈ Rn
max given by xi = vi if i ∈ I and xi = ε if i 6∈ I . The generalized eigenmode

thus corresponds to the worst-case generalized eigenstructure of the system.

In the forthcoming we will assume that each event i has a predecessor. Hence, the timed event

graph has no source events, or equivalently, the polynomial matrix has no zero rows. Moreover,

we assume that each circuit has at least one token, i.e., G(A0) is acyclic.

Definition 7.4.4 (Nondegeneracy) A polynomial matrixA =
⊕p

l=0AlX
l ∈ Rn×n

max [X] is called

nondegenerate if

(i) Each row has at least one finite entry, or formally, for all 1 ≤ i ≤ n there exists 1 ≤ j ≤ n
and 0 ≤ l ≤ p, such that [Al]ij 6= ε,

(ii) G(A0) is acyclic, i.e., tr(A+
0 ) =

⊕n
i=1[A

+
0 ]ii = ε.

For the eigenproblem of a square max-plus matrix the acyclicity condition on G(A0) is super-

fluous, since this case corresponds to A = A1X , and therefore A0 = E . Hence, in this case

nondegeneracy is equivalent to the requirement that A has no empty rows.

Lemma 7.4.6 A polynomial matrix A =
⊕p

l=0AlX
l ∈ Rn×n

max [X] is nondegenerate if and only

if its associated timed event graph G(A) is autonomous and live.

Proof: By definition an autonomous timed event graph has no source transitions and therefore

each transition i must have an incoming place (j, i, l), or equivalently, each row i of the asso-

ciated polynomial matrix must have at least one finite entry [Al]ij 6= ε. By Theorem 6.4.1 a

timed event graph is live if and only if there are no circuits with zero tokens or equivalently iff

G(A0) has no circuits. Hence, [Aℓ
0]ii = ε for all 1 ≤ i, ℓ ≤ n, or equivalently, [A+

0 ]ii = ε for all

1 ≤ i ≤ n, which can be abbreviated to the condition tr(A+
0 ) =

⊕n
i=1[A

+
0 ]ii = ε. ✷
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The nondegeneracy condition on a polynomial matrix is a necessary and sufficient condition for

the existence of a finite cycle time vector, that is, it guarantees that each transition i has a finite

cycle time ε < χi <∞. This is formally stated in the following theorem.

Theorem 7.4.7 Let A =
⊕p

l=0AlX
l ∈ Rn×n

max [X] be a nondegenerate polynomial matrix. Then

A has a finite cycle time vector χ > ε, and the entry χi is equal to the maximum cycle mean

over all classes that have access to i for all 1 ≤ i ≤ n.

Proof: The timed event graph G(A) is finite with n transitions and m ≤ n ·n ·p+n−1 places,

where the worst-case bound corresponds to full matrices Al for 1 ≤ l ≤ p and |supp(A0)| =
n − 1 corresponding to a maximum spanning tree with zero tokens. Recall that a maximum

spanning tree is the most dense simple graph that has no cycles. From the nondegeneracy

condition follows that each transition has an incoming place and because the event graph is

finite this means that each transition has an upstream circuit. Moreover, nondegeneracy of A
implies thatG(A0) is acyclic and therefore by Theorem 7.4.1 the generalized eigenvalue of each

class equals the (finite) maximum cycle mean of the associated strongly connected component.

By definition (7.38) each cycle time entry χi is the maximal generalized eigenvalue over all

classes that have access to i, which is thus equivalent to the maximum of all (maximum) cycle

means of those classes. Hence, each event i has at least one upstream circuit and the maximum

cycle mean over all upstream circuits defines the cycle time entry χi for all 1 ≤ i ≤ n. ✷

7.4.6 The Policy Iteration Algorithm

An efficient algorithm to compute the (generalized) eigenstructure of a max-plus (polynomial)

matrix is the policy iteration algorithm developed by Cochet-Terrasson et al. [31] based on

Howard’s multichain policy iteration algorithm for Markov decision processes with average

reward [103], which is well-known in the fields of dynamic programming and stochastic control,

see e.g. Puterman [168].

The policy iteration algorithm applies to nondegenerate irreducible and reducible polynomial

matrices. In the irreducible case it computes the generalized eigenvalue, an associated general-

ized eigenvector, and an optimal policy from which a critical circuit is easily determined. In the

reducible case the policy iteration algorithm computes for each transition the maximal gener-

alized eigenvalue that has access to it, and an associated eigenvector with maximal support.

Hence, the algorithm computes the generalized eigenmode (χ, v) of a nondegenerate poly-

nomial matrix A and moreover is generally applicable without prior knowledge on the class

structure of the polynomial matrix.

In the sequel we will utilize the adjacency list representation (6.6) of the places (or marked

arcs) pk = (j, i, l) ∈ P , 1 ≤ k ≤ m, which unambiguously identifies all places in the timed

event graph associated to the finite polynomial matrix entries [Al]ij. Recall that this is a sparse

(polynomial) matrix notation. Define for each event i ∈ T the set Πi ⊆ P of incoming places

as

Πi
.
= {pk ∈ P | out(pk) = i} = {(j, i, l) | [Al]ij 6= ε, 1 ≤ j ≤ n, 0 ≤ l ≤ p}.

Then the generalized eigenproblem is to find a generalized eigenmode (χ, v), such that for all
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1 ≤ i ≤ n

χi =
⊕

(j,i,l)∈Πi

χj = max
(j,i,l)∈Πi

χj , (7.39a)

vi =
⊕

(j,i,l)∈Πi

([Al]ij ⊗ χ−l
j ⊗ vj) = max

(j,i,l)∈Πi

([Al]ij − l · χj + vj). (7.39b)

We will refer to (7.39a) as the first-order optimality equation and to (7.39b) as the second-order

optimality equation. The key to the policy iteration algorithm is a policy. A policy is a vector

function π : T n → Pn that maps each transition to one of its incoming places, i.e.,

πi = pk ∈ Πi for all i ∈ T .
An entry πi ∈ Πi is also simply called the policy of transition i. The holding time, initial

marking, input transition, and output transition of a policy πi are denoted as w(πi), µ(πi),
in(πi), and out(πi), respectively. A polynomial matrix representation of a policy π is Aπ =
⊕p

l=0A
π
l X

l, where each row i has exactly one finite entry [Al]ij > ε conform

[Aπ
l ]ij =

{
w(πi) if in(πi) = j and µ(πi) = l
ε otherwise.

Let Pπ = {π1, . . . , πn} ⊆ P be the set of places in the policy π. A policy graph is the timed

event graph G(Aπ) = (T ,Pπ, µ(π), w(π)) associated to a policy π, which is a simple subgraph

of G(A) with each transition 1 ≤ i ≤ n having indegree one, that is, each transition has exactly

one incoming place. By the following lemma the number of circuits in a policy graph G(Aπ) is

finite.

Lemma 7.4.7 Let G(Aπ) be a timed event graph associated to a policy π. Then each connected

component of G(Aπ) contains one and only one circuit.

Proof: By definition of a policy each place has a unique output transition and therefore G(Aπ)
does not contain parallel places. Hence, G(Aπ) is a simple (timed event) graph. From graph

theory it is well-known that a connected (timed event) graph with n nodes (transitions) and no

cycles has exactly n − 1 arcs (places), corresponding to a spanning tree; any additional arc

(place) will generate a circuit, and furthermore deleting any arc (place) will make the graph

no longer connected [16, Ch. 16]. As an immediate consequence, if G(Aπ) is connected and

contains n places then it has exactly 1 circuit. Now, suppose G(Aπ) has c components. Then

it contains a forest of c trees spanning the components. A straightforward extension of the

above shows that this spanning forest has n − c places: assume that the trees have n1, . . . , nc

transitions, respectively, with
∑c

i=1 ni = n. Then each tree contains ni− 1 places, and together

they possess
∑c

i=1(ni − 1) = n − c places. In a policy each transition must have an incoming

place, whilst a (finite) tree contains by definition a transition without predecessor. Hence, each

tree in the forest needs at least one additional place, which generates exactly one circuit in each

of the c components. ✷

The proof of Lemma 7.4.7 also reveals the structure of a policy (timed event) graph G(Aπ):
each component consists of a ‘base’ circuit with possibly some outgoing paths or trees. This

topology guarantees that each transition has an incoming place, and furthermore, corresponds

to the timed event graph with the least number of places with this property. This structure also

has the following consequence.



198 Punctuality of Railway Operations and Timetable Stability Analysis

Lemma 7.4.8 Let Aπ ∈ Rn×n
max [X] be a polynomial matrix associated to a policy π. Then Aπ

has a finite cycle time vector χ > ε, which is uniquely determined.

Proof: By Lemma 7.4.7 each transition i in the policy graph G(Aπ) has one and only one

upstream circuit, and therefore the cycle time χi of transition i is uniquely determined by the

cycle mean of this circuit. This holds for all transitions in the same connected component

which therefore share the same unique cycle time. Note that here a component is not strongly

connected, except for the trivial case that the circuit covers all transitions. The connected com-

ponents are a partitioning of T = {1, . . . , n} and therefore the direct sum of the cycle time

vector components gives a cycle time vector of full support. ✷

Finding a generalized eigenmode of a policy polynomial matrix is called policy evaluation.

Policy evaluation involves finding the circuits and connected components, computing the cy-

cle mean of the circuits, and computing an associated generalized eigenvector. Lemma 7.4.7

suggest a simple procedure to find all circuits in the policy event graph: starting from an arbi-

trary transition just follow the associated policies backwards until an already visited transition

is revisited. This transition, say s, then obviously lies on a circuit. By Lemma 7.4.7 this is

the only circuit in the component of the policy graph containing s. Hence, the cycle mean of

this circuit is the unique generalized eigenvalue χ for all events accessible from s in G(Aπ).
By Theorem 7.4.5 the associated entries of the generalized eigenvector are given by the longest

path weights inG(Aπ
λ) from s to all accessible events, which can efficiently be computed using a

breadth-first search (BFS) algorithm [39]. In BFS the transitions are visited in topological order

from s, by which the value of vin(π(i)) is determined before reaching transition i and therefore

vi can be computed directly by vi = w(πi)− µ(πi) · χin(πi) + vin(πi).

A given policy πk with generalized eigenmode (χk, vk) is optimal iff it satisfies the optimality

conditions (7.39a–7.39b). So a policy πk can be improved if there exists a place p = (j, i, l) ∈
Πi with χk

j > χk
i for some transition 1 ≤ i ≤ n, conform the first-order optimality condition

(7.39a). In this case transition i can be connected to a component with higher cycle time. Let

πk+1
i = arg max

(j,i,l)∈Πi

χk
j .

Then if χk+1 6= χk at least one transition is improved under the new policy. However, if

χk+1 = χk then we must still check the second-order optimality condition (7.39b). If for any

transition i there is a predecessor j over a place with l tokens such that vk
i < [Al]ij − l ·χk

j + vk
j

then πk
i is not optimal, and an improved policy is found by

πk+1
i = arg max

(j,i,l)∈Πi

(
[Al]ij − l · χk

j + vk
j

)
.

The policy iteration algorithm computes the maximum generalized eigenmode of a polynomial

matrix A ∈ Rn×n
max [X] by exploiting the efficient computation of the generalized eigenmode

of a policy graph and successively improving policies until an optimal policy has been found.

In general, the policy iteration algorithm starts with an arbitrary policy —select any incoming

place for each transition— and then iterates between a policy evaluation step which computes

a generalized eigenmode corresponding to a given policy, and a policy improvement step which

tries to improve the current policy. If no more improvement can be found, the generalized
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Algorithm 7.4.1 (POLICYITERATION)

Input: Adjacency list {(in(p), out(p), µ(p), w(p))}p∈P of nondegenerate polynomial matrix A ∈
Rn×n

max [X].
Output: Generalized eigenmode (χ, v) of A.

1 k ← 0; improved← 1; for i← 1 to n do v0
i ← −∞; //Initialization

2 for each p ∈ P do //Heuristic for initial policy
3 if µ(p) > 0 then if w(p)/µ(p) > v0

out(p) then v0
out(p) ← w(p)/µ(p); π1

out(p) ← p;

4 else if w(p) > v0
out(p) then v0

out(p) ← w(p); π1
out(p) ← p;

5 while improved do //Main loop (policy iteration)
6 k ← k + 1; c← 0; for i← 1 to n do component(i)← 0; //New iteration
7 for j ← 1 to n do //Policy evaluation
8 if component(j) = 0 then //New component
9 c← c + 1; s← j;

10 while component(s) = 0 do component(s)← c; s← in(πk
s );

11 wc ← w(πk
s ); µc ← µ(πk

s ); i← in(πk
s );

12 while i 6= s do wc ← wc + w(πk
i ); µc ← µc + µ(πk

i ); i← in(πk
i );

13 χk
s ← wc/µc; vk

s ← vk−1
s ; //New cycle mean

14 Use breadth-first search to visit all events i accessible from s in G(Aπk

) and let

15 χk
i ← χk

s ; vk
i ← w(πk

i )− µ(πk
i ) · χk

s + vk
in(πk

i )
; component(i)← c;

16 improved← 0; //Policy improvement

17 for i← 1 to n do χk+1
i ← χk

i ; vk+1
i ← vk

i ; πk+1
i ← πk

i ;

18 if c > 1 then for each p ∈ P do //First order improvement

19 if χk
in(p) > χk+1

out(p) then χk+1
out(p) ← χk

in(p); πk+1
out(p) ← p; improved← 1;

20 if not improved then //Second order improvement
21 if c = 1 then for each p ∈ P do

22 if vk+1
out(p) < w(p) − µ(p) · χk

in(p) + vk
in(p) then

23 vk+1
out(p) ← w(p) − µ(p) · χk

in(p) + vk
in(p); πk+1

out(p) ← p; improved← 1;

24 else for each p ∈ P do

25 if χk
in(p) = χk

out(p) and vk+1
out(p) < w(p)− µ(p) · χk

in(p) + vk
in(p) then

26 vk+1
out(p) ← w(p) − µ(p) · χk

in(p) + vk
in(p); πk+1

out(p) ← p; improved← 1;

27 return (χk, vk) //Terminate

eigenmode of the policy satisfies both optimality conditions (7.39a–7.39b) and a solution to the

generalized eigenproblem has been found.

Algorithm 7.4.1 gives the pseudo-code of the policy iteration algorithm using the adjacency list

representation of the (sparse) polynomial matrix, i.e., a list

{(in(p), out(p), µ(p), w(p)) | p ∈ P} = {(j, i, l, [Al]ij) | [Al]ij 6= ε},

where the transitions are integers {1, . . . , n}. Lines 1–4 initialize the main variables. The

counter k keeps track of the number of iterations, improved is a boolean variable that terminates

the algorithm if at the end of a main iteration improved = 0, and v0 is an initial value for the

eigenvector. We refer to an entry vi also as the value of transition i. Lines 2–4 define an initial

policy using a greedy heuristic: the initial policy π1
i for transition i is set to the largest ’mean
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weight’ of all incoming places, i.e.,

π1
i ∈ arg max

(j,i,l)∈Πi

[Al]ij
max(1, l)

,

with the convention that for the degenerate case l = 0 the ‘mean weight’ is set to [Al]ij as in

the case l = 1. This is implemented by checking for each place whether the actual value of the

output transition can be improved using the ‘mean weight’ of the current place. This choice for

the initial policy is customary but any other initial policy could be used as well.

Lines 5–27 contain the main loop of the algorithm which iterates until no more improvement

is found (line 5), in which case the optimal policy has been found and the current eigenmode

(χk, vk) is returned as output of the algorithm (line 27). Line 6 updates the iteration counter,

resets the number of found connected components c to 0, and initializes the variable component
to 0 for all transitions. At the end of the kth iteration c is the number of connected components

of policy πk and component(i) is the component of transition i.

Lines 7–15 implement the policy evaluation step, which computes the eigenmode of the policy

component by component. For each transition j if component(j) = 0 then j has not yet been

visited in iteration k and so a new component has been found (lines 7–8). Line 9 updates

the component counter and initializes transition s to the current transition. Line 10 finds a

critical transition using the policies to search the policy graph backwards starting from the

current transition and labelling all visited transitions by updating the variable component until

an already labelled transition is revisited, indicating that a circuit has been found containing the

updated transition s. Lines 11–13 compute the cycle mean of the current component. Line 11

initializes two variables wc and µc by the weight and marking of the policy of s, and line 12

walks backwards over the policies in the circuit updating the path weight and marking from s
until s is revisited. Line 13 then sets the cycle time χk

s to the cycle mean computed by dividing

the computed circuit weight by the circuit token count, and sets the value vk
s to the value of s

in the last iteration. The particular choice of the initial value vk
s is customary and useful for

analysis of the algorithm but could be set to any arbitrary value, in particular vk
s = 0. Lines

14–15 visit all transitions accessible from s using breadth-first search, setting the cycle time

equal to the computed cycle mean, the eigenvector value to the value of s plus the mean path

weight from s, and component to the current component. Hence, together with transition j
each transition in the same component has also been visited and evaluated before the algorithm

returns to line 7, and therefore these transitions will be skipped in line 8. So if there is only one

connected component in the kth policy then all transitions will be visited in the first iteration of

line 7, and therefore all remaining iterations in line 7 will terminate directly in line 8. On the

other hand, if there is a transition that has not yet been visited then there is at least one more

component in the policy and the first unvisited transition that satisfies the condition of line 8

starts a new policy evaluation iteration for the next component.

Lines 16–26 implement the policy improvement step. Lines 16–17 reset the boolean variable

improved to zero, and copies the current cycle time vector, eigenvector and policy. If more

than one component has been found in the policy evaluation step then a first-order improve-

ment may be found (lines 18–19). In this case for each place is checked whether the input

transition has a higher cycle time then the output transition, and if so, the output transition is

connected to the component with higher cycle time and an improved policy has been found for

this transition. Note that in the comparison of cycle times (line 19) the updated cycle time of
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the output transition is used which secures that only places with higher input cycle time than

in the last improvement are accepted for a further improvement. If no first-order improvement

has been found or if all transitions are already contained in one component then lines 20–26

check whether a second-order improvement can be found. If there is only one component in

the current policy then for each place it is simply checked whether a higher value of the output

transition can be obtained using this place instead of the actual policy, and if so, the value of the

output transition is improved and a new policy has been found for this transition (lines 21–23).

In the case of more than one component under the current policy the second-order improvement

is only applicable to places with the same cycle time in both its input and output transition, in

which case the same improvement procedure is applied as in the case of one component (lines

24–26). Note that since the first-order improvement must have been passed without improve-

ment we know that if the cycle time of the input and output transition are not equal then the

output transition is accessible from a transition with higher cycle time than the input transition.

If an improved policy has been found for any of the transitions then at the end of the policy im-

provement routine improved = 1 and a new iteration starts from line 5, otherwise the algorithm

terminates and returns the current generalized eigenmode (χk, vk) as the solution.

Cochet-Terrasson et al. [31] proved the following theorem.

Theorem 7.4.8 Let A =
⊕p

l=0AlX
l ∈ Rn×n

max [X] be a nondegenerate polynomial matrix. Then

the policy iteration algorithm converges to the optimal policy in a finite number of iterations,

and λ0 =
⊕n

i=1 χi is the maximum generalized eigenvalue of A.

Proposition 7.4.1 Let A =
⊕p

l=0AlX
l ∈ Rn×n

max [X] be a nondegenerate polynomial matrix.

Then the policy iteration algorithm terminates in I · O(m) computation time, where m is the

number of finite entries [Al]ij and I is the number of iterations of the algorithm.

Proof: The worst-case computational complexity of Algorithm 7.4.1 can be estimated as

follows. The initialization step takes O(n) to initialize v0 (line 1) and O(m) to compute the

initial policy by checking all m places once (lines 2–4). Hence, the initialization takes O(n) +
O(m) = O(m) time. We now estimate the time complexity of one iteration of the main loop

(lines 5–26). Starting a new iteration takes O(n) time to reset the variable component for each

transition. Policy evaluation only searches the policy graph, which has n transitions and also just

n places. Consider one iteration of policy evaluation (lines 8–15). Let nj denote the number

of transitions (and places) in component 1 ≤ j ≤ c, with c the total number of connected

components in the policy. Line 10 searches the component backwards until a transition has

been encountered twice. Hence, an upper bound for the number of transitions that have been

visited before a transition is revisited is nj. In lines 11–12 all transitions in the circuit contained

in the component are visited, which can be at most nj transitions corresponding to the case that

the component is one big circuit. Lines 14–15 search all transitions in the component using BFS,

which takes O(nj) time. Evaluating one component in a policy graph thus takes 3 · O(nj) =
O(nj) time. Hence, the iterations of line 7 take (n−c)·O(1)+

∑c
j=1O(nj) = O(n−c)+O(n) =

O(n) time, where the first term corresponds to the n − c cases that a transition of an already

evaluated component is checked in line 8 which takes just O(1) time. The policy improvement

routine takes O(m) time, since now all places are checked. If the policy has just one connected

component then each place is checked in lines 21–23, which thus takes O(m) time. If the

policy has several components then first each place is checked for first-order improvements in
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lines 18–19, taking O(m) time, and if no improvements have been found then each place is

checked again for the condition of the second-order improvements, which takes again O(m)
time. Hence, the worst-case situation takes 2 · O(m) = O(m) time. The time complexity for

the entire algorithm can thus be estimated as O(m) + I · (O(n) +O(m)) = I ·O(m), where I
is the number of iterations of the main loop. ✷

Cochet-Terrasson et al. [31] argue that the average value of the number I of iterations of the al-

gorithm is small, and their experiments suggest that on the average I = O(logn). A worst-case

bound for the number of iterations I is still an open problem. Nevertheless, extensive experi-

ments conducted by Dasdan et al. [47, 49, 50] show that the policy iteration algorithm outper-

forms all other known algorithms for computing the maximum cycle mean. In Section 7.4.7 we

briefly review the best known other maximum cycle mean algorithms and their running time

bounds.

Example 7.6 Reconsider the polynomial matrix of Example 7.3 with the timed event graph of

Figure 7.4. The maximal generalized eigenproblem is to find vectors χ, v ∈ R6
max, v 6= ε, such

that

χi =
⊕

j→i

χj

and 
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This example illustrates the working of the policy iteration algorithm. Note that the timed event

graph has no parallel places, by which we may identify a place pk = (j, i, µ(pk), w(pk)) by its

input and output transition, and a policy πi = pk of a transition i is also completely determined

by its input transition in(πi) = j — the predecessor transition of i. Figure 7.7 summarizes the

successive policies and corresponding generalized eigenmodes of each iteration, which will be

detailed below. The numbering of the transitions in the policy graphs of Figure 7.7 are consistent

with Figure 7.4, so transition 1 is at the upper-left and transition 6 is at the lower-right.

Initialization. The degree of all polynomial entries is either zero or one, and therefore the

initial eigenvector is determined as the maximal polynomial coefficient in each row, v0 =
(30, 55, 40, 25, 25, 58)⊤, and the initial policy is given by the associated column indices in(π1) =
(2, 2, 3, 5, 4, 6)⊤. The policy graph is shown in the top row of Figure 7.7. The bold bias values

are determined in the 1st policy evaluation phase.

Policy evaluation of π1. The policy graph has 4 connected components. The first component has

the loop around transition 2 as base circuit. This circuit is found by the algorithm by walking

backwards over the policies. Starting with transition 1 this gives in(π1
1) = 2 and in(π1

2) = 2.

Now we encountered transition 2 twice and so we have found a circuit. The cycle mean is

χ1
2 = w(π1

2)/µ(π1
2) = 55/1 = 55 and the value of root transition 2 is set to the initial value,

v1
2 = v0

2 = 55. The only transition accessible from transition 2 is transition 1. Hence, we set

χ1
1 = χ1

2 = 55 and v1
1 = 30 − 1 · 55 + 55 = 30. The next unlabelled transition is transition 3.

The associated component consists of only one transition and a loop, so χ1
3 = 40/1 = 40 and
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Figure 7.7 The successive policies and generalized eigenmodes of Example 7.6
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v1
3 = v0

3 = 40. The next unlabelled transition is transition 4 with in(π1
4) = 5 and in(π1

5) = 4.

Hence, the circuit of the third component is (4, 5, 4). Starting from transition 4 the cycle mean

is computed as χ1
4 = (w(π1

4) + w(π1
5))/(µ(π1

4) + µ(π1
5)) = (25 + 25)/(1 + 0) = 50 and the

bias value is v1
4 = v0

4 = 25. Transition 5 is accessible from transition 4 and so χ1
5 = χ1

4 = 50
and v1

5 = 25 − 0 · 50 + 25 = 50. The final unlabelled transition is transition 6 which forms a

component of its own with a loop having cycle mean χ1
6 = 58/1 and the bias value is simply

set as v1
6 = v0

6 = 58. We thus computed the generalized eigenmode (χ1, v1) of π1.

Policy improvement of π1. Two first-order improvements can be computed. Transition 3 (with

χ1
3 = 40) has transition 2 as a predecessor with higher cycle time and so χ2

3 = χ1
2 = 55.

Likewise, transition 4 (χ1
4 = 50) is connected to transition 1 with higher cycle time χ2

4 =
χ1

1 = 55. Also transition 5 (χ1
5 = 50) is improved because χ2

4 = 55 > χ1
5 = 50, but the new

policy is just the improved old one, so the policy of transition 5 is maintained by predecessor

4 although the cycle time is updated to χ2
5 = χ2

4 = 55. We thus found the improved policy

in(π2) = (2, 2, 2, 1, 4, 6)⊤.

Policy evaluation of π2. The policy graph is shown in the 2nd row of Figure 7.7. There are 2

components. The circuit of the first component is again the loop around transition 2 with cycle

mean χ2
2 = 55/1 = 55 and the bias value of transition 2 is set to v2

2 = v1
2 = 55. Transition 2

has three successors: transition 1 and 3, and transition 2 itself which has already been labelled.

Hence, we set χ2
1 = 55 and v2

1 = 30−1·55+55 = 30, and χ2
3 = 55 and v2

3 = 5−0·55+55 = 60.

Transition 3 has no successors but transition 1 has, so we follow the path from transition 1 to

transition 4 and set χ2
4 = 55 and v2

4 = 3 − 0 · 55 + 30 = 33. Transition 4 has transition 5 as

successor and so we proceed setting χ2
5 = 55 and v2

5 = 25−0 ·55+33 = 58. Now all transition

accessible from transition 2 have been visited, and we proceed to the next unlabelled transition.

This is transition 6 which is still isolated and so again χ2
6 = 58 and v2

6 = v1
6 = 58.

Policy improvement of π2. There are no first-order improvements, but two second-order im-

provements can be found. Transition 2 has predecessor 1 with v2
2 = 55 < 28− 0 · 55 +30 = 58

and thus an improved policy is in(π3
2) = 1. Likewise, for transition 5 we find the improved

policy in(π3
5) = 3 since v2

5 = 58 < 20 − 0 · 55 + 60 = 80. At the end of the 2nd policy

improvement we thus have the improved policy in(π3) = (2, 1, 2, 1, 3, 6)⊤.

Policy evaluation of π3. The policy graph is shown in the 3rd row of Figure 7.7. There are two

components. The circuit of the first component is (1, 2, 1) with cycle mean χ3
1 = (28+30)/(0+

1) = 58. Visiting all transition from transition 1 we find the generalized eigenmode as in the

third row of Figure 7.7. Transition 6 is still an isolated component with cycle time 58.

Policy improvement of π3. Again no first-order improvement is found, but there are two second-

order improvements. For transition 4 we find the improved policy in(π4
4) = 5 since v3

4 = 33 <
25 − 1 · 58 + 83 = 50. For transition 6 we find the improved policy in(π4

6) = 2 because

v3
6 = 58 < 5− 0 · 58 +58 = 63. We thus found the improved policy in(π4) = (2, 1, 2, 5, 3, 2)⊤.

Policy evaluation of π4. The policy graph (Figure 7.7, 4th row) is connected, with circuit

(1, 2, 1). The cycle mean is χ4
1 = (28 + 30)/(0 + 1) = 58 and the value for the root transition

is set to v4
1 = v3

1 = 30. The bias vector is obtained by adding the root value v4
1 to the mean path

weights of the paths from root transition 1 to all transitions giving v4 = (30, 58, 63, 50, 83, 63)⊤.

Since all transitions are accessible from a single root transition the cycle time vector is χ4 =
(58, 58, 58, 58, 58, 58)⊤.
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Policy improvement of π4. We can skip the first-order improvement step, since π4 consists of

only one connected component and therefore all transitions have the same cycle time. Second-

order improvements can be found neither, which means that π4 is an optimal policy and (χ4, v4)
is a generalized eigenmode.

Since all transitions have the same cycle time λ0 = 58 is the maximum generalized eigenvalue

by Theorem 7.4.8. Comparing the computed generalized eigenvector v4 with the eigensemi-

module (7.37) as computed in Example 7.5, we see that v4 ∈ V(λ0) with c1 = 30. ✷

The policy iteration algorithm computes the maximum generalized eigenvalue λ0 =
⊕n

i=1 χi

and one particular associated generalized eigenvector given by

xi =

{
vi if χi = λ0

ε otherwise.

If one is interested in determining all classes and eigenpairs of a polynomial matrix A then the

theory of Section 7.4.4 must be applied. This requires the following main steps::

1. Determine the Frobenius normal form (7.29) of A, i.e., compute the classes (strongly-

connected components) of A and the reduced graph Gred(A),
2. Apply the policy iteration algorithm to each irreducible principle submatrix of A corre-

sponding to the classes,

3. Compute the principle classes (7.34) and determine the spectrum (7.33) of A,

4. Compute the critical graph and apply Theorem 7.4.6 to construct the generalized eigensemi-

module V(λ) for each λ ∈ spec(A).

7.4.7 Alternative Eigenproblem Algorithms

In the operations research literature several algorithms have been developed related to the max-

plus (generalized) eigenproblem. The problem of computing the maximum (or minimum) cycle

mean in a weighted digraph (precedence graph) is generally known as the maximum mean

cycle problem (or minimum mean cycle problem) [3], which thus corresponds to the eigenvalue

of a max-plus matrix. The more general problem of computing the maximum (or minimum)

cycle mean in a biweighted or marked graph (timed event graph) is known as the maximum

(minimum) profit-to-time ratio cycle problem or briefly the maximum ratio cycle problem [3],

which corresponds to finding the generalized eigenvalue of a max-plus polynomial matrix. Note

that the maximum mean cycle problem is a special case of the maximum ratio cycle problem

(corresponding to a unit initial marking) and hence any algorithm for the latter more general

problem also solves the former problem. Conversely, any algorithm for the maximum mean

cycle problem can also be used for the maximum ratio cycle problem after a transformation

from the (higher-order) timed event graph to a canonical precedence graph, see Section 8.2.5.

Karp’s algorithm [116] is the first and most well-known polynomial algorithm for the maximum

cycle mean problem. It is based on Karp’s theorem [116]: If A = (aij) ∈ Rn×n
max is irreducible

then the maximum cycle mean in the (strongly connected) precedence graph G(A) = (V,E) is

given by

λ = max
i=1,...,n

min
k=0,...,n−1

[An]ij − [Ak]ij
n− k for any 1 ≤ j ≤ n,
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where the matrix powers are evaluated in max-plus algebra, see also Baccelli et al. [11, Theorem

2.19]. To evaluate this expression we must compute the jth columns (for arbitrary j) of the

matrices Ak for k = 0, . . . , n, which are just the single-origin longest path weights from origin

j over paths with length k. Karp’s algorithm [116] uses the dynamic programming algorithm

[Ak]ij = max
(l,i)∈Π(i)

(ail + [Ak−1]lj) for all i, k = 1, . . . , n,

with initial conditions [A0]jj = e and [A0]ij = ε for all i 6= j, and where Π(i) = {(l, i) | ail 6=
ε, 1 ≤ l ≤ n} denotes the set of incoming arcs of i. The resulting algorithm runs in Θ(nm)
time. Dasdan & Gupta [48] propose a breadth-first search (BFS) variant of Karp’s algorithm.

At each level k only nodes l ∈ Vk = {l ∈ V | [Ak]lj 6= ε} have to be considered in the

computation of the finite entries [Ak+1]ij , since [Ak+1]ij > ε iff i ∈ succ(l) for some l ∈ Vk.

Hence, at level k the path weight [Ak+1]ij is updated for each successor i ∈ succ(l) of the

nodes l ∈ Vk. Dasdan & Gupta’s algorithm also runs in O(nm) time for worst-case instances.

Braker [21] extended Karp’s algorithm to find the generalized eigenvalue of polynomial matri-

ces A =
⊕p

l=1AlX
l without zero-order terms, i.e., the maximum cycle ratio in timed event

graphs with at least one token in each place. Experiments by Braker [21] showed that the ex-

tended Karp algorithm applied to polynomial matrices (corresponding to timed event graphs)

outperforms Karp’s algorithm applied to the augmented matrix obtained by transformation of

the timed event graph to the canonical precedence graph (without considering the additional

time to compute this augmented matrix). For other variants of Karp’s algorithm, see Dasdan et

al. [49, 50].

Karp & Orlin [117] developed two parametric longest (shortest) path algorithms which essen-

tially find the generalized eigenvalue λ of an irreducible first-order max-plus polynomial matrix

A =
⊕1

l=0AlX
l. They define a digraph where each arc k has a parametric arc weight wk−λµk

with µk ∈ {0, 1} and parameter λ ∈ R. The problem then translates to finding the maximal

(minimal) λ such that the graph has no positive (negative) weight circuits. Karp & Orlin give

an O(nm logn) (and also an O(n3)) algorithm for solving this cycle ratio problem. Young

et al. [227] give a Fibonacci heap implementation of Karp & Orlin’s algorithm that runs in

O(nm + n2 log n) time. Moreover, the algorithm of Young et al. [227] applies to reducible

digraphs with generalized parametric arc weights wk−λµk with µk ∈ {0, p}, which thus corre-

sponds to general reducible max-plus polynomial matricesA =
⊕p

l=0AlX
l. Young et al. [227]

showed that in the special case of the maximum (minimum) cycle mean problem, i.e., µk = 1
for all arcs k, their parametric path algorithm runs in worst-case time O(nm + n2 logn) and

expected time O(m+ n logn).

The power algorithm [22, 190, 197] computes both the eigenvalue and an eigenvector for an

irreducible matrix A ∈ Rn×n
max . For any x(0) 6= ε iterate x(k) = A ⊗ x(k − 1), k ≥ 1, until

x(p) = c⊗ x(q) for some integers p > q ≥ 0 and real c ∈ R. Then λ = c/(p− q) is the unique

eigenvalue and v =
⊕p−q

j=1 λ
p−q−j ⊗ x(q + j − 1) is an eigenvector. The computation time of

the power algorithm depends on the length of the transient behaviour before the vector x(k)
reaches the periodic regime. Soto y Koelemijer [190] shows that the power algorithms takes

O(c2An + cAm) time and O(cAn) space, where cA = c(A, x(0)) is the length of the transient

regime, which may become arbitrary large for some matrices A (with small λ0(A) − λ1(A)
where λ1(A) is the second largest cycle mean) and ‘bad’ choices of x(0). Note, however, that

if x(0) happens to be an eigenvector then only p− q iterations are needed. If A is a state matrix

corresponding to a periodic timetable as in the next chapter then the timetable vector d0 is a
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Table 7.2 Maximum mean cycle and ratio algorithms

Algorithm Running time Space Marking Red. Eigenvector

Karp [116] Θ(nm) Θ(n2)† 1 no no

BFS Karp [48] O(nm) Θ(n2)† 1 no no

Extended Karp [21] O(nm) Θ(n2)† 1, . . . , p no no

Parametric path algorithm [227] O(nm + n2 log n) O(m) 0, . . . , p yes no

Power algorithm [22, 197] O(c2
An + cAm) O(cAn) 1 no yes

Policy iteration [31] O(Im) O(n) 0, . . . , p yes yes
†A two-pass implementation runs in Θ(n) space [49, 50]

good choice for the initial vector x(0), since d0 either lies in the eigensemimodule of A (and

thus is an eigenvector) or it is close to some eigenvector with some additional slack time on the

critical circuit(s) and on critical paths from the critical circuit(s). Hence, the power algorithm

may be very efficient in the evaluation of railway timetables, although it requires preprocessing

to find the irreducible classes and to transform a timed event graph to an equivalent one with

unit initial marking.

Table 7.2 summarizes the (best) mentioned algorithms for the maximum cycle mean and ratio

problems. The successive columns give the algorithm name/characteristic and source, running

time complexity, space complexity (in addition to the storage of the input graph which requires

O(m) space for an adjacency list representation), initial marking, applicability to reducible

matrices, and whether or not an eigenvector is computed. Note that a unit initial marking im-

plies a maximum mean cycle algorithm, whereas also some (recursive) maximum ratio cycle

algorithms require at least one token all places. Dasdan et al. [49, 50] report on extensive ex-

periments on a large number of maximum mean cycle algorithms and conclude that the policy

iteration algorithm outperformed all other algorithms. Dasdan [47] reports on extensive exper-

iments for maximum ratio cycle algorithms and concludes that the policy iteration algorithm

and the parametric longest path algorithm were competitive and both outperformed the other

algorithms. These papers also give various improvements on the implementation of the tested

algorithms. The experiments by Dasdan et al. [49, 50] and Dasdan [47] included all algorithms

considered here except for the Power algorithm and the extended Karp algorithm. Soto y Koele-

meijer [190] compared the policy iteration algorithm and the power algorithm and showed that

the former outperforms the latter for worst-case matrices and arbitrary initial vectors x(0) in the

power algorithm.

In conclusion, the policy iteration algorithm is the most general and efficient algorithm to solve

large-scale (reducible) max-plus generalized eigenproblems. The parametric path algorithm

may also be used if finding an eigenvector is not crucial. The other algorithms are less ef-

ficient and require preprocessing to find the strongly-connected components and transform a

timed event graph to one with a unit marking (except for the extended Karp’s algorithm), al-

though these preprocessing steps can be implemented efficiently in linear running time (see

also §8.2.5). The power algorithm is easy to implement and can be used for small (strongly

connected, unit marking) timed event graphs, and so are (variants of) Karp’s algorithm if com-

puting an eigenvector is not necessary.

The complete solution of the (generalized) eigenproblem also requires all critical circuits and

eigenvectors associated to the disconnected components in the critical graph. Most algorithms
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can easily be extended to give one critical circuit, but finding all critical nodes requires more

effort. Olsder et al. [155] describe an algorithm for computing the maximum eigenvalue and all

critical nodes of a max-plus matrixA ∈ Rn×n
max containing at least one circuit. The algorithm uses

the Floyd-Warshall procedure (see §7.5.1) to detect positive weight circuits of the parametric

matrix Aλ = λ−1A = (aij − λ) for increasing values of λ until λ = λ0(A). Starting with a

lower bound for λ (e.g., λ = min{aij |aij > ε}) the Floyd-Warshall procedure is applied to

Aλ; if a positive diagonal entry [Ak
λ]ii is computed then λ is reset to the cycle mean of this

circuit (obtained by backtracking on the predecessor vector) and the Floyd-Warshall procedure

is restarted on the updated matrix Aλ. If the Floyd-Warshall procedure terminates without

detecting a positive circuit then λ = λ0(A) and the critical nodes are those i with [A+
λ ]ii = 0.

Olsder et al. [155] then describe how to obtain finite eigenvectors from the longest path matrix

A+
λ under the assumption that all nodes are accessible from a critical circuit (that is, the initial

classes of A are basic, see Corollary 7.4.5).

The most efficient approach to compute all critical nodes associated to the maximum general-

ized eigenvalue λ0 of a polynomial matrix A ∈ Rn×n
max [X] proceeds in two stages: first compute

the maximum generalized eigenvalue λ0 using the policy iteration algorithm (or any other fast

algorithm) and subsequently compute the diagonal of the longest path matrix [A(λ−1
0 )]+ using

the ALLLONGESTCIRCUITS algorithm presented in §7.5.3. If the policy iteration algorithm

returns a cycle time vector with entries χi 6= λ0 then we may restrict the computation of the

diagonal to the principle submatrix [A[K0|K0](λ
−1
0 )]+ where K0 = {1 ≤ i ≤ n | χi = λ0}.

Finally, a basis of the eigensemimodule associated to λ0 is obtained by computing the columns

[A+
λ0

]· j for a selected node j from each component in the critical graph, see Theorem 7.4.6. The

latter is a single-origin longest path problem from origin j, see §7.5.2. Note that the policy iter-

ation algorithm is more efficient to compute λ0 than repeated application of an all-pair longest

path algorithm as in Olsder et al. [155], and moreover, a repeated single-origin longest path

algorithm for the selected critical nodes is much more efficient than computing the complete

longest path matrix.

7.5 Longest Path Algorithms

7.5.1 All-Pair Longest Paths

A necessary and sufficient condition for the existence of finite longest paths in finite digraphs is

that the graph has no positive-weight circuits. In the sequel we will assume that this condition is

satisfied. In general, all path algorithms can easily be extended to detect positive-weight circuits

and return an error message if such a circuit is detected [3, 39]. Recall that a precedence graph

G(A) has a positive circuit iff the maximum eigenvalue (or maximum cycle mean) λ0(A) > e.
We will only call a longest path algorithm for max-plus matrices with maximum eigenvalue not

exceeding e, for ‘normalized’ max-plus matricesAλ0
= λ−1

0 A, or valuated polynomial matrices

Aν = A(ν−1) =
⊕p

l=0Alν
−l with ν ≥ λ0, which all satisfy the condition of nonpositive-weight

circuits.

Algorithm 7.5.1 gives the well-known Floyd-Warshall algorithm for computing the longest path

matrix A+ [66, 219, 39]. The algorithm iteratively computes the longest path weight from each

node j to i using paths over ‘internal’ nodes 1, . . . , k only. Thus, in the k-th (outer) iteration
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Algorithm 7.5.1 (FLOYDWARSHALL)

Input: Matrix A ∈ Rn×n
max .

Output: Longest path matrix D = (dij) = A+.

1 D ← A;

2 for k = 1 to n do

3 for i = 1 to n do

4 if dik > ε then //Proceed to next i if dik = ε
5 for j = 1 to n do

6 dij ← dij ⊕ dik ⊗ dkj;

7 return D //Terminate

the algorithm checks for each origin j whether the weight of the current path to each i can

be increased by going over node k. The algorithm takes O(n3) time and space. The Floyd-

Warshall algorithm is robust and very general: it applies to digraphs with arbitrary arc weights,

it computes the longest path weights between any pair of nodes, if a node i is not accessible

from a node j then the returned associated path weight is ε, and positive-weight circuits are

simply detected by a positive diagonal entry djj.

The Floyd-Warshall algorithm is easy to implement and well-suited for small graphs and for

dense graphs. For (large-scale) sparse graphs however a repeated single-origin longest path

algorithm is more efficient in both time and space complexity. If all arcs have nonpositive

weight a longest path matrix A+ can be computed in O(nm + n2 logn) time by repeatedly

applying a Fibonacci heap implementation of Dijkstra’s (label-setting) algorithm using each

node as an origin once [3, 39, 67]. Moreover, if we are interested only in some particular entry

[A+]ij or only a few complete rows or columns of A+ then Dijkstra’s algorithm is also the most

efficient. However, if G(A) contains both positive and negative arc weights (in conventional

sense) then Dijkstra’s algorithm cannot be used (directly). In this case we can use the Bellman-

Ford (label-correcting) algorithm to compute a row or column of the longest path matrix, which

takesO(nm) time [3, 39]. Also the computation of a single entry [A+]ij takesO(nm) time using

a label-correcting algorithm. For large-scale sparse matrices with both positive and negative

entries the longest path matrix can also be computed by Johnson’s algorithm [112]. Johnson’s

algorithm first uses the Bellman-Ford algorithm to transform the graph (in O(nm) time) into

one with nonpositive arc weights only, and then applies Dijkstra’s algorithm repeatedly using

each of the n nodes as an origin once, which takes n · O(m + n log n) = O(nm + n2 logn)
time using a Fibonacci heap implementation [3, 39, 67]. Johnson’s algorithm thus also runs

in O(nm + n2 logn) time, although it needs more overhead compared to repeatedly applying

Dijkstra’s algorithm directly to a matrix with nonpositive weights only. Note that for sparse

matrices m ≪ n2 and thus nm ≪ n3, whence a repeated single-origin longest path algorithm

is more efficient than Floyd-Warshall for sparse graphs.

7.5.2 Single-Origin Longest Paths

The Floyd-Warshall algorithm is an example of a label-correcting path algorithm. Path al-

gorithms are iterative algorithms that maintain so-called (node) distance labels (longest path

weights from the origin) in each iteration. The algorithms are classified into two groups: label-

setting and label-correcting algorithms [3, 39]. A label-correcting path algorithm updates the
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tentative distance labels in each iteration until the last iteration at which they all become perma-

nent and are proved optimal. In contrast, a label-setting algorithm finds one optimal distance la-

bel in each iteration. Label-setting algorithms are variants of Dijkstra’s path algorithm [56] and

are restricted to graphs with nonpositive arc weights (or acyclic graphs) only. Label-correcting

algorithms, such as the Bellman-Ford algorithm, are more general and apply to graphs with

arbitrary arc weights.

In the current and the next section we focus on Dijkstra’s label-setting algorithm for three main

reasons. First, label-setting algorithms have a better worst-case time complexity and thus are

likely to be faster for large-scale networks. Second, Dijkstra’s algorithm returns an optimal

path weight at each iteration and can thus be terminated prematurely if the path or all paths

of interest have been found. This feature is exploited in the algorithm for finding all critical

circuits in Section 7.5.3. Third, Dijkstra’s algorithm finds an optimal path in each iteration by

nondecreasing weight, by which the algorithm can be terminated if path weights exceed some

threshold value. This latter property is useful in the computation of the recovery matrix in

Section 8.5.

A single-origin longest path algorithm over a precedence graph G(A) = (V,E) computes the

maximum-weight paths and the corresponding weights from a specified origin node s to all

nodes accessible from s, i.e., the column [A+]· s where [A+]is = ε if there is no path from s
to i in the precedence graph G(A). The vast literature on path algorithms is mainly devoted to

networks where the origin is a source (a node with indegree zero) and the problem is accordingly

commonly referred to as the single-source shortest path (SSSP) problem. Maximum-weight or

critical circuits are however crucial in our study of timed event graphs and max-plus linear

systems. We therefore emphasize advanced initialization schemes of common path algorithms

which are necessary to find the longest path (circuit) from an origin i back to i along with the

longest paths to all other accessible nodes. Furthermore, our discussion of path algorithms and

data structures distinguishes from the customary literature on two more points: (1) Algorithms

and data structures are usually formulated in terms of shortest-path problems over graphs with

no negative circuits; (2) The usual representation of arcs in adjacency lists is reversed.

Dijkstra’s algorithm [56, 3, 39] iteratively determines a longest path tree with root s in a graph

G = (V,E) with nonpositive arc weights using a greedy strategy. The algorithm maintains

a candidate list H ⊂ V of nodes to be selected next and a vector of tentative distance labels

v = (v1, . . . , vn), which give lower bounds on the longest path weights from origin node s to

nodes i ∈ V . At the end of the algorithm vi is the distance or longest path weight from s to

node i for each i ∈ V . The original algorithm starts by initializing vs = e, vi = ε for all

i ∈ V \{s}, and H = {s}. A node i is unlabelled if vi = ε, which means that node i has not yet

been reached by the algorithm. An iteration of Dijkstra’s algorithm consists of two steps: node

selection and scanning (also called relaxation or reaching):

(i) Node selection: Select a node j ∈ H with maximal distance label

vj =
⊕

i∈H

vi

and remove j from the candidate list H .

(ii) Scanning: For each outgoing arc (j, i) ∈ E such that vi < vj ⊗ aij set

vi = vj ⊗ aij
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and add i to H if it is not already in H .

During the course of the algorithm, each node is in one of three states: unlabelled, labelled,

or scanned. Initially s is labelled and all other nodes are unlabelled. The algorithm repeats

the node selection and scanning operations until there are no more labelled nodes (every node

accessible from the origin has been scanned).

The nonpositive arc weights and greedy node selection strategy guarantees that a node, once

scanned, will never be updated again which is easily seen by induction over the iterations: if

at the beginning of an iteration node j is selected for scanning its label vj is maximal over all

labelled nodes in H (and all unlabelled nodes) and in particular vj ≥ vi for all its successors

i ∈ succ(j). Any label update in the scanning operation of j satisfies vi = vj ⊗ aij ≤ vj since

aij ≤ e for all nodes i ∈ succ(j), whence at the end of this iteration vj is still maximal over

H . Hence, the distance label of each scanned node becomes permanent, i.e., a longest path to

the scanned node has been found. Dijkstra’s algorithm thus scans each node accessible from s
exactly once (after it is selected for scanning) and builds a longest path tree by adding in each

iteration an outgoing arc towards a node with maximum distance label. This also implies an

important property of Dijkstra’s algorithm: the distances (longest path weights) are computed

iteratively in monotonously nonincreasing order.

With the original initialization Dijkstra’s algorithm does not compute the longest path from the

origin s back to s, if circuits over s exist, because it initially sets vs = 0 which is an upper bound

for any circuit weight by the condition that all arcs must be nonpositive. Hence, Dijkstra’s

algorithm does not compute column s of the longest path matrix A+ but that of the matrix

star A∗ instead, cf. Section 7.2.5. Since we are interested in A+ we must still find the longest

circuit from s to s, if one exists. Since A+ = AA∗ we can simply run Dijkstra’s algorithm and

subsequently compute vs =
⊕

(i,s)∈E asi⊗vi. A more effective approach is obtained by running

Dijkstra with the alternative initialization:

vi =

{
ais if i ∈ succ(s)
ε otherwise

and H = succ(s).

After this initialization vs = ass and so initially s ∈ H iff the graph contains a loop around

s. Otherwise, vs = ε until a predecessor of s is selected and scanned (provided s has at least

indegree one). Because the graph has no positive circuits the longest distance satisfies vs ≤ 0.

Hence, whenever s is scanned vi ≥ ais ≥ vs ⊗ ais for all successors i ∈ succ(s) = {i ∈
V | (s, i) ∈ E} and so s is a leaf in the longest path ‘tree’. With this initialization the algorithm

no longer grows a longest path tree rooted at s but a forest with multiple ‘roots’. Nevertheless,

the adjusted algorithm correctly computes the longest path weights from the (invisible) origin s
via its successors succ(s) to all nodes accessible from succ(s) (and thus from s in the original

graph).

Algorithm 7.5.2 gives the pseudocode of the (adjusted) Dijkstra’s algorithm. If only distances

above some threshold value δ are required then the algorithm can be terminated as soon as

in line 4 a node j is selected with label vj > δ. Hence, the statements in lines 5–9 become

conditional and are expanded by if vj > δ then H ← ∅; else lines 5–9.

The computational effort of Dijkstra’s algorithm depends on the implementation of the can-

didate list H . The proper data structure is a priority queue where nodes are ordered by their
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Algorithm 7.5.2 (SINGLEORIGINLONGESTPATH)

Input: Matrix A ∈ Rn×n
max (adjacency list representation), origin node s ∈ {1, . . . , n}.

Output: Path weights from s in list v = [A+]· s.

1 for i← 1 to n do vi ← ε; //Initialization
2 for i ∈ succ(s) do vi ← ais; H ← H ∪ {s};
3 while H 6= ∅ do //Main loop
4 j ← arg max{vj | j ∈ H}; //Node selection
5 H ← H \ {j};
6 for each i ∈ succ(j) do //Scanning
7 if vi < vj + aij then

8 vi ← vj + aij;

9 if i 6∈ H then H ← H ∪ {i};
10 return v //Terminate

distance label [2, 39, 67]. A priority queue is an ordered list with (in this case) the maximal

node(s) at the top. Selecting a node with maximal distance (line 4) from a priority queue then

reduces to returning the node at the top of the queue. However, the ordering in a priority queue

must be maintained when deleting a selected node (line 5), updating a node label (line 8), and

inserting a new node (line 9).

A heap is a data structure that implements a priority queue and supports among others the

following operations [2, 39]:

• MAKEHEAP: returns a new empty heap,

• INSERT(i, H): inserts a new labelled node i to the heap H ,

• DELETEMAX(H): returns a maximum labelled node and deletes it from the heap,

• INCREASELABEL(i, di , H): increases the label of node i in H to di.

These heap operations of course maintain the order between nodes. A heap can be interpreted

as a rooted tree where the maximal node is the root and each other node in the tree has a label

not exceeding that of its parent. Note that we do not need an operation that checks whether a

node is already in the heap (line 9) since this simply follows from the state of the node when

it is updated: unlabelled nodes must be inserted in the heap and labelled nodes are increased

in the heap. Heap operations typically take O(log |H|) time corresponding to the depth of the

heap (tree), where |H| is the heap size. For instance, binary heaps and binomial heaps need

O(log |H|) time for all heap operations except MAKEHEAP which takes O(1) time [39]. Using

these heaps the SINGLEORIGINLONGESTPATH algorithm runs in O(m logn) time. Fibonacci

heaps take O(log |H|) for DELETEMAX and O(1) for all other heap operations [39, 67]. A

Fibonacci heap implementation of SINGLEORIGINLONGESTPATH runs inO(m+n logn) time.

Codes of heap data structures can be found in e.g. Cormen et al. [39].

7.5.3 All Critical Circuits

If we are interested in the diagonal of the longest path matrix A+ only, we must repeatedly call

Dijkstra’s Algorithm 7.5.2 for all origins s ∈ V . However, we can speed up the single-origin

longest path computations by proceeding to the next origin as soon as the longest path weight
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Algorithm 7.5.3 (ALLLONGESTCIRCUITS)

Input: Precedence graph G(A) = (V,E) (adjacency list representation).

Output: Maximum circuit weight over each node in list d = ([A+]ii).
1 E′ ← ∅; //Preprocessing
2 for each (j, i) ∈ E do

3 if j 6= i then E′ ← E′ ∪ {(j, i)};
4 component← STRONGLYCONNECTEDCOMPONENT(V, E′);
5 for i← 1 to n do di ← ε;

6 for s← 1 to n do //Outer loop
7 if component(s) = 0 then

8 if s ∈ succ(s) then ds ← ass;

9 else if ds = ε then //Unknown circuit weight
10 for i← 1 to n do vi ← ε; πi ← ε; //Start Single Origin Longest Path
11 for i ∈ succ(s) do vi ← ais; πi ← s; H ← H ∪ {s};
12 while H 6= ∅ do //Inner loop
13 j ← arg max{vj | j ∈ H}; //Node selection
14 if vj = vs then //Maximum circuit weight
15 ds ← vs; H ← ∅;

16 if vs = 0 then //Critical node
17 j ← π(s);
18 while j 6= s do //Critical circuit
19 if dj = ε then dj ← 0;

20 j ← π(j);
21 else

22 H ← H \ {j};
23 for each i ∈ succ(j) do //Scanning
24 if vi < vj + aij then

25 vi ← vj + aij ; πi ← j;

26 if i 6∈ H then H ← H ∪ {i};
27 return d //Terminate

to s has been found, i.e., when s is selected for scanning. Moreover, we can clearly skip each

s ∈ V with indegree zero and immediately set [A+]ss = ε, i.e., we can skip empty rows of

A. More generally, we can skip each node that is not contained in some strongly-connected

component. Furthermore, we do not have to store the entire path matrix in memory but just the

finite diagonal entries and one distance vector at a time, which reduces the space complexity

from O(n2) to O(n).

The strongly-connected components of a digraph can efficiently be computed in linearO(n+m)
time and O(m) space using variants of depth-first search, see Tarjan [198] and Cormen et

al. [39] for two alternative algorithms. We refer to these references for the code of STRONGLY-

CONNECTEDCOMPONENT which we will use as a subroutine.

Algorithm 7.5.3 shows the pseudocode of ALLLONGESTCIRCUITS that computes the diagonal

of the longest path matrix A+ of a matrix A ∈ Rn×n
max . The algorithm starts with a preprocessing

step in lines 1–4 that computes the strongly-connected components of the precedence graph

where loops are discarded. The call to STRONGLYCONNECTEDCOMPONENT returns a vector

component where an entry component(s) = 0 implies that there is no circuit over s except
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maybe for a loop (s, s) (which was discarded in the computation of the strongly-connected

components). Line 5 initializes the circuit weight vector d; an entry di = ε implies that either

there is no circuit over node i or (while the algorithm has not finished) the maximum circuit

weight over node i has not yet been determined. Lines 6–26 contain the main loop that iterates

over each origin s ∈ V . Lines 7–8 immediately short-cut an iteration if component(s) = 0
in which case ds is either the weight of a loop over s or ds = ε if there is no such loop.

Note that if there is a loop but no other circuit over s then it is unnecessary to compute the

longest path weights from s (or from its successors) which in the worst-case takes computation

of the complete longest path trees rooted at the other successors j ∈ succ(s)\{s} before s is

scanned. Line 9 checks whether the maximum circuit weight over the current origin s is still

unknown. If here ds 6= ε then s already must have been identified as a critical node on some

critical circuit in a previous iteration and so we can skip this iteration (ds = 0). On the other

hand, if here ds = ε then a circuit over s must exist and the maximum weight has still to be

determined, because component(s) 6= 0. Lines 10–26 are essentially the single-origin longest

path algorithm (Algorithm 7.5.2) extended by lines 14–21 that cut off the single-origin longest

path algorithm as soon as the maximum circuit weight over the origin has been found. Note that

if vs = vj for a selected node j ∈ H then s ∈ max{vj | j ∈ H} and so vs = vj is the maximal

distance of s from s, regardless whether or not j = s (in case of a tie). Moreover, in the case

that a critical circuit has been found (vs = 0) lines 16–20 activate a backward walk over the

critical circuit using the predecessor vector π and thereby setting any undetermined entry dj to

the critical circuit weight 0. If on the other hand the distance of the selected node j exceeds the

label of s then j is removed from the candidate list and scanned, after which the next node is

selected in a new iteration of the inner loop (lines 12–26).

Theorem 7.5.1 Let A ∈ Rn×n
max with maximum eigenvalue λ0(A) ≤ e. Then Algorithm ALL-

LONGESTCIRCUITS computes the diagonal of the longest path matrix A+ in O(n · S(n,m))
time and using O(m) space, where S(n,m) is the worst-case running time of a single-origin

longest path algorithm.

Proof: If λ0(A) ≤ e then the precedence graph G(A) = (V,E) has no positive circuits and

therefore the longest paths/circuits have finite length. The preprocessing step requires O(m)
time to copy the arc list E to E ′ and excluding the loops. Algorithm STRONGLYCONNECT-

EDCOMPONENT takes O(n +m) time and O(m) space. Lines 6–26 are essentially the single-

source longest path algorithm taking S(n,m) time plus lines 7–8 which adds O(1) time and the

inner-loop line 14 which adds O(1) time to each iteration of the inner loop. Hence, these lines

do not change the complexity bound of S(n,m). The algorithm maintains four n-dimensional

arrays component, d, v and π, and the data structure of the list H . Note that each iteration of

the outer loop reapplies v for the distances from the current root s. ✷

IfA has both positive and negative entries then we may apply the approach of Johnson [39, 112]

to compute reduced arc weights using a single-origin longest path algorithm for general arc

weights once (e.g. Bellman-Ford) and then apply algorithm ALLLONGESTCIRCUITS to the

reweighted graph with nonpositive arcs.
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7.6 Conclusions

In this chapter we introduced max-plus algebra and several algorithms for solving eigenprob-

lems and longest path problems in max-plus algebra. In particular, we introduced max-plus

matrices and their associated precedence graphs, as well as max-plus polynomial matrices and

their formal connection to timed event graphs. We explained linear dependence and indepen-

dent vectors in semimodules, stressed the differences with vector spaces over classical fields,

and gave a geometric description of vectors in max-plus semimodules.

We explained the (generalized) eigenproblem of max-plus (polynomial) matrices and showed

the connection with the topological structure of the associated graphs. We showed how the

nodes of the precedence (or timed event) graphs can be partitioned into classes with a unique

eigenvalue which equals the (maximum) cycle mean of the critical circuit(s), and gave a full

description of the corresponding eigenspaces (eigensemimodules). We furthermore presented

the efficient policy iteration algorithm for solving the (generalized) eigenproblem and developed

an algorithm for finding all critical circuits. Moreover, we considered efficient implementations

of single-origin longest path algorithms.

The max-plus algebra theory and numerical algorithms developed in this chapter will be used in

the next chapter on max-plus linear systems, which relates max-plus algebra to the performance

analysis of timed event graphs — and railway timetables in particular.
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Chapter 8

RAILWAY TIMETABLE STABILITY

ANALYSIS

8.1 Introduction

The issue of railway traffic stability is rapidly gaining attention in Europe because of the in-

creasingly saturated railway infrastructure where a slightly delayed train may cause a domino

effect of secondary delays over the entire network. European railways are typically operated

according to a predetermined (master) timetable, which represents a conflict-free coordination

of train paths and includes slack time to manage train delays. From a system point of view the

timetable can be understood as a steady state for the train traffic. Traffic stability then refers to

the possibility and effort necessary of returning to the steady state after disruptions. The system

response to disruptions is highly complicated due to complex cyclic train interdependencies

generated by infrastructure restrictions (e.g. conflicting routes or a fast train getting stuck be-

hind a leading slow train on an open track), timetable constraints (passenger connections at

transfer stations), and logistics (rolling stock circulations and train personnel schedules). In

this chapter we develop an analytical approach to analyse timetable stability based on max-plus

algebra.

In Chapter 6 we have seen how scheduled railway systems can be modelled as timed event

graphs and considered a number of structural and behavioural properties of timed event graphs.

The present chapter is devoted to the dynamic behaviour over time or performance evaluation

of timed event graphs based on the state-space representation of timed event graphs in the event

domain, which was already briefly introduced in Section 6.5.3. The state-space description of

timed event graphs is a system of (max,+)-recursive equations — recursive equations involving

maximum and sum operations — and are thus nonlinear in a classical sense. However, formu-

lated in max-plus algebra the state-space equations show a linear dynamic system and can be

analysed using the theory developed in Chapter 7.

The approach taken in this chapter concentrates on network timetable evaluation in a determin-

istic setting in accordance to the design choices of e.g. train orders at conflicting routes and

the deterministic design times (running times, dwell times, transfer times, minimum headway

times, etc.) used in the construction of the timetable. A max-plus state matrix captures this

timetable structure and the eigenstructure of this matrix reveals the interconnected components,

associated cycle times and available recovery times, which can all be computed by efficient

polynomial algorithms. Moreover, because bottlenecks of the systems are explicitly revealed

— through the notion of critical circuits — this approach provides an efficient way not only

to evaluate the performance but also to assess certain design choices made at earlier stages in

the timetable design process. We propose transparent stability and robustness criteria and as-

sociated performance indicators and are able to identify critical processes or resources in the

217
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timetable or infrastructure. The approach has been implemented in the computer application

PETER (Performance Evaluation of Timed Events in Railways) which is also introduced and

demonstrated in this chapter. PETER has been developed as a decision support to railway plan-

ners for evaluating and improving timetable designs and infrastructure utilization. Because of

efficient numerical algorithms and implementations PETER enables a real-time environment to

analyse large-scale periodic railway timetables.

The application oriented literature on max-plus algebra and timed event graphs typically deals

with the analysis of irreducible first-order models of the form x(k) = Ax(k − 1) ⊕ Bu(k),
although in first instance the derived models contain higher-order and/or zero-order dynamics.

Hence, more general order models are first transformed to the canonical first-order representa-

tion and analysed accordingly. In particular, topological and behavioural properties are analysed

separately from performance properties. The first-order models indeed allow an elegant anal-

ysis avoiding some complications arising from especially the zero-order dynamics. In practice

however the zero-order dynamics do represent essential behavioural properties that can only be

analysed in full potential if explicitly available in the model. Moreover, the analyses usually

assume irreducibility (strongly connectedness) without consideration of accessibility relations

in general reducible systems. The first-order representations thus contain some simplifying

assumptions that do no justice to the original problem. In this chapter we deal with general

higher-order max-plus linear systems and propose a formal polynomial matrix representation

of both the higher-order state matrix and associated timed event graph. We use this approach to

model periodic railway timetables as scheduled max-plus linear systems and develop a generic

max-plus system analysis theory that has been proved valuable in evaluating railway timetables

on stability and robustness.

The chapter is outlined as follows. Section 8.2 introduces max-plus linear systems and pro-

poses a general linear state-space representation of (scheduled) timed event graphs. Section 8.3

considers a spectral analysis of the linear system and defines an appropriate notion of timetable

stability. Timetable realizability is considered in Section 8.4. Section 8.5 defines a notion of

timetable robustness based on recovery times in the timetable. Section 8.6 deals with delay

propagation and shows how any initial delay scenario may propagate over time and the network

given the timetable structure. PETER is briefly introduced in Section 8.7, and illustrated in a

case-study of the Dutch national railway timetable in Section 8.8. Section 8.9 ends this chapter

with some conclusions.

8.2 Max-Plus Linear Systems

8.2.1 First-Order State-Space Equations

A max-plus linear system is a linear system description of a discrete-event dynamic system

evaluated over the (max,+)-semiring, where the state dynamics can be described by recursive

equations in max-plus algebra. The canonical (first-order) max-plus linear system is
{
x(k) = Ax(k − 1)⊕Bu(k), x(0) = x0

y(k) = Cx(k).
(8.1)

Here x(·) ∈ Rn
max is the state vector, u(·) ∈ Rr

max the input vector and y(·) an output vector.

The state, input, and output vectors depend on a counter k ∈ N which numbers the subsequent
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occurrences of events. The system matrices (A,B,C) are the state matrix A ∈ Rn×n
max , the

input matrix B ∈ Rn×r
max, and the output matrix C ∈ Rs×n

max. We consider only constant system

matrices, soA,B, andC are invariant to k. Then for given system matrices the system evolution

{x(k)}k∈N and output sequence {y(k)}k∈N is completely determined by the initial condition x0

and the input sequence {u(k)}k∈N. If C = E, the identity matrix, then the output vector is just

the state vector. The state vector x = (x1, . . . , xn)⊤ corresponds to events 1, . . . , n that occur

at discrete times. Hence the term discrete events. The state vector x(k) is the vector of event

times associated to the kth occurrence of the events. So, xi(k) is the time instant at which event

i takes place for the kth time.

A homogeneous max-plus linear system has no inputs, i.e., B = E . In this case the recursive

state equation is

x(k) = A⊗ x(k − 1), x(0) = x0. (8.2)

The evolution of a homogeneous first-order max-plus linear system can be calculated analyt-

ically for a given state matrix and initial condition. Substituting k = 1 in (8.2) simply gives

x(1) = Ax0, for k = 2 we obtain x(2) = Ax(1) = A ⊗ Ax0 = A2x0, and by a repeated

argument we obtain

x(k) = Ak ⊗ x0 for all k ∈ N.

The behaviour of the homogeneous system depends on the eigenvalues of A and the initial state

vector x0. Section 8.3 is devoted to this spectral analysis. It will be shown that the asymptotic

behaviour of the successive event times is periodic and independent of the initial condition,

although the initial condition determines the length of the transient behaviour before reaching

the periodic regime [11, 190].

The inhomogeneous term Bu(k) is used to control or regulate the system behaviour into a

desired state evolution. In railway systems or public transport systems the (departure) events

are generally regulated by a timetable, which specifies the earliest allowed departure times. A

regular interval or periodic timetable with cycle time T is modelled itself by the homogeneous

first-order max-plus linear system

d(k) = d(k − 1)⊗ T, d(0) = d0,

where d(·) ∈ Rn
max is the timetable vector and d0 ∈ Rn

max is an initial timetable vector. Note

that the right-hand side is a matrix multiplication of an n × 1-dimensional vector d(k − 1)
and a scalar T giving the n × 1-dimensional vector d(k). Alternatively, we could express

this equation using the right-hand side diag(T, . . . , T ) ⊗ d(k − 1) with the diagonal matrix

diag(T, . . . , T ) = T ⊗ E ∈ Rn×n
max , or by the scalar-vector product T ⊗ d(k − 1). The solution

to this timetable system is

d(k) = T k ⊗ d0 for all k ∈ N. (8.3)

By defining B = E ∈ Rn×n
max , the identity matrix, and u(k) = d(k) we obtain Bu(k) = d(k)

which fits the framework (8.1). By convention we use the inhomogeneous term d(k) directly

for scheduled max-plus linear systems. An alternative representation that clearly visualizes the

periodicity of the timetable is obtained by defining B = d0 ∈ Rn×1
max and u(k) = T k, which

again fits the inhomogeneous state equation (8.1). Here, the clock event u(k) gives the starting

time of the kth period with respect to the initial timetable vector d0. Nevertheless, we use the

former representation which also allows aperiodic timetables.
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The canonical state-space equations of a scheduled max-plus linear system with periodic timetable

are therefore

x(k) = A⊗ x(k − 1)⊕ d(k), x(0) = x0, d(k) = d0 ⊗ T k. (8.4)

Here x(k) and d(k) are the kth actual and scheduled event time vectors, respectively.

8.2.2 Higher-Order State-Space Equations

The general state-space representation of a timed event graph G = (T ,P, µ, w) is the higher-

order max-plus linear system

{
x(k) =

⊕p
l=0Alx(k − l)⊕Bu(k), x(1− p) = x1−p, . . . , x(0) = x0

y(k) = Cx(k).
(8.5)

Here the parameter p is called the order of the system which equals the highest initial marking

of any place, p =
⊕m

i=1 µi. The system matrices Al ∈ Rn×n
max correspond to the places ph =

(j, i, µh, wh) in the timed marked graph G with initial marking µh = l, i.e.,

[Al]ij =

{
wh if ph = (j, i, l) ∈ P
ε otherwise.

(8.6)

Note that the first-order max-plus linear system (8.1) is a special case of (8.5) with all places

having a unit initial marking, i.e, A1 = A and A0 = E . Thus, (8.1) is a pure first-order linear

system without zero-order terms. In Section 8.2.5 we will show that any pth order linear system

can be transformed into a pure first-order representation.

We now return to the timed event graph model G = (T ,P, µ, w) of a scheduled railway system

as derived in Chapter 6. Each place ph ∈ P with output transition out(ph) = i corresponds to a

constraint in the event domain

xi(k) ≥ xin(ph) (k − µh)⊗ wh,

cf. Section 6.5.3. If transitions fire as soon as they are enabled the event times are given by

xi(k) =
⊕

p∈Πi

xin(ph) (k − µh)⊗ wh for all i ∈ T , (8.7)

where Πi is the set of incoming places to transition i. Defining the matrices Al by (8.6) then

(8.7) becomes

xi(k) =

p
⊕

l=0

n⊕

j=1

[Al]ij ⊗ xj(k − l) for all 1 ≤ i ≤ n

which in vector notation is the pth order max-plus linear system

x(k) =

p
⊕

l=0

Al ⊗ x(k − l).
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where x(k) = (x1(k), . . . , xn(k))⊤. If the events wait for their scheduled event times then the

event times are given by the pth order inhomogeneous state-space equation

x(k) =

p
⊕

l=0

Al ⊗ x(k − l)⊕ d(k), (8.8)

where d(k) = (d1(k), . . . , dn(k))
⊤ is the timetable vector in period k. For a periodic timetable

with cycle time T the timetable vectors are defined by (8.3), which equals di(k) = di(0)⊗T k =
di(0) + k · T as in Section 6.5.3.

The general state-space equations of a scheduled max-plus linear system with periodic timetable

are therefore 





x(k) =
⊕p

l=0Alx(k − l)⊕ d(k)
y(k) = Cx(k)
d(k) = d0 ⊗ T k.

(8.9)

In general the events in a railway system may be partitioned in departures, arrivals, passages

and terminal events, cf. Chapter 6. Usually, only the departure events are prohibited to depart

early, whilst arrival, through and terminal events may be early, that is, these latter events do

not have to wait for their scheduled event time before arriving at or passing through a station.

The (initial) timetable vector may thus be partitioned as d0 = (d1
0, ε)

⊤, where d1
0 corresponds

to the departure events. Likewise, the output vector may be defined to give e.g. the departure

events only. Assuming that the events are ordered with the events of interest numbered first as

1, . . . , n1 then C = [E E ] ∈ Rn1×n
max yields the desired output vector y(·) ∈ Rn1

max.

The general pth order state-space equations (8.9) include an implicit zero-order term and appear

therefore no longer purely recursive. However, from a timed event graph perspective it is clear

that the zero-order dynamics merely correspond to transitions that fire in the same period as

the predecessor transitions and thus still satisfy some precedence order. This will be explained

in detail in Section 8.6. The system dynamics are therefore completely determined by (8.9)

when given initial states x(l) for l = 1 − p, . . . , 0. In Section 8.2.5 we also discuss a simple

transformation that removes the zero-order terms from the state-space representation.

8.2.3 Polynomial Matrix Representation

An alternative formulation of a higher-order max-plus linear system (8.9) can be obtained using

a shift operator. Let γ be the backward-shift operator defined on a discrete-event dynamic

variable x(k) as

γx(k) = x(k − 1).

A backward-shift over l ≥ 1 periods is denoted by γl and corresponds to l successive applica-

tions of the backward shift γ, that is, γlx(k) = x(k− l) for any integer l ≥ 1. This is consistent

with the recursion γlx(k) = γl−1γx(k) = γl−1x(k − 1) for all l ∈ N with the convention that

γ0 = e. Using the shift operator the scheduled max-plus linear system (8.9) can be rewritten as

x(k) =

p
⊕

l=0

Alx(k − l)⊕ d(k) =

p
⊕

l=0

Alγ
lx(k)⊕ d(k) = A(γ)x(k)⊕ d(k), (8.10)

where A(γ) =
⊕p

l=0Alγ
l is a polynomial matrix in the shift operator γ. A polynomial matrix

may thus be used both as a formal representation of a timed event graph, see Section 7.2.6, and
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as a shift operator in the max-plus linear system state representation. In the sequel, we will also

denote by (j, i, l) ∈ supp(A(γ)) = {(j, i, l)|[Al]ij 6= ε} a place (j, i) ∈ P with l tokens.

A first-order max-plus linear system is one for which A(γ) = Aγ, in which case A(γ)x(k) =
Aγx(k) = Ax(k − 1). Hence, a first-order system satisfies the dynamic state-space equation

x(k) = Ax(k − 1), or in the scheduled case x(k) = Ax(k − 1)⊕ d(k).

8.2.4 Autonomous Max-Plus Linear Systems

As previously defined a homogeneous higher-order max-plus linear system is a linear system

with zero input matrix B = E ,

x(k) =

p
⊕

l=0

Al ⊗ x(k − l) = A(γ)⊗ x(k). (8.11)

A homogeneous linear system (8.11) is related to an autonomous linear system. An autonomous

timed event graph is one that has no source transitions, which means that the polynomial ma-

trix representation A(γ) has no zero rows. The general scheduled max-plus linear system (8.8)

however allows source events which simply fire according to the timetable. In a homogeneous

system source transitions may be defined to fire unconditionally. Nevertheless, system perfor-

mance is determined by the internal events of the cyclic interconnection structure of the timed

event graph. Here, an internal event is an event contained in some circuit or accessible from an

upstream circuit.

Definition 8.2.1 (Autonomous linear system) A homogeneous max-plus linear system x(k) =
A(γ)x(k) =

⊕p
l=0Alx(k − l) is called autonomous if the polynomial state matrix A(γ) has no

zero row, or formally, ∀1 ≤ i ≤ n, ∃1 ≤ j ≤ n such that [A(γ)]ij 6= ε.

An autonomous system thus corresponds to a timed event graph that has no incoming paths or

trees.

The timetable subsystem of a scheduled max-plus linear system can be interpreted as an open-

loop control system, where the periodic timetable is defined a priori. Consider the scheduled

max-plus linear system (8.9). Then, given an initial timetable vector d0 and initial state vectors

xl, 1−p ≤ l ≤ 0, this system may be viewed as an autonomous max-plus linear system defined

by

x̃(k) =

[
A(γ) d0

ε Tγ

]

⊗ x̃(k), y(k) = [C ε]⊗ x̃(k), (8.12)

with initial conditions

x̃(0) =

[
x0

e

]

and x̃(l) =

[
xl

ε

]

for 1− p ≤ l ≤ −1,

where x̃ = (x, xn+1)
⊤ ∈ Rn+1

max is an augmented state vector with xn+1(k) the starting time of the

kth period. Note that xn+1(k) = T k = k ·T . The autonomous linear system (8.12) is equivalent

to the scheduled linear system (8.9) in the sense that the output sequence {y(k)}k∈N is equal for

both system realizations. Note that (8.12) is the state-space realization of the scheduled timed

event graph (6.10) of Theorem 6.5.3.
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8.2.5 First-Order Representations

The max-plus linear systems (8.8) and (8.11) are pth order systems which admit implicit (zero-

order) terms. This section shows that any pth order max-plus linear system can be transformed

into an equivalent pure first-order linear system (without zero-order terms).

A fundamental result in max-plus algebra is the solution of an implicit equation x = Ax⊕ b is

given by x = A∗b, provided A∗ exists [11, §3.2.3]. The next lemma states a special case of this

result which we will be using in the sequel at several occasions.

Lemma 8.2.1 Let A ∈ Rn×n
max be such that G(A) is an acyclic graph. Then for any vector

b ∈ Rn
max the implicit equation x = Ax⊕ b has solution x = A∗b.

Proof: Because G(A) is acyclic A∗ =
⊕n−1

l=0 A
l is well-defined by Corollary 7.2.1. By

recursive substitution we obtain

x = Ax⊕ b
= A(Ax⊕ b)⊕ b = A2x⊕Ab⊕ b
= A2(Ax⊕ b)⊕Ab⊕ b = A3x⊕ A2b⊕ Ab⊕ b
...

= Anx⊕
(

n−1⊕

l=0

Al

)

b

= A∗b.

The last equality follows from the acyclicity of G(A) which implies that Al = E for all l ≥ n,

since any path with length n or more includes a circuit (in a finite graph with n nodes). ✷

Now consider again the higher-order linear system x(k) =
⊕p

l=0Alx(k − l) ⊕ d(k). Recall

that G(A0) is the precedence graph associated to A0. If this graph has a circuit then the classes

accessible by events from this circuit are deadlocked. Hence, a necessary (and sufficient) condi-

tion for a live timed event graph associated to the max-plus system (8.8) or (8.11) is that G(A0)
is acyclic. Moreover, this condition assures the existence of A∗

0. Before presenting the main

result of this section we need the following lemma.

Lemma 8.2.2 Let x(k) =
⊕p

l=0Al ⊗ x(k − l)⊕ d(k) be a scheduled max-plus linear system.

If G(A0) is acyclic then

A∗
0 ⊗ d(k) = d(k).

Proof: Because G(A0) is acyclic A+ and A∗ are finitely generated by Corollary 7.2.1. More-

over, since G(A0) has no circuits [A+
0 ]ii = ε for all 1 ≤ i ≤ n and therefore [A∗

0]ii =
[E ⊕ A+

0 ]ii = e for all 1 ≤ i ≤ n. From the marking formula (6.7) of Theorem 6.5.1 all

paths ξ ∈ Pij in G(A0) from node j to i with weight w(ξ) must satisfy di(k) ≥ w(ξ)⊗ dj(k)
otherwise some arc on the path would have had a token which contradicts that the path lies on

G(A0). Hence, di(k) ≥ [A+
0 ]ij ⊗ dj(k) and

n⊕

j=1

[A∗
0]ij ⊗ dj(k) = e⊗ di(k)⊕

⊕

j 6=i

[A+
0 ]ij ⊗ dj(k) = di(k)
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for each 1 ≤ i ≤ n, which proves A∗
0d(k) = d(k). ✷

In the sequel we say that two max-plus linear systems are equivalent if the state trajectories

{x(k)}k∈N of both systems are equal.

Theorem 8.2.1 (Elimination of implicit terms) Let x(k) =
⊕p

l=0Al ⊗ x(k − l) ⊕ d(k) be a

scheduled max-plus linear system. If G(A0) is acyclic and the initial conditions are given by

x(l) = xl for 1− p ≤ l ≤ 0 then this system is equivalent to

x(k) =

p
⊕

l=1

A∗
0Alx(k − l)⊕ d(k). (8.13)

Proof: Rewrite the higher-order linear system equation as

x(k) =

p
⊕

l=0

Alx(k − l)⊕ d(k) = A0x(k)⊕
(

p
⊕

l=1

Alx(k − l)⊕ d(k)
)

.

This is an implicit equation in x(k) and because G(A0) is acyclic we can apply Lemma 8.2.1,

which gives

x(k) = A∗
0 ⊗

(
p
⊕

l=1

Alx(k − l)⊕ d(k)
)

=

p
⊕

l=1

A∗
0Alx(k − l)⊕ A∗

0d(k)

=

p
⊕

l=1

A∗
0Alx(k − l)⊕ d(k). (by Lemma 8.2.2)

With the initial conditions x1−p, . . . , x0 the recursive equations (8.13) completely determine

the state trajectory {x(k)}k∈N. Note that the original state-space equations (8.8) also allow

an additional initial vector x(1). This initial condition is excluded for the transformed system

description, see Section 8.6. ✷

The interpretation of Theorem 8.2.1 is that places with zero initial tokens are contracted to

the last predecessor with a nonzero number of initial tokens, i.e., places with zero tokens are

removed from the graph and a new place is added from the input transition of the last upstream

place(s) having nonzero initial tokens. The holding time of the new place given as [Āl]ij is then

the weight of the original path from transition j to i with the first place on this path having l
tokens and the remaining places having zero tokens.

Removing the zero-order term using Theorem 8.2.1 may generate sinks in the associated timed

event graph, see Figure 8.1. If a transition has only zero-token outgoing places then it becomes

a sink after removal of the zero-token places. These transitions may subsequently be removed

from the graph. So for any transition i with zero-token outgoing places only the state xi is

removed from the state vector x. The resulting reduced state vector is denoted as x̂ ∈ Rn̂,

where n̂ is the number of transitions with nonzero-token outgoing places. Accordingly, the
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a. Original timed event graph

b. First-order representation

c. Removed sink
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·
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a. Original timed event graph

b. First-order representation

c. Removed sink

Figure 8.1 Elimination of implicit zero-order terms

associated row j and column j are removed from the matrices Āl to obtain the reduced matrices

Âl ∈ Rn̂×n̂
max .

Any live higher-order linear system can be represented as a canonical first-order linear system

using state-space augmentation, which is a well-known technique in system theory.

Lemma 8.2.3 (State-space augmentation) Any purely recursive max-plus linear system x(k) =
⊕p

l=1Al ⊗ x(k − l)⊕ d(k) with initial conditions x(l) = xl, 1− p ≤ l ≤ 0, can be written in

first-order representation

x̃(k) = Ã⊗ x̃(k − 1)⊕ d̃(k), x̃(0) = x̃0, (8.14)

for some augmented state-space.

Proof: We will give a constructive proof. Assume x(·), d(·) ∈ Rn
max and Al ∈ Rn×n

max for

1 ≤ l ≤ p, and let ñ = p · n. Define the augmented state and timetable vector x̃(·), d̃(·) ∈ Rñ
max

and state matrix Ã ∈ Rñ×ñ
max by

x̃(k) =








x(k)
x(k − 1)

...

x(k − p+ 1)







, Ã =








A1 A2 · · · Ap

E E · · · E
. . .

. . .
...

E E E








and d̃(k) =








d(k)
ε
...

ε







.

Then (8.14) with initial condition x̃0 = (x0, . . . , x1−p)
⊤ is equivalent to the higher-order system

x(k) =
⊕p

l=1Al ⊗ x(k − l)⊕ d(k) with initial conditions x(0) = x0, . . . , x(1− p) = x1−p. ✷

Lemma 8.2.3 is visualized in Figure 8.2. Each place with l > 1 tokens is expanded to l places

with one token each by adding l−1 sequential transitions. The first place maintains the original

holding time and the remaining l − 1 places get zero holding time. These places can be viewed

as fictitious stops at dummy stations. The introduction of additional transitions leads to an

increased dimension of the state vector, which is referred to as state-space augmentation.

Theorem 8.2.2 (First-order representation) Let x(k) =
⊕p

l=0Al ⊗ x(k − l) ⊕ d(k) be a

scheduled max-plus linear system with initial conditions x(l) = xl, 1− p ≤ l ≤ 0, and acyclic
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Figure 8.2 State-space augmentation

G(A0). Then it has a first-order representation x̃(k) = Ã⊗x̃(k−1)⊕d̃(k) with initial condition

x̃(0) = x̃0 for some augmented state-space.

Proof: IfG(A0) is acyclic then by Theorem 8.2.1 we have x(k) =
⊕p

l=0Al⊗x(k−l)⊕d(k) =
⊕p

l=1A
∗
0Al ⊗ x(k − l)⊕ d(k). By Lemma 8.2.3 this system admits a first-order representation

with state matrix

Ã =








A∗
0A1 A∗

0A2 · · · A∗
0Ap

E E · · · E
. . .

. . .
...

E E E








and the augmented state vector, timetable vector, and initial condition are as in the proof of

Lemma 8.2.3. ✷

8.3 Max-Plus Spectral Analysis

8.3.1 Timetable Stability and Critical Circuits

The polynomial state matrix A(γ) of a max-plus linear system reflects the structure of the

railway traffic network including train interconnections, train orders, safety and infrastructure

restrictions, train line cycle times (regular intervals), and timing constraints. The maximum

max-plus generalized eigenvalue of this polynomial matrix equals the minimum cycle time in

which the traffic system can satisfy the intrinsic requirements of a given timetable, i.e., running

as early as possible while respecting all train orders, connections, and minimum headways. This

minimum cycle time is determined by the worst-case sequence of blocking times or the critical

circuit in the compressed timetable, which corresponds to the given timetable after removing

all buffer times or slack contained therein. The compressed timetable is explicitly computed

as part of the eigenproblem and is given by the associated eigenvector. Hence, the eigenvector

contains the earliest realizable event times given all the timetable and infrastructure constraints.

All circuits without any slack under the compressed timetable are called critical. The critical

circuits thus determine the minimum cycle time of the network and also the remaining degree

of freedom (departure time flexibility) for all trains that are not contained in a critical circuit.

A periodic timetable is called stable if a delay of any train can be compensated for by time

reserves in the timetable, which prevents that a delay keeps circulating over the network. Or

formally, for any x(k0) > d(k0) there exists a K > k0 such that x(k) = d(k) for all k ≥ K.
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In particular this implies that for each event i a delay zi(k0) = xi(k0) − di(k0) in some period

k0 must have been (partially) absorbed before it recurs to a next occurrence of this event xi(k)
with k > k0. We thus obtain the following definition of stability.

Definition 8.3.1 (Stability) A scheduled max-plus linear system is stable if each circuit in the

associated timed event graph contains some positive buffer time.

Stability can therefore be tested by computing the maximal generalized eigenvalue as presented

in the following theorem.

Theorem 8.3.1 (Stability) Let A(γ) =
⊕p

l=0Alγ
l ∈ Rn×n

max [γ] be a polynomial matrix with

maximum generalized eigenvalue λ0. Then the scheduled max-plus linear system (8.9) is stable

if and only if

λ0 < T.

If λ0 = T the system is called critical, and if λ0 > T the system is unstable.

Proof: By Theorem 7.4.1 the maximum eigenvalue λ0 equals the maximum cycle mean over

all circuits in the network. If λ0 < T then even the critical circuit(s) have some average buffer

time T−λ0 > e, and therefore all circuits have at least T−λ0 > e average buffer time. Note that

the total buffer time on a circuit ξ is µ(ξ) · T − w(ξ) ≤ µ(ξ) · T − µ(ξ) · λ0 = µ(ξ) · (T − λ0),
which is positive only if T > λ0. Finally, notice that since λ0 exists G(A0) must be acyclic

and therefore there are no circuits with zero tokens. Hence, we only consider stability for live

systems. ✷

Theorem 8.3.1 states that the timetable cycle time should exceed the minimum possible one,

that is, the maximum eigenvalue is the minimum cycle time. Hence, the maximum eigenvalue

allows a stability test: if λ0 exceeds the timetable cycle time T then the system is unstable.

Instability here means that there is no slack on the critical circuit by which delays that reach

the critical circuit can never settle, i.e., all trains on the critical circuit will get delayed and

possibly propagate this delay to other trains in the network. If λ0 < T is close to T then delays

on the critical circuit will settle only slowly and the system will become unstable in case of

(temporary) process time prolongations on the critical circuit.

Stability thus depends on the eigenstructure of the (polynomial) state matrix of the homoge-

neous max-plus linear system x(k) =
⊕p

l=0Alx(k − l) = A(γ)x(k). It is insightful to revisit

and interpret the eigenproblem with respect to the dynamic system equations. Recall from

Chapter 7 (Sections 7.4.5 and 7.4.6) that the associated generalized eigenmode (χ, v) satisfies

the conditions (7.39a–7.39b) which we repeat here for convenience:

χi = max
(j,i,l)∈Πi

χj and vi = max
(j,i,l)∈Πi

([Al]ij − l · χj + vj) for all i = 1, . . . , n. (8.15)

Here χj is the cycle time of event j with λ0 =
⊕n

j=1 χj. We now interpret v as an event time

vector. Then (8.15) implies that each event i must wait for the latest preceding activity with

process time [Al]ij that was initiated l periods of length χj ago at event time vj − l · χj . If

A(γ) is irreducible — the timed event graph G(A(γ)) is strongly-connected — all cycle times

are constant χi ≡ λ0 corresponding to the minimal cycle time of all events. The eigenvector

v then corresponds to the earliest possible event times where the events cycle at their minimal
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cycle time λ0. In case of delayed events the system may thus ‘accelerate’ with cycle time λ0

until the delays have settled. Note that delayed events consume timetable slack and buffer times

and fire as early as possible until they again meet their schedule. In the reducible case delayed

events of distinct classes may cycle at different cycle times in accordance to the available slack

in the different components. Thus, events of nonbasic classes (with cycle time χj < λ0, see

Section 7.4.4) settle quicker than events of basic classes, whilst critical events on a critical

circuit take longest to settle.

The (maximum) eigenvalue is a unique characteristic of the state matrices of a max-plus linear

system. Hence, the maximum eigenvalue is a performance indicator of the traffic scenario

characterized by the timetable, infrastructure, and signalling system. In particular, like the

state matrices the eigenvalue depends on the line frequencies, line schedules (running times,

minimum dwell times), traffic mix (speed differences) and train orders on the open tracks,

minimum headways, minimum layover times at terminals, minimum transfer times of passenger

connections, and minimum (de-)coupling times of rolling stock connections.

8.3.2 Network Throughput

A performance indicator related to stability is capacity utilization. An indicator for network

capacity utilization of a periodic railway system is the network throughput defined as (using

conventional division)

ρ = λ0/T,

where λ0 is the minimum cycle time and T the timetable cycle time. For a stable railway system

we have 0 < ρ ≤ 1 , where ρ = 1 corresponds to the saturated case in which the mean cycle time

of trains on the critical circuit is exactly (a multiple of) T . If ρ < 1 the system operates below its

maximum (theoretical) performance and hence contains buffer time to compensate for delays.

Clearly, the network throughput represents a trade-off between stability and capacity utilization.

The higher this measure the more effective the train circulations but the less slack is available

for delay recovery.

In current daily railway practice throughput is a more recognizable quantity than the minimum

cycle time. For instance a throughput of 70% implies that the infrastructure on the worst-case

circuit is utilized for 70% and the remaining 30% is buffer time to avoid or reduce hindrance.

Network throughput refers to the throughput of the critical circuit. A large throughput on this

circuit does not necessarily mean that the throughput on any corridor (which can be seen as a

subnetwork) is also this high. It is therefore also relevant which transportation links make up

the critical circuit, and how the critical cycle time relates to the cycle times of train lines and

corridors or other subnetworks. The cycle times, and hence throughputs, of train lines are easily

obtained when connections and headway are discarded: the circuits are then exactly the train

line circulations (assuming layover times are included).

8.3.3 Stability Margin

The difference ∆1 = T − λ0 gives the average amount of slack on the critical circuit(s) and

hence is a measure of robustness or sensitivity to delays. In particular, ∆1 is the marginal
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increase of each active holding time such that the timetable becomes critical, i.e., ∆1 is the

solution to

max
ξ∈C

w(ξ) + µ(ξ) ·∆1

µ(ξ)
= max

ξ∈C

w(ξ)

µ(ξ)
+ ∆1 = λ0 + ∆1 = T.

Another indicator of robustness is the stability margin ∆2 defined as the maximum simultaneous

increase of all process times such that the train network can still be operated with cycle time T ,

or formally, ∆2 is the solution to the problem (∆2⊗A(T−1))⊗v = v. Note the difference with

∆1 = T − λ which is defined relative to the marking in each place. Hence, ∆1 relates to the

number of trains (tokens) on each circuit whereas ∆2 takes all stops (events) into account. The

stability margin ∆2 can be computed by solving an auxiliary eigenvalue problem as presented

in the following theorem.

Theorem 8.3.2 (Stability margin) Let (8.9) be a stable scheduled max-plus linear system. Then

the stability margin ∆2 is given by ∆2 = ν−1, where ν is the solution of the eigenvalue problem

AT ⊗ v = ν ⊗ v.

Proof: The stability margin ∆2 is the implicit least solution of (∆2 ⊗ AT ) ⊗ v = e ⊗ v. The

max-plus matrix ∆2 ⊗ AT corresponds to the precedence graph G(AT ) where each arc weight

is increased by ∆2. Hence, by Theorem 7.4.1 we have

max
ξ∈C

w(ξ)− µ(ξ) · T + l(ξ) ·∆2

l(ξ)
= max

ξ∈C

w(ξ)− µ(ξ) · T
l(ξ)

+ ∆2 = e,

with solution ∆2 = −maxξ∈C(w(ξ)−µ(ξ)·T )/l(ξ), which is exactly the inverse of the solution

ν to the eigenvalue problem AT ⊗ v = ν ⊗ v. Hence ∆2 = ν−1 = −ν. ✷

In first-order linear systems x(k) = Ax(k − 1) the number of places and tokens on each circuit

ξ is the same, l(ξ) = µ(ξ), and therefore ∆2 = ∆1. In a first-order state-space representation

the number of events is thus reduced to the number of initial tokens.

8.4 Timetable Realizability

In this section we focus on the timetable system {d(k)}k∈N. Hence, we assume that A(γ) is a

given polynomial state matrix and derive conditions on the timetable vectors d(k) such that the

scheduled max-plus linear system

x(k) = A(γ)x(k)⊕ d(k) for all k ∈ N (8.16)

is well-defined. We will concentrate on periodic timetables that satisfy the first-order state

equations d(k) = d(k − 1) ⊗ T , d(0) = d0. From Section 8.2.1 we know that the solution of

this timetable system is

d(k) = d0 ⊗ T k, k ∈ N.

The characteristic parameters of a periodic timetable are thus the initial timetable vector d0 and

the cycle time T . If required the timetable sequence may be extended to the left by allowing

periods k ∈ Z.



230 Punctuality of Railway Operations and Timetable Stability Analysis

A timetable only makes sense if the system is able to operate according to the timetable. This

means that for each marked arc (j, i, l) ∈ supp(A(γ))

di(k) ≥ [Al]ij ⊗ dj(k − l) for all k ∈ Z. (8.17)

Timetables satisfying this condition are called realizable [21].

Definition 8.4.1 (Timetable realizability) A sequence {d(k)}k∈Z is called a realizable timetable

for the scheduled max-plus linear system (8.16) if

d(k) ≥ A(γ)d(k) for all k ∈ Z. (8.18)

The scheduled system (8.16) is called realizable if it has a realizable timetable.

Theorem 8.4.1 (Realizable periodic timetable) A periodic timetable d(k) = d0 ⊗ T k, k ∈ Z,

is realizable for a scheduled max-plus linear system x(k) = A(γ)x(k) ⊕ d(k) if and only if d0

is a generalized subeigenvector of A(γ) associated to T , i.e.,

d0 ≥ A(T−1)⊗ d0. (8.19)

Proof: Assume d(·) is a realizable periodic timetable. Then for all k ∈ Z

d(k) ≥ A(γ)d(k) =

p
⊕

l=0

Ald(k − l) =

p
⊕

l=0

Ald0T
k−l =

p
⊕

l=0

AlT
−ld0T

k = A(T−1)d(k).

In particular, for k = 0 we obtain inequality (8.19). Hence, for a periodic timetable the condi-

tions (8.18) and (8.19) are equivalent. ✷

By Theorem 8.4.1 any finite (sub)eigenvector of the polynomial state matrix A(γ) associated to

T is a realizable timetable to the scheduled system (8.16). Moreover, a realizable timetable is

never unstable as stated in the following Theorem.

Theorem 8.4.2 A scheduled max-plus linear system with a realizable periodic timetable d(k) =
d0 ⊗ T k for k ∈ Z is either stable or critical, i.e., T ≥ λ0.

Proof: By Theorem 8.4.1 a periodic timetable is realizable iff d0 ∈ Rn
max is a subeigenvector of

A(γ) associated to T . Then by Theorem 7.4.4 we must have T ≥ λ0, where λ0 is the maximal

generalized eigenvalue ofA(γ), and finally by Theorem 8.3.1 the system is stable except for the

critical case T = λ0. ✷

The inequality (8.18), or equivalently (8.17), implies that a realizable timetable contains some

nonnegative slack time in each process from one event to another. For a periodic timetable we

can rewrite (8.17) as di(k) ≥ dj(k) + [Al]ij − l · T for all k ∈ Z, or equivalently

di(k)− dj(k)− [Al]ij + l · T ≥ 0 for all k ∈ Z. (8.20)

The actual slack time from j to imay be less because of a tighter process (sequence) from event

j to i. This is the topic of Section 8.5. Also note that a realizable timetable implies that when
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all trains are able to depart according to schedule at some period then this will also be realized

for any future period.

The derivation of a scheduled max-plus linear system and in particular the determination of the

initial marking typically assumes a feasible timetable, cf. Algorithm 6.5.1 and Theorem 6.5.1.

However, the (process time) input data for the timed event graph construction may differ from

the process times applied during evaluation. The construction is based on the scheduled process

times. Once the system has been generated the process times may be adjusted without changing

the initial marking. For robustness studies the running times may be decreased by their running

time margins and for capacity tests the minimum headway times can be reset to the capacity

allocation norms. Realizability of the adjusted system is then no longer trivial.

8.5 Timetable Robustness

8.5.1 The Recovery Matrix

A timetable generally contains slack to recover from delays after disruptions. Slack time can

be incorporated within scheduled process times (running time margins) or between train move-

ments (buffer times). Moreover, a sequence of train runs embraces an accumulation of slack

times. Timetable robustness against delay propagation is therefore determined by accessibility

relations between events and the amount of available slack time on paths from one event to an-

other. Since in general multiple paths exist between pairs of timetable events we are interested

in the critical path from one event to another that has the least accumulated slack time over all

possible paths. This is the topic of this section.

In this section we assume that d(·) is a periodic timetable with cycle time T and finite initial

timetable vector d0 > ε, and consider the scheduled max-plus linear system

x(k) = A(γ)x(k)⊕ d(k), d(k) = d0 ⊗ T k for all k ∈ N. (8.21)

We write d0 = (d0
1, . . . , d

0
n)

⊤. By definition, if di(k) ∈ [0, T ) for some 1 ≤ i ≤ n then

dj(k) ∈ [0, T ) for all 1 ≤ j ≤ n. Moreover, each two events in a periodic timetable have a

regular interval, i.e., for all 1 ≤ i, j ≤ n event time differences satisfy d0
i − d0

j = di(k)− dj(k)
for all k ∈ Z. Without loss of generality, we may assume that d0 ∈ [0, T )n denotes the timetable

vector over the basic period [0, T ).

In the sequel, we refer to the slack time of two adjacent events as the sum of process time margin

and buffer time. Recovery time will be used in a more wide sense as follows [207].

Definition 8.5.1 (Recovery matrix) The recovery matrix R = (rij) is the n × n dimensional

matrix of (cumulative) recovery times, where rij is the minimum total slack time over all paths

from event j to i in the timed event graph G(A(γ)) associated to the scheduled max-plus linear

system (8.21).

An alternative interpretation of the recovery matrix is that rij is the largest delay of xj(k) in

some period k ∈ N that will not reach xi(m) for all m ≥ k. If there is no path from event j
to i then delays of event j will never reach i and so rij = ∞. The recovery matrix thus takes
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values from the extended set R̄max
.
= Rmax ∪ {∞}, or from [e,∞) if the timetable is realizable,

cf. (8.20). In fact, the recovery matrix is defined as a shortest path problem which corresponds

to the so-called min-plus algebra Rmin = (R∪ {∞},min,+), which is an idempotent semiring

dual to the max-plus algebra. We will however stay within the framework of the (extended)

max-plus algebra by using the identity min(a, b) = −max(−a,−b) for all a, b ∈ R̄max, where

by convention−ε =∞.

The following theorem characterizes the entries of a recovery matrix [207, 89].

Theorem 8.5.1 Let (8.21) be a stable scheduled max-plus linear system. Then the associated

recovery matrix R = (rij) ∈ R̄n×n
max is defined by

rij = d0
i − d0

j − [A+
T ]ij, (8.22)

where rij =∞ if there is no path from j to i in the timed event graph G(A(γ)).

Proof: By the stability assumption T > λ and therefore A+
T = A+(T−1) = [

⊕p
l=0AlT

−l]+ is

well-defined. By definition, the entry rij is the minimal cumulative slack over all paths from j
to i in G(A(γ)). Let Pij be the set of all paths from j to i, and for any path ξ ∈ Pij denote by

w(ξ) the weight of path ξ and by µ(ξ) the initial marking on path ξ. Then for all k ∈ N

rij = min
ξ∈Pij

[di(k + µ(ξ))− dj(k)− w(ξ)]

= min
ξ∈Pij

[
(d0

i + (k + µ(ξ)) · T )− (d0
j + k · T )− w(ξ)

]

= min
ξ∈Pij

[
d0

i − d0
j − w(ξ) + µ(ξ) · T

]

= d0
i − d0

j −max
ξ∈Pij

[w(ξ)− µ(ξ) · T ]

= d0
i − d0

j − [A+
T ]ij .

If there is no path from j to i then [A+
T ]ij = ε, and by convention rij = d0

i − d0
j − [A+

T ]ij =
d0

i − d0
j − ε =∞. ✷

Theorem 8.5.1 shows that a recovery time depends on the cycle time T ∈ R+, the polynomial

state matrix A(γ) ∈ Rn×n
max [γ], and the scheduled event times of the origin j and destination i,

but not on the exact timetable of intermediate events. In the proof of Theorem 8.5.1 we used

stability but did not need realizability. If a timetable is unrealizable then recovery times may

be negative, i.e., there exist paths j → i such that rij < 0. Nevertheless, if the timetable is

(partially) unrealizable but stable it can still be robust when the recovery times are positive for

almost all connected event pairs inG(AT ). Of course, the unrealizable arcs will always generate

a (small) delay but depending on the slack of adjacent arcs this delay may be absorbed quickly

which prevents delay propagation over large areas. Unrealizable train runs may formally oc-

cur in the timetable when infrastructure conflicts are not solved in the timetable design. This

occurs for instance in the flexible time-window philosophy of dynamic railway traffic manage-

ment [179]: route conflicts are solved by dispatchers in short-term rescheduling depending on

the actual train positions during operation, e.g. on basis of a first-come first-served (FCFS)

principle.

By Theorem 8.5.1 computation of the recovery matrix R involves solving an (all-pair) longest

path problem over the graph G(AT ). If AT is stable then G(AT ) does not contain positive
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(weight) circuits, which is a necessary condition for the existence of finite longest paths. Nev-

ertheless, G(AT ) generally contains positive arc weights (in conventional sense). For example,

for each (j, i) ∈ supp(A0) we have [AT ]ij =
⊕p

l=0[AlT
−l]ij = [A0]ij ⊕

⊕p
l=1[AlT

−l]ij ≥
[A0]ij ≥ e. We can use the Floyd-Warshall algorithm to compute the longest path matrix A+

T in

O(n3) time [3, 39]. However, the matrices AT ∈ Rn×n
max are typically very large and sparse, i.e.,

m≪ n2, where m is the number of finite matrix entries (arcs). In this case, it is more efficient

to solve the all-pair longest path problem by a repeated single-origin (or single-destination)

longest path algorithm. Implementations of Dijkstra’s label-setting algorithm [56, 3, 39] are

particularly efficient in both running time and memory usage. However, Dijkstra’s longest path

algorithm is restricted to graphs with nonpositive arc weights only1

If d0 > ε is a realizable timetable then we can use the timetable vector d0 to compute nonpositive

reduced arc weights while leaving the longest paths invariant.

Lemma 8.5.1 (Slack Matrix) Let (8.21) be a realizable scheduled max-plus linear system and

define the slack matrix S = (sij) ∈ Rn×n
max by

sij = d0
j − d0

i + [AT ]ij . (8.23)

Then S satisfies

(i) sij ≤ e for all 1 ≤ i, j ≤ n,

(ii) the precedence graph G(S) has no positive-weight circuits,

(iii) [S+]ij = d0
j − d0

i + [A+
T ]ij for all 1 ≤ i, j ≤ n.

Proof: The realizability assumption implies d0
i ≥ d0

j + [AT ]ij and therefore sij = d0
j − d0

i +
[AT ]ij ≤ e for all 1 ≤ i, j ≤ n, which proves (i). By (i) the graph G(S) has nonpositive arc

weights only and therefore the weight of each path or circuit in G(S) will also be nonnegative,

which proves property (ii). From Proposition 7.2.6 and property (ii) follows that S+ exists and

is given by S+ =
⊕n

l=1 S
l. Also A+

T = A(T−1)+ is well-defined which is proved as follows.

By Corollary 8.4.2 we have T ≥ λ0(A(γ)) and therefore λ0(AT ) ≤ e. Hence, the maximum

cycle mean of G(AT ) is at most e and so all circuits in G(AT ) must have nonpositive weight,

by which A+
T =

⊕n
l=1A

l
T using Proposition 7.2.6. It remains to prove that the equality (iii)

is valid. Obviously, sij = ε iff [AT ]ij = ε. Hence, the precedence graph G(S) equals G(AT )
except for an arc reweighting. Now, let Pij be the set of all paths from j to i in G(S). Then the

path weight w(ξ) of any path ξ = (j = i0, i1, . . . , il = i) ∈ Pij of some length l = l(ξ) satisfies

w(ξ) =

l(ξ)
∑

k=1

sikik−1
=

l(ξ)
∑

k=1

(

d0
ik−1
− d0

ik
+ [AT ]ikik−1

)

= d0
j − d0

i +

l(ξ)
∑

k=1

[AT ]ikik−1
.

Hence, the weight of a path ξ in G(S) equals its weight in G(AT ) plus a constant term d0
j − d0

i

that only depends on the initial and final node of the path. Since ξ ∈ Pij was arbitrary, this

holds for all paths from j to i of any length and in particular for the maximum-weight paths,

which proves (iii). ✷

1Recall that the discussion of path algorithms and data structures in the max-plus algebra setting distinguishes

from the common literature on two points: (1) Algorithms and data structures are usually formulated in terms of

shortest-path problems over graphs with no negative circuits. (2) The usual representation of arcs in adjacency

matrices or lists is reversed
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Theorem 8.5.2 If the scheduled max-plus linear system (8.21) is realizable then the recovery

matrix R = (rij) is well-defined by rij = −[S+]ij .

Proof: The theorem follows immediately from Theorem 8.5.1 and Lemma 8.5.1(iii). ✷

As a consequence of Theorem 8.5.2 the recovery matrix R can be computed as the solution

to a longest path problem over a graph with nonpositive arc weights only. For this problem

any longest (or shortest) path algorithm can be used. The best worst-case running time is

O(nm+n2 log n) obtained by repetitively using a Fibonacci heap implementation of Dijkstra’s

algorithm [67]. However, for large networks computing and storing the complete recovery ma-

trix takes much computing time and storage space. Note that even if the matrix AT is sparse

this will generally not be the case for the recovery matrix R. In particular if AT is irreducible

then R is a full matrix and thus needs a storage space of O(n2).

In practice we are only interested in special parts of the matrix R which can better be computed

on demand rather than precomputing and storing the full recovery matrix in advance. In par-

ticular we are interested in only a limited number of rows or columns or in the diagonal of the

recovery matrix R, which have different practical interpretations. We next have a closer look at

the interpretation of the matrix entries depending on their location in the matrix.

8.5.2 Delay Impact Vectors

Each jth column of the recovery matrix gives the recovery time from event j to all other events

in the timetable. Hence, column j represents the impact that a delay of event j will have on

future train events. An entry rij is the maximum delay of event j that can be compensated

before reaching event i. If event j has a delay zj(k) ≥ 0 in some period k then event i will be

delayed by zi(m) = max(zj(k) − rij , 0) at some period m ≥ k, i.e., if zj(k) ≤ rij then the

delay will have been absorbed before reaching event i and otherwise event i will suffer a delay

of zj(k)− rij ≥ 0.

A column j of the recovery matrix can thus be interpreted as a delay impact vector. The finite

entries of this vector correspond to the events that are accessible from j and the values represent

the impact that a delay of event j will have. Of special interest are recovery times below some

threshold value δ, which specifies an impact region at level δ:

Iδ(j)
.
= {i | rij ≤ δ, 1 ≤ i ≤ n}.

For example, the impact region I3(j) gives a neighbourhood of less than 3 minutes recovery

time from event j.

The delay impact vector and associated impact regions give a quick insight view on the impact

of individual delayed events. Since a delay impact vector is just a column of the recovery

matrix it can be computed by the SINGLEORIGINLONGESTPATH algorithm of Section 7.5.2

for the origin j in O(nj log nj) time, where nj ≤ n is the number of events accessible from j.

8.5.3 Delay Sensitivity Vectors

Each ith row of the recovery matrix gives the recovery time to event i from all other events in

the timetable. Hence, row i represents the sensitivity of event i on delays of preceding events.
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In this case, event i will receive a delay zi(m) = max(zj(k) − rij , 0) from a previous event

j that was delayed by zj(k) in some period k ≤ m. So again, if zj(k) ≤ rij then the delay

will have been absorbed before reaching event i and otherwise event i will suffer a delay of

zj(k)− rij ≥ 0.

A row i of the recovery matrix can thus be interpreted as a delay sensitivity vector. The finite

entries of this vector correspond to the events that have access to i and the values represent the

sensitivity of event i on these preceding events. A critical set of events can be defined for which

the recovery times to i are below some threshold value δ. This results in a sensitivity region at

level δ:

Sδ(i)
.
= {j | rij ≤ δ, 1 ≤ j ≤ n}.

For example, the sensitivity region S3(i) gives a neighbourhood of less than 3 minutes recovery

time to event i.

The delay sensitivity vector and associated sensitivity regions quantify the vulnerability of an

event on preceding events. A delay sensitivity vector is a row of the recovery matrix and can

be computed by a single-destination longest path algorithm, or equivalently by a single-origin

longest path algorithm in the graph G(AT ) obtained by reversing all arcs. Hence, a sensitivity

vector can be computed by the SINGLEORIGINLONGESTPATH algorithm of Section 7.5.2 for

G(AT ) and the origin i in O(ni log ni) time, where ni ≤ n is the number of events that have

access to i.

8.5.4 Circulation Recovery Times

Each diagonal entry of the recovery matrix gives the recovery time over all possible paths from

an event i back to event i. The diagonal thus represents the circulation recovery times of all

events in the timetable. The circulation recovery time is an absolute robustness measure for each

periodic event separately and represents the maximum delay that can be absorbed by available

slack in the timetable. Any larger delay will backfire (in reduced form) over some path (circuit)

in the timetable.

The main issue in stability analysis is the circulation of delays over the network. If a delay

keeps circulating over a circuit then all trains on this circuit keep departing delayed. In the

spectral analysis of Sections 7.4 and 8.3 we considered critical circuits that have the smallest

average amount of slack. The circulation recovery time gives a second-order stability test. In

first instance an event is critical if it is part of a critical circuit with minimal stability margin.

Recall that the stability margin is an integrated measure for all events on a critical circuit. In

contrast, the circulation recovery time may vary for all critical events on the critical circuit(s).

Hence, of all critical events the events with minimal circulation recovery time are the most

jeopardizing to stability.

The circulation recovery times of all events are exactly the diagonal entries of the recovery

matrix. Thus, the circulation recovery vector can be computed by the ALLLONGESTCIRCUITS

algorithm of Section 7.5.3.
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8.6 Delay Propagation

8.6.1 Introduction

The recovery matrix R = (rij) consists of the maximum delays that can be recovered between

any two pairs of events in the network. So if an initial delay of a train j exceeds the recovery

time rij then the delay will propagate to train i. Nevertheless, from the recovery matrix we still

do not know when this train will be delayed and whether the train is delayed more than once by

cyclic delay propagation or by initial delays of different trains. Hence, the recovery matrix gives

a quick insight in the impact and sensitivity of delays but does not facilitate detailed propagation

of delays over time and the network.

A delay propagation model explicitly computes the propagation of initial delays over space

and time. Given any combination of initial delays a delay propagation model determines all

arrival and departure delays of each train at each station over each subsequent period and thus

also the settling time (or more precisely the settling period) after which all delays have been

absorbed by available timetable slack. The max-plus dynamic equations provide an effective

delay propagation model, which will be discussed in this section.

This delay propagation model can be applied to derive stability tests. An appropriate measure

is for instance the stability quotient defined as the number of periods needed before an initial

delay of some fixed value settles, see Pachl [158, §6.6]. For example, the German Railways rec-

ommend a stability quotient less than 2 for an initial delay of 10 minutes, which implies that any

delay of 10 minutes should be completely compensated for within two timetable periods [158].

The delay propagation model can also be used for computing the optimal train waiting times

and passenger delays [79, 96, 52]. Furthermore, several variants can be computed where for

instance all trains wait for delayed feeder trains, transfer connections are cancelled, or reserve

rolling stock can be assigned at line ends. The delay propagation is then computed for a number

of models with different state matrices corresponding to removed or adjusted connections (arcs)

which are compared with respect to some objective function.

8.6.2 The Delay Propagation Model

Assume d0 > ε and consider the scheduled max-plus linear system with a special output vector

z(k) containing the delays in period k:







x(k) = A(γ)x(k)⊕ d(k), k ∈ N

d(k) = d0 ⊗ T k, k ∈ N

z(k) = D−1(k)⊗ x(k), k ∈ N

x(1−) = x1, x(l) = xl, 1− p ≤ l ≤ 0,

(8.24)

whereD−1(k) = diag(d−1
1 (k), . . . , d−1

n (k)). Hence, z(k) is the delay vector of events scheduled

in period k with entries

zi(k) = d−1
i (k)⊗ xi(k) = xi(k)⊗ d−1

i (k) = xi(k)− di(k).

Note that the dynamic state-space equation implies x(k) ≥ d(k) and therefore zi(k) ≥ e for all

1 ≤ i ≤ n. The inverse matrix is well-defined for any diagonal matrix D ∈ Rn×n
max with finite
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diagonal entries. Hence as the notation suggests D−1(k) is the inverse matrix of the diagonal

matrix

D(k) = diag(d(k)) =






d1(k) E
. . .

E dn(k)




 = T k ⊗






d0
1 E

. . .

E d0
n




 .

The initial conditions may be given in terms of the initial delay vectors z1, z0, . . . , z1−p ∈ Rn
+ of

delays that reach events in the first (current) timetable period or beyond. The initial state vectors

are then computed as xl = D(l)⊗zl for 1−p ≤ l ≤ 1, whereD(l) = diag(d(l)) = T l⊗diag(d0)
is the left-continuation of the timetable system to the last periods l = 1, 0, . . . , 1− p. If we are

only interested in a subset of delays or if d0 ≯ ε then we may define the delay vector with

respect to a suitable output vector y(k) = C ⊗ x(k) as z(k) = D−1(k)⊗ y(k), where D(·) is a

diagonal matrix of the scheduled event times corresponding to the outputs yi(·).
Particular attention must be given to the initial state vector x1. Assume that at some reference

time t0 (e.g. the current time) we know or have a prediction of the delays of all events scheduled

up to t0. Without loss of generality we assume that t0 occurs in the first period of the max-plus

model, t0 ∈ [0, T ). Then the initial conditions to the max-plus linear system (8.24) are the event

time vectors of the last p periods x1−p, . . . , x0 such that x(l) = xl for l = 1 − p, . . . , 0, and an

initial vector x1 that partially determines the state x(1) for the events scheduled up to t0. Writing

x1 = (x1
1, . . . , x

1
n)⊤, we have xi(1) = x1

i for those events 1 ≤ i ≤ n that have a scheduled event

time di(1) ∈ [0, t0], since these event times are known at time t0 by assumption. The event times

of the remaining events i are still unknown at time t0 and depend on both the delayed events

of preceding processes that were initiated before time t0 as well as on the delay propagation

within (the second part of) the first period over (t0, T ). Since we have no information on the

event times scheduled after t0 they are given an initial estimate x1
i = di(1), corresponding to

the scheduled event times, and we thus have xi(1) ≥ x1
i for all i with di(1) > t0. Hence, we

denote by x(1−) = x1 the partially known state vector at time t0.

The general pth-order state-space equations contain (many) zero-order terms. Theoretically, we

can eliminate these implicit terms from the dynamic model and obtain a purely recursive state-

space realization, see Section 8.2.5. However, we then also loose the possibility of taking into

account initial delays in the first period. Moreover, this procedure aggregates the propagation of

delays within a timetable period. We will therefore keep the zero-order terms in the max-plus

model to correctly represent and compute the propagation of delays over all events.

The following theorem gives a recursive procedure for computing the delay propagation that

correctly incorporates the partial initial state vector x1 of the first period. Recall that the (transi-

tive closure) matrix A∗
0 of a matrix A0 with acyclic precedence graph can be computed in linear

O(n+m) time using a topological ordering algorithm [3].

Theorem 8.6.1 Consider a realizable scheduled max-plus linear system (8.24) with acyclic

G(A0) and initial state vectors xl, 1 − p ≤ l ≤ 1. Then the state trajectory {x(k)}k∈N is

recursively determined by x(1− p) = x1−p, . . . , x(0) = x0,

x(1) = A∗
0 ⊗

(

x1 ⊕
p
⊕

l=1

Alx1−l

)

⊕ d(1)
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and

x(k) =

p
⊕

l=1

A∗
0Alx(k − l)⊕ d(k) for all k ≥ 2.

Proof: The general state-space equations can be written as the implicit equation

x(k) = A0x(k)⊕ x(k−)⊕ d(k),
where x(k−) is the state vector in period k before the zero-order propagation of delays within

this period. Then by Lemma 8.2.1 we obtain

x(k) = A∗
0

(
x(k−)⊕ d(k)

)
= A∗

0x(k
−)⊕A∗

0d(k) = A∗
0x(k

−)⊕ d(k), (8.25)

where in the last equality we used the result A∗
0d(k) = d(k) of Lemma 8.2.2. For k = 1

the tentative state vector x(1−) consists of both the initial delays x1 and the delays propagated

from previous periods, x(1−) = x1 ⊕
⊕p

l=1Alx1−l. Substitution in (8.25) gives the expression

for x(1). For k ≥ 2 we have x(k−) =
⊕p

l=1Alx(k − l). Substitution in (8.25) and using

distributivity gives the required result. ✷

For any initial delay scenario the evolution of the system can be computed by the recursive

procedure of Theorem 8.6.1. If the system is stable all delays will be absorbed after some

settling period ks depending on the particular initial delay scenario. To determine the settling

time note that if in some period k a delayed transition fires over a marked arc with p tokens then

this delayed token will become available after p periods. Hence, from the state vectors we may

conclude that all delays have settled if in p consecutive periods no delays have occurred. The

settling period ks is thus given by

ks = min{k ∈ N | x(k + l) = d(k + l) for 1 ≥ l ≥ p}.

The output delay vectors {z(k)}ks

k=1−p give all explicit delays. The delays in the first period can

be partitioned around t0 into z(1) = z(1−) + z(1+). If di(1) ≤ t0 then zi(1) = zi(1
−) = zi

1

and z(1+) = z(1) − z1 = z1 − z1 = 0, and if di(1) > t0 then zi(1
−) = z1 = 0 and z(1+) =

z(1)− z1 = z(1). Aggregated output is easily obtained from these vectors, for example

• Total secondary delay:
n⊗

i=1

(

zi(1
+)⊗

ks⊗

k=2

zi(k)

)

,

• Maximum secondary delay:

n⊕

i=1

(

zi(1
+)⊕

ks⊕

k=2

zi(k)

)

,

• Ratio total secondary/initial delay:

⊗n
i=1

(

zi(1
+)⊗⊗ks

k=2 zi(k)
)

⊗n
i=1

(

zi(1−)⊗⊗0
k=1−p zi(k)

) .

Other statistics that can be obtained are e.g. the settling period, average secondary delay, number

of delayed trains, and number of stations with delays.
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8.6.3 A Bucket-Based Delay Propagation Algorithm

Theorem 8.6.1 gives a simple recursive procedure to compute the propagation of any initial

delay scenario. For large-scale networks however this procedure is arguably not very efficient

in both computation time and memory usage. In practice the matrices A0, . . . , Ap are very

sparse which can be exploited to effectively compute delay propagation in large-scale networks.

In particular an adjacency list representation of the associated timed event graph can be used.

Moreover, events that are not delayed can simply be discarded as they will not contribute to

delaying a successor.

In the forthcoming we need the concept of a topological ordered graph. A topological order of

nodes i ∈ V in a graph G = (V,E) is a numbering of nodes such for all arcs (j, i) ∈ E we

have j < i. If G is the precedence graph of a max-plus matrix A ∈ Rn×n
max then V = {1, . . . , n}

is topologically ordered if and only if A is strictly lower triangular, i.e., aij = ε for all j ≥ i
(and so aij 6= ε iff j < i). In a topological ordered graph each path has an ascending numbering

of nodes. Topological sorting of an acyclic graph can be done in linear O(n + m) time using

depth-first search [2, 39]. For any acyclic digraph G = (V,E) topological sorting returns a

permutation vector ord such that ord(j) < ord(i) for each arc (j, i) ∈ E. Given this mapping

ord : V → {1, . . . , n} the adjacency lists of G are easily rearranged in increasing order using

two-level bucket sort on the set {(ord(j), ord(i)) | (j, i) ∈ E}, which also takes linearO(n+m)
time. Finally, the permutation ord simply maps an event set Z to the topological ordering and

the inverse permutation ord−1 defined by ord−1(j) = {i | ord(i) = j} maps the topological

ordered numbering back to the original numbering. Algebraically, the permutation ord defines

a permutation matrix P such that the matrix Ã = P⊤AP is strictly lower triangular.

Theorem 8.6.2 Let (8.24) be a realizable scheduled max-plus linear system with arbitrary ini-

tial delay vectors z1−p, . . . , z1 and let G0 = (V0, E0) ⊆ G(A0) be the acyclic graph with arc

and node set defined as

E0 = {(j, i) | [A0]ij = e and d0
i = d0

j}
V0 = {1 ≤ i ≤ n | ∃j : (i, j) ∈ E0 or (j, i) ∈ E0}.

Then a legal firing sequence for computing the delay propagation {z(k)}k∈N is obtained by

firing delayed events in order of their scheduled event times and breaking ties in topological

order for events i ∈ V0 and randomly otherwise.

Proof: First note that if V0 6= ∅ then G0 is an acyclic digraph and thus a topological order of

the nodes in V0 exists. Furthermore, in G0 all arcs have weight 0, each path consists of nodes

sharing a common scheduled event time, and G0 has no isolated nodes, i.e., nodes without a

predecessor nor a successor. Let i ∈ T = {1, . . . , n} be an arbitrary event and assume first that

i 6∈ V0. The event time xi(k) in any period k ∈ N can be computed only if the event times of

all (direct) predecessors are available. If di(k) is the associated scheduled event time then each

predecessor j associated to some place (j, i, l) has a scheduled event time dj(k − l) < di(k)
because the timetable is realizable. Hence, the scheduled order equals the precedence order. If

for some j ∈ T we have di(k) = dj(k) then j cannot be a predecessor of i and vice versa since

this would violate the condition dj(k− l) < di(k). Hence, all events with equal scheduled event

time can be computed independently and thus in random order. Now suppose i ∈ V0. Then

there may exist a predecessor j ∈ V0 with [A0]ij = e and dj(k) = di(k). If so, then the event
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time xj(k) of this predecessor must be computed before xi(k) can be computed. Analogously,

since also j ∈ V0 the event time of any predecessor s ∈ V0, if one exists, must be computed

prior to xj(k), et cetera. Hence, by sorting the events in V0 upstream of i, if any, in topological

order the correct precedence order is obtained for computing the event times one at a time. Note

that since G(A0) is acyclic also G0 = (V0, E0) ⊆ G(A0) is acyclic and therefore each upstream

path to any node i ∈ V0 is finite, and in particular i itself may be a source in G0. ✷

Corollary 8.6.1 Let (8.24) be a realizable scheduled max-plus linear system. If G(A0) has

(conventional) positive-weight arcs only then a legal firing sequence for computing {z(k)}k∈N

is obtained by firing delayed events in order of their scheduled event times and breaking ties

randomly.

Proof: If [A0]ij > e for all (j, i) ∈ supp(A0) then E0 = V0 = ∅ and the result follows directly

from Theorem 8.6.2. ✷

Let G = (V,E) be a directed graph and assume G′ = (V ′, E ′) is an acyclic subgraph of G
with V ′ .= {i ∈ V | ∃j ∈ V : (i, j) ∈ E ′ or (j, i) ∈ E ′}. Then we say that the node set V is

topologically ordered with respect to G′ = (V ′, E ′) if the node subset V ′ ⊂ V is topologically

ordered. Hence, given a polynomial matrix A(γ) =
⊕p

l=0Alγ
l ∈ Rn×n

max [γ] with acyclic G(A0)
and a permutation matrix P corresponding to a topological reordering of nodes in G(A0), the

similarity transformation Ã(γ) = P⊤A(γ)P gives a polynomial matrix associated to the timed

event graph G(Ã(γ)) where the transitions are topologically ordered with respect to G(A0).

If the events of G(A(γ)) are topologically ordered with respect to G(A0) then so they are for

G0 ⊆ G(A0). Hence, we have the following corollary to Theorem 8.6.2.

Corollary 8.6.2 Let (8.24) be a realizable scheduled max-plus linear system and assume that

the nodes are topologically ordered with respect to the acyclic graphG(A0). Then a legal firing

sequence that computes the delay propagation {z(k)}k∈N is obtained by firing delayed events

in order of their scheduled event times and breaking ties in ascending index order, i.e., given a

set of delayed events Z
.
= {(i, k, zi(k))| zi(k) > e} select the next delayed event i according to

(j, k, zj(k)) = arg min {j | (j, k, zj(k)) ∈ arg min {di(k) | (i, k, zi(k)) ∈ Z}} ,

where di(k) = d0
i + k · T .

In general, topological sorting of an acyclic digraph G(A0) can be done very fast, as discussed

above, and therefore we may sort the events of G(A(γ)) with respect to G(A0) instead of the

subgraph G0, if the latter has still to be determined. Moreover, sorting nodes with regard to

G(A0) is independent of the holding times and initial timetable and therefore robust to variations

in the finite entries ofA0 and the timetable vector d0. On the other hand, if we can establish that

V0 = ∅ then any numbering of events is trivially ‘topologically sorted’. A sufficient condition

for V0 = ∅ is that A0 has no entries with value e. Another less restrictive sufficient condition

is that any entry of A0 with value e has different timetable values of the associated nodes, i.e.,

d0
i 6= d0

j for all (j, i) such that [A0]ij = e. Note that since A0 is acyclic the diagonal has no

finite entries. In the following we assume that either V0 = ∅ or that the events are topologically

sorted with respect to either G0 or G(A0).
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Theorem 8.6.2 and its Corollary 8.6.2 suggest a graph algorithm where delayed events are

maintained in buckets of equal scheduled event time. Here, a bucket Bt is a linked list (of

variable size) of all delayed events (i, k, zi(k)) with scheduled event time di(k) = t. The

buckets themselves are elements of an array B = (Bt), or more precisely, B is an array of lists

(or headers for lists) indexed by scheduled event time. A new delayed event (i, k, zi(k)) with

scheduled event time di(k) is inserted in bucket Bdi(k) and an existing delayed event can be

found by searching for it in the bucket indexed by the associated scheduled event time. This

approach of sorting events is known as bucket sort or binsort [2]. We here tacitly assume that

the scheduled event times are specified in whole minutes, which is generally true for departure

times in railway timetables. If the indices of array B are restricted to nonnegative integers then

it is convenient to choose the initial timetable vector d0 such that d0 ∈ [(p−1) ·T, p ·T )n, where

p is the order of the max-plus linear system. Then di(1− p) = d0
i + (1− p) · T ∈ [0, T ) for all

1 ≤ i ≤ n and thus any delayed event (i, k, zi(k)), k ≥ 1− p, has at least scheduled event time

0.

Algorithm 8.6.1 gives the pseudocode for computing the propagation of any initial delay sce-

nario in a scheduled max-plus linear system — or equivalently in the associated timed event

graph. The required input is an adjacency list of the timed marked graph G(A(γ)), the initial

timetable vector d0 ∈ [(p − 1) · T, p · T )n, the cycle time T , and a list of initial delays. We

assume that the initial delayed events are specified by tuples of the form

(i, k, zi(k)) ∈ Z0
.
= {(i, k, zi(k)) | zi(k) > e, 1− p ≤ k ≤ 1}, (8.26)

where i ∈ T = {1, . . . , n} is the delayed event number, k ∈ Z the period in which the delay

occurs, and zi(k) > 0 is the delay.

Algorithm 8.6.1 uses two counters t and dmax denoting the current scheduled event time and the

maximum scheduled event time of delayed events encountered so far, respectively. Initially, t
(dmax) is set to a very large (negative) value (line 1). Then each initial delay is sorted in buckets

and the counters t and dmax are updated according to the scheduled event times of the sorted

delayed events (lines 2–5). At the end of the initializationBt is the nonempty bucket of smallest

index, t the smallest scheduled event time amongst the initial delayed events, and Bdmax
the

nonempty bucket with largest index. The main program (lines 6–19) contains an outer and an

inner loop. The outer loop iterates over the counter t and stops as soon as t exceeds dmax which

implies that all buckets are empty. The algorithm then terminates by returning the computed

delay listZ, which contains all initial and secondary delayed events in scheduled order (line 20).

For each current value of the counter t the inner loop (lines 7–18) is called, which explores the

delayed events within bucket Bt. If bucket Bt is empty the program returns to the outer loop,

increases the current scheduled event time t by one and starts a next iteration. On the other

hand, if Bt is nonempty then the event with minimal index j is selected (line 8), deleted from

the bucket and added to the final list of delays (line 9). Lines 10–18 scan each outgoing arc of

j. If the current delay zj(k) exceeds the slack on an outgoing arc then the delay is propagated

to the successor event and one of three options occurs: if the scheduled event time di(k) of the

successor i is larger than any scheduled event time encountered so far then dmax is updated, the

bucket array B is expanded with empty buckets up to Bdi(k), and the new (reduced) delay is

inserted into Bdi(k) (lines 14–15). Otherwise, if the successor i is already in bucket Bdi(k) then

the delay is updated (lines 16– 17), and if i is not yet in the bucket then it is inserted (line 18).

If the adjacency list of event j is exhausted, a new iteration of the inner-loop starts by finding

the next event in bucket Bt or establishing that the bucket has become empty.
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Algorithm 8.6.1 (DELAYPROPAGATION)

Input: Timed event graph G(A(γ)) (adjacency list), realizable timetable d0 = (d0
1, . . . , d

0
n)⊤, cycle time

T , initial delay list Z0.

Output: Delay list Z .

1 t←∞; dmax ← ε; //Initialization
2 for each (i, k, zi(k)) ∈ Z0 do

3 d← d0
i + k · T ;

4 Bd ← Bd ∪ {(i, k, zi(k))};
5 t← min(t, d); dmax ← max(dmax, d);
6 while t ≤ dmax do //Main loop
7 while Bt 6= ∅ do //Inner loop
8 (j, k, zj(k))← arg min{j | (j, k, zj(k)) ∈ Bt}; //Delay selection
9 Bt ← Bt \ {(j, k, zj(k))}; Z ← Z ∪ {(j, k, zj (k))};
10 for each place (j, i, l, [Al]ij) ∈ succ(j) do

11 d← d0
i + (k + l) · T ;

12 z ← t + [Al]ij + zj(k)− d;

13 if z > 0 then //Propagate
14 if d > dmax then

15 dmax ← d; Bd ← {(i, k + l, z)};
16 else if (i, k + l, ·) ∈ Bd then

17 if zi(k + l) < z then zi(k + l)← z;

18 else Bd ← Bd ∪ {(i, k + l, z)};
19 t← t + 1;

20 return Z //Terminate

The bucket implementation of the delay propagation algorithm is particular efficient if the

scheduled event times are more or less evenly distributed from a finite discrete set (in each

period). In general, railway timetables of large-scale networks show a rather uniform distribu-

tion of scheduled event times because of the diverse running times over the various stretches

between station stops. Figure 8.3 shows the hourly scheduled departure times in the national

Dutch railway timetable of the year 2000/2001 as a function of events (left) and the associated

histogram (right). In this periodic timetable 2423 departure events are scheduled in each hour

with scheduled departure times ranging from 0 to 59 minute. The plots indeed suggest that the

events are quite evenly spread over the integers [0, 59], which is also confirmed by formal sta-

tistical tests. This uniform distribution of scheduled departure times over the events stems from

the large number of events of the large-scale network and the ‘random’ scheduled process times

of the trains running over the network which depend on different station distances and varying

operational characteristics of trains and infrastructure. The histogram at the right in Figure 8.3

also shows that in this case the size of a bucket will never exceed 57 events, where this upper

bound corresponds to the (rare) case that in some period all events over the network with sched-

uled departure time 46 are delayed. The bucket implementation is therefore an effective way to

decompose the list of delayed events during the course of the algorithm for quick access.

The efficiency of Algorithm 8.6.1 can be improved even more by an appropriate data structure of

the buckets. In particular, each bucket should be implemented as an ordered list with respect to

increasing event number or more generally as a priority queue. The buckets have a dynamic size

and the maximum size differs from bucket to bucket. Most buckets contain only a few events
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Figure 8.3 Departure time distribution in the Dutch railway timetable 2000/2001. Function of

event number (left) and histogram (right)

and even “full” buckets have limited size as discussed in the last paragraph. Furthermore, the

total number of events — and therefore the range of the event numbering — can be very large.

Given these characteristics, a linked ordered (or linear) list is the preferred data structure for

each bucket [119]. In a linked ordered list finding the minimal element in a bucketBt (cf. line 8)

just reduces to returning the first element inBt, which takesO(1) time, and so does deleting this

minimal element from the ordered list (line 9). Finding a given event by its number (line 16) or

establishing that the event is not yet in the list takes O(nt) time, where nt is the maximal size

of bucket t. When an event has been located in a bucket updating the delay takes O(1) time.

On the other hand, as soon as the list search meets a higher-numbered event it is known that

the current event is not yet in the list and so it is inserted between the located higher-numbered

event and its predecessor (line 18) in O(1) time.

The linked linear list implementation of the buckets improves finding, updating and inserting

items in a bucket as opposed to an unordered list regardless of the event selection method

(line 8). Hence, even if events in a bucket may be selected randomly, cf. Corollary 8.6.1, the

ordered list implementation of the buckets is the preferred data structure. More advanced heap

data structures [2, 39] can be used if the size of buckets are likely to become very large, say

exceeding 100. From the above discussion follows that a linked ordered list should be used if

n/T < 100 and the scheduled event times are approximately uniformly distributed over [0, T −
1]. A heap implementation of the buckets may become more efficient if the ratio of number of

events and cycle time n/T is very large or event times are scheduled disproportionally to some

special values and many and/or large initial delays are introduced.

Theorem 8.6.3 Let (8.24) be a stable scheduled max-plus linear system with realizable timetable

d(k) = d0T
k for k ∈ Z, and either V0 = ∅ or the nodes are topologically ordered with respect

to G0 = (V0, E0). Then the delayed event set Z is finite and Algorithm 8.6.1 computes the delay

propagation {z(k)}k∈N for any initial delay scenario {z1−p, . . . , z1} in finite time.

Proof: If the max-plus linear system is stable, λ0(A(γ)) < T , then by definition each circuit

in the timed event graph G(A(γ)) contains some positive buffer time and therefore each delay

is strictly decreasing over each circuit, whence the total number of delays |Z| is finite. The

algorithm proceeds by scanning each delayed event exactly once as an immediate consequence
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of Theorem 8.6.2 and its Corollary 8.6.2 and therefore terminates after a finite number of itera-

tions. Note that a topological order of the nodes of G(A0) also implies a topological order with

respect to G0 = (V0, E0) and is thus also covered by the theorem. ✷

In practice Algorithm 8.6.1 has a fast pseudolinear running time in the number of (initial and

secondary) delayed events |Z| because: (1) the algorithm only scans delayed events, (2) each

delayed event is scanned exactly once, (3) the number of successors checked for delay propa-

gation in each scan is limited by the maximum outdegree over all nodes which is typically very

small (< 10), (4) the buckets Bt are typically small (nt = |Bt| < 100) and finding an event

in an (ordered) bucket or detecting its absence takes on the average log(nt) < 10 comparisons,

whereas all other bucket operations take O(1) time.

8.7 PETER

8.7.1 Introduction

PETER is a strategic and tactical planning support system for the evaluation of periodic rail-

way timetables on network stability and effective capacity utilization. PETER is an acronym of

Performance Evaluation of Timed Events in Railways. The software PETER contains an imple-

mentation of the timed event graph and max-plus linear system theory presented in this thesis.

The core of the PETER software is the implementation of an automatic (max-plus) model build-

ing procedure and efficient state-of-the-art numerical algorithms for analysing the model, which

are well-documented in this thesis. For the programming and development of a user-friendly

human-machine interface (HMI) suitable for railway planners it was decided to cooperate with

the software firm ORTEC [88], who are specialized in planning software and, amongst others,

developed and maintain the Dutch railway timetable design system DONS for the Dutch Rail-

ways (NSR) and ProRail. PETER has a modular system architecture written in Delphi for the

operating systems MS Windows 95 and higher. The policy iteration algorithm of the critical

circuit analysis is a callable routine implemented in C. The modular design facilitates future

enhancements.

PETER has been developed to support railway professionals in their task of designing, eval-

uating and improving railway timetables. The graphical user interface (GUI) enables non-

mathematical users to apply automated advanced mathematical modelling and analysis tech-

niques while maintaining focus on timetabling decisions (input parameters) and interpretation

of computational results. The tool relieves the tedious task of ‘pencil and paper’ calculations

and allows visualization of complex (cyclic) network interdependencies which are inherently

present in the railway timetable but hard to grasp without computer-aided support.

The main strength of PETER is the analytical max-plus analysis approach which in combination

with efficient numerical graph algorithms enables a real-time computational environment for

the evaluation of large-scale network timetables. Moreover, a graphical network visualization

allows an insightful representation of results which helps users to focus on critical components

and prevents them from drowning in an overkill of output which is a serious concern when

analysing large-scale networks. PETER is also compatible with DONS. All analysis methods in

PETER are hence available to quickly evaluate timetable structures generated by DONS, which

is a further major contribution to the computer-aided timetable design in the Netherlands.
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This section briefly outlines the features of PETER. In Section 8.8 the application of PETER —

and the max-plus analysis approach in general — is demonstrated in a case study of the national

Dutch railway timetable.

8.7.2 Input Data

PETER automatically builds a max-plus linear system model and the network visualization

based on the following input data:

• Timetable points: name (abbreviation), coordinates and type (intercity stations (IC), in-

terregional stations (IR), regional stops (AR), freight or shunting yards (F), junctions (J),

and movable bridges (BR)),

• Train lines: line number, route, stops, nominal running times, minimum dwell times,

frequency,

• Timetable: scheduled arrival, departure and through times,

• Connections: passenger transfers and minimum transfer times,

• Rolling stock circulations: turns or other rolling stock connections and minimum layover

or (de-)coupling times,

• Logistics: crew transfers and minimum transfer times (optional),

• Infrastructure and safety system: minimum headway times between train events.

Section 6.5 gave a description of the generic input data file format. Timetable points are given

in the TimetablePointData, train lines and timetable data are combined in the LineData,

SynchData contain the connection, rolling stock circulation and logistics data, and the infras-

tructure and safety system data are given in the HeadwayData. In PETER these data are im-

ported from a combined ASCII generic input file. Process times can be specified up to a second

using decimal or time format (min:sec), e.g. 63 minutes and 15 seconds is specified in decimals

by 63.25 and in time format by 63:15. This generic format is easily generated by standard text

editors or spreadsheets. Networks can also be created within PETER using the build-in editors

and saved in the generic format. For fast access the internal data structure of PETER and the

computed results can also be saved from computer memory to a binary file.

PETER automatically constructs the max-plus model and draws the network view based on the

input data. A build-in editor can also be used to edit data. When data has been edited it is

checked on feasibility before PETER builds a new max-plus model. The modular system ar-

chitecture of PETER enables easy extension of functionalities. As an example, a module has

been developed that directly imports data files from the Dutch timetable design tool DONS,

see Section 3.9.1. The DONS data is given in three data files: TimetablePoints contains the

data of the timetable points. Constraints is the input data file prepared via the DONS inter-

face that is used by CADANS to compute a feasible timetable (or a minimal set of conflicting

constraints). Recall from Section 3.9.1 that CADANS is the kernel of DONS that computes a

feasible timetable from a set of periodic time window constraints corresponding to the periodic

event scheduling problem (PESP). Constraints thus contains these PESP constraints in a pre-

scribed ASCII format. Finally, Timetable is an output file of CADANS containing a feasible

timetable in some prescribed ASCII format.

PETER also contains several options to quickly analyse the impact of parameter variations. By

simply selecting a toggle we may individually exclude all layover times, passenger transfers,
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rolling stock connections, infrastructure constraints and/or any train line to see its influence

on the timetable characteristics. Also a uniform running time margin (percentage) for each

individual train line can be set which is then applied integrally over all line segments. Of course

each line segment may also be given a dedicated running time margin in seconds.

8.7.3 Functionalities

PETER evaluates the performance of periodic railway timetables using the following three com-

plementary functionalities:

1. Critical circuit analysis: identification and quantification of the critical cycles in the net-

work with the least mean slack,

2. Recovery time analysis: identification and quantification of the least total slack available

over all paths between any pair of train events,

3. Delay propagation: identification and quantification of the propagation of initial delay

scenarios over time and space.

Together these functionalities give insight in the stability and robustness of a railway timetable

structure with a main emphasis on the interconnection structure of train paths and decoupled

subsystems (network connectivity), mean slack available on circuits in the network (network

stability), and the distribution of time supplements and buffer times over the timetable (robust-

ness). In the next subsections we will give a brief overview of the functionalities.

8.7.3.1 Critical Circuit Analysis

In PETER the max-plus spectral analysis has been called critical circuit analysis which might

be more appealing to the intended users. Moreover, we may think of spectral analysis as the

mathematical method to find the critical circuits and their components which are analysed sub-

sequently by the users of PETER to improve (or establish) system performance — the critical

circuit analysis. Critical circuit analysis can be viewed as the cyclic variant of the critical path

method (CPM) in network analysis which concentrates on acyclic graphs and is a well-known

method in project management (PERT, Project Evaluation Review Technique). The name spec-

tral analysis would be more appealing to engineers since it (correctly) suggests a method for

analysing the steady-state periodic solutions of the (max-plus) linear system. Hence, critical

circuit analysis is made possible by the spectral analysis detailed in Section 8.3 using the (gen-

eralized) eigenvalue theory of Section 7.4. The generalized eigenproblem is solved in PETER

by the policy iteration algorithm which gives the cycle time vector and an eigenvector, as well

as the critical circuits and the components accessible from the critical circuits.

The primary results of the spectral analysis are shown in a separate window. In top a summary

is presented of the maximum cycle time, maximum throughput, maximum stability margin, the

number of components, and a most critical circuit (departure event list). Next, the spectral re-

sults are presented in tabular form for all departure events (line segments). Note that in PETER

departures are the main events whereas all other events (arrivals, through and terminal events)

are considered dummy events whose characteristics depend on the preceding departures. The

departures are ordered by line segment number and each row corresponds to one departure. The
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successive columns correspond to the line segment, scheduled departure time, a boolean show-

ing whether the event is critical (yes/no), the cycle time, the eigenvector value, stability margin,

circulation recovery margin, and a boolean showing whether the event is cyclic (yes/no). The

latter boolean variable states whether an event is or is not contained in some circuit. If an event

is not cyclic there are three options. First, the event is accessible by some circuit. In this case

the cycle time and eigenvector entry are computed directly by the policy iteration algorithm. On

the other hand, if the event has no upstream circuit but has access to some circuit then its cycle

time and eigenvector entry are computed using a critical path to its cyclic successors (starting

at a circuit node and computing backwards on the incoming trees). Third, if an event has no up-

or downstream circuits — the event is part of a tree — then its cycle time and eigenvector entry

are undefined.

The critical components are also available in a separate window. All components associated to

some critical circuits(s) are shown ordered by cycle time. Each component is specified by four

columns giving subsequently the cycle time, throughput, stability margin, and the (first) events

on (one of) the critical circuits. By right-clicking on a component row three options become

available: the details of the critical circuit in tabular form, a network visualization of the compo-

nent and its critical circuits, or a time-distance diagram of the critical events and processes. The

details of a critical circuit contain the successive departure events (line segments) along with the

scheduled departure time at the origin, the arrival time at the destination, the connection time

at the destination, connection type (stop, turn, transfer, coupling, headway), eigenvector value,

and circulation recovery time.

The network view shows all critical circuits on the railway network. All tracks contained in

a critical circuit are shown in shades of red (or in a black-and-white view, shades of grey). If

the network contains several components with different cycle times the colours of the separate

critical circuits are scaled accordingly with the maximum cycle time bright red and the least

critical cycle time shown in white. It is also possible to view a single component accessible

from some critical circuit. In this case the critical circuit is shown in red and all tracks accessible

from the selected critical circuit are shown in black. This gives an insightful view of the impact

region of critical events on the critical circuits.

As an example, Figure 8.4 shows the network view of the critical circuits of the Dutch railway

timetable, see Section 8.8. The network is zoomed into the area of interest. There are 4 critical

circuits. The most critical circuit has cycle time λ0 = 58:01 and runs from The Hague HS (Gv)

at the top-left corner, via Dordrecht (Ddr) in the middle, to Roosendaal (Rsd) at the bottom-left

and Eindhoven (Ehv) at the bottom-right. The critical circuit of the least critical component

(λ3 = 51:56) is shown in white on the left of Schiedam (Sdm). The 2nd critical component

(λ1 = 55:02) runs between Gouda (Gd) and Alphen aan den Rijn (Apn) and its critical circuit

is shown in a lighter shade of red. Finally, the critical circuit of the third critical component

(λ2 = 52:26) is shown in very light red from The Hague CS (Gvc) to Zoetermeer (Ztm) and to

Rotterdam Hofplein near Rotterdam CS (Rtd). For more details, see Section 8.8.

The identification of critical circuits supports decisions to improve system stability by suggest-

ing changes in the critical processes of the critical circuits. Possible actions are changing train

orders, adding (or moving) a train to one of the critical processes, or improving the critical pro-

cess time by e.g. faster train units, shorter dwell times (increased door-widths), shorter transfer

times (cross-platform transfers), or infrastructure investments. Of course the amount of neces-

sary slack depends on the reliability of individual or joint process times in the circuit. Moni-
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Figure 8.4 Four critical circuits in a model of the Dutch railway timetable

toring and managing schedule adherence of the identified critical processes is another means of

improving system performance.

8.7.3.2 Recovery Time Analysis

Recall from Section 8.5 that the recovery time from one departure event to another is the min-

imum cumulative slack time over all possible paths in the interconnection network from the

first event to the other. The recovery times include slack supplied within scheduled process

times (e.g. running time margins) and buffer times between train paths. The theory behind the

recovery time analysis has been considered in Section 8.5 using the longest path theory and

algorithms of Section 7.5.

In PETER the recovery matrix is computed for all departure events. Still, the recovery matrix

gives an overkill of information since all events accessible from each event leads to a recovery

time entry. The main challenge therefore is to represent this information to a user in an acces-

sible way. In Section 8.5 we already distinguished between rows, columns and the diagonal of

the recovery matrix corresponding to delay sensitivity, delay impact and circulation recovery

time, respectively. As already mentioned in the previous section, the circulation recovery time

of each departure event is included in the list of primary results together with the results of

the spectral analysis. In contrast to the circulation recovery times, the delay impact and delay

sensitivity of some event i are vectors corresponding to all evens accessible from i or having
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access to i, respectively.

Projecting the delay impact and sensitivity vectors on the railway network gives an insightful

network view of the delay impact regions and sensitivity regions of a selected event. In this net-

work view the timetable points and interconnecting tracks are coloured according to the least

(worst-case) recovery time over all events (line segments). The colour scheme runs continu-

ously from black (0 min recovery time), via red (5 min), orange (10 min), yellow (15 min), light

yellow (20 min) to white (25 min and higher). For example, Figure 8.7 on page 255 shows the

delay impact of departure R6300 Gvc-Laa of regional train line R6300 The Hague CS-Haarlem

departing from The Hague CS (Gvc) to the next local stop The Hague Laan van NOI (Laa).

All stations and tracks coloured in black to red2 contain events accessible from R6300 Gvc-

Laa with recovery time 5 minutes or less corresponding to an impact region at level 5 minutes.

The impact region at level 10 reaches all stations and tracks up to colour orange, et cetera. All

timetable points and tracks shown in white are either not accessible from the selected event or

contain only events with at least 25 minutes recovery time from the selected event.

The delay impact/sensitivity from/to a selected event can also be shown in tabular view or in a

bar chart, either ordered by event name or by increasing recovery time. In the latter case the

most critical events with respect to the least recovery time are shown first. The ordering by

event name (line segment) gives a clear view in the change in recovery time over consecutive

line segments.

The large amount of events in a delay impact/sensitivity vector may be managed by setting a

recovery threshold parameter. If this parameter is set to, say, 15 minutes then only events with

recovery time up to 15 minutes are shown, corresponding to the delay impact and sensitivity

regions at level 15 minutes. In practice very large delays are managed by cancelling connec-

tions, changing train orders, running reserve rolling stock or even cancelling trains. Hence, from

some threshold value the timetable is no longer respected and exact recovery times are therefore

no longer relevant. From a performance evaluation viewpoint recovery times exceeding some

threshold correspond to robust event pairs. Given a selected event, all accessible events with

a large delay impact (sensitivity) above some threshold value can be considered outside any

impact (sensitivity) region of the selected event.

8.7.3.3 Delay Propagation

Delay propagation is based on the algorithms of Section 8.6. The initial delays can be inserted

manually or imported from a delay file. Manually inserted initial delays can also be saved to

a generic delay file for future usage. The delay files enable easy access to a range of initial

scenarios for delay propagation. The generic delay file is an ASCII file InitialDelays con-

taining a list of all initial delays specified by event, period and delay, corresponding to the delay

list (8.26).

The delay propagation is computed for any set of initial delays, the initial delay scenario, ac-

cording to the active max-plus model (respecting the toggles that may exclude some constraint

groups or train lines). The computed delays are classified into three types:

• Initial delay: defined in the initial delay scenario,

2For black and white view look at the legend at the right in Figure 8.7
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Figure 8.5 Delay propagation of 10 minutes initial delay of the R6300 Gvc-Hlm at The Hague

CS (PETER network visualization)

• Secondary delay: a propagated delay from one train line to another.

• Consecutive delay: the receding delay propagation over successive segments of a train

line following an initial or secondary delay.

Delay propagation over turning trains are also considered as secondary delays. The output can

be shown in tabular form and visualized in the network view, and can be saved to an output file

for further processing.

A pop-up window shows the results in tabular form starting with a summary. The summary

gives a number of aggregated results: total initial delay, total secondary delay, cumulative sec-

ondary delay (including consecutive delays), number of secondary delayed trains, number of

reached stations, average primary delay, average secondary delay, average total delay, and set-

tling period. This summary is followed by a list of all delays in order of scheduled event time.

Each row represents one delay and contains a number of columns: line segment (event), sched-

uled departure time, timetable period, delay, and delay type (initial, secondary, consecutive).

The contents of this window can also be saved to an output file.
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The network visualization consists of a projection of the delays to the network, similar to the

recovery impact. Figure 8.5 shows an example of the network visualization, see §8.8 for details..

In this network view the timetable points and interconnecting tracks are coloured with respect

to the maximum (worst-case) delay over all events (line segments). The colour scheme runs

continuously from white (0 minutes delay), via yellow (5 min), orange (10 min), red (15 min),

dark red (20 min) to black (25 min and higher). Note that the colour scheme is the reversed of

the recovery times, so that again black is critical and white is harmless. The delay propagation

can be visualized all at once, or by successive timetable periods which thus shows an animation

of the delay propagation over the consecutive periods. The latter visualization starts with the

initial delays, then the delay propagation in period zero, the first period, etc., until the settling

period.

8.8 Case Study: The Dutch National Railway Timetable

8.8.1 Model Variants

This section presents the results of a case-study of the Dutch national railway timetable. The

max-plus linear system model is based on a DONS variant of the Dutch 2000/2001 railway

timetable in the morning peak. The model contains all train lines and freight paths scheduled in

the morning peak including the intercity (IC), interregional (IR), and regional (R) lines of NS

Reizigers, the regional lines of Syntus in the east of the Netherlands, the regional lines of No-

ordNed in the north, the high-speed line (HST) from Amsterdam to Belgium, the international

(INT) lines to Germany, and the freight (F) train paths. Table 8.1 summarizes the model. The

dummy events correspond to arrival, through and terminal events.

Table 8.1 Summary of the Dutch national 2000/2001 railway timetable model

DONS timetable model

Timetable points 729 stations, stops, shunting yards, junctions, movable bridges

Train line segments 7183 2062 stops, 281 turns, 4760 runs, 80 ends

Connections 259 198 transfers, 61 rolling stock connections

Headway constraints 87776 arrivals, departures, in/outbound, crossings, meets, overtaking

Max-plus linear system

Nodes (transitions) 3536 1677 departure events, 1859 dummy events

Arcs (places) 25472 1677 line segments, 259 synchronization, 23536 infra

Tokens 12429 305 train runs, 90 connections, 105 turns, 11929 headway order

Order 2 13043 0-token places, 12193 1-token places, 236 2-token places

We consider two model variants distinguished by the amount of running time margin. In the

basic variant we consider scheduled running times and in the margins variant we assume mini-

mum running times implying that running time margins are used for delay reduction. Since the

actual running time margins were not available we approximated them by subtracting 7% of the

scheduled running times according to the capacity allocation norms, although in practice the de-

fault margins are slightly higher due to rounding running times to whole minutes. Furthermore,

the DONS model did not always specify minimum layover times of turning trains. In those
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Table 8.2 Spectral analysis results basic and margins timetable

Basic Margins

λ ∆2 λ ∆2 Component / critical circuit (CC)

60:00 0:00 58:01 0:11 Main network

CC: Various

58:00 0:06 55:02 0:15 Line Gouda–Alphen aan den Rijn

CC: R9500 Gouda–Boskoop–Gouda

55:00 0:22 51:56 0:35 Line Rotterdam CS–Hoek van Holland

CC: R4200 Rotterdam CS–Maassluis West–Rotterdam CS

54:48 0:21 52:26 0:31 Lines The Hague CS–Zoetermeer/Rotterdam Hofplein

CC: R13300, R13400, R13700, R13500, R13600

cases we used a default value of 5 minutes and assumed that any remaining layover time could

be utilized as buffer time in case of delays. The minimum headway times in the DONS model

utilized at infrastructure conflict points are based on the Dutch capacity allocation norms which

range between 2 and 4 minutes depending on the route conflict and train types, see Chapter 3.

8.8.2 Critical Circuit Analysis

Table 8.2 shows the results of the spectral analysis of the basic timetable. The network is al-

most entirely connected with various critical circuits of maximum cycle mean λ0 = 60. Hence,

the basic timetable is critical implying that on the critical circuits no spare time is available

other than the (unknown) process time margins and buffer times contained in the running times

and minimum headways. The network contains three additionally strongly-connected compo-

nents that are uncoupled from the main network component, see Table 8.2. The second critical

component is the regional train line R9500 running on a single-track route between Gouda and

Alphen aan den Rijn. The critical circuit has cycle mean λ1 = 58 minutes and is compiled of

the trip from Gouda to Boskoop just before Alphen where the train meets its opposite train, the

minimum headway to the opposite train, the trip from Boskoop back to Gouda, and the turn

in Gouda. The third component is the partial single-track route between Rotterdam CS and

Hoek van Holland, where the train circulation of the R4200 between Rotterdam and Maassluis

West (about 2/3 to the Hoek van Holland) is critical with cycle mean λ2 = 55. The fourth

component is a suburban subnetwork consisting of the Hofpleinlijn (The Hague CS–Rotterdam

Hofplein) and the Zoetermeerlijn (The Hague CS–Zoetermeer); the critical circuit has cycle

mean λ3 = 54:48 minutes and consists of 66 arcs representing a mixed sequence of all running

5 regional train lines including 46 stops, 4 turns and 16 infrastructure constraints (arcs).

The margins timetable differs from the basic timetable by the incorporation of running time

margins. Table 8.2 (3rd and 4th column) summarizes the results of the spectral analysis. We see

the same four components as in the basic variant but smaller maximum cycle means. The critical

circuits in the three smaller components have not changed, although the order of the cycle means

of the last two components has changed reflecting that the amount of running time in the train

line circulation of the R4200 is larger than in the critical circuit of the other component. The

effect of the 7% running time margin is also apparent in the most critical component, which

now contains 2 minutes average slack time. Moreover, this component now contains a unique

critical circuit containing 10 trains running between The Hague HS to Breda and back, see
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Figure 8.6 The critical circuit of the margins timetable

Figure 8.6. The nodes in Figure 8.6 represent critical events between the successive trains on

the critical circuit. Intermediate stops of the trains are not shown. Figure 8.4 on page 248

shows the four critical circuits in the network visualization. In the sequel, we only consider the

margins timetable.

Table 8.3 Spectral analysis results showing dependence on constraint types

Variant λ ρ ∆2 rii Components

(min) (min) (min)

complete 58:01 0.97 00:11 5:57 4

no transfers 58:01 0.97 00:11 5:57 10

no turns 58:00 0.97 00:12 2:53 16

no turns/transfers 57:57 0.97 00:14 2:53 26

no infra 57:26 0.96 00:17 7:40 70

no infra/transfers 57:26 0.96 00:17 7:40 70

no infra/turns 57:26 0.96 00:17 7:40 3

no infra/turns/transfers 57:26 0.96 00:17 7:40 3

By definition λ0 dominates the cycle times in all strong components accessible from the critical

strong component. We next investigate the influence of passenger transfers, turns and infrastruc-

ture constraints on network connectivity, see Table 8.3. The columns show the timetable variant,

eigenvalue, throughput, stability margin, the minimal circulation recovery time on the critical

circuit(s) and the number of components, respectively. The first row is the reference model

including all constraint types corresponding to Table 8.2. When discarding transfer constraints

the number of components increases from 4 to 10. This shows that a number of components are

only coupled by passenger transfers. The new decoupled components are 5 regional lines in the

north (NoordNed) and 1 in the east (Syntus). Note that we do not discard rolling stock connec-

tions since they are considered hard connections that can not be cancelled. Discarding turning

trains results in a decoupling of 12 additional components. Hence, availability of spare rolling

stock at line ends could be helpful to reduce delay propagation. Discarding both transfers and
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Table 8.4 Delay propagation of initial delay R6300 The Hague CS–Haarlem

Variant Initial delay Total delay Trains Sec delay Stations Settling

(min) (min) (min) period

complete 10 489:48 29 61:22 37 3

no transfers 10 408:44 14 32:25 34 3

no turns 10 333:53 25 54:21 36 3

no turns/transfers 10 247:10 10 24:46 33 3

no infra 10 160:21 0 0 10 3

no infra/transfers 10 160:21 0 0 10 3

no infra/turns 10 70:06 0 0 9 0

no infra/turns/transfers 10 70:06 0 0 9 0

complete 11 715:29 53 101:27 55 4

complete 12 1064:01 83 169:53 85 4

turns leads to a decoupling of 26 components. This shows that transfers and turns connect dis-

tinct components, which suggest that cancelling transfers and allocating spare rolling stock can

help reducing delay propagation to different directions. Table 8.3 also suggests that reduction of

transfer times or layover times does not contribute much in decreasing the maximal eigenvalue.

The infrastructure constraints on the other hand have a large impact on the eigenvalue as well

as on the number of components. Train lines are thus mostly interconnected because of shared

infrastructure. Finally, the drastic decrease in the number of components when discarding both

infrastructure constraints and turns can be explained by the removal of circuits of train circu-

lations and shared infrastructure. Finally, it must be realized that the critical circuits identified

after discarding some arcs are also present in the general model but they are dominated by a

more critical circuit that has access to these underlying components.

8.8.3 Delay Propagation and Recovery Time Analysis

Table 8.4 shows the propagation of a single initial delay of the regional line R6300 from The

Hague CS (Gvc) to Haarlem (Hlm) over the margins timetable. Again we investigated the

dependence of the constraint types on performance. In the reference variant (top row) we see

the domino-effect of a local 10 minute initial delay of the R6300 Gvc-Hlm, see Figure 8.5. This

delay propagates to 29 other trains and reaches 37 stations before it settles in 3 periods. The

489:48 minutes total delay is the cumulative delay of all train departures. The secondary delay

denotes the propagation of delays to a new train line and does not measure the departure delays

of these delayed trains on subsequent stations.

Cancelling passenger transfers halves the reached trains and almost halves the amount of sec-

ondary delay, although the total delay is still considerable. Allocating spare rolling stock at the

line ends on the other hand leads to a small reduction of reached trains and secondary delays but

in a considerable decrease of total delay. This shows the large impact of layover buffer times on

stability. Management of both transfers and turns gives ‘the best of both worlds’ and seems to

strengthen each other, confirming the result of the spectral analysis. The neglection of infras-

tructure constraints clearly shows that they are responsible for most of the delay propagation.

The last two rows in Table 8.4 relate again to the complete model but with an initial delay of
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11 and 12 minutes. This clearly shows how an additional delay of 1 minute has an exponential

impact on delay propagation. Or conversely, it pays to prevent each minute of initial delay.

Figure 8.7 Delay impact (recovery times) of the R6300 The Hague CS-Haarlem (PETER net-

work visualization): black denotes zero recovery time, white is more than 25 minutes recovery

time or unconnected

Figure 8.7 shows the PETER network visualization of the delay impact vector (recovery times)

of the departure of the R6300 Gvc-Hlm. The station colours denote how much recovery time is

present from the departure of the R6300 to the worst-case trains on the various stations. Black

implies zero recovery time and white implies either more than 25 minutes recovery time or that

there is no path from the R6300 Gvc-Hlm. The stations coloured black to orange correspond

to the stations reached in the reference variant of 10 minutes initial delay (top column of Ta-

ble 8.4). The last two rows of Table 8.4 correspond to lighter shades of orange, see the legend

in Figure 8.7.
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The results of the delay propagation and recovery times shown here depend on the parameters

(process times) of the DONS model. In particular, the minimum headway times are given

by the headway norms, which however also include buffer time. Hence, the results are too

conservative. More realistic minimum headways can be obtained by empirical data or using

blocking time calculations. This was however beyond the scope of this case study.

8.9 Conclusions

Railway timetables have an intrinsic structure that can be conveniently modelled using max-

plus algebra. It has been shown how polynomial matrices in max-plus algebra provide a direct

link between timed event graphs and their max-plus state-space representations. A discrete-

event systems theory has been developed to analyse these max-plus linear systems on stability,

realizability, robustness, and delay propagation. The analysis methods are based on efficient

algorithms including the solution to a generalized eigenproblem, shortest (or longest) path al-

gorithms, and a dedicated delay propagation algorithm. Using these algorithms many valuable

performance indicators can be computed, including network performance indicators (minimum

cycle time, throughput, stability margin), recovery times (delay impact vectors, delay sensitiv-

ity vectors, circulation recovery times), and delay propagation statistics (total secondary delay,

number of delayed trains, average secondary delay, settling period).

The max-plus eigenproblem provides several useful quantitative and qualitative characteristics

of the railway timetable and its operational behaviour. A simple stability test is obtained by

comparing the maximum eigenvalue (minimum cycle time) to the timetable period length (e.g.

an hour). Obviously, the timetable cycle time must exceed the maximum eigenvalue otherwise

the timetable is unrealizable, that is, it cannot be operated within the intended timetable period

length. Only if the maximum eigenvalue is smaller than the basic timetable period it can be

expected that the traffic network is stable, meaning that initial delays settle within a finite num-

ber of periods. The higher the difference between the minimum and intended cycle time the

more stable the traffic network becomes. In addition, a stability margin can be computed by

an auxiliary (max-plus) eigenproblem in which the timetable slack is explicitly evaluated. This

stability margin gives the minimum slack time of each train run during a basic timetable period.

This margin corresponds to a circuit with the least mean slack time, where the mean is taken

over the number of trains (tokens) in the circuit. This circuit may differ from the critical circuit

depending on the number of trains in the circuits: the higher the train count the less the share of

slack time to each train.

The max-plus modelling and analysis algorithms have been implemented in the software tool

PETER (Performance Evaluation of Timed Events in Railways). The algebraic approach com-

bined with efficient graph theoretic algorithms allows real-time analysis of large-scale networks.

The main functionalities of PETER have been explained and demonstrated with a case study of

the Dutch railway timetable.



Chapter 9

CONCLUSIONS

9.1 Main Conclusions

9.1.1 Analysis of Train Detection Data

One of the main contributions of this PhD research conform the first research objective is the

development of the software application TNV-Prepare, which converts TNV-logfiles to tables

of train number and infrastructure events collected by train line and realized route. In these

TNV-tables each daily train number has been coupled to the occupation and release time of the

successive track sections on the realized train route, as well as relevant signal aspect changes

and switch lockings. All recorded event times have a precision of one second and are checked

on route-logic consistency by TNV-Prepare, thus guaranteeing the reliability of the information

in the TNV-tables. The coupling of infrastructure data from the safety and signalling systems to

train numbers enables an accurate quantitative analysis of train movements and station infras-

tructure utilization, including realized track occupation times, blocking times, and minimum

headway times between train pairs, which was not possible before the development of TNV-

Prepare.

Arrival and departure times at platform tracks are not detected directly by the safety and sig-

nalling systems. Nevertheless, ‘rough’ estimates of arrival times and departure times of sched-

uled events at platform tracks are available in the TNV-tables by means of the release time of

the section directly before the platform track section (last train axle enters the platform section)

and the occupation time of the successor section (first train axle leaves the platform track), re-

spectively. The error in these arrival/departure time estimates range between a few seconds to a

maximum of 30 seconds depending on the length of the platform track section, the train length,

and the stop position on the platform track. These estimates are thus rather accurate and in

particular improve the current automatic registration by the Dutch traffic control system VKL,

which is based on far measurement points (at signals) using static tables of correction times

to bridge the running time to/from the platform stop position. If additionally section lengths

(and preferably also stop positions) are available, then the supplementary tool TNV-Filter can

be used to improve the arrival/departure time estimates to a maximal error of a few seconds

by fitting speed profiles through the station route and thus obtaining the actual speed and ac-

celeration/deceleration rates at the platform section borders, which are used in estimating the

remaining running time at the platform section. Thus, TNV-Prepare — in combination with

TNV-Filter — also enables accurate estimates and analysis of dwell times, transfer times and

running times, see Figure 9.1.

The data in TNV-logfiles made accessible via application of TNV-Prepare have been shown

to be invaluable for detailed analysis of train punctuality, detection of train interdependencies,

257
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Figure 9.1 Flow chart of train detection data analysis

and quantification of hinder and secondary delays. The second research objective has been

fulfilled by a case study of the railway station Eindhoven. The application of TNV-Prepare

at Eindhoven showed a significant drop in punctuality from arrival to departure for all train

lines dwelling at Eindhoven (with only one exception). Also the mean delay increased for

all train lines stopping at Eindhoven, even when considering late trains only. This suggests

a structural lack of buffer time in the dwell and transfer times and between the various train

paths at Eindhoven. Regression analysis showed that the scheduled transfer connections were a

main source of delay propagation. Conflicting train routes between arriving and departing trains

were responsible for further secondary delays. This station thus proved to be a main source of

secondary delays, which must be compensated for by running time margins and dwell buffer

times at subsequent train runs and stops.

The case-study in Eindhoven has also been used for fitting and testing theoretical probability

distributions of (arrival and departure) delays and dwell times for all 13 train lines, and transfer

times for the 6 main cross-platform transfer connections. The dwell times and cross-platform

transfer times in Eindhoven fit well to a normal distribution, also when considering late train ar-

rivals only. Furthermore, dwell time excess for late trains fits well to an exponential distribution.

The departure delays in Eindhoven also generally fit well to an exponential distribution, except

when the departure follows closely after another departure in the same direction which occurs

in 3 out of 13 cases in Eindhoven. The probability distributions of arrival delays in Eindhoven

are more complicated. A normal distribution is formally accepted in 5 out of 13 cases. All

empirical arrival delay distributions have a (more or less) positive skewness coefficient, which

suggests that a skewed distribution may be more appropriate. However, 6 out of 13 empirical

distributions are bimodal suggesting a mixture of distributions. The bimodal distributions may
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be explained by hinder of arriving trains due to conflicting train routes by which the distribution

is a mixture of hindered and unhindered arrivals. The arrivals can be partitioned into early and

late arrivals. When considering late train arrivals only an exponential distribution fits well to

the (late) arrival delays, except in 2 out of 13 cases of which the majority of trains arrive late.

These 2 cases showed a good normal fit for all (early and late) arrivals.

Identification of small but structural primary and secondary delays is essential for improving

railway operations and timetables. Structural shortcomings in a timetable often generate only

small delays (less than 60 seconds) but a cumulation of small delays leads to large delays at

possibly distant locations which become hard to explain. In the current practice where delays

below 3 minutes are not recognized as such it is impossible to find the real sources of delays by

which unnecessary drastic measures are applied to repair symptoms rather than actual problems.

A periodic assessment of railway operations at stations and corridors with potential risk of delay

propagation is therefore recommended to find and resolve sources of structural timetable con-

flicts. An important cause of timetable fragility is the quality and precision of some timetabling

base data, such as assumptions on power supply, driver behaviour, alighting/boarding time, et

cetera, used to compute e.g. running times, dwell times and minimum headway. Feedback

from operational realization data thus is a necessary means to relieve this problem and match

planning more closely to realization.

9.1.2 Timetable Stability Analysis

The third research objective was developing an analytical approach to evaluate and quantify

critical network dependencies on capacity utilization and timetable stability. To this end, we

adopted the max-plus algebra modelling approach and extended it by including headway con-

straints conform minimum headway relations imposed by the railway infrastructure. Moreover,

the resulting constraint system resembles that of DONS — the Dutch timetable design system

for computing feasible periodic timetables — which facilitates the compatibility between the

timetable construction and timetable evaluation.

We showed that a periodic railway timetable has an inherent structure that can be modelled

efficiently as a timed event graph, or equivalently, a linear system in max-plus algebra. The

max-plus linear system model contains all timetable and headway constraints of interdependent

event pairs. We emphasized the importance of the zero-order dynamics and showed that an

effective description of a general (higher-order) max-plus linear system can be obtained using

a polynomial state matrix, which yields a direct state-space representation in the event domain

of the associated timed event graph. Performance evaluation of the max-plus linear system

is achieved by computing the generalized eigenstructure of the (polynomial) state matrix for

which the remarkably fast policy iteration algorithm is available. The eigenstructure explic-

itly quantifies the decoupled components and minimal cycle times of all events and moreover

identifies the critical events and processes. The maximum generalized eigenvalue defines the

minimum cycle time attainable for the given interconnection structure, which corresponds to the

capacity consumption within a timetable period. The ratio of the maximum eigenvalue and the

timetable period length gives the network throughput, and the difference between the timetable

cycle time and the maximum eigenvalue is a measure of the stability margin within a basic

timetable period. All these measures are related to the critical circuits in the network structure,

which correspond to (closed) sequences of consecutive timetable events that are interrelated by
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either timetable relations or conflicting routes. The identified critical events and processes give

directions for further analysis to improve the timetable.

Supplementary to the eigenstructure analysis, the recovery times between all event pairs can be

computed in the so-called recovery matrix using any available shortest (or longest) path algo-

rithms. The diagonal entries of this recovery matrix are the circulation recovery times indicating

for each event the minimum total slack over any recurrent path, which is a clear robustness mea-

sure. Also the columns and rows of the recovery matrix show explicitly the tightness between

events over all paths in the network and thus identify the impact and sensitivity of delays in the

network. Robustness against explicit initial delay scenarios can furthermore be computed by

a very effective bucket-based delay propagation algorithm, yielding the settling period of the

initial delays or any other individual or aggregated measure of the initial and secondary delays.

The max-plus analysis approach has been implemented in the software tool PETER (Perfor-

mance Evaluation of Timed Events in Railways), which enables railway planners to use pow-

erful mathematical techniques in the evaluation of periodic timetables. One of the main ad-

vantages of PETER over other existing software for evaluating railway timetables is its com-

putational performance. Properties of large-scale timetables are computed in real-time which

makes it a perfect tool for comparing a large number of different timetable variants or studying

a timetable design in much detail using predefined initial delay scenarios. Moreover, we believe

that the deterministic model conform the timetable design (deterministic process times, fixed

train orders) is appealing to timetable designers who show a reluctant response to simulation

tools.

The compatibility of PETER to DONS enables an automatic import of data. However, the

minimum headway times used in DONS are mainly very simplified. Headway design norms

may be used for the construction of a timetable, which then consist of the minimum headway

time and some buffer time. For a realistic evaluation in PETER the amount of buffer time within

these headway times must be known to prevent conservative results. It is however unknown

how much buffer time is contained in the headway times used in DONS as this is typically

location dependent and must be calculated by hand. Realistic minimum headway times can be

obtained by either microscopic blocking time calculations or empirical train detection data. In

the Netherlands, blocking time models are (still) not used in the railway planning practice. On

the other hand, reliable empirical data on infrastructure utilization is now available by means of

the tool TNV-Prepare which can thus be applied to derive realistic minimum headway times.

9.2 Recommendations and Future Research

9.2.1 Train Detection Data and Railway Operations Quality Management

TNV-Prepare requires manual input of railway infrastructure and routes, which is an undesir-

able tedious task when the tool is applied on a wider scale. The infrastructure modelling utility

in TNV-Prepare can however be adapted to import infrastructure configuration data files from

the system CARE [68] that also provides the configuration data in the TNV-systems. Each time

the configuration data of a TNV-system is updated also the TNV-Prepare infrastructure must be

updated. This guarantees a synchronization between the configuration data in the TNV-systems

and TNV-Prepare, by which the infra elements and route blocks contained in the TNV-logfiles
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are automatically recognized by TNV-Prepare. The configuration data in the TNV-Replay ap-

plication [162] — also based on TNV-logfiles — is maintained in the same way. Ideally the con-

figuration files also contain section lengths by which TNV-Filter is analogously automatically

configured. ProRail is still developing an Infra-atlas that will contain up-to-date geographi-

cal data of station layouts, although it remains yet unclear whether length information of track

sections will be completely available and maintained after local infrastructure modifications.

Recent developments in the format of TNV-logfiles authorized by ProRail ICT-Services for an-

other project (monitoring of switch loads) also allow new improvements in the applicability

of TNV-Prepare in both scale and time. The recording module of TNV-systems has been cus-

tomized to include the reserved route block in each logged train number step message, where a

route block is a list of sections and switches within a TNV-position. These new TNV-logfiles are

known as VTL-files (Verbeterde TNV-Logfiles). This TNV software update has been gradually

installed over the 13 TNV-systems during 2004–2005. The extra information in combination

with the configuration files of the route blocks simplifies the search algorithm of TNV-Prepare

considerably and consequently decreases the necessary computation time to couple train num-

bers to infrastructure events drastically, hence enabling a real-time and national generation of

‘TNV-tables’ over complete train line routes from terminal to terminal. Moreover, the system

TROTS (TRain Observation and Tracking System) which is currently being developed to re-

place the TNV-systems will be able to provide accurate event time realizations. Availability of

reliable train realization data in the near future is therefore no longer an issue.

Future effort must be directed towards usage of the empirical data in daily practice. As already

discussed the data should be used for a regular comparison of planning with its realization to

improve small structural conflicts in the timetable. More specific, dwell times and transfer

times at (key) transfer stations should be evaluated and where necessary improved. Until now,

these process times are mainly based on (historical) rules of thumb which have hardly been

adjusted over the last decades although the traffic intensity changed considerably. Now we

have the data available we can set this straight. Also train running times should be evaluated

and in particular the used running time margins, which may depend on local conditions and

circumstances. Internationally, different running time supplements are advised for the various

train line types. Data analysis will reveal whether a differentiation of running time margins

is worthwhile. Moreover, the existing running time calculation methods (such as in DONS

and VPT-Planning) can be verified and possibly calibrated using the realization data, which

will improve the realizability of the timetable. Finally, accurate determination of minimum

headway times has been structurally neglected in the Netherlands, and therefore there is also

no knowledge on existing buffer time between train paths at conflict points. Data analysis will

reveal the realized minimum headways and thus buffer times between events. In combination

with blocking time theory tight headway times without any average buffer time can easily be

detected and consequently robustness of operations can be improved considerably by adding

buffer time corresponding to the local variations in headway.

Deterioration and unavailability of infrastructure (signals, switches, tracks) and other techni-

cal equipment (rolling stock, dispatching and control systems) also have a main impact on the

dispunctuality of railway operations. These primary sources of disruptions and delays can evi-

dently not be detected from TNV-data. Nevertheless, a variety of registration systems are in use

for logging incidents and equipment failures. A link between these systems and the TNV-data

via train numbers, location and time of breakdowns, will provide the necessary information
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to identify primary delays associated to recorded disruptions. Moreover, the secondary delays

(and cancellations) resulting from the diagnosed primary delays can subsequently be determined

from the TNV-data which thus reveals the impact of a disruption on operations. Knowing the

impact of various disruptions may help to improve accurate disruption management.

9.2.2 Max-Plus Algebra

The max-plus algebra approach — and the tool PETER — could be an effective instrument

to the capacity allocation process of infrastructure managers. In particular in the Netherlands

where capacity requests of train operators are submitted as basic hour patterns (BHPs), which

are nothing else than periodic timetables with a cycle time of one hour that can effectively be

modelled and analysed in max-plus algebra as we have seen in this thesis. The infrastructure

manager must coordinate the various BHP requests and test the resulting integrated BHP on

feasibility and stability. The current practice at ProRail Capacity Allocation is still largely

manual with the support of VPT-Planning (VPT-BUP), which however does not include conflict

detection or evaluation functionalities other than the graphical means of time-distance graphs

(no blocking times) and basic platform occupation diagrams. Possible extensions of PETER

to be even more beneficial are an interface with VPT-BUP files to read VPT-BUP files and

an automatic conflict detection mechanism. The latter implies that conflicting train paths are

detected and minimum headways between conflicting train routes are computed. To this end,

some additional data is required on the infrastructure usage. In the near future VPT-BUP will be

replaced by PTI (Planning & Toewijzing Infrastructuur) which is currently under dvelopment.

An interface to PTI is therefore also advisable.

This thesis considered deterministic max-plus linear systems for effective analysis of large-

scale railway timetables. Future extensions may be directed towards introducing stochastic

elements without sacrificing the computing time too much. This may lead to for instance sen-

sitivity analysis of the timetable parameters (process times) to further identify critical events

and processes. A more serious stochastic extension is changing the order of scheduled events,

which is typically one of the most effective actions to reduce delay propagation. The problem

of finding critical train orders is however linked to the NP-hard problems of sequencing and

scheduling. Nevertheless, we may effectively evaluate the impact on performance of changing

selected events. Another extension is the unavailability of resources by which the system must

change to a different mode (state matrix). Current research on this topic includes (max-plus)

Taylor series approximations [97] and — from a control point of view — switching max-plus

linear systems [204].

Another research direction is railway timetable optimization. The max-plus delay propagation

model may be used in a two-stage stochastic optimization model that combines timetable opti-

mization and evaluation [213]. However, this optimization problem does not change the critical

circuits but only the distribution of slack over the (critical) processes. Even more challeng-

ing is the question whether we can use the max-plus model to construct timetables in addition

to evaluation and improving. For scheduled public transport this question can be answered

confirmative: from the transportation times a max-plus model (or timed event graph) can be

constructed and the eigenvector of the state matrix gives a most effective timetable for running

regularly with a cycle time exceeding the eigenvalue. The performance of this initial timetable

can successively be improved using marking optimization [126, 167] where tokens (vehicles)
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can be added or redistributed over the timed event graph to optimize some objective function.

In railway systems the shared use of infrastructure causes the difficulty that decisions have to

be made on the order of trains over conflicting train routes. This ordering problem makes the

problem typically NP-hard: in the worst-case all combinations of train orders must be evalu-

ated before finding the optimal solution. The problem complexity is likely equivalent to the

NP-complete periodic event scheduling problem (PESP). However, a different problem formu-

lation may guide an efficient solution algorithm in practice. Heuristic design criteria may help

to find good solutions. The stochastic max-plus model extensions may also guide the timetable

optimization process [97].
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Eidgenössische Technische Hochschule (ETH), Zürich, 2002.
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die Pünktlichkeit”, Die Bundesbahn, vol. 62, no. 11, pp. 1001–1007, 1987.

[116] Karp, R.M., “A Characterization of the Minimum Cycle Mean in a Digraph”, Discrete

Mathematics, vol. 23, no. 3, pp. 309–311, 1978.

[117] Karp, R.M. and Orlin, J.B., “Parametric Shortest Path Algorithms with an Application to

Cyclic Staffing”, Discrete Applied Mathematics, vol. 3, no. 1, pp. 37–45, 1981.

[118] Klemt, W.-D. and Stemme, W., “Schedule Synchronization for Public Transit Networks”,

In: Daduna, J.R. and Wren, A. (eds.), Computer-Aided Transit Scheduling, Proceedings

of the Fourth International Workshop on Computer-Aided Scheduling of Public Trans-

port, Lecture Notes in Economics and Mathematical Systems, vol. 308, pp. 327–335,

Springer, Berlin, 1988.

[119] Knuth, D.E., The Art of Computer Programming. Volume 3: Sorting and Searching,

Addison-Wesley, Boston, 2nd ed., 1998.

[120] Koolstra, K., “Capaciteitsmanagement in de spoorwegsector”, In: Ten Heuvelhof, E.,

Koolstra, K., and Stout, H. (eds.), Capaciteitsmanagement: Beslissen over capaciteit

van infrastructuren, pp. 95–115, Lemma, Utrecht, 2001.

[121] Kraft, K.H., Zugverspätungen und Betriebssteuerung von Stadtschnellbahnen in sys-

temtheoretischer Analyse, Dissertation, Technische Universität Braunschweig, Braun-

schweig, 1981.

[122] Krista, M., Verfahren zur Fahrplanoptimierung dargestelt am Beispiel der Synchron-

zeiten, Dissertation, Schriftenreihe des Instituts für Eisenbahnwesen und Verkehrs-

sicherung, Heft 56, Technische Universität Braunschweig, Braunschweig, 1996.

[123] Krista, M., “Fahrplanoptimierung durch Minimierung der Synchronzeiten”, Signal +

Draht, vol. 91, no. 1–2, pp. 34–38, 1999.

[124] Kroon, L.G., Opsporen van sneller en beter: modelling through..., Inaugural Addresses

Research in Management Series, no. EIA-2001-03-LIS, Erasmus University Rotterdam,

Rotterdam, 2001.

[125] Kroon, L.G. and Fischetti, M., “Crew Scheduling for Netherlands Railways: “Destina-

tion: Customer””, In: Voß, S. and Daduna, J.R. (eds.), Computer-Aided Scheduling of

Public Transport, Lecture Notes in Economics and Mathematical Systems, vol. 505, pp.

181–201, Springer, Berlin, 2001.

[126] Laftit, S., Proth, J.-M., and Xie, X.L., “Optimization of Invariant Criteria for Event

Graphs”, IEEE Transactions on Automatic Control, vol. 37, no. 5, pp. 547–555, 1992.

[127] Lang, S., Algebra, Graduate Texts in Mathematics, vol. 211, Springer, New York, rev.

3rd ed., 2002.

[128] Lindner, T., Train Schedule Optimization in Public Rail Transport, PhD thesis, Technis-

che Universität Braunschweig, Braunschweig, 2000.

[129] Lucchini, K., Rivier, R., and Emery, D., “CAPRES Network Capacity Assessment for

Swiss Nort-South Rail Freight Traffic”, In: Allan et al. [6], pp. 221–230, 2000.



272 Punctuality of Railway Operations and Timetable Stability Analysis

[130] Mairesse, J., “Graphical Approach of the Spectral Theory in the (max,+) Algebra”, IEEE

Transactions on Automatic Control, vol. 40, no. 10, pp. 1783–1789, 1995.

[131] Mathsoft, S-PLUS 2000 User’s Guide, Data Analysis Products Division, Seattle, 1999.

[132] Mellitt, B., Hill, R.J., Allan, J., Sciutto, G., and Brebbia, C.A. (eds.), Computers in

Railways VI, Computational Mechanics Publications / WIT Press, Southampton, 1998.

[133] Meng, Y., Bemessung von Pufferzeiten in Anschlüssen von Reisezügen, Dissertation,
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Wartezeiten im Eisenbahnbetrieb unter besonderer Berücksichtigung der Aspekte Leis-
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Appendix A

GLOSSARY

A.1 General Abbreviations

AR Local (Agglo/Regional) train line

ATB Automatische TreinBeı̈nvloeding, Dutch ATP system, also ATB-EG

ATB-NG ATB-Nieuwe Generatie, Dutch ATP system

ATP Automatic Train Protection

BHP Basic Hourly Pattern (BUP, BasisUurPatroon)

BPO Basic Platform Occupation, (BSO, BasisSpoorOpstelling)

DONS Designer Of Network Schedules, Dutch timetable design system

EBP Elektronische BedienPost, Dutch interlocking system

EBS Elektronische Beveiliging SIMIS, Dutch interlocking system

HST High Speed Train line

IC InterCity train line

INT INTernational train line

IR InterRegional train line

NSR NS Reizigers, passenger train division of Dutch Railways

PETER Performance Evaluation of Timed Events in Railways

PRL PRocesLeidingssysteem, Dutch dispatching system, also VPT-PRL

TNV TreinNummerVolgsysteem, Dutch train describer system

VKL VerKeersLeidingssysteem, Dutch traffic control system, also VPT-VKL

VGB VervoersGegevensBank, Dutch railway traffic realizations database

VPI Vital Processor Interlocking, Dutch interlocking system

VPT Vervoer Per Trein, Dutch railway planning and communication system

A.2 Station Abbreviations

Dn Deurne Mt Maastricht

Ehv Eindhoven Rtd Rotterdam CS

Gvc Den Haag CS Tbwt Tilburg West

Hlm Haarlem Ut Utrecht CS

Hrl Heerlen Vl Venlo

Koln Keulen (D) Wrt Weert
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A.3 Mathematical Symbols and Variables

⊕ Addition in a semiring; in the max-plus semiring a⊕ b = max(a, b)
⊗ Multiplication in a semiring; in the max-plus semiring a⊗ b = a+ b
⊘ Division in a semifield; in the max-plus semifield a⊘ b = a− b
A State matrix A = (aij)
[A]· i ith column of matrix A
Aλ Normalized matrix Aλ = A(λ−1)
A⊤ Transpose of matrix A = (aij), A

⊤ = (aji)
A+ Path matrix

A∗ Kleene star matrix

A(X) Polynomial matrix

A(λ−1) Evaluated polynomial matrix in λ−1

A(γ) Polynomial state matrix

A Polynomial matrix, A = A(X)
Aπ Polynomial matrix associated to policy π
B Input matrix

C Output matrix

χ Cycle time vector

d Timetable vector

d0 Initial timetable vector

d(k) Timetable vector in period k
diag(d) Max-plus diagonal matrix, [diag(d)]ii = di, [diag(d)]ij = ε if i 6= j
δij Max-plus Kronecker delta function, δii = e, δij = ε if i 6= j
∆2 Stability margin

e Unit element in a semiring; in the max-plus semiring e = 0
ei ith unit vector

E Unit matrix in a matrix semiring; [E]ii = e and [E]ij = ε for all i 6= j
Ec Set of critical arcs

Ered Arc set of reduced graph

ε Zero element in a semiring; in the max-plus semiring ε = −∞
E Zero matrix in a matrix semiring; [E ]ij = ε for all i, j
η Maximum cycle mean

G Graph G = (V,E)
Gc Critical graph G = (V c, Ec)
Gred Reduced graph Gred = (Vred, Ered)
G Timed event graph G = (T ,P, µ, w)
G(A) Timed event graph corresponding to polynomial matrix A
γ Shift operator

Γ Cycle matrix

Γ(i) Set of events accessible from i
im(A) Image of A
in(pk) Input transition of place pk

ks Settling period

Kλ Set of events accessible from any priciple class K(λ)
K(λ) Set of principle classes with eigenvalue λ
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λ Eigenvalue

λ0 Maximum eigenvalue

m Number of arcs or places

M Incidence matrix

µ Marking vector of a timed event graph

µ0 Initial marking vector of a timed event graph

µ(pk) Marking of place pk

n Number of nodes or transitions

N Set of natural numbers, N = {1, 2, 3, . . .}
N0 Set of natural numbers extended with zero, N0 = Z+ = {0, 1, 2, 3, . . .}
out(pk) Output transition of place pk

p Order (maximum marking)

P Max-plus permutation matrix

P Set of places in a timed event graph

π Policy vector

Πi Set of incoming places to event i
R(µ0) Reachable set of markings in a timed event graph with initial marking µ0

R Set of real numbers

Rε Set of real numbers extended with ε = −∞
Rmax Max-plus semifield (Rε,max,+,−∞, 0)
Rmax[X] Semiring of max-plus polynomials

Rn
max Semimodule of n-dimensional vectors over the max-plus semifield

Rm×n
max Set of m× n matrices over the max-plus semifield

Rm×n
max [X] Set of m× n max-plus polynomial matrices

span(A) Spanning set of columns of A
ρ Throughput

spec(A) Spectrum of matrix A
supp(A) Support of matrix A (index set of finite entries)

S General semiring

S[γ] Polynomial semiring in the indeterminate γ over the semiring S
σ(k) Firing vector of the kth firing

tr(A) Trace of matrix A, tr(A) =
⊕n

i=1 aii

T Timetable cycle time

T Set of transitions of a timed event graph

Ti Communication class Ti ⊆ T
u Input vector

v Eigenvector

V c Set of critical nodes or transitions

Vred Node set of reduced graph, communication class

V(λ) Eigensemimodule associated to eigenvalue λ
w Holding time (weight) vector of a timed event graph

w(pk) Holding time of place pk

x State vector

x0 Initial state vector

x(k) Event time vector in period k
X An indeterminate

ξ Circuit or path
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y Output vector

z Delay vector

Z Set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}
Z+ Set of nonnegative integers, Z+ = {0, 1, 2, . . .}
Z− Set of nonpositive integers, Z− = {0,−1,−2, . . .}



SUMMARY

Punctuality of Railway Operations and Timetable Stability Analysis

Rob M.P. Goverde

This thesis is concerned with the analysis of railway timetables. The considered research topics

include: (1) data collection of railway operations based on train detection data; (2) statistical

analysis of empirical data to find sources of structural delays; and (3) stability analysis of large-

scale periodic railway timetables.

An essential element in the design of a reliable railway timetable is the feedback of empirical

data from realized operations. A timetable consists of deterministic process times (running

times, dwell times, transfer times, etc.), which in practice vary from hour-to-hour or day-to-

day due to e.g. varying driver behaviour, fluctuating passenger volumes, and changing weather

conditions. The stochastic distributions of realized process times and arrival/departure times

show how well the timetable can be adhered to. In the Dutch railway practice this quality

cycle is however not structurally applied. Running times are computed using advanced running

time calculation models and successively increased by a given percentage — usually 7% —

to compensate for larger running times. Dwell times and transfer times are based on rules-of-

thumb. And also minimum headway times between pairs of trains sharing some infrastructure

are based on norms, which include some (unknown) buffer time. (Chapter 3)

Empirical validation of the individual process times was not possible until recently, because

of lacking accurate realization data. The traffic control systems collect and maintain a large

amount of event time realizations (arrivals, departures and passages at timetable points), but

these realizations are derived from passage times at entrance and exit signals (via train descrip-

tion steps) which causes uncertainty about the accuracy of the individual recorded event times.

This data is therefore only suitable for statistics at an aggregated level, such as the percentage

of trains arriving within three minutes after schedule at 32 stations over a month. (Chapter 4)

This thesis shows that accurate event time realizations are available in records (TNV-logfiles)

of the train describer systems (TNV in Dutch), and describes the tool TNV-Prepare that was

especially developed to recover this information from the TNV-logfiles. Train describers keep

track of the progress of trains based on train numbers and infrastructure messages received from

the safety and signalling systems. All received infrastructure messages and all generated train

number events are recorded chronologically in TNV-logfiles. These files thus contain invaluable

information. However, the infrastructure and train number messages are logged independently

from a wide area. The Dutch railway network contains 13 TNV-systems, which each monitors

all running trains over a large area and records all train number events, as well as all received

infrastructure events related to e.g. track sections (occupation, release), signals (stop, go), and

switches (left, right). Until the year 2000 — during this PhD research — the TNV-logfiles

were kept for at most a week for investigation of accidents. In this PhD research the software

TNV-Prepare has been developed that couples train numbers to infrastructure events based on

the TNV-logfiles. This way train movements can be traced on track section occupancy level,
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including the entry and exit of platform track sections, by which realised arrival, departure, and

through times can be determined with an accuracy of a few seconds. (Chapter 4)

The potential of accurate empirical data is demonstrated in a case-study of the railway station

Eindhoven. Eindhoven is a main Dutch transfer station at which various train lines from dif-

ferent directions stop, turn, or connect. The analysis is based on TNV-logfiles from 1997 that

were specially collected and made available for this aim. The statistical analysis showed that

Eindhoven was a source of delay growth. The mean dwell time of each train line was larger

than scheduled, also when considering late trains only. The departure delays increased on the

average by one minute with respect to the arrival delays. Using regression analysis, the delay

expansion could be explained by a combination of dependencies between train lines, includ-

ing transfer connections and conflicting routes. In particular, the double-track route between

Eindhoven and Boxtel caused much hindrance, because trains with scheduled transfers in Eind-

hoven had to arrive or depart one after another. This bottleneck was removed in 2002 after

the four-track route between Eindhoven and Boxtel became available. Other findings include a

poor departure punctuality of turning trains and the resulting hindrance despite a layover time of

more then thirty minutes, and conflicting routes between in- and outbound train lines with tight

scheduled headway. Apart from the specific outcomes, this case-study clearly demonstrates the

power of a statistical analysis of accurate train data. (Chapter 5)

Another more theoretical topic of the case-study concerned the estimation and testing of theoret-

ical probability distributions to the various process times and delays. Stochastic mathematical

models and simulation models rely on given probability distributions for process times or de-

lays. By absence of empirical data, distributions are typically based on theoretical assumptions

and often also simple exponential distributions are used which are easy to work with. The

Eindhoven data has been used to fit process times and delays for each train line separately.

For this data, the excess dwell times of late trains follow an exponential distribution. Also the

departure delays follow an exponential distribution except for train lines heading in the same di-

rection with close scheduled departure times. Dwell times and transfer times of cross-platform

transfers follow a normal distribution, both for all trains and when considering late trains only.

Arrival delays do not fit well to any simple theoretical distribution in general, mainly due to

disturbances of conflicting train paths. (Chapter 5)

The second main topic of this thesis is railway timetable stability. Train traffic has to deal with a

large amount of (network) dependencies. Some of these dependencies are caused by the railway

timetable and logistics, such as passenger transfers, rolling stock circulations, and schedules of

drivers and conductors. Other dependencies relate to the shared railway infrastructure, such as

following trains on open tracks, conflicting routes at station layouts between in- and outbound

trains, and meeting trains on partial single-track routes. A timetable is usually conflict-free

in the sense that all conflicts between train paths have been solved in advance. However, if a

train deviates from its scheduled time-distance path then it may hinder other trains, which then

deviate from schedule as well, etc. Because of this domino-effect, a local primary disruption

may have condiderable consequences to the entire traffic network. Therefore, a stable timetable

contains some buffer time between train paths which compensates for small disruptions and

avoids prompt secondary delays to other trains. Testing the stability of a railway timetable

requires a network model of all train interdependcies. (Chapter 3 & 6)

A railway timetable essentially describes precedence relations between events and decisions on

the scheduled order of events. For instance, a train is ready-to-depart if it has arrived and the
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minimum dwell time has been respected to guarantee alighting and boarding of passengers; if

the train has a transfer connection with a feeder train then it also has to wait for the arrival

of this feeder train plus a minimum transfer time to allow transferring passengers to board the

train; and finally, the train may have to wait for trains with a conflicting inbound or outbound

route before the route from the platform to the open track becomes available. Discrete-event

systems where synchronization between events is the main characteristic can be formulated as

‘timed event graphs,’ a special abstract network structure (Petri net) describing time-dependent

precedence relations and their process logic. A timed event graph model shows the implications

of the scheduled order of events and proves whether it is (im)possible that a system becomes

deadlocked. An example of this is that a train may depart to a single-track route only if all

opposite trains have left the open track. These topological and behavioural properties of a

timetable can be analysed by the ‘marked’ graph theory of timed event graphs. (Chapter 6)

Timetable performance and stability is effectively analysed in the event domain associated to

a timed event graph. The departure times of all trains are therefore collected in a state vector

and the dynamic equations describing the interactions between events are given by (max,+)-

recursions in which the departure time of any train is determined by the maximum over all

preceding departure times plus the subsequent minimum process times that have to be waited

for. These recursive equations are linear systems in the so-called max-plus algebra. In max-plus

algebra ‘addition’ of two numbers is defined as their maximum and ‘multiplication’ as conven-

tional addition, e.g. 2⊕3 = max(2, 3) = 3 and 2⊗3 = 2+3 = 5. From a systems point of view,

addition of two processes implies process synchronization (a new process may start after the last

preceding process has terminated) and multiplication corresponds to cascading processes (the

process time of the composite process is the sum of the individual successive process times).

All process times are collected in a state matrix, and the evolution of the discrete-event system

is described accordingly by matrix-vector multiplications and addition of vectors, evaluated in

max-plus algebra. (Chapter 7 & 8)

From an algorithmic point of view, the analysis of max-plus linear systems concentrates on

solving critical-path problems and eigenproblems in max-plus algebra. This thesis therefore

considers efficient algorithms to these problems given the particular application area. A timed

event graph can be represented by a polynomial matrix in max-plus algebra, i.e., a polynomial

with matrix coefficients, or equivalently, a matrix with polynomial entries. The polynomial

matrices can also be used in a formal description of higher-order linear systems, including zero-

order terms. The zero-order terms correspond to all processes that are completed within one

period, the first-order terms correspond to all processes exceeding a timetable period, et cetera.

The most common approach to tackle higher-order systems is to transform them into a purely

first-order system to which elegant algebraic solutions exist. However, this is computationally

not the most effective and also leads to practical problems, mainly because the zero-order dy-

namics have dissappeared. This thesis shows how the existing max-plus algebra theory of ma-

trices and first-order recursive systems can be extended to polynomial matrices and higher-order

implicit systems. Special attention is given to the generalized eigenproblem of (irreducible and

reducible) max-plus polynomial matrices. This theory gives the necessary background for the

complete description of the eigenspace of (polynomial) matrices, and a correct interpretation of

the max-plus policy-iteration algorithm in case of reducible max-plus (polynomial) matrices.

The max-plus policy-iteration algorithm has been developed recently based on the well-known

policy-iteration algorithm for Markov decision processes, and has proved to be very effective

in solving generalized eigenproblems in max-plus algebra with a linear practical running time.
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Other considered topics include efficiently computing all critical circuits and delay propagation

with respect to large-scale sparse max-plus systems. (Chapter 7)

The stability test of max-plus linear systems is based on the eigenvalues of the (polynomial)

state matrix. The maximum eigenvalue denotes the minimal cycle time of the railway timetable.

Hence, for an hourly timetable the maximum eigenvalue must be smaller than sixty minutes to

be (asymptotically) stable, in which case any initial delay will settle after a finite number of peri-

ods. The maximum eigenvalue equals the mean cycle time of a ‘critical circuit,’ which can also

be computed explicitly. A critical circuit is a cyclic sequence of events and processes with the

least slack over all circuits in the network. An eigenvector corresponds to a periodic timetable

(departure time vector) in which the critical events are scheduled directly after each other with-

out slack and thus allowing a cycle time equal to the maximum eigenvalue. The departure times

in the eigenvector correspond to the critical paths from one of the critical events. The difference

between the timetable cycle time — usually an hour — and the maximum eigenvalue gives the

mean slack on the critical circuits. All processes that do not belong to a critical circuit have

more slack available. Whether a stable timetable is also robust depends on the distribution of

slack time over the timetable. An example of a stable timetable that is not very robust is one

where the buffer time over each train line circulation is concentrated in the layover times at

the terminals, by which primary delays are propagated over the entire network before they are

reduced at the train line ends. The distribution of slack over a timetable is represented by the

‘recovery matrix,’ where each entry corresponds to the least total slack time over all paths be-

tween two events. The impact of any combination of initial delays can also be visualized by

explicitly computing the delay propagation using the max-plus state equations. (Chapter 8)

The algorithms have been implemented in the software tool PETER (Performance Evaluation

of Timed Events in Railways). Special attention has been given to the development and imple-

mentation of efficient algorithms that are capable of computing results of large-scale networks

in several seconds. Furthermore, results in PETER are graphically presented by means of a

projection to the railway network, thus clearly visualizing the locations of critical events and

processes in the network. PETER offers a systematic and transparant stability analysis of large-

scale periodic timetables and can be applied in the design process of railway timetables, for

evaluating network stability in the capacity allocation process, and for developing effective dis-

patching policies to minimize delay propagation. (Chapter 8)
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Dit proefschrift beschrijft methoden voor de analyse van treindienstregelingen. De onderwerpen

die aan bod komen zijn: (1) dataverzameling van de dienstuitvoering gebaseerd op treindetectie

data; (2) statistische analyse van empirische data om oorzaken van structurele vertragingen op

te sporen; en (3) stabiliteitsanalyse van periodieke dienstregelingen voor grootschalige spoor-

netwerken.

Een essentieel element in het ontwerpproces van een betrouwbare dienstregeling is terugkop-

peling van empirische data van de gerealiseerde dienstuitvoering. Een dienstregeling bestaat

immers uit deterministische procestijden (rijtijden, halteringstijden, overstaptijden, etc.), terwijl

deze in de praktijk variëren van uur-tot-uur en dag-tot-dag vanwege bijvoorbeeld verschillend

rijgedrag van machinisten, fluctuerende aantallen reizigers en veranderende weersomstandighe-

den. De stochastische verdelingen van gerealiseerde procestijden en aankomst- en vertrektij-

den geven aan in welke mate de dienstregeling haalbaar blijkt te zijn. Deze kwaliteitscirkel is

echter nauwelijks aanwezig bij de spoorpraktijk in Nederland. Rijtijden worden berekend met

geavanceerde rijtijdmodellen waar vervolgens een bepaald percentage — meestal 7% — aan

toe wordt gevoegd om langere rijtijden op te vangen. Halteringstijden en overstaptijden zijn

gebaseerd op vuistregels. En ook de minimale volgtijden tussen twee treinen die (gedeeltelijk)

gebruik maken van hetzelfde spoor zijn gebaseerd op normtijden, waarin een (onbekende) spe-

ling zit verwerkt. (Hoofdstuk 3)

Empirische validatie van de afzonderlijke procestijden was tot voor kort niet mogelijk we-

gens het ontbreken van nauwkeurige realisatiegegevens. Via de verkeersleidingssystemen wordt

dagelijks een grote hoeveelheid aan gerealiseerde treinactiviteiten (aankomsten, vertrekken en

doorkomsten op dienstregelpunten) verzameld en opgeslagen, maar deze worden afgeleid van

passagetijden bij inrijseinen en vertrekseinen (via vensterverplaatsingen van het treinnummer-

volgsysteem) waardoor onzekerheid ontstaat over de nauwkeurigheid van de individuele geregi-

streerde realisatietijden. Deze gegevens zijn daarom alleen geschikt voor statistieken op geag-

gregeerd niveau, zoals het percentage treinen dat minder dan drie minuten na plan aankomt op

32 stations in een maand. (Hoofdstuk 4)

Dit proefschrift laat zien dat nauwkeurige uitvoeringstijden op individueel treinniveau wel im-

pliciet aanwezig zijn in de zogenaamde TNV-logbestanden van de treinnummervolgsystemen

(TNV), en beschrijft de tool TNV-Prepare die speciaal is ontwikkeld om deze gegevens boven

tafel te krijgen. TNV-systemen volgen de voortgang van alle treinen op het spoornet via trein-

nummers en infrastructuurmeldingen uit de beveiligings- en beheersingssystemen. Alle ele-

mentmeldingen die het TNV-systeem ontvangt vanuit de beveiligings- en beheersingssystemen

worden chronologisch opgeslagen in de TNV-logbestanden, evenals de gegenereerde trein-

nummermeldingen van het TNV-systeem zelf. Deze bestanden bevatten dus een schat aan
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informatie. Het probleem is echter dat de inframeldingen en treinnummermeldingen los van

elkaar staan. Het Nederlandse spoornet heeft 13 TNV-systemen die ieder een gebied bedienen

in grootte vergelijkbaar met een provincie. Alle treinen die in dit gebied rondrijden worden

gevolgd en gelogd, evenals o.a. alle spoorsecties die bezet en onbezet raken, seinen die op rood

springen en weer vrij komen, en wissels die omgelegd worden. Tot het jaar 2000 (tijdens dit

promotieonderzoek) werden deze TNV-logbestanden hooguit een week bewaard voor eventuele

analyse van ongelukken en vervolgens overschreven. Als onderdeel van dit promotieonderzoek

is de software TNV-Prepare ontwikkeld, die op basis van TNV-logbestanden treinnummers kop-

pelt aan inframeldingen. Hierdoor kunnen individuele treinen op spoorsectieniveau gevolgd

worden, inclusief het op- en afrijden van perronsporen, waardoor gerealiseerde aankomst-,

vertrek- en doorkomsttijden met een nauwkeurigheid van enkele seconden bepaald kunnen wor-

den. (Hoofdstuk 4)

In een case-study is het potentieel van beschikbare nauwkeurige realisatietijden aangetoond.

Als case is het station Eindhoven uitgekozen. Eindhoven is een belangrijk knooppunt waar

diverse treinseries uit verschillende richtingen stoppen, keren en op elkaar aansluiten. De

analyse is gebaseerd op TNV-logbestanden uit 1997 die destijds speciaal voor dit doel waren

aangevraagd en opgeslagen. Uit de statistische analyse kwam naar voren dat Eindhoven een

bron was van vertragingstoename. De gemiddele halteringstijden van alle treinseries waren

langer dan gepland, ook als alleen gekeken werd naar treinen die te laat aankwamen. De

vertrekvertragingen namen gemiddeld met een minuut toe ten opzichte van de aankomstver-

tragingen. Met behulp van regressieanalyse kon de vertragingstoename worden verklaard uit

een combinatie van afhankelijkheden tussen de treinseries, waaronder reizigersaansluitingen en

conflicterende rijwegen. Met name het tweesporige baanvak tussen Eindhoven en Boxtel zorgde

voor veel hinder omdat treinen die in Eindhoven op elkaar aansloten achter elkaar moesten

aankomen dan wel vertrekken. Deze bottleneck is in 2002 opgeheven na het gereedkomen van

de spoorverdubbeling tussen Eindhoven en Boxtel. Andere structurele vertragingsoorzaken die

zijn gevonden waren kruisende rijwegen van aankomende en vertrekkende treinseries met krap

geplande opvolgtijd en een slechte vertrekpunctualiteit van kerende treinen met de daardoor

ontstane hinder ondanks ruim een half uur geplande keertijd. Los van de specifieke uitkomsten

geeft deze case-study duidelijk de meerwaarde aan die een statistische analyse van nauwkeurige

data biedt. (Hoofdstuk 5)

Een ander meer theoretisch onderdeel van de case-study was het schatten en testen van theore-

tische kansverdelingen voor de diverse procestijden en vertragingen. Stochastische wiskundige

modellen en simulatiemodellen gaan uit van bepaalde kansverdelingen voor vertragingen en

procestijden. Wegens gebrek aan empirische data worden veelal aannamen gedaan omtrent de

kansverdelingen die de afzonderlijke processen goed beschrijven, en ook wordt vaak uitgegaan

van eenvoudige (exponentiële) kansverdelingen waar makkelijk mee te rekenen is. Voor de

Eindhovense data is gekeken naar procestijden en vertragingen per treinserie. Hier bleek dat

de overschrijding van halteringstijden voor vertraagde treinen voldoet aan een exponentiële

verdeling. Ook de vertrekvertraging voldoet aan een exponentiële verdeling mits de geplande

vertrektijden van treinen in dezelfde richting ver genoeg uit elkaar liggen. Halteringstijden

en overstaptijden van ‘cross-platform’ aansluitingen volgen een normale verdeling, zowel voor

alle treinen als wanneer alleen gekeken wordt naar vertraagde treinen. Aankomsttijden zijn

over het algemeen niet goed te beschrijven met enkelvoudige kansverdelingen; hindering van

aankomende treinen blijkt hier een grote verstoring te zijn. (Hoofdstuk 5)
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Het tweede onderwerp van dit proefschrift is de stabiliteit van dienstregelingen. Het treinverkeer

over een spoorwegnetwerk heeft te maken met een groot aantal netwerkafhankelijkheden. Een

aantal van deze afhankelijkheden ontstaat door de opzet van de dienstregeling en de logistieke

processen, zoals reizigersaansluitingen, materieelomlopen en diensten van machinisten en con-

ducteurs. Andere afhankelijkheden ontstaan doordat treinen over een gemeenschappelijke in-

frastructuur rijden. In die laatste categorie vallen achtereenvolgende treinen over baanvakken

tussen stations, conflicterende rijwegen op stations tussen binnenkomende en vertrekkende

treinen, en elkaar tegemoet komende treinen op gedeeltelijk enkelsporige trajecten. In de

dienstregeling zijn in principe alle conflicten opgelost zodat alle treinen ongehinderd over het

spoornet kunnen rijden. Zodra een trein echter van het geplande tijdwegpad afwijkt kan hinder

ontstaan voor andere treinen, die daardoor ook van hun geplande pad afwijken en zo op hun

beurt ook weer andere treinen kunnen hinderen. Vanwege dit domino-effect kan een lokale

primaire verstoring grote gevolgen hebben voor de hele treinenloop. Een goede dienstregeling

bevat daarom zogenaamde buffertijden tussen de treinpaden zodat kleine verstoringen kunnen

worden opgevangen en niet direct leiden tot secundaire vertragingen voor andere treinen. Om de

stabiliteit van een dienstregeling te kunnen toetsen is een modellering op netwerkniveau nodig.

(Hoofdstuk 3 & 6)

Een dienstregeling beschrijft de causale verbanden tussen treinactiviteiten en de geplande vol-

gorde van deze activiteiten. Zo mag een trein pas vertrekken nadat het is aangekomen en min-

stens een bepaalde minimum halteringstijd aan een perron heeft stilgestaan om reizigers de

gelegenheid te geven uit en in te stappen; als de trein een aansluitrelatie heeft met een andere

trein, dan moet ook worden gewacht totdat de andere trein is aangekomen en de overstap-

pende reizigers zijn ingestapt; en tenslotte moet mogelijk worden gewacht op het vertrek of de

binnenkomst van andere treinen met een conflicterende rijweg voordat de rijweg van het per-

ronspoor naar het baanvak vrij komt. Systemen met discrete gebeurtenissen waarbij synchro-

nisatie een belangrijke rol speelt kunnen worden beschreven met ‘timed event graphs,’ een spe-

ciaal soort abstract netwerk (Petri net) waar behalve de tijdsafhankelijke relaties tussen opeen-

volgende gebeurtenissen ook de proceslogica wordt beschreven. De beschrijving als timed

event graph geeft inzicht in de volgorde waarin gebeurtenissen plaatsvinden en of het mo-

gelijk is dat het systeem vastloopt, een zogenaamde deadlock. Een voorbeeld hiervan is dat een

trein niet eerder van een station met meerdere perronsporen naar een enkelsporig baanvak mag

vertrekken dan nadat alle tegengestelde treinen het baanvak hebben verlaten. Dit soort topolo-

gische en gedragsafhankelijke eigenschappen van een dienstregeling kunnen worden bestudeerd

met methoden uit de ‘gemarkeerde’ graaftheorie van timed event graphs. (Hoofdstuk 6)

De kwaliteit en stabiliteit van een dienstregeling kan effectief worden bestudeerd in het ‘toe-

standsdomein’ van de timed event graph. De vertrektijden van alle treinen worden daarvoor

gezien als toestandsvector en de dynamische vergelijking die de interactie tussen de vertrek-

tijden beschrijft is een recursieve vergelijking waarin de vertrektijd van een gegeven trein

wordt gegeven als het maximum over voorgaande vertrektijden plus de daarop volgende mini-

mum procestijden waarop gewacht moet worden. Dergelijke vergelijkingen kunnen worden

opgevat als lineaire systemen in de zogenaamde ‘max-plus algebra.’ In max-plus algebra is de

‘optelling’ van twee getallen gedefinieerd als het maximum en de ‘vermenigvuldiging’ als een

gewone optelling, zodat bijvoorbeeld 2⊕3 = max(2, 3) = 3 en 2⊗3 = 2+3 = 5. Systeemtech-

nisch komt de optelling van twee processen neer op de synchronisatie van processen (een

aansluitend proces kan beginnen na het voorgaande proces dat als laatste is afgerond) en ver-

menigvuldiging op het na elkaar uitvoeren van processen (de procestijd van het samengestelde
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proces is de som van de achtereenvolgende procestijden). Alle procestijden kunnen worden

samengevat in een toestandsmatrix, waarna het discrete-event systeem wordt beschreven door

matrix-vector vermenigvuldigingen en optellingen van vectoren, opgevat als bewerkingen in

max-plus algebra. (Hoofdstuk 7 & 8)

Algoritmisch komt de analyse van max-plus lineaire systemen neer op het oplossen van eigen-

waardeproblemen in max-plus algebra en kortste-pad of kritiekste-pad problemen. In dit proef-

schrift is daarom aandacht besteed aan efficiënte algoritmen voor deze problemen met be-

trekking tot het specifieke toepassingsgebied. Een timed event graph komt direct overeen met

een ‘polynomiale matrix’ in max-plus algebra. Dit is een polynoom waarin de coëfficienten

bestaan uit matrices, of, wat op hetzelfde neerkomt, een matrix waarvan de elementen bestaan

uit polynomen. Deze polynomiale matrix kan ook worden gebruikt in de beschrijving van

hogere-orde lineaire systemen, inclusief nulde-orde termen. De nulde-orde termen zijn alle pro-

cessen die binnen een periode worden afgewerkt, de eerste-orde termen alle processen die over

een periodegrens heenlopen, et cetera. De gebruikelijke methode bestaat uit een transformatie

van het hogere-orde systeem naar een puur eerste-orde systeem, waarvoor elegante algebraische

analysemethoden bestaan. Echter, vanuit algoritmisch oogpunt bezien is dit niet effectief en ook

vanuit de toepassing geredeneerd levert deze vereenvoudiging problemen op, met name door-

dat de nulde-orde dynamica is verdwenen. Dit proefschrift laat zien hoe de bekende max-plus

algebra theorie van matrices en eerste-orde recursieve systemen kan worden uitgebreid naar

polynomiale matrices en hogere-orde impliciete systemen. Speciale aandacht is besteed aan het

gegeneraliseerde eigenprobleem van max-plus polynomiale matrices, zowel voor irreducibele

als reducibele polynomiale matrices. Deze theorie geeft de noodzakelijke achtergrond die nodig

is voor een volledige beschrijving van de eigenruimte van (polynomiale) matrices en voor een

juiste interpretatie van het max-plus ‘policy’-iteratie algoritme in het geval van reducibele max-

plus (polynomiale) matrices. Het max-plus policy-iteratie algoritme is recent ontwikkeld op

basis van het welbekende policy-iteratie algoritme voor Markov beslissingsproblemen, en blijkt

voor het oplossen van het gegeneraliseerde eigenprobleem in max-plus algebra zeer effectief

te zijn met een lineaire praktische rekentijd. Andere onderwerpen die aan bod komen zijn het

efficiënt berekenen van alle kritieke circuits en de vertragingsvoortplanting voor grootschalige

ijle max-plus systemen. (Hoofdstuk 7)

De stabiliteitsanalyse van max-plus lineaire systemen komt neer op het berekenen van de eigen-

waarden van de (polynomiale) toestandsmatrix. De maximum eigenwaarde geeft de minimale

lengte van een dienstregelingsperiode aan waarmee de dienstregeling zich kan herhalen. Voor

een uurdienstregeling moet de maximum eigenwaarde dus kleiner zijn dan zestig minuten. In

dat geval is de dienstregeling (asymptotisch) stabiel zodat een initiële vertraging in de loop

der tijd uitdempt. De maximum eigenwaarde is gelijk aan de gemiddelde procestijd over een

‘kritiek circuit’, wat ook expliciet kan worden berekend. Een kritiek circuit is een cyclische

opeenvolging van processen en treinactiviteiten waarvoor de minste speling beschikbaar is. Een

eigenvector komt overeen met een dienstregeling (vertrektijdvector) waarin de kritieke trein-

activiteiten direct achter elkaar zijn gepland zodat een periodieke dienstuitvoering mogelijk is

met een periode gelijk aan de maximum eigenwaarde. De vertrektijden in de eigenvector komen

overeen met de kritieke paden vanaf één van de kritieke treinactiviteiten. Het verschil tussen

de echte dienstregelingsperiode (meestal een uur) en de maximum eigenwaarde geeft de gemid-

delde speling op de kritieke circuits aan. De treinactiviteiten die niet op een kritiek circuit liggen

hebben meer speling. Of een stabiele dienstregeling ook robuust is hangt af van de verdeling van

de speling over de dienstregeling. Een dienstregeling waarbij alle speling zoveel mogelijk in de
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keringen zit verwerkt is bijvoorbeeld niet robuust aangezien pas bij de keringen vertraging kan

worden afgebouwd. De spelingsverdeling over de dienstregeling wordt inzichtelijk gemaakt

via de spelingsmatrix, de recovery matrix, waarin ieder element aangeeft hoeveel speling op het

meeste kritieke pad tussen twee treinactiviteiten zit. De voortplanting van initiële vertragingen

kunnen ook expliciet worden berekend via de toestandsvergelijking waardoor de impact van

een combinatie van vertragingen kan worden gevisualiseerd. (Hoofdstuk 8)

De algoritmen en analysemogelijkheden zijn geı̈mplementeerd in de software PETER (Perfor-

mance Evaluation of Timed Events in Railways). Bijzondere aandacht is besteed aan de ont-

wikkeling en implementatie van efficiënte algoritmen die grootschalige netwerken in enkele

seconden kunnen doorrekenen. Daarnaast is in PETER aandacht besteed aan de grafische

presentatie van resultaten middels een projectie op het spoornetwerk, waardoor kritieke pun-

ten duidelijk zichtbaar worden. PETER voorziet in een behoefte voor een systematische en

transparante stabiliteitsanalyse van dienstregelingen voor grootschalige railverkeersnetwerken

en kan worden gebruikt in het ontwerpproces van dienstregelingen, de evaluatie van netwerksta-

biliteit bij de toedeling van railinfrastructuurcapaciteit en voor de ontwikkeling van effectieve

afhandelingsstrategieën ter beperking van vertragingsvoortplanting. (Hoofdstuk 8)
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