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We report the sequences of 1,244 human Y chromosomes 
randomly ascertained from 26 worldwide populations by  
the 1000 Genomes Project. We discovered more than  
65,000 variants, including single-nucleotide variants,  
multiple-nucleotide variants, insertions and deletions, 
short tandem repeats, and copy number variants. Of these, 
copy number variants contribute the greatest predicted 
functional impact. We constructed a calibrated phylogenetic 
tree on the basis of binary single-nucleotide variants and 
projected the more complex variants onto it, estimating the 
number of mutations for each class. Our phylogeny shows 
bursts of extreme expansion in male numbers that have 
occurred independently among each of the five continental 
superpopulations examined, at times of known migrations  
and technological innovations. 

The Y chromosome bears a unique record of human history owing 

to its male-specific inheritance and the absence of crossover for 

most of its length, which together link it completely to male phe-

notype and behavior1. Previous studies have demonstrated the 

value of full sequences for characterizing and calibrating the human  

Y-chromosome phylogeny2,3. These studies have led to insights into 

male demography, but further work is needed to more comprehen-

sively describe the range of Y-chromosome variation, including classes 

of variation more complex than single-nucleotide variants (SNVs); 

to investigate the mutational processes operating in the different 

classes; and to determine the relative roles of selection4 and demog-

raphy5 in shaping Y-chromosome variation. The role of demography 

has risen to prominence with reports of male-specific bottlenecks 

in several geographical areas after 10 thousand years ago (kya)5–7,  

at times putatively associated with the spread of farming5 or Bronze 

Age culture6. With improved calibration of the Y-chromosome 

SNV mutation rate8–10 and, consequently, more secure dating  

of relevant features of the Y-chromosome phylogeny, it is now possible 

to hone such interpretations.

We have conducted a comprehensive analysis of Y-chromosome  

variation using the largest extant sequence-based survey of global  

genetic variation—phase 3 of the 1000 Genomes Project11. We have 

documented the extent of and biological processes acting on five 

types of genetic variation, and we have generated new insights into  

the history of human males.

RESULTS
Data set
Our data set comprises 1,244 Y chromosomes sampled from 26 popu-

lations (Supplementary Table 1) and sequenced to a median haploid 

coverage of 4.3×. Reads were mapped to the GRCh37 human reference 

assembly used by phase 3 of the 1000 Genomes Project11 and to the 

GRCh38 reference for our analysis of short tandem repeats (STRs). 

We used multiple haploid-tailored methods to call variants and gen-

erate call sets containing more than 65,000 variants of five types, 

including SNVs (Supplementary Fig. 1 and Supplementary Tables 2  

and 3), multiple-nucleotide variants (MNVs), short insertions and 

deletions (indels), copy number variants (CNVs) (Supplementary 

Figs. 2–12), and STRs (Supplementary Tables 4–6). We also identi-

fied karyotype variation, which included one instance of 47,XXY and 

several mosaics of the karyotypes 46,XY and 45,X (Supplementary 

Table 7). We applied stringent quality control to meet the Project’s 

requirement of a false discovery rate (FDR) <5% for SNVs, indels and 

MNVs, and CNVs. In our validation analysis with independent data 

sets, the genotype concordance was greater than 99% for SNVs and 

was 86–97% for more complex variants (Table 1).

To construct a set of putative SNVs, we generated six distinct call 

sets, which we input to a consensus genotype caller. In an iterative 
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process, we leveraged the phylogeny to tune the final genotype calling 

strategy. We used similar methods for MNVs and indels, and we ran 

HipSTR to call STRs (Supplementary Note).

We discovered CNVs in the sequence data using two approaches, 

GenomeSTRiP12 and CnvHitSeq13 (Supplementary Note), and we val-

idated calls using array comparative genomic hybridization (aCGH),  

supplemented by FISH on DNA fibers (fiber-FISH) in a few cases 

(Supplementary Figs. 8 and 9, and Supplementary Note). In Figure 1,  

we illustrate a representative large deletion, which we discovered in 

a single individual using GenomeSTRiP (Fig. 1b). We validated its 

presence by aCGH (Fig. 1c) and ascertained its structure with fiber-

FISH (Fig. 1d). Notably, the event that gave rise to this variant was not 

a simple recombination between the segmental duplication elements 

it partially encompasses (Fig. 1a,d).

Phylogeny
We identified each individual’s Y-chromosome haplogroup 

(Supplementary Tables 8 and 9, and Supplementary Data) 

and constructed a maximum-likelihood phylogenetic tree using 

60,555 biallelic SNVs derived from 10.3 Mb of accessible DNA 

(Fig. 2, Supplementary Figs. 13–17, Supplementary Note, and 

Supplementary Data). Our tree recapitulates and refines the expected 

structure2,3,5, with all but two major haplogroups from A0 through 

T represented. The only haplogroups absent are M and S, both sub-

groups of K2b1 that are largely specific to New Guinea, which was 

not included in the 1000 Genomes Project. Notably, the branching 

patterns of several lineages suggest extreme expansions ~50–55 kya 

and also within the last few millennia. We investigated these later 

expansions in some detail and describe our findings below.

When the tree is calibrated with a mutation rate estimate of  

0.76 × 10−9 mutations per base pair per year9, the time to the most 

recent common ancestor (TMRCA) of the tree is ~190,000 years, but 

we consider the implications of alternative mutation rate estimates 

below. Of the clades resulting from the four deepest branching events, 

all but one are exclusive to Africa, and the TMRCA of all non-African 

lineages (that is, the TMRCA of haplogroups DE and CF) is ~76,000 

years (Fig. 1, Supplementary Figs. 18 and 19, Supplementary  

Table 10, and Supplementary Note). We saw a notable increase in 

the number of lineages outside Africa ~50–55 kya, perhaps reflecting 

Table 1 Y-chromosome variants discovered in 1,244 males

Variant type Number FDR (%) Concordance (%)

SNVs 60,555 3.9 99.6

Indels and MNVs 1,427 3.6 96.4

CNVs 110 2.7 86

STRs 3,253 NA 89–97

The concordance shown is with independent genotype calls, and the CNVs considered  

were those computationally inferred using GenomeSTRiP. FDR, false discovery rate; 

NA, not available.

17.96

HG00183 deletion calls

GenomeSTRip

aCGH

BAC clone

Custom PCR probes

FISH probes

Y: 17,986,738–17,995,460 Y: 18,008,099–18,016,824

P1 P2 P3

P4

4

2

0

–2

–4

17.96 17.98 18.00 18.02 18.04

lo
g

2
 (

in
te

n
s
it
y
 r

a
ti
o
)

Segmental duplication in the human reference sequence

17.97 17.98 17.99 18.00

Coordinates (Mb)
Coordinates (Mb)

Reference sample: HG00096

Sample with deletion: HG00183

18.01 18.02 18.03 18.04

17.96

2

1

0

17.98 18.00

Coordinates (Mb)

N
o
rm

a
liz

e
d
 r

e
a
d
 d

e
p
th

18.02 18.04

a

b

c

d

Figure 1 Discovery and validation of a representative Y-chromosome CNV. (a) The GRCh37 reference sequence contains an inverted segmental 

duplication (yellow bars) within GRCh37 Y: 17,986,738–18,016,824 bp. We designed FISH probes to target the 3′ termini of the two segments 

(magenta and green bars labeled P1 and P3, respectively) and the unique region between them (light-blue bar labeled P2). A fourth probe used 

reference sequence BAC clone RP11-12J24 (dark-blue bar labeled P4). Unlabeled green and magenta bars represent expected cross-hybridization, 

and black bars represent CNV events called by GenomeSTRiP and aCGH. GenomeSTRiP called a 30-kb deletion that includes the duplicated segments 

and the unique spacer region, whereas aCGH lacks probes in the duplicated regions. (b) GenomeSTRiP discovery plot. The red curve indicates the 

normalized read depth for sample HG00183, as compared to the read depth for 1,232 other samples (gray) and the median depth (black). (c) Validation 

by aCGH. The intensity ratio for HG00183 (red) is shown relative to that for 1,233 other samples (gray) and the median ratio (black). (d) Fiber-FISH 

validation using the probes illustrated in a. The reference sample, HG00096, matches the human reference sequence, with green, magenta, light-

blue, magenta, and green hybridizations occurring in sequence. In contrast, we observed just one green and one magenta hybridization in HG00183, 

indicating deletion of one copy of the segmental duplication and the central unique region. The coordinate scale that is consistent across a–c does 

not apply to d, and, although the BAC clone hybridization (dark blue) is shorter in the sample with the deletion, it appears longer owing to the variable 

degree of stretching inherent to the molecular combing process. 
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the geographical expansion and differentiation of Eurasian popula-

tions as they settled the vast expanse of these continents. Consistent 

with previous proposals14, a parsimonious interpretation of the  

phylogeny is that the predominant African haplogroup, haplogroup E,  

arose outside the continent. This model of geographical segrega-

tion within the CT clade requires just one continental haplogroup 

exchange (E to Africa), rather than three (D, C, and F out of Africa). 

Furthermore, the timing of this putative return to Africa—between 

the emergence of haplogroup E and its differentiation within Africa 

by 58 kya—is consistent with proposals, based on non–Y chro-

mosome data, of abundant gene flow between Africa and nearby  

regions of Asia 50–80 kya15.

Three new features of the phylogeny underscore the importance of 

South and Southeast Asia as likely locations where lineages currently 

distributed throughout Eurasia first diversified (Supplementary 

Note). First, we observed in a Vietnamese individual a rare F lineage 

that is an outgroup for the rest of the megahaplogroup (Fig. 1 and 

Supplementary Fig. 14b). The sequence for this individual includes 

the derived allele for 147 SNVs shared by and specific to the 857 F 

chromosomes in our sample, but the lineage split off from the rest 

of the group ~55 kya. This finding enabled us to define a new mega-

group, GHIJK-M3658, whose subclades include the vast majority of 

the world’s non-African males1. Second, we identified in 12 South 

Asian individuals a new clade, here designated H0, that split from 

the rest of haplogroup H ~51 kya (Supplementary Fig. 14b). This 

new structure highlights the ancient diversity within the haplogroup 

and requires a more inclusive redefinition using, for example, the 

deeper SNV M2713, a G>A mutation at 6,855,809 bp in the GRCh37 

reference. Third, a lineage carried by a South Asian Telugu individual, 

HG03742, enabled us to refine early differentiation within the K2a 

clade ~50 kya (Fig. 1 and Supplementary Figs. 14d and 15). Using the 

high resolving power of the SNVs in our phylogeny, we determined 

that this lineage split off from the branch leading to haplogroups 

N and O (NO) not long after the ancestors of two individuals with 

well-known ancient DNA (aDNA) sequences did. Ust’-Ishim9 and 

Oase1 (ref. 16) lived, respectively, in western Siberia 43–47 kya and 
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Figure 2 Y-chromosome phylogeny and haplogroup distribution. Branch lengths are drawn proportional to the estimated times between successive 

splits, with the most ancient division occurring ~190 kya. Colored triangles represent the major clades, and the width of each base is proportional to 

one less than the corresponding sample size. We modeled expansions within eight of the major haplogroups (circled) (Fig. 4); dotted triangles represent 

the ages and sample sizes of the expanding lineages. Inset, world map indicating, for each of the 26 populations, the geographic source, sample size, 

and haplogroup distribution.
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in Romania 37–42 kya. The Y chromosomes 

of these individuals join that of HG03742 

in sharing with haplogroup NO the derived  

T allele at M2308 (GRCh37 Y: 7,690,182 bp), 

and the modern sample shares just four addi-

tional mutations with the NO clade.

Mutations
To map each SNV to a branch (or branches) 

of the phylogeny, we first partitioned the tree into eight overlapping 

subtrees (Supplementary Fig. 13). Within each subtree, we provi-

sionally assigned each SNV to the internal branch constituting the 

minimum superset of carriers of one allele or the other, designating 

the derived state to the allele that was specific to this clade. When 

no member of the clade bore the ancestral allele, we deemed the site 

compatible with the subtree and assigned the SNV to the branch 

(Supplementary Note and Supplementary Data). Most SNVs (94%) 

mapped to a single branch of the phylogeny, corresponding to a single 

mutation event during the Y-chromosome history captured by this 

tree. We projected the other variants onto the tree to infer the number 

of mutations associated with each (Fig. 3a).

Our workflow to count the number of independent mutation events 

associated with each CNV is summarized in Supplementary Figure 10  

(Supplementary Note). We found that 39% of CNVs have mutated 

multiple times, a much higher proportion than for SNVs (Fig. 3a and 

Supplementary Data). CNVs can arise by several different mutational 

mechanisms, one of which is homologous recombination between mis-

aligned repeated sequences. This mechanism is particularly susceptible 

to recurrent mutations17, but, in comparing CNVs associated with 

repeated sequences to those that are not repeat associated, we did not 

observe a significant difference in the proportion that have mutated 

multiple times (Mann–Whitney two-sided test). We did, however, 

observe that repeat-associated CNVs tend to be longer (P = 0.01).

We inferred more than six independent mutation events for each 

of three CNVs. One CNV in particular stood out with 154 events. 

An apparent CNV hotspot spans a gene-free stretch of the chro-

mosome’s long arm at GRCh37 Y: 22,216,565–22,512,935 bp. The 

region includes two arrays of long-terminal repeat 12B (LTR12B) 

elements that together harbor 48 of the genome’s 211 copies of this 

element (23%). In principle, our inference of numerous independent 

mutations could have been due to a ‘shadowing’ effect from LTR12B 

elements elsewhere in the genome. That is, mismapping sequencing 

reads and cross-hybridizing aCGH probes can lead to false infer-

ence of variation. But, in a phylogenetic analysis of all 211 LTR12B 

elements (Supplementary Fig. 11), those within the putative CNV 

hotspot formed a pure monophyletic clade, demonstrating that 

the copy number signal was genuine. The CNV has no predicted  

functional consequence.

STRs constituted the most mutable variant class, with a median 

of 16 mutations per locus and an average mutation rate of 3.9 × 10−4 

mutations per generation. Assuming a generation time of 30 years, 

this equates to 1.3 × 10−5 mutations per year. Allele length explains 

more than half of the variance in the log-transformed mutation rate 

for uninterrupted STRs. Longer STRs mutate more rapidly, and, 

conditional on allele length, mutability decreases when the repeat 

structure is interrupted, with a general trend toward slower mutation 

rates for STRs with more interruptions (Fig. 3b). Further details are 

provided in our companion paper on Y-STRs18.

Functional impact
A small proportion of SNVs have a predicted functional impact 

(Supplementary Figs. 20–23, Supplementary Tables 11–14, 

Supplementary Note, and Supplementary Data). Among 60,555 SNVs, 

we observed 2 singleton premature stop codons, one each in AMELY 

and USP9Y, and one splice-site SNV that affects all known transcripts 

of TBL1Y. Among 94 missense SNVs with SIFT19 scores, all 30 deleteri-

ous variants were singletons or doubletons, whereas 17 of 64 tolerated 

variants were present at higher frequency (P = 0.001), underscoring the 

impact of purifying selection on variation in protein-coding genes. No 

STRs overlapped protein-coding regions, but, in contrast to the SNVs, 

a high proportion of CNVs have a predicted functional impact.

Twenty of 100 CNVs in our final call set overlapped 27 protein-

coding genes from 17 of the 33 Y-chromosome gene families. In our 

analysis of 1000 Genomes Project autosomal data, we observed that 

the ratio of the proportion of deletions overlapping protein-coding 

genes to the proportion of duplications overlapping protein-coding 

genes was 0.84. Whereas on the autosomes deletions are less likely 

to overlap protein-coding genes than duplications, as others have 

also reported20, we found the reverse to be true for the Y chromo-

some. Despite the Y chromosome’s haploidy, we calculated its ratio of  

proportions to be 1.5, indicating a surprising increased tolerance 

Figure 3 Mutation events. (a) Bar plots show 

the percentage of each variant type stratum 

associated with 1, 2, 3–10, or more mutations 

across the phylogeny. (b) For STRs, scatterplots 

show the logarithm of the number of mutational 

events versus major allele length, stratified by 

motif length and the number of interruptions  

to the repeat structure. We have plotted 

regression lines with shaded confidence 

intervals for categories with at least ten data 

points, and we have omitted from the plots  

44 STRs with motif lengths greater than 4 bp 

and 91 STRs whose mutation rate estimates 

were equal to the minimum threshold of  

1 × 10−5 mutations per generation. This figure 

was generated with ggplot2 (ref. 32).
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of gene loss as compared with the diploid  

genes on autosomes.

Diversity
Given observed diversity levels for the autosomes, X chromosome, 

and mitochondrial genome (mtDNA) (Supplementary Table 15, 

Supplementary Note, and Supplementary Data), Y-chromosome 

diversity was reported to be lower than expected from simple pop-

ulation genetic models that assume a Poisson-distributed number 

of offspring4, and the role of selection in this disparity is debated. 

We confirmed that Y-chromosome diversity in our sample was low 

(Supplementary Fig. 24) and found that positing extreme male- 

specific bottlenecks in the last few millennia could lead to a good fit 

between modeled and observed relative diversity levels for the auto-

somes, X chromosome, Y chromosome, and mtDNA (Supplementary 

Figs. 25–28, Supplementary Table 16, and Supplementary Note). 

Therefore, we conclude that Y-chromosome diversity may be shaped 

primarily by neutral demographic processes.

Haplogroup expansions
To investigate punctuated bursts within the phylogeny and estimate 

growth rates, we modeled haplogroup growth as a rapid phase followed 

by a moderate-rate phase and applied this model to lineages show-

ing rapid expansions (Supplementary Figs. 29–31, Supplementary 

Tables 17–19, Supplementary Note, and Supplementary Data), 

noting that such extreme expansions are seldom seen in the mtDNA 

phylogeny, here or in other studies5. We examined 20 nodes of the tree 

whose branching patterns were well fit by this model. These nodes 

were drawn from eight haplogroups and included at least one lineage 

from each of the five continental regions surveyed (Fig. 4). As the 

haplogroup expansions we report are among the most extreme yet 

observed in humans, we think it more likely than not that such events 

correspond to historical processes that have also left archaeologi-

cal footprints. Therefore, in what follows, we propose links between 

genetic and historical or archaeological data. We caution that,  

especially in light of as yet imperfect calibration, these connections 

remain unproven. But they are testable, for example, using aDNA.

First, in the Americas, we observed expansion of Q1a-M3 

(Supplementary Figs. 14e and 17) at ~15 kya, the time of the ini-

tial colonization of the hemisphere21. This correspondence, based 

on one of the most thoroughly examined dates in human prehistory, 

attests to the suitability of the calibration we have chosen. Second, in 

sub-Saharan Africa, two independent E1b-M180 lineages expanded 

~5 kya (Supplementary Fig. 14a), in a period before the numerical 

and geographical expansions of Bantu speakers, in whom E1b-M180 

now predominates22. The presence of these lineages in non-Bantu 

speakers (for example, Yoruba and Esan) indicates an expansion  

predating the Bantu migrations, perhaps triggered by the develop-

ment of ironworking23. Third, in Western Europe, related lineages 

within R1b-L11 expanded ~4.8–5.9 kya (Supplementary Fig. 14e), 

most markedly around 4.8 and 5.5 kya. The earlier of these times, 

5.5 kya, is associated with the origin of the Bronze Age Yamnaya cul-

ture. The Yamnaya have been linked by aDNA evidence to a massive 

migration from the Eurasian Steppe, which may have replaced much 

of the previous European population24,25; however, the six Yamnaya 

with informative genotypes did not bear lineages descending from or 

ancestral to R1b-L11, so a Y-chromosome connection has not been  

established. The later time, 4.8 kya, coincides with the origins of 

the Corded Ware (Battle Axe) culture in Eastern Europe and the  

Bell–Beaker culture in Western Europe26.

Potential correspondences between genetics and archeology in 

South and East Asia have not been investigated as extensively. In South 

Asia, we detected eight lineage expansions dating to ~4.0–7.3 kya and 

involving haplogroups H1-M52, L-M11, and R1a-Z93 (Supplementary  

Fig. 14b,d,e). The most striking were expansions within R1a-Z93, 

occurring ~4.0–4.5 kya. This time predates by a few centuries the 

collapse of the Indus Valley Civilization, associated by some with the 

historical migration of Indo-European speakers from the Western 

Steppe into the Indian subcontinent27. There is a notable parallel 

with events in Europe, and future aDNA evidence may prove to be as 

informative as it has been in Europe. Finally, East Asia stands out from 

the rest of the Old World for its paucity of sudden expansions, perhaps 

reflecting a larger starting population or the coexistence of multi-

ple prehistoric cultures wherein one lineage could rarely dominate.  

We observed just one notable expansion within each of the O2b-M176 

and O3-M122 clades (Supplementary Fig. 14d).

DISCUSSION
The 1000 Genomes Project data set provides a rich and unparalleled 

resource of Y-chromosome variation coupled with open access to 

DNA and cell lines that will facilitate diverse further investigations. 

By cataloging the phylogenetic position of ~60,000 SNVs, we have 

constructed a database of diagnostic variants with which one can 

assign Y-chromosome haplogroups to DNA samples (Supplementary 

Data). This resource is particularly valuable for SNP chip design  

and for aDNA studies, in which sequencing coverage is often quite 

low, as exemplified by our reanalysis of the Ust’-Ishim and Oase1  

Y chromosomes.

The variants we report have well-calibrated FDRs. Nevertheless, 

because of the modest sequencing coverage, data missingness was a 

principal concern. Small CNVs and long STRs are largely undetected, 
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Figure 4 Explosive male-lineage expansions of 

the last 15,000 years. Each circle represents 

a phylogenetic node whose branching pattern 

suggests rapid expansion. The horizontal axis 

indicates the timings of the expansions, and 

circle radii reflect growth rates—the minimum 

number of sons per generation, as estimated 

by our two-phase growth model. Nodes are 
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was generated with ggplot2 (ref. 32).

n
p
g

©
 2

0
1
6 

N
a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.
n
p
g

©
 2

0
1
6 

N
a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.



598 VOLUME 48 | NUMBER 6 | JUNE 2016 NATURE GENETICS

A N A LY S I S

results. The tree in Figure 2 was drawn using FigTree. G.D.P. was supported  
by the National Science Foundation (NSF) Graduate Research Fellowship under 
grant DGE-1147470 and by National Library of Medicine training grant  
LM-007033. Work at the Wellcome Trust Sanger Institute (Q.A., R.B., M.C., Y.C., 
S.L., A. Massaia, S.A. McCarthy, C.T.-S., Y.X., and F.Y.) was supported by Wellcome 
Trust grant 098051. F.L.M. was supported by National Institutes of Health (NIH) 
grant 1R01GM090087, by NSF grant DMS-1201234, and by a postdoctoral 
fellowship from the Stanford Center for Computational, Evolutionary and Human 
Genomics (CEHG). T.F.W. was supported by an AWS Education Grant, and the work 
of T.F.W., M.G., and Y.E. was supported in part by NIJ award 2014-DN-BX-K089.  
M.C. is supported by a Fundación Barrié Fellowship. H.S. and L. Coin are 
supported by Australian Research Council grants DP140103164 and FT110100972, 
respectively. M.G. was supported by a National Defense Science and Engineering 
Graduate Fellowship. G.R.S.R. was supported by the European Molecular 
Biology Laboratory and the Sanger Institute through an EBI–Sanger Postdoctoral 
Fellowship. X.Z.-B., P.F., D.R.Z., and L. Clarke were supported by Wellcome Trust 
grants 085532, 095908, and 104947 and by the European Molecular Biology 
Laboratory. P.A.U. was supported by SAP grant SP0#115016. C.L. was supported 
in part by NIH grant U41HG007497. Y.E. holds a Career Award at the Scientific 
Interface from the Burroughs Wellcome Fund. C.D.B. was supported by NIH grant 
5R01HG003229-09.

AUTHOR CONTRIBUTIONS

G.D.P., Y.X., C.D.B., and C.T.-S. conceived and designed the project. R.B., S.L., and 
F.Y. generated FISH data. A. Malhotra, M.R., E.C., C.Z., and C.L. generated aCGH 
data. G.D.P., Y.X., F.L.M., T.F.W., A. Massaia, M.A.W.S., Q.A., S.A. McCarthy, A.N., 
S.K., Y.C., J.L.R.-F., M.C., H.S., M.G., R.D., G.R.S.R., T.W.F., E.G., A. Marcketta, 
D.M., X.Z.-B., G.R.A., S.A. McCarroll, P.F., P.A.U., L. Coin, D.R.Z., L. Clarke, A.A., 
Y.E., R.E.H., C.D.B., and C.T.-S. analyzed the data. G.D.P., Y.X., F.L.M., T.F.W., A. 
Massaia, M.A.W.S., Q.A., and C.T.-S. wrote the manuscript. All authors reviewed, 
revised, and provided feedback on the manuscript. 

COMPETING FINANCIAL INTERESTS

The authors declare competing financial interests: details are available in the online 
version of the paper.

Reprints and permissions information is available online at http://www.nature.com/

reprints/index.html.

1. Jobling, M.A. & Tyler-Smith, C. The human Y chromosome: an evolutionary marker 

comes of age. Nat. Rev. Genet. 4, 598–612 (2003).

2. Wei, W. et al. A calibrated human Y-chromosomal phylogeny based on resequencing. 

Genome Res. 23, 388–395 (2013).

3. Poznik, G.D. et al. Sequencing Y chromosomes resolves discrepancy in  

time to common ancestor of males versus females. Science 341, 562–565 

(2013).

4. Wilson Sayres, M.A., Lohmueller, K.E. & Nielsen, R. Natural selection  

reduced diversity on human Y chromosomes. PLoS Genet. 10, e1004064 

(2014).

5. Karmin, M. et al. A recent bottleneck of Y chromosome diversity coincides with a 

global change in culture. Genome Res. 25, 459–466 (2015).

6. Batini, C. et al. Large-scale recent expansion of European patrilineages shown by 

population resequencing. Nat. Commun. 6, 7152 (2015).

7. Sikora, M.J., Colonna, V., Xue, Y. & Tyler-Smith, C. Modeling the contrasting 

Neolithic male lineage expansions in Europe and Africa. Investig. Genet. 4, 25 

(2013).

8. Helgason, A. et al. The Y-chromosome point mutation rate in humans. Nat. Genet. 

47, 453–457 (2015).

9. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western 

Siberia. Nature 514, 445–449 (2014).

10. Balanovsky, O. et al. Deep phylogenetic analysis of haplogroup G1 provides 

estimates of SNP and STR mutation rates on the human Y-chromosome and reveals 

migrations of Iranic speakers. PLoS One 10, e0122968 (2015).

11. 1000 Genomes Project Consortium. A global reference for human genetic variation. 

Nature 526, 68–74 (2015).

12. Handsaker, R.E. et al. Large multiallelic copy number variations in humans.  

Nat. Genet. 47, 296–303 (2015).

13. Bellos, E., Johnson, M.R. & Coin, L.J.M. cnvHiTSeq: integrative models for high-

resolution copy number variation detection and genotyping using population 

sequencing data. Genome Biol. 13, R120 (2012).

14. Hammer, M.F. et al. Out of Africa and back again: nested cladistic analysis of 

human Y chromosome variation. Mol. Biol. Evol. 15, 427–441 (1998).

15. Groucutt, H.S. et al. Rethinking the dispersal of Homo sapiens out of Africa.  

Evol. Anthropol. 24, 149–164 (2015).

16. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal 

ancestor. Nature 524, 216–219 (2015).

17. Zhang, F., Gu, W., Hurles, M.E. & Lupski, J.R. Copy number variation in human 

health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481 

(2009).

and low-frequency variants in general, including SNVs, are under-

represented. We therefore took great care to minimize the impact of 

missing variants. In particular, we designed the relevant downstream 

analyses to only use information from higher-frequency, shared vari-

ation, corresponding to mutations on internal branches of the tree.

Because many DNA samples were extracted from lymphoblastoid 

cells, another potential concern was variation that has arisen during  

cell culture28. However, such false discoveries are inherently not 

shared. Therefore, the precautions we took to minimize the impact 

of missingness also precluded in vitro mutations influencing our 

findings. We discuss additional caveats to the mapping of SNVs to 

branches in the Supplementary Note.

Our findings illustrate unique properties of the Y chromosome. 

Foremost, the abundance of extreme male-lineage expansions under-

scores differences between male and female demographic histories.  

A caveat to our expansion analysis is that our inference method assumed  

that population structure did not affect the branching patterns imme-

diately downstream of the particular phylogenetic node under inves-

tigation. This is reasonable because population structure is unlikely 

when a very rapid expansion is in progress, but, to accommodate this 

strong assumption, we limited all analyses to pruned internal subtrees 

short enough for it to hold. A second caveat relates to the choice of 

calibration metric, which is relevant to the links we have suggested 

between expansions and historical or archaeological events. Present-

day geographical distributions provide strong support for the cor-

respondences we proposed for the initial peopling of most of Eurasia 

by fully modern humans ~50–55 kya and for the first colonization of 

the Americas ~15 kya. For later male-specific expansions, we should 

consider the consequences of alternative mutation rate estimates, as 

pedigree-based methods relying on variation from the most recent 

several centuries8,10,28 may be more relevant. The pedigree-based esti-

mate from the largest set of mutations8 would lead to a ~15% decrease 
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tions that may have elicited increased variance in male reproduc-
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nary circumstances30,31 and that the Y chromosome resulting from 

these rapid expansions can predominate on a continental scale and 

do so in some of the populations most studied by medical geneticists. 

Inferences incorporating demography may benefit from taking these 

male–female differences into account.
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ONLINE METHODS
Study samples. The 1000 Genomes Project Consortium sequenced the 

genomes of 2,535 individuals from 26 populations representing five global 

superpopulations (Supplementary Table 1). The Project’s phase 3 analysis 

included 2,504 of these11, and we used the Y-chromosome reads from the 

1,244 males for this study.

SNVs, MNVs, and indels. To identify putative SNVs within the 10.3 Mb of 

the Y chromosome that is amenable to short-read sequencing3, we gener-

ated six call sets using SAMtools33, FreeBayes34, Platypus35, Cortex_var36, 

and GATK UnifiedGenotyper37,38 in both haploid and diploid modes. We 

used FreeBayes to construct a preliminary consensus call set and imposed 

filters for the number of alleles, genotype quality, read depth, mapping quality, 

missingness, and called heterozygosity. Finally, we called each genotype as the 

maximum-likelihood allele whenever a two-log-unit difference in likelihoods 

existed between the two possible states. For MNVs and indels, we imposed 

additional filters to exclude repetitive regions of the genome.

We used 11 high-coverage PCR-free genome sequences to estimate the FDR 

and 143 high-coverage Complete Genomics sequences to estimate the false 

negative rate and genotype concordance. We also estimated the singleton false 

positive rate by comparing the transition–transversion ratio among singletons 

to the corresponding ratio among shared SNVs.

CNVs. We discovered and genotyped CNVs using aCGH and two com-

putational methods, Genome STRiP12 and CnvHitSeq13, across the entire 

euchromatic region. We ran GenomeSTRiP separately for uniquely alignable 

sequences and segmental duplications, using 5-kb and 10-kb windows and 

filtering calls on the basis of call rate, density of alignable positions, cluster 

separation, and manual review to assess duplication of findings and strength 

of evidence. We excluded ten samples with evidence of cell-line-specific clonal 

aneuploidy. To estimate FDR, we used the intensity rank-sum method12 and 

probe intensity data from Affymetrix 6.0 SNP arrays.

We generated a second call set using the CnvHitSeq algorithm, which we 

modified to model read depth variation in a manner robust to the presence of 

repetitive regions and to estimate mosaicism. For the third call set, we used 

intensity ratios from 2,714 aCGH probes, with sample NA10851 as the reference.  

We segmented with the GADA algorithm39,40, called genotypes on the basis 

of the distribution of mean log2-transformed intensity ratios using the  

additive background model of Conrad et al.41, and imposed stringent criteria 

to minimize the FDR.

To validate the computational call sets, we used aCGH; alkaline-lysis fiber-

FISH, following the protocol of Perry et al.42; and molecular combing fiber-

FISH, following Polley et al.43, Carpenter et al.44, and instructions from the 

manufacturer, Genomic Vision.

Karyotyping for sex-chromosome aneuploidies. Metaphase chromosome 

spreads were prepared from lymphoblastoid cell lines (Coriell Biorepository) 

according to a standard protocol45. Chromosome-specific paint probes for 

the human X and Y chromosomes were generated from 5,000 copies of flow-

sorted chromosomes, using the GenomePlex Whole-Genome Amplification 

kit (Sigma-Aldrich). Probes were labeled and FISH was performed following 

the strategy described in Gribble et al.46.

STRs. We called genotypes using HipSTR and assessed call quality by compar-

ing genotypes across three father–son pairs and by measuring concordance 

with capillary electrophoresis for 15 loci in the PowerPlex Y23 panel. To esti-

mate Y-STR mutation rates, we used an approach we have fully described in a 

companion manuscript18. We modeled mutations with a geometric step size 

distribution and a spring-like length constraint, and, to account for PCR stutter 

artifacts and alignment errors, we learned an error model for each locus. We 

then leveraged the Y-chromosome SNV phylogeny to compute each sample’s 

genotype posteriors, used a variant of Felsenstein’s tree pruning algorithm47 

to evaluate the likelihood of a given mutation model, and optimized the model 

until convergence. We validated our estimates with simulations and compared 

them to published estimates when available.

Phylogeny. We assigned haplogroups using the 18 January 2014 version of 

the SNP Compendium maintained by the International Society of Genetic 

Genealogy (ISOGG). To construct a total-evidence maximum-likelihood tree, 

we converted genotype calls for the 60,555 biallelic SNVs to nexus format 

and ran RAxML8 (ref. 48) using the ASC_GTRGAMMA model. We then 

conducted 100 maximum-likelihood bootstraps and mapped these to the 

total-evidence tree. We partitioned the maximum-likelihood tree into eight 

overlapping subtrees, and for each subtree we defined a set of SNVs that were 

variable within it and assigned each site to the internal branch constituting 

the minimum superset of carriers of one allele or the other. To estimate split 

times, we used two approaches to account for the modest coverage of our 

sequences. In the first approach, we pruned the sample to sequences with 

5× or greater coverage, and in the second approach we traversed exclusively 

internal branches of the tree, as internal branches have high effective sequenc-

ing coverage due to the superposition of descending lineages. We calibrated 

using two mutation rate estimates from the literature8,9.

Functional annotation. We used Ensembl’s Variant Effect Predictor49 to 

functionally annotate SNVs. To evaluate deleteriousness, we used Combined 

Annotation-Dependent Depletion (CADD)50, SIFT19, and PolyPhen51.

Mitochondrial DNA. We excluded deletions and mutations proscribed by 

PhyloTree v.16 (ref. 52), generated a FASTA file using VCFtools53, and aligned 

mtDNA sequences to the revised Cambridge Reference Sequence (rCRS) using 

MEGA6 (ref. 54). We assigned haplogroups to each sample using HaploGrep55, 

manually checked all variant calls, inferred the mtDNA phylogeny using 

RAxML48, and plotted the tree using FigTree.

Diversity. We used 141 high-coverage Complete Genomics sequences to 

compare mtDNA diversity to that of the Y chromosome. Seeking to recapitu-

late this observed relative diversity, as well as the observed diversity of the  

X chromosome and the autosomes, we used standard neutral coalescent simula-

tions implemented in the program ms56 to simulate data for the four chromo-

some types under a series of demographic models. In all models, we held the 

autosomal effective population size fixed to values previously described for 

African and European demographic histories57,58, but we varied the ratio of 

male/female effective population sizes.

Haplogroup expansions. To estimate male-lineage growth rates, we developed 

a two-phase exponential growth model wherein the first phase coincides with 

an apparent rapid haplogroup expansion and the second phase links the first 

phase to the earliest time for which reasonable estimates exist of the size of the 

relevant population. Our primary objective was to estimate the duration of the 

first phase, T1, and the effective number of carriers of a haplogroup at its con-

clusion, N1, to estimate the growth rate during this period—the mean number 

of sons per man per generation. To do so, we conducted maximum-likelihood 

inference over a grid of (T1, N1) points for each of a sequence of ‘sampling’ 

times, Ts, defined by pruning the subtree of a phylogenetic node of interest to 

a fixed root-to-tip height (number of SNPs) (Supplementary Fig. 29).

With N2 fixed, we needed one additional parameter, T2, to specify the full 

demographic model corresponding to each (T1, N1) point to simulate two-

phase growth. We estimated T2 using 10,000 ms coalescent simulations56 

constrained by the TMRCA of the node of interest. With T2 and N2 in hand, 

we simulated two-phase growth to assemble a reference distribution of site 

frequency spectra (SFS) against which to compare the observed data. We did so 

for each point of a three-dimensional lattice of (T1, N1, Ts) values, allowing T1 

to range from 1 to 48 generations and distributing 32 N1 values in a geometric 

progression between 13.6 and 200,000 individuals. With up to ten possible Ts 

values, the lattice contained up to 15,360 points, and for each we conducted 

16,384 ms simulations of two-phase growth, fixing the number of lineages 

equal to that of the pruned observed tree. For each Ts, we approximated the 

likelihood of a particular (T1, N1) point by comparing the SFS values of the 

observed tree to those of the corresponding reference distribution, using an 

SFS distance measure we defined. Finally, we used the resulting likelihood 

contours to infer the magnitude of growth in the first phase.
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