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Abstract

Aneuploidy is a hallmark of breast cancer; however, our knowledge of how these complex 

genomic rearrangements evolve during tumorigenesis is limited. In this study we developed a 

highly multiplexed single-nucleus-sequencing method to investigate copy number evolution in 

triple-negative breast cancer patients. We sequenced 1000 single cells from 12 patients and 
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identified 1–3 major clonal subpopulations in each tumor that shared a common evolutionary 

lineage. We also identified a minor subpopulation of non-clonal cells that were classified as: 1) 

metastable, 2) pseudo-diploid, or 3) chromazemic. Phylogenetic analysis and mathematical 

modeling suggest that these data are unlikely to be explained by the gradual accumulation of copy 

number events over time. In contrast, our data challenge the paradigm of gradual evolution, 

showing that the majority of copy number aberrations are acquired at the earliest stages of tumor 

evolution, in short punctuated bursts, followed by stable clonal expansions that form the tumor 

mass.

Introduction

Aneuploidy is pervasive in human cancers1 and is frequently (>90%) detected in breast 

cancer patients2,3. DNA copy number aberrations (CNAs) often lead to gene dosage effects 

that promote tumor growth through the overexpression of oncogenes or down-regulation of 

tumor suppressor genes. However most genomic studies have analyzed a single time-point 

sample (biopsy or surgery) making it difficult to study the natural progression of 

chromosome evolution during tumorigenesis. Currently, the prevailing model for copy 

number evolution posits that CNAs are acquired gradually and sequentially over extended 

periods of time, leading to successively more malignant stages of cancer4,5. An alternative 

model is punctuated copy number evolution (PCNE), in which CNAs are acquired in short 

bursts of crisis, followed by stable clonal expansions that form the tumor mass 

(Supplementary Fig. 1). Previous work has implicated a punctuated model to explain 

localized chromosome rearrangements, including chromothripsis6, chromoplexy7 and 

firestorms8. However, there has been limited data showing that genome-wide aneuploidy 

arises in a short punctuated burst, at the earliest stages of tumor evolution.

Intratumor heterogeneity provides a window into time, by representing a permanent record 

of the mutations that occurred during tumor progression. By assuming that mutational 

complexity increases over time, it is possible to reconstruct the evolutionary history of a 

tumor9,10 and investigate PCNE. However, most tumors consist of complex mixtures of 

single cells with different genotypes, complicating such studies. To address this problem, we 

previously developed a single cell DNA sequencing method called Single-Nucleus-

Sequencing (SNS)11,12. We applied this method to sequence single tumor cells from two 

breast cancer patients, which provided initial evidence for PCNE12. However, these data 

were limited to two patients, mainly due to the high costs and low throughput associated 

with SNS. To address this problem, we developed a highly multiplexed single-nucleus-

sequencing (HM-SNS) method that can profile 48–96 single cells in parallel.

In this study we applied HM-SNS to investigate the clonal substructure and evolution of 

CNAs in triple-negative breast cancer (TNBC) patients. TNBCs are a subtype of breast 

cancer that is characterized by a lack of estrogen receptor (ER), progesterone receptor (PR) 

and Her2 amplification13. TNBC patients show poor survival and frequently develop 

resistance to chemotherapy14. The majority of TNBC patients harbor TP53 mutations3 and 

show complex aneuploid rearrangements2,15. Genomic studies have shown that TNBC 

patients display a large amount of inter-patient heterogeneity in somatic mutations3, in 
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addition to extensive intra-tumor heterogeneity within the tumor mass16–19. However, most 

studies of TNBC patients have been limited to bulk tumor analysis, and thus we investigated 

the clonal substructure of 12 treatment-naïve TNBC patients at single cell genomic 

resolution (Supplementary Table 1).

RESULTS

Highly-Multiplexed Single-Cell Copy Number Profiling

To profile genome-wide copy number in single cells we developed HM-SNS and applied it 

to sequence 1000 single cells from 12 TNBC patients (Fig. 1a). Nuclear suspensions were 

prepared from large (0.6–1cm3) frozen tumor specimens and stained with DAPI for flow-

sorting. Single nuclei were gated by ploidy and deposited into individual wells on a 96-well 

plate for whole-genome-amplification (WGA) using degenerative-oligonucleotide-PCR 

(DOP-PCR)11,12. After WGA, barcoded libraries were prepared for each single cell and 48–

96 libraries were pooled (Online Methods). The pooled libraries were sequenced on the 

Illumina platform at 76 single-end cycles. Single nuclei were sequenced at sparse coverage 

depth and copy number profiles were calculated from sequence read depth at 220kb 

resolution (Online Methods). On average 83 single cells (range 48–120) were sequenced 

from each TNBC patient (Supplementary Table 2). In each patient we observed a 2N diploid 

peak (D) and one or more aneuploid peaks that ranged from 1.8 – 4.1N in the flow-sorting 

histograms (Fig. 1b). Single nuclei were isolated from the aneuploid (A) and diploid (D) 

peaks, in addition to broadly gating nuclei from all ploidy distributions using universal (U) 

gates for a subset of tumors.

Clonal Substructure and Diversity During Tumor Growth

To delineate the clonal substructure of each tumor, we performed 1-dimensional hierarchical 

clustering of the aneuploid single cell copy number profiles. Clustered heatmaps identified 

1–3 major subpopulations of clones (A, B, C) in each tumor (Fig. 2). Within each 

subpopulation, the single cells shared highly similar copy number profiles (mean pairwise r 

= 0.87), representing stable clonal expansions that occurred during tumor growth. A similar 

population substructure was also observed by clustering all of the aneuploid and diploid 

cells from each TNBC patient, where the diploid cells formed another independent cluster 

(Supplementary Fig. 2). To quantitatively determine the optimal number of clusters in each 

tumor, we applied PAMK-medoids clustering20 (Supplementary Fig. 3). The PAMK results 

were consistent with the hierarchical clustering results in most TNBC patients. Principle 

component analysis (PCA) was also consistent with the clustering results, by showing that 

1–3 major clusters were present in each tumor (Fig. 3a). We quantified the genotype 

frequencies of the subpopulations, which revealed that some clones achieved higher 

frequencies in the tumor mass (Fig. 3b). To calculate a global metric of clonal diversity, we 

computed Shannon diversity indices for each TNBC patient (Online Methods). The diversity 

indices showed a broad range across the TNBC patient cohort, and corresponded to the 

number of clonal subpopulations that were present in each tumor (Fig. 3c). These data 

suggest that most TNBC tumors consisted of 1–3 major clonal subpopulations, and that 

complex aneuploid tumor profiles were highly stable (clonal stasis) during tumor growth.
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Divergent Subpopulations in Polyclonal Tumors

Polyclonal tumors shared most CNAs between the subpopulations, but also differed by a few 

discrete subclonal events that emerged in the later stages of tumor evolution. The subclonal 

CNAs distinguished the clones and often resulted in the amplification of oncogenes and 

deletion of tumor suppressors. In several cases, the subclonal CNAs were associated with 

increased genotype frequencies of the clones in the tumor mass, suggesting that they may 

have provided a fitness advantage. To further investigate this possibility, we calculated clonal 

frequencies (cf) in the polyclonal tumors (Online Methods, Supplementary Table 3). For 

instance, in tumor T3, two major clonal subpopulations (A, B) were identified, in which 

clone A acquired additional amplifications of chromosome 10p and 12q (Fig. 4a). The 10p 

amplification increased the copy number of GATA3, while the 12q amplification increased 

the copy number of MDM2 in addition to several other genes. These amplifications were 

associated with an increased frequency of clone A (cf = 0.85) compared to clone B (cf = 

0.15). In another polygenomic tumor (T2) we identified two major clonal subpopulations (A, 

B) that differed by a broad amplification on chromosome 5 that encompassed 14 cancer 

genes, including MAP3K1, ERBB2IP and PIK3R1 (Fig. 4b). This amplification was 

associated with an increased frequency of clone A (cf=0.87) relative to clone B (cf=0.13). 

Similar subclonal CNAs were found in other TNBC patients (T5 and T8) and often were 

associated with increased genotype frequencies in the clones that harbored the new CNAs 

(Supplementary Fig. 4). These data show that in addition to stable clonal expansions, TNBC 

patients can continue to acquire single CNAs in the later stages of tumor progression, and 

that these events are associated with the increased prevalence of new subpopulations.

Non-Clonal Copy Number Profiles in Tumors

While most cancer cells clustered into 1–3 major clonal subpopulations, we also identified a 

minor fraction (<10%) of non-clonal single cell copy number profiles in each tumor. On 

average the non-clonal copy number profiles occurred at 7.4 ± 0.8% (SEM) in the aneuploid 

fractions, 7.9 ± 1.4% (SEM) in the diploid fractions and 5.9 ± 1.0% (SEM) in the adjacent 

normal tissue cells (Fig. 5a–d, Supplementary Table 4). Based on the patterns of the CNA 

profiles, we identified three major classes of non-clonal cells: 1) metastable tumor cells, 2) 

pseudodiploid cells, and 3) chromazemic cells (Fig. 5e–h).

Metastable tumor cells are aneuploid cancer cells that share highly similar copy number 

profiles with the major subpopulations, but have evolved additional gains or losses of single 

chromosomes or arms (Fig. 5e). In tumor T3 we identified 53 single aneuploid tumor cells 

that shared a common copy number profile, and 6 unique metastable tumor cells with non-

clonal amplifications and deletions. One metastable tumor cell from T3 showed an 

additional amplification of chromosome 5p compared to the major aneuploid tumor cells 

(Fig. 5e–h, left panel). In tumor T6 we identified 79 single tumor cells that shared a common 

copy number profile and 6 unique metastable tumor cells with non-clonal CNAs. One 

metastable tumor cell with an additional amplification of chromosome 18p is shown in 

comparison to the major aneuploid tumor subpopulation (Fig. 5e, right panel). Metastable 

tumor cells acquired single CNAs in the later stages of tumor evolution, but represent 

evolutionary ‘dead-ends’ that did not undergo further expansion to achieve prevalence in the 

tumor mass.
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Pseudodiploid cells are single cells with flat 2N copy number profiles that have acquired 

additional gains or losses of single chromosomes or arms at random genomic locations (Fig. 

5f–g). While most CNAs were randomly distributed, one exception was a frequent (23%) 

loss of the X chromosome in multiple cells from different patients (p<0.0001, one-tailed t-

test) (Supplementary Table 5). To determine if non-clonal diploid cells were due to a tumor 

field effect, we also profiled normal breast tissues and found that 5.9% of cells also had non-

clonal profiles (Fig. 5d, Fig. 5g). These data suggest that random copy number gains and 

losses occur during normal mitosis, and are unlikely to be associated with a tumorigenic 

field effect (Supplementary Table 6).

Chromazemic cells (-zemia = ‘damage’ or ‘loss’) are non-clonal cells with large 

homozygous deletions of whole chromosomes or chromosome arms that occur at random 

locations in the genome (Fig. 5h). These cells are unlikely to be viable, due to the large 

homozygous deletions of chromosomes. Chromazemic cells may be the byproduct of 

asymmetric cell divisions or possibly dying cells and are found in diploid fractions, normal 

tissues and aneuploid fractions.

Punctuated Copy Number Evolution

To trace tumor evolution, we constructed phylogenetic trees from the single cell copy 

number data. Intratumor heterogeneity provides a permanent record of the mutations that 

occurred during tumor growth, enabling lineages to be reconstructed by assuming that 

mutational complexity increases with time9,10. Copy number segmentation was performed 

using a multi-sample breakpoint algorithm21 to identify common chromosome breakpoints 

that occur across single cells within each tumor. We then calculated a trinary event matrix to 

treat all large and small CNA events equally for phylogenetic analysis using maximum 

parsimony (MP) (Online Methods). The resulting MP trees show that each tumor evolved a 

long root branch of founder (‘truncal’) CNAs that were acquired concurrently in the early 

stages of tumor evolution and maintained stably in the clones during tumor growth (Fig. 6a–

c). Evidence of gradual intermediate branching was not observed as cells progressed from 

diploid to aneuploid genomes. Although some TNBC tumors showed clear evidence of 

divergent subclones in the later stages of tumor evolution, these clones typically only 

diverged by a few (N=1–3) CNAs, compared to the many (N=24–132) CNAs that were 

acquired in early punctuated bursts. Another important characteristic of the phylogenetic 

trees is that they show that all cancer cells share a common evolutionary origin in each 

tumor, suggesting that they evolved from a single normal cell in the breast tissue, not 

multiple initiating cells.

To further investigate whether the single cell data was consistent with PCNE we performed 

linear (gradual) and multi-step (punctuated) fitting of the sorted CNA count data from the 

single cells in each tumor (Online Methods). The 1-step fit resulted in higher correlation 

values (adj R2 = 0.977) compared to the linear fitting (adj R2 = 0.704) and was statistically 

significant (p = 2.125e-9, one-tailed t-test) (Fig. 6d, Supplementary Fig. 5). Similarly, better 

BIC and AIC values were obtained for all tumors when step-fitting was applied. These data 

support PCNE, by showing that a large number of CNA events increased drastically within a 

short period of time during tumor evolution.
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Absence of Gradual Intermediate Cells in Ungated Fractions

One possible explanation for the absence of gradual intermediate copy number profiles in 

the tumor mass is that the gating of ploidy distributions by FACS was too narrow and 

therefore may have missed intermediate cells that occur in between the ploidy peaks (Fig. 

1b). To investigate this possibility, we performed universal gating (U) to sample broadly 

across all of the ploidy distributions in 4/12 TNBC patients and flow-sorted additional single 

nuclei for HM-SNS. Hierarchical clustering was performed using the narrowly gated and 

universally gated nuclei data and heatmaps were constructed to compare the clonal 

substructure (Supplementary Fig. 6). Clustering analyses showed similar population 

substructure in the universal (U) and ploidy-gated (A, D) populations of tumor cells from 

each patient, with no evidence of additional intermediate copy number profiles in the 

universal gates, suggesting that if intermediate profiles exist and persist in the tumor mass, 

they are very rare. These data are consistent with the cell counts in the FACS histograms, 

which show no evidence of intermediate density between the aneuploid and diploid 

populations, with the exception of minor S-phase populations (Fig. 1b).

Mathematical Modeling of Gradual and Punctuated Evolution

To further investigate alternative scenarios such as punctuated and gradual evolution in 

silico, we developed a multi-type stochastic branching process model of tumor growth. In 

this model, during each time-step a cell can divide to produce: 1) two daughter cells that are 

identical to the mother cell, 2) no cells (death), or 3) one daughter identical to the mother 

cell and one daughter with a new CNA whose fitness advantage is selected from a 

mutational fitness distribution22. In the gradual model, each cell division event may lead to 

the accumulation of a new CNA at a constant rate (Fig. 7a) corresponding to the baseline 

mutation rate for single copy number changes (Fig. 7c). In the punctuated model (Fig. 7b), 

each cell division event may either result in the accumulation of a single CNA or, at a 

different rate, a burst of multiple somatic CNAs whose number is chosen from a Poisson 

distribution (Fig. 7d). We implemented both models as exact stochastic computer 

simulations initiating with a single diploid ancestral tumor cell and continued each 

instantiation of the model until the total number of cells was equivalent to the total number 

of cells in each TNBC patient. From each simulation, we sampled 100 single cells at random 

and constructed phylogenetic trees (Supplementary Fig. 7). We then performed AMOVA23 

to investigate the topologies of the resulting phylogenies. Permutation testing was applied to 

obtain p-values for each sample based on the gradual (Fig. 7e) and the punctuated model 

(Fig. 7f) and to test whether these models were able to recapitulate the tree topologies 

obtained from the TNBC patient data (Online Methods). We investigated a wide range of 

parameter values by searching through a total of 162 combinations of parameters. In the 

trees resulting from the gradual model, we found evidence of many intermediate 

subpopulations, suggesting that selective sweeps are unlikely to occur in later stages of 

tumor evolution, even when clones with high fitness values emerge (Fig. 7g, Supplementary 

Fig. 7b). In contrast, the punctuated simulations resulted in tree structures with long root 

nodes between the ancestral diploid and aneuploid subpopulations, which are consistent with 

our single cell data (Fig. 7h, Supplementary Fig. 7a). We then investigated alternative 

scenarios for gradual simulations (epistasis, cancer stem cells, increasing mutation rates, 

fixed fitness distributions and mutation rate from a distributions) to test their ability to 
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recapitulate the data (Supplementary Notes, Online Methods). In total, we investigated these 

alternative scenarios for a total of 2,097 parameter combinations. However, under all of 

these scenarios, the resulting trees sampled from 100 single cells displayed evidence of 

many intermediate branching clones (Supplementary Fig. 7b). Collectively, these modeling 

data support PCNE and suggest that selective sweeps occurring in later stages of tumor 

growth are unlikely to explain the presence of highly clonal subpopulations.

Inter-tumor Heterogeneity Between TNBC Patients

In addition to investigating intra-tumor heterogeneity we also compared copy number 

differences between TNBC patients. Consensus profiles were calculated to represent the 

bulk tumor populations from each TNBC patient by aggregating the single cell aneuploid 

copy number profiles (Online Methods). Frequency plots were calculated using all TNBC 

patients to identify common amplifications and deletions that are recurrent in the patient 

cohort (Fig. 8a). This analysis identified frequent amplifications on chromosome 1q 

(MDM4), 3q (PIK3CA), 6p (CCND3), 8q (MYC) and 18 (BCL2, SMAD4), while frequent 

deletions included chromosome 4p (FGFR3), 5q (PIK3R1), 8p (DBC2), 9p (NR4A3), 12 

(MDM2) and 22 (CHEK2). These genomic regions and oncogenes are consistent with 

previous microarray CGH studies on TNBC patients15. In addition to the frequent CNAs, we 

also identified many unique high-level focal amplifications (< 10 mb) that occurred 

exclusively in individual patients (Supplementary Fig. 8). These focal amplifications are 

consistent with previous reports in TNBC patients15,24. We further investigated inter-patient 

tumor heterogeneity by integrating single cell data from all of the TNBC patients. 

Dimensionality reduction was performed using t-SNE25, which shows that single cells 

cluster according to the patient from which they were isolated (Fig. 8b). Similarly, 

hierarchical clustering grouped single cells according to patients (Fig. 8c). These data show 

that single cells from each TNBC patient are genetically more related to each other than to 

other tumors, suggesting that they share a common ancestral lineage and evolved from a 

single normal cell in the breast tissue.

Discussion

Collectively, our data support a punctuated model of copy number evolution, in which a 

large number of CNAs are acquired early in tumor evolution, in a short period of crisis, and 

remain highly stable as the tumor mass clonally expands (clonal stasis). Despite profiling 

hundreds of single cells from many spatial regions, we did not detect any gradual 

intermediate copy number profiles, as the tumor cells evolved from diploid to aneuploid 

genomes. These data challenge the dogma of gradual tumor evolution4,5 by showing that 

cancer cells with gradual intermediate copy number profiles are not common during tumor 

growth. These findings also challenge reports of extensive intratumor genomic heterogeneity 

in breast cancer16,17,19,26 by showing that CNAs are remarkably stable throughout the tumor 

mass. However, previous studies focused mainly on point mutations, which may represent 

different molecular clocks during tumorigenesis18. PCNE is consistent with a ‘big bang’ 

model for tumor growth27,28,29 in which clonal diversification occurs at the earliest stages of 

tumor progression, leading to the stable expansion of one or more clones.
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An analogous model called ‘Punctuated Equilibrium’ was originally proposed by Gould and 

Eldredge in 1972 to explain species evolution30,31. This model was mainly supported by 

evidence in the fossil record and challenged Darwinian gradualism. Several interesting 

parallels can be drawn between these models: 1) stasis, 2) the lack of gradual intermediates 

and 3) short bursts of rapid evolution. However, it is important to note that the mechanisms 

underlying Punctuated Equilibrium in species evolution (e.g. allopatric speciation) are likely 

to be very different from PCNE in human tumors.

Punctuated copy number evolution and clonal stasis have important implications for tumor 

evolution, diagnostics and therapy. These data suggest that individual tumor cells may be 

hard-wired at the earliest stages of tumor growth and intrinsically pre-programmed to 

become invasive, metastatic or resistant to chemotherapy27,32. This deterministic 

characteristic may allow oncologists to profile CNAs in early-stage breast cancers (eg. 

DCIS) to predict whether the tumors should be treated aggressively, or alternatively not at all 

(‘watchful waiting’). Our single cell data also have important implications for clinical 

diagnostics, by showing that multi-region sampling may not be necessary for assessing 

CNAs as biomarkers in TNBC patients, since they are highly stable throughout the tumor 

mass.

Although most copy number profiles in the TNBC patients were found to be highly clonal, 

we also identified a minor (< 10%) fraction of cells with non-clonal copy number profiles. 

These cells were not intermediates in the tumor lineage, but instead showed random 

chromosome gains or losses. To determine if these cells were due to a tumor-specific field 

effect, we also profiled cells from normal breast tissue, which showed similar percentages of 

non-clonal cells (5.9%) to tumors. These data are consistent with recent single cell genomic 

data on tissue mosaicism, which have reported 1–5% non-clonal aneuploid cells in different 

normal tissues, including liver, brain and skin33. Because the majority of the non-clonal 

events involve a single chromosome gain or loss, we speculate that they are due to lagging 

chromosomes that occur during asymmetric mitoses34. While such events are unlikely to 

lead to further proliferation in normal tissues, it may provide tumors with additional ‘fuel for 

evolution’, occasionally leading to the emergence of new tumor subpopulations in the later 

stages of tumor evolution, as we observed in several polyclonal tumors.

Our study has addressed several key questions regarding copy number evolution in TNBC 

patients, but it has also raised several new lines of inquiry. How can genome instability be 

turned on and off at the earliest stages of tumor evolution in a reversible manner? One 

possibility for a reversible switch is telomere inactivation and reactivation, which could lead 

to complex aneuploid rearrangements in just a few cell divisions, in manner that can be 

reversed by telomerase reactivation. This mechanism has previously been described as 

‘episodic telomere crisis’ and was demonstrated using experimental systems35–37. However 

we speculate that telomerase inactivation alone is insufficient to cause punctuated evolution, 

since TP53 inactivation and genome duplication are also requirements for PCNE. Indeed 

previous work using in vivo systems has shown that TP53 and telomere loss can cooperate to 

drive tumorigenesis35. Another important question is how tumor cells with complex 

aneuploid rearrangements can undergo symmetric cell divisions and stable clonal expansions 

(clonal stasis). For tumor cells to undergo symmetric cell divisions with supernumerary 
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chromosomes, we speculate that aneuploid cells must cluster multiple centrioles together to 

align chromosomes equally along the metaphase plate38,39. Addressing these interesting 

questions will require future work and should be performed using in vitro and in vivo 

systems.

We also investigated whether we sequenced a sufficiently large number of cells in each 

TNBC patient to detect the major tumor subpopulations. To answer this question, we 

calculated posterior saturation curves with multinomial distributions (Supplementary Fig. 9). 

The resulting data suggest that 20–40 single cells were necessary to detect the major 

subpopulations with 95% power, suggesting that our sample size was sufficient (mean = 83). 

Another question we considered is whether an alternative model to PCNE could explain the 

observed single cell data, in which evolution is gradual until a clone with high fitness 

emerges at the later stages of progression, leading to a ‘selective sweep’. Despite extensive 

testing with mathematical modeling, we found that selective sweeps were highly uncommon 

during gradual evolution even when clones with high fitness emerged. Furthermore, a clonal 

sweep is inconsistent with studies that support early clonal diversification and selection27–29.

In summary, our single cell copy number data and mathematical modeling suggest that 

clonal stasis and PCNE are common in TNBC patients. This process leads to complex 

aneuploidy copy number profiles that are remarkably stable during tumor growth and 

ubiquitous throughout the tumor mass. Our preliminary data in other tumors (colon, prostate, 

liver, lung) suggest that PCNE may not be restricted to breast cancer, and is also likely to be 

operating in other human cancers. This model has important implications for our 

evolutionary understanding of cancer dynamics and for the clinical treatment of TNBC 

patients.

Online Methods

Triple Negative Breast Cancer Samples

Frozen tumors from 12 triple-negative breast cancer patients were selected with poorly 

differentiated and high grade (III) invasive ductal carcinomas as determined by the Bloom-

Richardson score. The triple-negative status of the tumor samples was determined by IHC 

for estrogen receptor (<1%) and progesterone receptor (<1%), and FISH analysis of the 

Her2 amplification using the CEP-17 centromere control probe (ratio of Her2/CEP17 < 2.2). 

The frozen tumor samples and matched normal breast tissues were obtained from the UT 

MD Anderson Cancer Center Breast Tissue Bank. Two frozen tumor samples (T11 and T12) 

were obtained from the cooperative human tissue network (CHTN). This study was 

approved by the Internal Review Board (IRB) at the University of Texas MD Anderson 

Cancer Center.

Highly Multiplexed Single Nucleus Sequencing

Nuclei from frozen tumors were isolated using a NST/DAPI buffer (800 mL of NST [146 

mM NaCl, 10 mM Tris base at pH 7.8, 1 mM CaCl2, 21 mM MgCl2, 0.05% BSA, 0.2% 

Nonidet P-40]), 200 mL of 106 mM MgCl2, 10 mg of DAPI, and 5mM EDTA. The frozen 

tumors were dissociated into nuclear suspensions by mincing with no.11 surgical scalpels in 
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1ml of NST-DAPI cytoplasmic lysis buffer at 4°C using ice blocks in a plastic Petri dish. 

Nuclear suspensions were filtered through 37-μm plastic mesh prior to flow-sorting into a 5-

ml polystyrene tube (Falcon). Single nuclei were flow-sorted into 96-well plates by FACS 

using the Aria II flow cytometer (BD Biosciences). Ploidy distributions were gated by 

differences in their total genomic DNA content as determined by DAPI intensity. To 

establish the fluorescence DAPI intensity corresponding to diploid (2N) a lymphoblast 

control cell line (REFM) was first flow-sorted to establish gates. Prior to flow-sorting single 

nuclei, a few thousand cells were first sorted to establish the DNA content distributions for 

gating by Ploidy. Single nuclei were collected from both diploid and aneuploid gated 

fractions. Additionally, nuclei were collected from each tumor by gating broadly across all 

ploidy distributions. Single nuclei were deposited into individual wells on a 96-well plate 

with 10ul of lysis solution in each well from the Sigma-Aldrich GenomePlex© WGA4 kit, 

along with negative control reactions, in which no nuclei were deposited.

Whole-Genome-Amplification & Barcoded Library Construction

Whole genome amplification (WGA) was performed on single flow-sorted nuclei using 

degenerative-oligonucleotide-PCR (DOP-PCR) as described in the Sigma- Aldrich 

GenomePlex WGA4 kit (cat # WGA4-50RXN) protocol. For QC of WGA performance the 

DNA concentration was measured (ThermoFisher Scientific, Qubit 2.0 Fluorometer) and 

reactions were run out using gel electrophoresis to determine size distributions. To prepare 

sequencing libraries by TA ligation cloning, 500ng of DNA were acoustically sonicated to 

200bp using the Sonicator S220 (Covaris). Fragmented WGA products underwent end repair 

(New England Biolabs (NEB), #E6050L) and were purified with the DNA Clean & 

Concentrator-5 Kit (Genesee, #11-303 or 11-306). Libraries were constructed using 

NEBNext® DNA library Prep enzymes (NEB, #E6050L, E6053L, E6056L/M0202L, and 

M0541L) for end-repair, 3′ adenylation, ligation and PCR amplification according to 

manufacturer’s instructions, but using different P7 adapters to barcode each single cell 

library with a unique 8bp identifier and common P5 adapters for sample multiplexing. The 

96 unique P7 indexes are NEXTflex-96 barcodes that were purchased from Bio scientific. 

Following the ligation, DNA underwent a negative and positive selection with Ampure XP 

beads (Beckman Coulter, #A63881), 0.7× and 0.15× respectively, prior to PCR 

amplification. Final library concentrations were measured using the Qubit 2.0 Fluorometer 

and 48–96 single cell libraries were pooled together in equimolar concentrations. Final 

concentration of the pooled libraries was measured by quantitative PCR using KAPA 

Library Quantification Kit (KAPA Biosystems, KK4835) and ABI PRISM real-time 

machine (Applied Biosystem 7900HT), as well as 2100 Bioanalyzer (Agilent).

Multiplexed Illumina Next-Generation Sequencing

Pooled libraries containing 48–96 barcoded single cell libraries were sequenced at 76 single-

end cycles on the HiSeq2000 system (Illumina) in Sequencing Core Facility of Genetics 

Department at MD Anderson Cancer Center to obtain a target coverage depth of 0.1× per 

single cell library. Data was processed using the CASAVA 1.8.1 pipeline (Illumina Inc.) and 

sequence reads were converted to a master FASTQ files. Sequencing reads from each single 

cell were demultiplexed using an in-house perl script (demultiplex.pl) into 48–96 

independent FASTQ files, where each file represented the sequencing reads from one cell.
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Sequence Alignment and Data Processing

After barcodes and sequencing adaptors were trimmed, sequence reads in FASTQ format 

were mapped to the human assembly US National Center for Biotechnology Information 

(NCBI) build 37 (HG19/NCBI37) using Bowtie2 alignment software40 with default 

parameters to generate SAM files. Samtools (0.1.19) was used to convert SAM files to 

compressed BAM files and sort the BAM files by chromosome coordinates41. To eliminate 

PCR duplicates, Samtools was used to remove sequence reads with identical start 

coordinates. Sequence reads with low mapping quality (MQ<40) were also filtered using 

Samtools.

Integer Copy Number Calculation from Single Cell Data

The sequencing data was counted in 11,927 genomic bins with variable start and stop 

coordinates, using the ‘variable binning’ method as previously described11,12. The median 

genomic length spanned by each bin is 220kb. This variable binning approach reduces 

mappability errors and false deletion events when compared to scaffolds using uniform 

length-fixed bins. A blacklist of ‘aberrant bins’ was filtered to remove false-positive 

amplifications in the centromeric and telomeric regions. The ‘aberrant bins’ are defined as 

bins where 5% to 95% percentile of ratios are distant from the ground states (|difference of 

ratio| > 0.5) in at least 2/3 normal single cell populations or the bins with systematic artifacts 

where the ratios are extremely high (ratio >10) or low (ratio < 0.001) across all single cells. 

Only single cells with median reads/bin greater than or equal to 50 were included for 

downstream copy number analysis. We then applied Loess normalization to correct for GC 

bias11. The copy number profiles were segmented using the Circular Binary Segmentation 

(CBS)42 followed by MergeLevels43 to join adjacent segments with non-significant 

differences in segmented ratios. The parameters used for CBS segmentation is alpha=0.0001 

and undo.prune=0.05 respectively. Default parameters were used for performing 

MergeLevels, which successfully joined false positive detections of erroneous breakpoints. 

The exp.mad was calculated as the median distance between the log2 transformed ratio and 

segmented values. Only segmentations having at least 1.48 times exp.mad deviation were 

retained as copy number aberrations. Finally, the integer copy number was calculated by 

scaling segmented ratios with average DNA ploidy determined by flow-sorting indexes and 

rounding to the closest integer values. When DNA ploidy information was unavailable for 

universally gated single cells, the least-square rounding method was applied to obtain the 

optimum scaling factor that has least sum of deviations from the closet integers after 

rounding44. Lastly, we filtered diploid single cells with variant coefficients of bin counts 

larger than 0.4 or having ‘mean_resid’ values bigger than 0.03. We calculated the 

‘mean_resid’ as the average deviation of scaled ratios from the true ground state integer 

values, i.e. 2, since they are 2N diploid cells. We filtered aneuploid single cells with MAD of 

genome-wide ratios bigger than 0.62 or autocorrelation values of neighboring data points 

less than 0.53. Autocorrelation values were calculated as moving windows using a 10-bin 

interval size across the 11,927 bins in the human genome scaffold. This window results in 

low correlation values in regions where adjacent data points have random values. These 

steps remove single cells with poor WGA performance for the subsequent multivariate data 

analysis.
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Cancer Gene Annotations

Amplifications and deletions identified in the single cell copy number profiles were 

annotated for known cancer genes, which was consisted of 413 genes that were compiled 

from multiple databases, including the Cancer Gene Census45, The Cancer Gene Atlas 

Project (TCGA) and the NCI cancer gene index (Sophic Systems Alliance Inc., Biomax 

Informatics A.G). BEDtools46 was used with the IntersectBED function to find the 

intersection of the known cancer gene BED file and regions of chromosome amplifications 

and deletions that were detected in the single cell sequencing datasets.

Clustering for Single Cell Copy Number Profiles

To construct the clustering heatmaps, the Euclidean distances were calculated from copy 

number data matrix where each column represents one single cell and each row contains the 

log2(ratio+0.1) transformed data of each segment. The one-dimensional hierarchical 

clustering was performed in R using the heatmap.2 function from the ‘gplots’ package 

available on CRAN47. Each column representing one single cell are hierarchically clustered 

using ‘ward’ linkage based on pairwise Euclidean distances, and the X-axis is ordered by 

genome positions. To estimate optimal numbers of clustering for each patient, we performed 

partition around medoids clustering with optimum Calinski-Harabasz index48 or average 

silhouette width using the pamk49 function from the ‘fpc’ package. Clusters with singleton 

cells were collapsed and penalized on pamk criteria to minimize technical artifacts. The K-

medoids clustering was performed on a range from K=1 to K=20 clusters.

High-Dimensional Data Analysis Methods

For each individual tumor, the numeric matrix containing integer copy numbers was used to 

perform principle component analysis (PCA) using ‘prcomp’ function in R47. The columns 

in the numeric matrix are segmented bins and each row is an individual single cell. The first 

two principle components were plotted in x and y-axis respectively. Each dot on the PCA 

plots represented single cell copy number profiles and are colored according to cells that 

clustered together into subpopulations that were identified by the hierarchical clustering 

analysis. To determine the genomic relationship of all aneuploid tumor cells from the 12 

TNBC patients, the t-distribution Stochastic Neighbor Embedding (t-SNE)50 method was 

applied based on the pairwise Euclidean distances of the ratio data. The t-SNE method is an 

improved nonlinear dimensionality reduction and visualization method, with which both 

local and global structures in high-dimensions can be visualized in low-dimensional plots, 

while avoiding dramatic masking of very similar data points seen in PCA plots.

Calculation of the Subclonal Diversity Index

To calculate the subpopulation diversity index for each tumor, we performed hierarchical 

clustering of copy number data to cluster the aneuploid tumor cells into 1–3 major groups 

(‘species’) based on Euclidean distances. Cells within each subpopulations were defined as 

highly correlated with mean R2 >0.8. We then calculated the proportion (p) of cells that 

belong to each distinct group. The subpopulation diversity index is then calculated as 

Shannon Index: Dc = −Σi(pi×lnpi), where larger values representing higher subclonal 

diversity within the tumor.
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Clonal Frequency of Subpopulations

To calculate the clonal frequencies of each clonal subpopulation, we first identified clusters 

of genotypes by hierarchical clustering and the optimal clustering results were selected 

based on Calinski-Harabasz index48 or average silhouette width. We then counted the 

number of cells that were classified into each sub-clusters. The relative clonal frequencies 

were calculated as the number cells that fell into each specific sub-clusters divided by the 

total number of clonal aneuploid cells. The singleton cells that formed the only one member 

of a sub-cluster were defined as non-clonal and were extruded from this calculation.

Copy Number Aberration Frequency Calculation and Plots

Consensus copy number integer profiles for each tumor were calculated using the median 

integer copy number segment values of all aneuploid single cells from each tumor. To 

calculate the frequency plot of the 12 TNBC samples, the mean copy number values across 

the genomic bins of each cell were treated as the ground state copy number and 1.5 times the 

standard deviation (SD) across the genome as deviation cutoff values. If a copy number was 

higher than mean+1.5×SD, then a significant amplification was designated, while for the 

copy number lower than mean−1.5×SD, a significant deletion was designated. The 

amplification and deletion frequencies across all tumors were calculated by first counting the 

total number of consensus tumor profiles that having significant amplifications or deletions 

in each of the 11,927 bins across the genome and then dividing the counts by the total 

number of consensus profiles.

Multi-Cell Segmentation and Event Matrix Construction

To detect common chromosome breakpoints and segments that are shared between single 

cell samples, we applied a multi-sample population segmentation algorithm using 

bioconductor R package (“copynumber”)21, with regularization parameter γ=40 (default). 

Segments smaller than 20 bins were removed, and their flanking segments joined, or 

separated at the center of the removed segment if they differed significantly (Wilcoxon test, 

Hommel-adjusted p-value < 0.05 in at least 2 cells)51. The ground state of each cell was 

calculated by rounding its expected ploidy to the nearest integer44. For each tumor, a median 

matrix M was constructed, in which M is the median of the ith segment in the jth cell. From 

this median matrix, an event matrix E was calculated as follows: Let gi be the ground state of 

the jth cell. Eij = 1 (amplification) if Mij − gi > 0.6, Eij = −1 (deletion) if Mij − gi < − 0.6, and 

Eij = 0 (neutral) if |Mij − gi | < 0.4. If 0.4 ≤ |Mij − gi |≤ 0.6, Eij was treated as missing with 

systematic artifact. Segments that have missing values systematically across all cells were 

removed if they satisfied the following criterion:

where u is the probability density function (p.d.f.) of a uniform distribution on (0, 1), C0.2 is 

the cardioid p.d.f. 52 with concentration parameter ρ=0.2, and {Mij} is the fractional part of 

Mij. This formula is a Bayes factor for comparing a model in which ploidy-scaled segment 
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medians do not cluster around integer values to one in which they do, and the chosen cutoff 

represents 99% certainty of the first model assuming equal prior probabilities.

Phylogenetic Tree Construction using Maximum Parsimony

Maximum parsimony trees were calculated from event matrices using the parsimony ratchet 

algorithm with R package “phangorn”53. Amplification, neutral and deletion were treated as 

characters, and missing values as ambiguous sites. Events occurring on sex chromosomes 

were ignored. Metastable cells were removed from each tumor for phylogenetic analyses, 

since they do not share CNAs in the main tumor lineages. Cells were also removed if at least 

one third of events were missing values. Branch lengths and ancestral character probability 

distributions were inferred using the Acctran algorithm53. Altered sites on each edge were 

estimated as the sites such that:

where A and B are the ancestral sequences estimated at each node and c is a character.

Phylogenic tree visualization

Phylogenic trees were exported in Newick format from R-studio and plotted as square trees 

using Matlab (MathWorks Inc). The trees were re-rooted by the top node of diploid cells. 

Each individual single cell was represented as tips of the tree and the nodes were colored 

based on the sub-clonal populations. Single cells from the same subpopulations were flipped 

to physically nearby with each other to favor visualization.

Mathematical Modeling of Gradual and Punctuated Evolution

Please see ‘Supplementary Notes’ for details on mathematical modeling of gradual and 

punctuated tumor growth.

Statistical Fitting of Copy Number Aberrations

We first counted the total number of CNA events within each single cell from the collapsed 

trinary event matrix. To minimize technical noise, singleton CNAs that existed in only one 

cell or CNA events with missing values in > 50% cells, or cells with > 40% missing values 

were excluded from analysis. Subsequently, single cells were sorted based on the total 

number of CNA events within each cell. For the gradual linear model, we assume tumor 

cells evolved through intermediate genomes and therefore the total CNAs increased 

gradually over time. We therefore fit a linear model of total segments with a slope: 

CNAs=Time + Error. For the punctuated model, we assumed tumor cells lack gradual 

intermediate species and therefore the total CNAs changed over one or more critical 

evolutionary steps reflected in the jumping of events. The punctual model is CNAs=Step + 

Error, with no slope, where the fitted values are simply the average numbers of CNAs per 

cell within each step. Models were fit using the lm function in R47. The Bayesian 

Information Criteria (BIC), Akaike Information Criterion (AIC) and adjusted R2 values were 

calculated to measure the best fit of each model for the tumor datasets.
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Saturation Analysis to Estimate Required Sample Sizes

A post hoc saturation analysis was performed to determine whether we sequenced sufficient 

cells for the purpose of this study. We first obtained the total number of subpopulations and 

the fractions of each subpopulation within each tumor by hierarchical clustering single cell 

with copy number data as described above. We then calculated the accumulative probability 

of observing at least 3 single cells in each subpopulation given numbers of sequenced cells, 

by assuming the number of observed cells following a binomial distribution for bi-clonal 

tumors and multinomial distribution for tri-clonal tumors. The two monogenomic tumors 

were excluded from this analysis. The cumulative probabilities were calculated in R47.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Highly-multiplexed single nucleus sequencing of TNBC patients

(a) Highly-multiplexed single nucleus sequencing method. Tumor tissues are dissociated 

into nuclear suspensions and stained with DAPI for flow-sorting by DNA ploidy. Single 

nuclei are deposited into 96-well plates and whole-genome-amplified by DOP-PCR. Single 

cell libraries are barcoded with unique 8bp identifier and 48–96 libraries are pooled together 

for sparse next-generation sequencing. The sequence reads are demultiplexed using the cell 

barcodes after sequencing is completed for copy number profile calculations. (b) FACS plots 

of DAPI intensity showing ploidy distributions for each TNBC patient. Single cells were 

isolated from different distributions of ploidy that were gated as: D (diploid), A 

(aneuploidy), or U (universal).
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Figure 2. Clonal subpopulations identified by clustering aneuploid cells

Hierarchical 1-dimensional clustering of the single cell aneuploidy copy number profiles 

from each TNBC patient. The clonal subpopulations (A, B, C) are colored in orange, teal or 

purple. Single cells are plotted on the Y-axis, while copy number aberrations are plotted in 

genomic order on the X-axis.
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Figure 3. Clonal composition and diversity of TNBC tumors

(a) Principal Component Analysis of single cell copy number profiles sequenced from each 

TNBC tumor. Copy number profiles are colored by hierarchical clustering analysis and 

labeled as follows: diploid (D) or aneuploid tumor subpopulations (A, B, C). (b) Percentage 

of subclone genotypes in each tumor. (c) Shannon diversity index of copy number profiles 

from each tumor, with dotted lines indicating low, intermediate and high diversity groups.
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Figure 4. Divergent subpopulations in polyclonal tumors

Clustered heatmaps of single cell aneuploid copy number profiles in polyclonal tumors. (a) 

Tumor T3 heatmap with two subpopulations (A, B) identified. Subpopulation A (orange 

cluster) diverged from subpopulation B (teal cluster) by acquiring additional amplifications 

on chromosomes 10p and 12q, resulting in the amplification of GATA3 and MDM2 in 

addition to many other genes. (b) Tumor T2 heatmap with two subpopulations (A, B) 

identified. Subpopulation A (orange) diverged from the B subpopulation (teal) by the 

amplification of chromosome 5, containing many cancer genes including MAP3K1, 

ERBB2IP and PIK3R1.
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Figure 5. Non-clonal copy number profiles in tumors and normal breast tissues

(a) Percentage of non-clonal cells in each tumor. (b) Percentage of non-clonal metastable 

aneuploid cells in the aneuploid fractions of each tumor. (c) Percentage of non-clonal 

pseudo-diploid cells in the diploid fractions of each tumor (d) Percentage of pseudodiploid 

cells in matched normal breast tissues from four TNBC patients (T3, T5, T8 and T10). (e) 

Examples of two metastable aneuploid cells (upper panels) compared to the copy number 

profiles of the major aneuploid subpopulations (lower panels). (f) Example of a pseudo-

diploid cell isolated from diploid fractions of tumors. (g) Example of a pseudo-diploid cell 
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isolated from matched normal breast tissues. (h) Examples of four chromazemic cells with 

large homozygous deletions of whole chromosomes or chromosome arms.
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Figure 6. Punctuated copy number evolution and phylogenetic trees

(a–c) Multi-cell segmentation (upper panels), trinary event matrices (lower panels), where 

white = 0, red = 1, and blue = −1 and maximum parsimony trees (right panels) from 3 

TNBC patients: (a) T1, (b) T3 and (c) T8. Maximum parsimony trees are rooted by the 

diploid cells and non-clonal profiles were excluded from the analysis. Copy number events 

with non-integer values were filtered from all cells prior to tree construction and are shown 

in grey. (d) Linear and step fitting of sorted single cell CNA count data from 6 TNBC 

patients. Adj R2, BIC and AIC metric are also displayed for each fit.
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Figure 7. Mathematical modeling of punctuated and gradual tumor evolution

(a) Gradual model of multi-type stochastic birth-death-mutation process. (b) Punctuated 

model of multi-type stochastic birth-death-mutation process with a Poisson mutation burst 

probability distribution. (c) Fitness distributions with varying shape parameter values (alpha) 

that are used for sampling as new clones emerge during the binary branching process in the 

gradual or punctuated models. (d) Poisson probability distribution for multiple CNA events 

occurring in the punctuated model with a single atom (i.e. point mass) at 1 for single CNA 

events. (e) Heatmap of AMOVA analysis for different fitness distributions and mutation rates 

in the gradual model. (f) Heatmap of AMOVA analysis for different burst and mutation 

probabilities in the punctuated model. Colors indicate the proportion of simulations passing 

the ‘minimal punctuated criteria’, with p-values < 0.05 in AMOVA permutation and > 90% 

samples having root nodes with at least 5 CNAs to construct a tree. (g) Tree constructed 

from sampling 100 random single cells from simulated data generated from the gradual 

model. (h) Tree constructed from random sampling of 100 single cells from the simulated 

data from the punctuated model.
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Figure 8. Inter-tumor heterogeneity and focal amplifications in TNBCs

(a) Frequency plot of CNAs across 12 TNBC patients with amplifications in red and 

deletions in blue. (b) t-SNE plot was calculated using all single aneuploid tumor cells from 

the 12 TNBC patients. Single cells were colored by individual patients. (c) Hierarchical 

clustering tree using ward linkage was constructed using pairwise Euclidean distances of all 

aneuploid tumor cells from the 12 TNBC patients.
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