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Abstract

We study a two-stage purchase contract with a demand forecast update. The purchase
contract provides the buyer an opportunity to adjust an initial commitment based on an
updated demand forecast obtained at a later stage. An adjustment, if any, incurs a fixed
as well as a variable cost. Using a dynamic programming formulation, we obtain optimal
solutions for a class of demand distributions. We also discuss how these results can be applied
to gain managerial insights that help in making decisions regarding where to allocate efforts
in improving the forecast quality and whether or not to sign a contract.

1 Introduction

In this paper we study a buyer’s problem involving a purchase contract with a demand forecast

update. Because of the presence of a lead time, the buyer makes an initial purchase decision with

a preliminary demand forecast. The buyer is aware that an improved demand forecast will be

available at a later stage. The purchase contract provides the buyer an opportunity to modify his

initial order by exercising an option: the buyer may exercise the option at a fixed cost, and then

increase the initial order quantity (resp. cancel some ordered items) at a higher unit cost (resp.

for a lower-than-cost refund). Our objective is to obtain an optimal policy which describes the

initial order quantity and a reaction plan to the improved demand forecast available at the later

stage.
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This research is motivated by micro-controller chip purchase activities in a Hong Kong security

equipment company. The company produces various security devices for industrial, residential,

and military applications worldwide. The micro-controllers are the key components for its prod-

ucts. When micro-controllers are ordered from a semiconductor manufacturer, the company is

allowed to specify the data (programming code) in the micro-controllers with read-only memory

(ROM). The process is known as customer masking in wafer fabrication, which requires a sufficient

lead time (typically 16-20 weeks). The fundamental difficulty the security equipment company

faces lies in not being able to know the demand until a time close to delivery. In addition, the

company cannot afford to keep high volume inventory in micro-controllers for a number of rea-

sons, such as short product life cycles, frequent engineering changes, and a sharply decreasing

price trend in semiconductor products. One way of dealing with the difficulty is to use a general

purpose, albeit more expensive, micro-controller with erasable programmable read-only memory

(EPROM). Another option is a form of agreement that can be reached between the supplier and

the buyer, which allows the buyer to change its initial order quantity with both fixed and variable

costs before a specific time. This is known as a purchase contract with volume flexibility. For

high uncertainty products, the company has adopted our approach in evaluating and executing

purchase contracts for its customer masking chips with one of its major micro-controller manu-

facturers. At the same time, for stable products, the company uses a combination of one-time

programmable and EPROM chips when the demand cannot be satisfied by the customer masking

chips.

We formulate the problem as a two-stage dynamic programming problem, where the decisions

are the initial order quantity and the reaction plan which specifies how to adjust the initial

order in view of the improved demand information obtained at Stage 2. The optimal policy at

Stage 2 for increasing or decreasing the initial order can be expressed in terms of their respective

(s, S) parameters. When the demand signal is the location parameter of the conditional demand

distribution and the conditional demand given the signal is a PF2 density, we prove that the

total expected cost is unimodal with respect to the initial order quantity. Therefore, the initial

optimal policy is a base-stock policy with a closed-form solution for the base-stock level. In the

case of uniform conditional distribution of demand, we discuss how the results obtained enable
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us to perform a sensitivity analysis with respect to changes in forecast updating parameters.

Our model could be considered as a two-stage extension of the classical newsvendor problem

to allow for a contract, a fixed cost, a forecast update, and a possibility of the initial order

adjustment, while, at the same time, preserving the explicitness of the solution—a very appealing

feature of the newsvendor problem. The explicit form of the solution allows us to obtain a

number of valuable insights into better purchase contract management. When there are other

means of hedging demand uncertainties such as product substitution, we establish the value of

the purchase contract. We prove that the optimal cost function is monotone with respect to the

contract exercise cost. In addition, we demonstrate the asymptotic property of the cost function,

namely, that the cost converges to a fixed value when the contract exercise cost is sufficiently large.

These findings provide benchmarks in determining strategies for hedging demand uncertainties.

The paper is organized as follows. Section 2 provides a brief review of the literature, and

discusses how our model compares or contrasts with the literature. Section 3 introduces the

notation and formulates the problem. After a discussion of factors that are involved in decision

making, we formulate the problem of the optimal initial order policy at Stage 1 and the optimal

adjustment policy at Stage 2 as a two-stage dynamic programming problem. In Section 4, we prove

that the optimal policy at Stage 2 is a generalized (s, S) policy for general demand distributions.

While the general problem at Stage 1 can be solved numerically, we provide solutions for the class

of PF2 distributions in Section 5. In Section 6, we provide a sensitivity analysis, which aids in

deciding on the investment the buyer can make in improving the forecast update and contract

parameters. Moreover, it is also possible to determine a critical contract exercise price above

which the contract is not as desirable as an available hedging alternative. Section 7 concludes the

paper. The appendix contains proofs of results.

2 Review of and Relationship with the Literature

There are a number of papers in the literature dealing with problems of uncertain demands with

forecast updates. Murray and Silver (1966) use a Bayesian approach to estimate the demand.

Lovejoy (1990) develops a myopic policy with a parameterized adaptive demand process. Sethi

and Sorger (1991) develop a dynamic programming framework for rolling horizon decision making
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with forecast updates obtained at some cost. They formulate a dynamic stochastic production

planning problem which involves determination of the optimal length of the forecast window and

the optimal production quantity in each period. Their objective is minimization of the total cost

of production, inventory and forecasting over a given planning horizon.

Fisher and Raman (1996) discuss the problem of an accurate response to uncertain demand

when some information about early sales is available. The problem of optimal production com-

mitments is formulated as a stochastic programming problem. Constraints on the production

capacity and the minimum lot size are considered. The results are applied to a major sportswear

company, and it is reported to have resulted in remarkable savings. In a special case with bivariate

normally distributed demand forecasts and equal under- and over-production costs, the authors

are able to provide a closed-form solution to the problem under consideration.

Motivated by quick response programs in the apparel industry, Iyer and Bergen (1997) divide

the planning horizon into two stages. Information obtained in the first stage is used to update

the parameters in the demand distribution function by an application of the Bayesian approach.

The decision of how much to produce is made only in the second stage. The model allows one

to evaluate the relationship between buyers and manufacturers. Effects of quick response on the

service levels, price, and volume are also discussed.

Yan, Liu and Hsu (2003) develop a dual supply model with one demand forecast update as a

two-stage dynamic programming problem. The decision variables are the order quantities in the

first and the second stage. Under the assumption of uniformly distributed demand forecasts and

increasing purchase costs over time, they demonstrate that the total cost is convex with respect

to the initial order quantity. They also prove that the optimal policy is myopic if the demand

processes satisfy some regularity conditions.

Sethi, Yan and Zhang (2001) consider a periodic review inventory model – termed an onion

layer peeling model – with fast and slow delivery modes and multiple demand forecast updates,

where fast and slow orders are delivered at the end of the current and the next periods, re-

spectively. Both finite and infinite horizon problems are treated. They show that a modified

base-stock policy is optimal, where the inventory position relevant for the slow order includes the

amount ordered via the fast mode. Sethi, Yan and Zhang (2003) extend the model by allowing
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for a fixed ordering cost, and show that an (s, S)-type policy is optimal for both fast and slow

orders.

Traditional inventory models assume a simple buyer-supplier arrangement. The buyer places

an order at any time for any amount at a fixed cost and a given unit price, and the supplier

provides the product. However, this results in a great deal of uncertainty for both parties, since

very little is known about the eventual demand at the time of the order. In many industries,

forms of arrangements known as contracts exist to strike a balance between flexibility and uncer-

tainty. Bassok and Anupindi (2002) model a contract with both total minimum dollar volume

commitment and flexibility to adjust the volume of individual products. In addition, Anupindi

and Bassok (1998) analyze a supply contract with various types of flexibilities. Eppen and Iyer

(1997) discuss a so-called backup agreement in the fashion industry for a catalog company. It

entails that the supplier holds back a constant fraction of the commitment and delivers the re-

maining units to the catalog company before the start of the fashion season. It allows the catalog

company to make decisions after observing the early demand. That is, the company may order

up to the backup quantity at the original cost, along with a penalty cost for any backup units

that are not ordered. They find that a backup agreement has an impact on the expected profit.

Barnes-Schuster, Bassok and Anupindi (2002) study the role of a supply contract between

the buyer and the supplier in a two-stage model. In their model, the option of volume flexibility

applies to the second stage. Structural properties of the objective functions for both the buyer and

the supplier are explored. They show that in order to achieve channel coordination, the contract

exercise price must be in the form of a piecewise linear function. The contract option price is also

evaluated numerically. Donohue (2000) considers a supply contract as a risk-sharing mechanism

between the buyer and the supplier. She focuses on channel coordination by determining the

wholesale price and the return policy. Gurnani and Tang (1999) investigate optimal ordering

policies for a two-stage model, where the demand information is updated between Stages 1 and

2. They provide a nested newsvendor model for determining the optimal order quantity for

each stage. In the case of a bivariate normally distributed demand, Gurnani and Tang provide

an explicit solution for the special cases of the worthless and the perfect information update.

Cachon (2003) reviews and extends the literature of supply chain coordination, addressing the
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coordination issues of the two-stage newsvendor. The newsvendor is allowed only to increase, at

the second stage, the original order at a higher unit cost and no fixed cost. It is found that it is

possible to coordinate the supply chain with a buy-back contract.

We conclude this section by a discussion of how our model is related to the literature. In

contrast with Eppen and Iyer (1997), we allow the buyer to adjust the initial order at the second

stage. Whereas Sethi, Yan and Zhang (2001) and Yan, Liu and Hsu (2003) focus on the optimal

order quantities from two supply modes—fast (expensive) and slow (cheap)—with demand fore-

cast updates, we look into how a purchase contract affects the buyer’s decision. In contrast to

Sethi, Yan and Zhang (2003), we allow in Stage 2 for cancellation of a part of the initial order

issued in Stage 1. It is important to observe that the K-convexity of the cost function is not

preserved under the order cancellation feature. In view of this, we specialize our distribution to

be PF2 so as to ensure a unimodal cost function. Our work differs from Barnes-Schuster, Bassok

and Anupindi (2002) two ways. We update both the mean and the spread of the demand forecast

whereas Barnes-Schuster, Bassok and Anupindi update only the minimum demand. In addition,

we consider a fixed contract exercise cost and use the contract to hedge the demand uncertainty.

In comparison with the models of Donohue (2000) and Gurnani and Tang (1999), we consider a

fixed contract exercise cost and obtain an explicit solution for any degree of the demand informa-

tion update. The worthless and perfect information updates are, therefore, special cases of our

model.

3 Problem Formulation

A purchase contract is an agreement between a seller and a buyer. The contract specifies terms

of purchase in two stages and delivery. In the first stage, the buyer places an initial order. In the

second stage, based on the improved demand forecast and the decision made in the first stage, the

buyer may adjust the initial order upward at a cost no less than the initial cost, or downward with

a refund value that is lower than the initial cost. In addition, a fixed exercise cost is also incurred

if any adjustment is made. The items with the confirmed quantity at Stage 2 are delivered at the

end of the second stage.

Specifically, the buyer faces the following cost parameters: a cost of c1 > 0 per unit for items
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ordered at Stage 1 and a cost of c21 > 0 per unit for items ordered at Stage 2. On the other hand,

if a unit of the Stage 1 order is cancelled at Stage 2, it is modeled as a negative order at Stage 2.

In this case, the buyer has either a refund value or must pay a cancellation cost. We model this

situation by letting c22 denote the refund value or the cancellation cost per unit at Stage 2, where

c22 is the unit refund when c22 ≥ 0 and −c22 is the unit cancellation cost when c22 < 0. This

phenomenon of cancellation cost is common when the merchandise is perishable or hazardous. It

is reasonable to assume c21 ≥ c1 ≥ c22. In addition, there is a fixed contract exercise cost K ≥ 0

at Stage 2 for adjustment to the initial order quantity. Furthermore, we assume a unit shortage

cost of p > c21 for unsatisfied demand since otherwise it would be optimal for the buyer not to

order additional items at Stage 2. A positive unit holding (or salvage) cost of h > −c22 is charged

for excess inventory. Note that h > −c22 is always true when c22 ≥ 0. However, when c22 < 0, the

unit holding cost must be more expensive than the unit cancellation cost −c22, otherwise it would

be optimal not to cancel any part of the initial order. We leave out two trivial cases, p = c21 and

h = −c22 > 0, for which the optimal solution is straightforward, it ignores any adjustment.

Let D ≥ 0 represent the random demand in Stage 2 with density fD(·). Let Ψ ≥ 0 represent

a signal observed in Stage 1 with distribution FΨ(·) and density fΨ(·). Let FD|ψ(·) denote the

cumulative distribution function of D given Ψ = ψ with fD|ψ(·) as the corresponding density. The

signal Ψ represents an improved forecast (in terms of the conditional distribution) of the demand

D, assumed to be nonnegative. In order to provide a uniform treatment in cases of nonnegative

demand, we set fD|ψ(x) = 0, x ≤ 0. Note also that we use a continuous demand and a continuous

signal in this paper for convenience in exposition.

Denote qi as the order quantity in Stage i, i = 1, 2. We can write the buyer’s conditional

expected cost at Stage 2 as

G2(q1, q2|Ψ)

=

{
K + c2q2 + E[h(q1 + q2 −D)+ + p(D − q1 − q2)

+|Ψ], if q2 6= 0,
E[h(q1 −D)+ + p(D − q1)

+|Ψ], if q2 = 0,
(1)

where

c2 =

{
c21, if q2 ≥ 0,
c22, if q2 < 0.

(2)

Note that q2 is a history-dependent decision variable and G2(q1, q2|Ψ) is a random variable.
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For Ψ = ψ, we will write the conditional expected cost, which we note is not a random variable,

as

G2(q1, q2|ψ) = G2(q1, q2|Ψ = ψ). (3)

The buyer’s total expected cost is

C(q1, q2) = c1q1 + E[G2(q1, q2|Ψ)]. (4)

Our purpose is to minimize the total expected cost, i.e., the value function v1 is defined as

follows:

v1 = min
q1≥0, q2≥−q1

C(q1, q2) = min
q1≥0, q2≥−q1

{c1q1 + E[G2(q1, q2|Ψ)]}.

The dynamic programming equations for this problem are

v2(q1, ψ) = min
q2≥−q1

{G2(q1, q2|ψ)}, (5)

v1 = min
q1≥0

{G1(q1)}, (6)

where

G1(q1) = c1q1 + E[v2(q1,Ψ)]. (7)

4 Optimal Solution for Stage 2

In this section we explore structural properties of the second stage cost function in our contract

model. First we consider the case when there is no fixed cost of exercising the contract. Thus,

with K = 0, the cost function (3) reduces to

g2(q1, q2|ψ)

=

{
g+
2 (q1, q2|ψ) = c21q2 + E[h(q1 + q2 −D)+ + p(D − q1 − q2)

+|Ψ = ψ], q2 ≥ 0,
g−2 (q1, q2|ψ) = c22q2 + E[h(q1 + q2 −D)+ + p(D − q1 − q2)

+|Ψ = ψ], q2 ≤ 0.
(8)

Note that g+
2 (q1, 0|ψ) = g−2 (q1, 0|ψ) = g2(q1, 0|ψ), and therefore g2(q1, q2|ψ) is continuous.

We present the optimal solution in the following lemma.

Lemma 4.1 For K = 0, the cost function g2(q1, q2|ψ) is convex in q2, and differentiable except

at q2 = 0 (assuming c21 6= c22). The optimal adjustment at Stage 2 is

q∗2(ψ) =





Σ1(ψ) − q1, if q1 < Σ1(ψ),
0, if Σ1(ψ) ≤ q1 ≤ Σ2(ψ),
Σ2(ψ) − q1, if q1 > Σ2(ψ),

(9)
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where

0 ≤ Σ1(ψ) = F−1
D|ψ(ρ1) < F−1

D|ψ(ρ2) = Σ2(ψ), (10)

with

ρi =
p− c2i
p+ h

, i = 1, 2. (11)

Remark 4.1 Note that q1 can be considered to be the inventory level at the beginning of Stage 2.

Then the Stage 2 problem when q∗2(ψ) ≥ 0 is easily seen to be the standard newsvendor problem.

The result in Lemma 4.1 could therefore be considered as an extension of the newsvendor problem

when returns are allowed.

In Figure 1, we depict the cost g2(q1, q2|ψ) as a function of q2 with five different values of q1.

From (8), we see that each cost curve consists of two pieces: g−2 for q2 ≤ 0 and g+
2 for q2 ≥ 0.

The cost curve a has an interior minimum of g−2 (q1, q2|ψ) at q2 < 0. In this case q1 > Σ2(ψ) and

q∗2 = Σ2(ψ) − q1 < 0. When q1 decreases to Σ2(ψ), we get the cost curve b where the interior

minimum of g−2 (q1, q2|ψ) is obtained at q∗2 = 0. Going to the other side when q1 < Σ1(ψ), we

have cost curve e. Here g+
2 (q1, q2|ψ) takes an interior minimum at q∗2 = Σ1(ψ) − q1 > 0. When

q1 increases to Σ1(ψ), we get the cost curve d where g+
2 (q1, q2|ψ) has an interior minimum at

q∗2 = 0. The remaining cost curve c represents the case of a q1 such that Σ1(ψ) ≤ q1 ≤ Σ2(ψ).

Here, the minimum is at q∗2 = 0. This minimum is a boundary minimum of both g+
2 (q1, q2|ψ)

and g−2 (q1, q2|ψ). In fact, the interior minimum of g−2 (q1, q2|ψ) would be at some q2 > 0 if it

was applicable. Then likewise, the interior minimum of g+
2 (q1, q2|ψ) would be at q2 < 0 if it was

applicable.

We now return to the case when K > 0. The cost function G2(q1, q2|ψ) is discontinuous at

q2 = 0. Consider the difference between the cost of no ordering and that of bringing the inventory

level up to Σ1(ψ) or down to Σ2(ψ) depending on whether q1 < Σ1(ψ) or q1 > Σ2(ψ), respectively.

Lemma 4.2 (i) g+
2 (q1, 0|ψ)−K− g+

2 (q1,Σ1(ψ)− q1|ψ) is strictly convex and decreasing in q1 for

all q1 < Σ1(ψ) and g−2 (q1, 0|ψ) −K − g−2 (q1,Σ2(ψ) − q1|ψ) is strictly convex and increasing in q1

for all q1 > Σ2(ψ).
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Figure 1: Curves of G2(q1, q2, i) as a function of q2 when q1 takes different values. For Curve a,
q1= 62.0, for Curve b, q1 = 55.1 = Σ2, for Curve c, q1 = 52.0, for Curve d, q1 = 48.6 = Σ1, and for
Curve e, q1 = 44.0. Other parameters are p = 10.3, h = 0.5, c1 = 3, c21 = 6, c22 = 1, and K = 5.
The conditional demand distribution given the signal is uniform over the interval [43, 57].

(ii) There exist a unique σ1(ψ) < Σ1(ψ) such that g+
2 (σ1(ψ), 0|ψ) = K + g+

2 (σ1(ψ),Σ1(ψ) −

σ1(ψ)|ψ) if K < p + h)
∫ Σ1

0
xfD|ψ(x)dx, and a unique σ2(ψ) > Σ2(ψ) such that g−2 (σ2(ψ), 0|ψ) =

K + g−2 (σ2(ψ),Σ2(ψ) − σ2(ψ)|ψ).

Based on above preliminaries, we present the main result of this section as follows.

Theorem 4.3 The optimal policy at Stage 2 is

q∗2(ψ) =





Σ1(ψ) − q1, if q1 < σ1(ψ),
0, if σ1(ψ) ≤ q1 ≤ σ2(ψ),
Σ2(ψ) − q1, if q1 > σ2(ψ).

(12)

This policy can be thought of as a two-sided (s, S) policy, one for increasing the initial order and

the other for decreasing the initial order. We shall term this policy as the [σ1(ψ),Σ1(ψ);σ2(ψ),Σ2(ψ)],

or more simply, as the (σ1,Σ1;σ2,Σ2)(ψ) policy. The parameters σ1(ψ) and Σ1(ψ) are reorder

point and order-up-to level, whereas σ2(ψ) and Σ2(ψ) are reduction point and reduce-down-to

level, respectively. In words, the buyer increases the initial order to raise it to Σ1(ψ) when the

initial order is lower than σ1(ψ), the buyer decreases the initial order to reduce it down to Σ2(ψ)
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when the initial order is higher than σ2(ψ), and the buyer takes no action when the initial order

is within the interval [σ1(ψ), σ2(ψ)].

The (σ1,Σ1;σ2,Σ2)(ψ) policy can be considered as a generalized newsvendor problem with a

piecewise linear ordering/cancellation cost and a fixed cost. For newsvendor models with piecewise

linear cost, with setup cost, or with cancellation, respectively, see Porteus (1990) and references

therein.

Remark 4.2 The optimal order-up-to level Σ1(ψ) and reduce-down-to level Σ2(ψ) do not depend

on the fixed contract exercise cost K. In contrast, the reorder point σ1(ψ) and the reduction

point σ2(ψ) depend on K. Intuitively, the optimal order-up-to and reduce-down-to levels strike a

balance between over-ordering and under-ordering, while the reorder and reduction points measure

the trade-off between inventory/shortage cost and the fixed contract exercise cost.

Remark 4.3 When p = c21 and h = −c22, there are multiple optimal policies. If p = c21, taking

no action when q1 < Σ1(ψ) is clearly an optimal policy. Likewise, if h = −c22, taking no action

is optimal when q1 > Σ2(ψ).

5 Optimal Solution for a Class of Demand Distributions

In this section, we obtain the optimal policy under the assumptions that the signal distribution

is PF2 (Pólya frequency function of order 2), and the conditional demand distribution given the

signal can be parameterized by the signal as its location parameter. For the signal distribution

FΨ(·) and its density fΨ(·) to be PF2, it must hold that

fΨ(x)

FΨ(x+ y) − FΨ(x)
(13)

is increasing in x for every fixed y > 0; see Karlin (1968) and Porteus (2002). These distributions

have been found to be quite useful, and thus, popular in the inventory literature. Moreover, the

class of PF2 densities include a large number of standard unimodal densities arising in inventory

theory, such as the exponential, the normal, the truncated normal, the uniform, the gamma, the

Erlang, and their convolutions. Note that if we were to use discrete demands, then distributions

in the Poisson and the Pascal family qualify as discrete Pólya frequency functions (Schoenberg,

1953).
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For a given family of continuous distributions, there are usually several alternative ways to

define, or parameterize the density function. Some distributions can be parameterized by a

location parameter, which specifies an abscissa location point of a distribution’s range of values.

Usually the location point is the midpoint such as the mean for a normal distribution or the lower

endpoint in the case of a uniform distribution. See Law and Kelton (2000) for examples of other

distributions that can be defined by their location parameters.

Since we assume the signal ψ to be the location parameter of FD|ψ(·) and fD|ψ(·), it is clear

that for ψ2 ≥ ψ1, we have

fD|ψ2
(η) = fD|ψ1

(η − ψ2 + ψ1), (14)

FD|ψ2
(η) = FD|ψ1

(η − ψ2 + ψ1). (15)

In writing (14) and (15), we understand that FD|ψ(x) = fD|ψ(x) = 0, x ≤ 0, in view of the fact

that D ≥ 0. We can now prove the following result.

Theorem 5.1 For any integrable function r(x, η),

E[r(x,D)|ψ2] = E[r(x,D + ψ2 − ψ1)|ψ1]. (16)

Furthermore, let r(x,D) be of the form r(x − D) with a slight abuse of notation, and define

g(x|ψ) = E[r(x−D)|ψ]. Then,

g(x|ψ2) = E[r(x−D)|ψ2] = E[r(x−D − ψ2 + ψ1)|ψ1] = g(x− ψ2 + ψ1|ψ1). (17)

Relation (17) says that the value of a function g(·|ψ2) at a point x given ψ2 can be obtained

by evaluating the function g(·|ψ1) at the point x − ψ2 + ψ1. Geometrically speaking, g(·|ψ2) is

nothing but the function g(·|ψ1) shifted to the right by an amount ψ2 − ψ1. This immediately

gives us the following corollary.

Corollary 5.2 The optimal order-up-to level Σ1(·) and reduce-down-to level Σ2(·) satisfy Σi(ψ2) =

Σi(ψ1) + ψ2 − ψ1 for any ψ2 ≥ ψ1, i = 1, 2. Similarly, the reorder and reduction points satisfy

σi(ψ2) = σi(ψ1) + ψ2 − ψ1, for ψ2 ≥ ψ1, i = 1, 2. (18)
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Corollary 5.2 implies that both the levels and points can be expressed as the summation of

the location parameter ψ and a constant term which is independent of ψ. That is,

Σi(ψ) = ψ + ui, σi(ψ) = ψ + wi, i = 1, 2, (19)

where ui = Σi(0) and wi = σi(0).

Based on the optimal policy (12) at Stage 2 and using (19), we write the optimal cost function

at Stage 2 as follows:

v2(q1, ψ) =





K + g+
2 (q1,Σ1(ψ) − q1|ψ), if ψ > q1 − u1,

g2(q1, 0|ψ), if q1 − u2 ≤ ψ ≤ q1 − u1,
K + g−2 (q1,Σ2(ψ) − q1|ψ), if ψ < q1 − u2.

(20)

From the definition of σi(ψ) in Lemma 4.2 and the fact noted in connection with (8), we can

see that v2(q1, ψ) is a continuous function of ψ. Using (20) in (7), we obtain

G1(q1) = c1q1 +

∫ q1−u2

0

[
K + g−2 (q1,Σ2(ψ) − q1|ψ)

]
fΨ(ψ)dψ +

∫ q1−u1

q1−u2

g2(q1, 0|ψ)fΨ(ψ)dψ

+

∫ ∞

q1−u1

[
K + g+

2 (q1,Σ1(ψ) − q1|ψ)
]
fΨ(ψ)dψ. (21)

Its derivative with respect to q1 as shown in the appendix is

∂G1(q1)

∂q1
= c1 −

∫ ∞

0

c2fΨ(ψ)dψ +

∫ q1−u1

q1−u2

[
(p+ h)FD|ψ(q1) − (p− c21)

]
fΨ(ψ)dψ. (22)

We can now state the main result of this section.

Theorem 5.3 There exists an initial order quantity q∗1 that minimizes G1(q1). The total expected

cost G1(q1) is a unimodal function of q1, and the optimal initial order quantity q∗1 satisfies

c1 −

∫ ∞

0

c2fΨ(ψ)dψ +

∫ q∗
1
−u1

q∗
1
−u2

[
(p+ h)FD|ψ(q∗1) − (p− c21)

]
fΨ(ψ)dψ = 0. (23)

Furthermore, if the signal distribution has a location parameter γ, then the optimal initial order

quantity satisfies

q∗1(γ2) = q∗1(γ1) + γ2 − γ1, ∀γ2 ≥ γ1. (24)
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6 Further Analysis with a Uniformly Distributed Demand

To facilitate further analysis, we assume a uniformly distributed signal Ψ over the interval
[
γ −

a
2 , γ + a

2

]
. We further assume that the demand D follows the uniform distribution over the

interval
[
ψ − εa

2 , ψ + εa
2

]
, given Ψ = ψ. Thus,

fΨ(ψ) = 1
a, ψ ∈

[
γ − a

2 , γ + a
2

]
,

fD|ψ(η) = 1
εa, η ∈

[
ψ − εa

2 , ψ + εa
2

]
,

(25)

where 0 ≤ ε ≤ 1 represents the reduction in the forecast errors at the updating stage. The value

of ε can be obtained from either the buyer’s experience or regression methods (Yan, Liu and Hsu,

2003).

In this case, the results obtained in previous sections yield explicit formulas for the cost

functions G1(q1), G2(q1, q2/ψ), v1 and v2(q1, ψ) and the order quantities q∗2(ψ) and q∗1, after some

tedious, albeit straightforward, calculations. We do not write these expressions here because of a

large number of cases involved. See Huang (2002) for details.

Yan, Liu and Hsu (2003) have studied a two-stage purchase problem in the same local security

equipment company as mentioned in Section 1. The company purchases low-priced masking chips

and high priced generic chips in Stage 1 and Stage 2, respectively. Using the same distribution

assumptions as in (25), they obtained the expected cost functions

G̃2(q1, q2|ψ) = c̃2q2 + h

∫ q1+q2

ψ−εa/2

(q1 + q2 − η)fD|ψ(η)dη + p

∫ ψ+εa/2

q1+q2

(η − q1 − q2)fD|ψ(η)dη,

G̃1(q1) = c1q1 + E
[
G̃2(q1, q2|Ψ)

]
, (26)

for Stage 2 and Stage 1, respectively, where c̃2 is the purchase cost of a single generic component.

With G1(q1) and the expression (26) in hand, it is straightforward to derive the following results.

Theorem 6.1 With (25), the contract cost function G1(q1) in (21) and the substitution cost

function G̃1(q1) exhibit the following properties:

(i) min
q1≥0

{
G1(q1)

}
is a monotone nondecreasing function with respect to the contract exercise

cost K;

(ii) min
q1≥0

{
G1(q1)|K = 0

}
≤ min

q1≥0

{
G̃1(q1)

}
≤ min

q1≥0

{
G1(q1)

∣∣∣K < (p+ h)
∫ Σ1

0
xfD|ψ(x)dx

}
; and

14



(iii) there exists a unique K1 such that min
q1≥0

{
G1(q1)|K = K1

}
= min

q1≥0

{
G̃1(q1)

}
.

Theorem 6.1(iii) reveals a rule for hedging strategy selection. When K ≥ K1, it is unwise

for the buyer to sign the flexible purchase contract. By noting that a purchase contract is a real

option, K can be considered as the option price in the case when c21 = c22 = c1. It is of interest

for the buyer to know the value of the purchase contract. In particular, the buyer needs to know

what is the best strategy against demand uncertainty.

Once we have an expression for v1, it is possible to carry out a sensitivity analysis with respect

to forecast and contract parameters. For example, with the assumption (25), v1 turns out to be

a function of the parameters ε and a. By differentiating v1 with respect to these parameters, we

obtain the corresponding marginal benefits, −∂v1
∂ε

, and −∂v1
∂a

, which provide an indication of the

relative importance of the Stage 1 and the Stage 2 forecasts in the model, respectively. Given

these and the costs of efforts in reducing a and ε, the buyer’s company can figure out where it

should put it’s next dollar in improving the demand forecast.

As for the contract exercise cost K, it is possible to identify a critical value K0, such that if

K is more than (resp. less than) K0, then the buyer should invest in improving Stage 1 (resp.

Stage 2) forecast. To further illustrate the sensitivity of the optimal decision with respect to the

model parameters a, ε and K, Figures 2, 3 and 4 plotted for p = 10, h = 0.3, c1 = 1, and c2 = 3,

depict the cost functions with respect to a, ε and K, respectively. Figure 2 plotted for ε = 0.75

and K = 20 illustrates that the optimal cost is an increasing function of the demand spread.

Figure 3 plotted for a = 20 and K = 20 illustrates that the optimal cost is a decreasing function

of the reduction in the forecast error. Figure 4 plotted for a = 20 and ε = 0.75 illustrates that

the optimal cost is an increasing function of the setup cost.

7 Conclusions

In this paper we study a purchase contract with a demand forecast update. We formulate the

problem as a two-stage dynamic programming problem. We obtain an optimal solution for the

contract management for the class of PF2 demand distributions. In particular, we obtain an

explicit optimal solution for a uniformly distributed updated demand. The explicit nature of the
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optimal solution enables us to find a critical value of the contract exercise cost, which determines

the direction of further improvement in the demand forecast. In comparison with other risk

hedging approaches such as substitution, we obtain a critical value of the contract exercise cost,

below (resp. above) which the buyer would (resp. would not) sign the contract.
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8 Appendix

Proof of Lemma 4.1.

The convexity of g2(q1, q2|ψ) in q2 and its non-differentiability at q2 = 0 are obvious. For

q2 > 0, setting
∂g+

2

∂q2
= (c21 − p) + (p+ h)FD|ψ(q1 + q2) = 0. (27)

provides the minimum Σ1(ψ) as specified in (10) and (11), as c21 ≥ c1 ≥ c22. Likewise, for

q2 < 0, using g−2 instead of g+
2 in (27) gives us Σ2(ψ) ≥ Σ1(ψ) as specified in (10) and (11). Also,

it is obvious Σ1(ψ) ≥ 0 as q2 ≥ −q1. Clearly then, the policies delivered for q1 < Σ1(ψ) and
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q1 > Σ2(ψ) in (9) are optimal. Furthermore, when Σ1(ψ) ≤ q1 ≤ Σ2(ψ), the optimality condition

in this case, because of the non-differentiability at q2 = 0, is

0 ∈
[
(c22 − p) + (p+ h)FD|ψ(q1 + q2), (c21 − p) + (p+ h)FD|ψ(q1 + q2)

]
, (28)

which clearly holds when q1 ∈ [Σ1(ψ),Σ2(ψ)]. �

Proof of Lemma 4.2.

Define

∆(q1|ψ) =

{
g+
2 (q1, 0|ψ) −K − g+

2 (q1,Σ1(ψ) − q1|ψ), q1 < Σ1(ψ),
g−2 (q1, 0|ψ) −K − g−2 (q1,Σ2(ψ) − q1|ψ), q1 > Σ2(ψ),

(29)

to be the difference between the cost of no ordering and that of bringing the inventory level up

to Σ1(ψ) or down to Σ2(ψ) depending on whether q1 < Σ1(ψ) or q1 > Σ2(ψ), respectively.

(i) Since g+
2 (q1, 0|ψ) is strictly convex in q1 and g+

2 (q1,Σ1(ψ) − q1|ψ) is linear in q1, ∆(q1|ψ)

is strictly convex in q1 for q1 < Σ1(ψ). Similarly, ∆(q1|ψ) is strictly convex in q1 for q1 > Σ2(ψ).

Differentiating ∆(q1|ψ) with respect to q1 gives

d∆(q1|ψ)

dq1
= (p+ h)FD|ψ(q1) − (p− c2).

For all q1 < Σ1(ψ), FD|ψ(q1) ≤ FD|ψ[Σ1(ψ)] = (p−c21)/(p+h), and for all q1 > Σ2(ψ), FD|ψ(q1) ≥

FD|ψ[Σ2(ψ)] = (p − c22)/(p + h). Thus, when q1 < Σ1(ψ), d∆(q1|ψ)
dq1

≤d∆(Σ1|ψ)
dq1

= 0, and when

q1 > Σ2(ψ), the reverse is true.

(ii) From (29),

lim
q1↑Σ1(ψ)

∆(q1|ψ) = −K < 0.

Also, note that

lim
q1↓0

∆(q1|ψ)

= E[h(−D)+ + p(D)+|ψ] −K − c21Σ1 − E[h(Σ1 −D)+ + p(D − Σ1)
+|ψ]

= (p+ h)

∫ Σ1

0

xfD|ψ(x)dx−K (30)

is positive when K < p+ h)
∫ Σ1

0
xfD|ψ(x)dx. In view of the fact that ∆(q1|ψ) is decreasing in q1

for q1 < Σ1(ψ), there exists a σ1(ψ) as stipulated in the statement (ii) of the lemma.

The proof of (ii) for the existence of the required σ2(ψ) is similar. Here our assumption of

h > −c22 implies that ∆(q1|ψ) → ∞ as q1 → ∞. �
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Proof of Theorem 4.3.

The proof requires number of cases to be dealt with. Recall that g2(q1, 0|ψ) = g+
2 (q1, 0|ψ) =

g−2 (q1, 0|ψ).

Case (1) q1 < Σ1(ψ): By Lemma 4.1,

min
{
K + min

q2<0

{
g−2 (q1, q2|ψ)

}
, g2(q1, 0|ψ), K + min

q2>0

{
g+
2 (q1, q2|ψ)

}}

= min
{
K + g−2 (q1, 0|ψ), g2(q1, 0|ψ), K + g+

2 (q1,Σ1(ψ) − q1|ψ)
}

= min
{
g+
2 (q1, 0|ψ), K + g+

2 (q1,Σ1(ψ) − q1|ψ)
}
.

By (ii) of Lemma 4.2, when q1 < σ1(ψ), g+
2 (q1, 0|ψ) > K + g+

2 (q1,Σ1(ψ) − q1|ψ). Thus q∗2(ψ) =

Σ1(ψ) − q1. When q1 ≥ σ1(ψ), we have g+
2 (q1, 0|ψ) ≤ K + g+

2 (q1,Σ1(ψ) − q1|ψ), and therefore

q∗2(ψ) = 0.

Case (2) q1 > Σ2(ψ): Analogous reasoning as in Case (1).

Case (3) Σ1(ψ) ≤ q1 ≤ Σ2(ψ): By Lemma 4.1,

min
{
K + min

q2<0

{
g−2 (q1, q2|ψ)

}
, g2(q1, 0|ψ), K + min

q2>0

{
g+
2 (q1, q2|ψ)

}}

= min
{
K + g−2 (q1, 0|ψ), g2(q1, 0|ψ), K + g+

2 (q1, 0|ψ)
}

= g2(q1, 0|ψ).

Thus q∗2(ψ) = 0. �

Proof of Theorem 5.1.

Using (14), we have

E[r(x,D)|ψ2] =

∫ +∞

−∞

r(x, η)fD|ψ2
(η)dη =

∫ +∞

−∞

r(x, η)fD|ψ1
(η − ψ2 + ψ1)dη

=

∫ +∞

−∞

r(x, η + ψ2 − ψ1)fD|ψ1
(η)dη = E[r(x,D + ψ2 − ψ1)|ψ1].

The proof of the second part follows trivially from the first. �

Derivation of (22).

∂G1(q1)

∂q1
= c1 +

[
K + g−2 (q1,Σ2(ψ) − q1|ψ)

]
fΨ(ψ)

∣∣∣
ψ=q1−u2

−

∫ q1−u2

0

c22fΨ(ψ)dψ

+g2(q1, 0|ψ)fΨ(ψ)
∣∣∣
q1−u1

ψ=q1−u2

+

∫ q1−u1

q1−u2

[
(p+ h)FD|ψ(q1) − p

]
fΨ(ψ)dψ
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−
[
K + g+

2 (q1,Σ1(ψ) − q1|ψ)
]
fΨ(ψ)

∣∣∣
ψ=q1−u1

−

∫ ∞

q1−u1

c21fΨ(ψ)dψ

= c1 −

∫ ∞

0

c2fΨ(ψ)dψ +

∫ q1−u1

q1−u2

[
(p+ h)FD|ψ(q1) − (p− c21)

]
fΨ(ψ)dψ

+∆(q1|ψ)fΨ(ψ)
∣∣∣
ψ=q1−u1

− ∆(q1|ψ)fΨ(ψ)
∣∣∣
ψ=q1−u2

= c1 −

∫ ∞

0

c2fΨ(ψ)dψ +

∫ q1−u1

q1−u2

[
(p+ h)FD|ψ(q1) − (p− c21)

]
fΨ(ψ)dψ, (31)

where the second equality uses the definitions of c2 and ∆(q1|ψ), and the last equality is obtained

by noting that ∆(q1|ψ)|ψ=q1−ui
= ∆(σi(ψ)|ψ) = 0 for i = 1, 2 . �

Proof of Theorem 5.3.

(1) The existence of q∗1 follows from the continuity of v2(q1, ψ) and the facts that limq1→0 ∂G1/∂q1 =

c1 −
∫ ∞

0
c21fΨ(ψ)dψ = c1 − c21 < 0 and limq1→∞G1(q1) = ∞.

(2) By (20), it is easy to see that v2(q1, ψ) is unimodal in q1. Recall that G1(q1) = c1q1 +

E[v2(q1,Ψ)], and it is known from Schoenberg (1951) or Karlin (1968) that the expectation of a

unimodal function under a PF2 density is still a unimodal function.

(3) The proof of (24) is along the lines of Theorem 5.1 and Corollary 5.2. �

Proof of Theorem 6.1

(i) We can show that the optimal reordering point σ1 = Σ1 − µ(K), the reducing point

σ2 = Σ2 + µ(K) and µ(K) =
√

2εaK
α1

. The derivation is simple, but tedious so it is omitted.

Therefore, σ1 decreases, σ2 increases when K increases. The feasible set of q2 shrinks when K

increases. Therefore, min
q1

{G1(q1)} is a monotone non-decreasing function of K.

(ii) The validity of the left hand side inequality lies in that the feasible set of q2 becomes larger

when negative q2 is allowed; In addition, a sufficient large contract price k forces the initial order

quantity to remain unchanged. This fact results in the validity of the right hand side inequality.

(iii) Properties (i) and (ii) ensure the existence of K1. �
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