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Abstract

Bigraphs are graphs whose nodes may be nested, representing locality, independently of the
edges connecting them. They may be equipped with reaction rules, forming a bigraphical
reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier
paper describing link graphs, a constituent of bigraphs, this paper is a devoted to pure
bigraphs, which in turn underlie various more refined forms. Elsewhere it is shown that
behavioural analysis for Petri nets, π-calculus and mobile ambients can all be recovered in
the uniform framework of bigraphs.

The paper first develops the dynamic theory of an abstract structure, a wide reactive
system (Wrs), of which a Brs is an instance. In this context, labelled transitions are defined
in such a way that the induced bisimilarity is a congruence. This work is then specialised
to Brss, whose graphical structure allows many refinements of the theory. The latter part of
the paper emphasizes bigraphical theory that is relevant to the treatment of dynamics via
labelled transitions. As a running example, the theory is applied to finite pure CCS, whose
resulting transition system and bisimilarity are analysed in detail.

The paper also mentions briefly the use of bigraphs to model pervasive computing and
biological systems.
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Part I : Mathematical Framework
The introduction provides a rationale for bigraphs, and a synopsis of the whole paper.
Section 2 introduces s-categories, including the notion of support which will be used to
identify occurrences of entities within bigraphs; it also defines relative pushouts (RPOs),
which are important for the behavioural theory of bigraphs. Section 3 introduces the
abstract notion of a wide reactive system (Wrs); it is not graphical, but gives prominence
to spatial extension, or width. Section 4 defines transition systems for Wrss, which may
be used to define bisimilarities and other behavioural relations. It is shown that, for
transitions based on RPOs, bisimilarity is a congruence. Varieties of transition system
are defined and analysed.

1 Introduction

Bigraphical reactive systems [33,35,34,22,23,36,27] are a graphical model of com-
putation in which both locality and connectivity are prominent. Recognising the
increasingly topographical quality of global computing, they take up the challenge
to base all distributed computation on topographical structure. A typical bigraph is
shown in Figure 1; it represents a highly simplified system of information flow and
computation in a built environment, which we shall soon discuss in more detail.
Such a graph is reconfigurable, and its nodes (the ovals and circles) may represent
a great variety of computational objects: a physical location, an administrative re-
gion, a human agent, a mobile phone, a computer, a sensor, a data constructor, a
π-calculus input guard, a mobile ambient, a cryptographic key, a message, a repli-
cator, and so on.

Bigraphs are a development of action calculi [32], but simpler. They use ideas from
many sources: the Chemical Abstract machine (Cham) of Berry and Boudol [3], the
π-calculus of Milner, Parrow and Walker [40], the interaction nets of Lafont [24],
the mobile ambients of Cardelli and Gordon [8], the explicit fusions of Gardner
and Wischik [18] developed from the fusion calculus of Parrow and Victor [42],
Nomadic Pict by Wojciechowski and Sewell [52], and the uniform approach to a
behavioural theory for reactive systems of Leifer and Milner [26].

The mathematical structure of bigraphs allows concepts to be treated somewhat
independently. For example, connectivity and locality are treated orthogonally. This
paper is the second in a series which present bigraphs incrementally, with suitable
examples at each stage. The first in the series [27] presented link graphs, which
have connectivity but lack locality; the main illustration was a study of Petri nets
with an associated transition system. The current paper adds locality, orthogonal
to connectivity; the term pure bigraphs means that locality does not yet support a
notion of scope, or binding of names. A study of finite pure CCS, together with
a derived transition system for it, forms a running example. This paper us self-
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contained, but a familiarity with the previous paper will be helpful.

Refinements of pure bigraphs, including binding bigraphs [23], can typically de-
rive much of their theory from pure bigraphs; they will be treated in later publica-
tions.

The challenge from applications

The long-term aim of this work is to model computation on a global scale, as rep-
resented by the Internet and the Worldwide Web, and more recently by pervasive
computing. The aim is not just to model systems already designed and running;
beyond that, we seek a theory to guide the specification and programming of these
systems, and to guide their future adaptation. The so-called vanishing ubiquitous
computer of the future is within reach of today’s technology. To understand it is
a goal less widely perceived, but nonetheless essential if we are to avoid the sys-
tems that are as stagnant and inscrutable as today’s legacy software, and on an even
larger scale.

So we have to reverse the typical order of events in which design and implementa-
tion come first, modelling later. (For example, programming languages are hardly
ever based thoroughly on a theoretical model, yet they are pivotal in all our imple-
mentations.) Such ‘retro-modelling’ leads to an understanding of designed systems
that is brittle, because it deteriorates seriously as the systems evolve under changing
demand. In the long run, system designs must be expressed from the outset with the
concepts and notations of a theory rich enough to encompass all that the designers
wish.

The arrival of ubiquitous mobile computing offers an opportunity for this, simply
because it is new enough for its languages and implementation techniques not to
be entrenched. Moreover, concurrency theories already provide a conceptual frame
in which to study distributed mobile systems, and they offer structures for new
languages. Thus, through experimental applications, designers and analysts may
come to speak the same tongue. As a specialised but significant example, both
Petri nets and the π-calculus are now adopted to assist design of systems for the
management of business processes [50].

Global computing presents huge demands, and we cannot expect to arrive immedi-
ately at the right model for it. We have to strike a compromise between fine-tuning
existing models on the one hand, and making too large a leap on the other hand. A
model must grasp many aspects of real systems if it is to be seriously used in ex-
perimental design, and thus provide the feedback necessary to improve the model
itself. If we merely adopt the classic scientific approach of tackling each aspect of
global computing separately, we may develop elegant separate theories yet find our-
selves unable to unify them. On the other hand to tackle all aspects is too hard. This
uncomfortable dilemma is not faced in natural science, since there the objects of
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Fig. 1. A bigraph for communication in a built environment

study typically remain stable —in so far as they are independent of human designs.

Our strategy here is to tackle just two aspects of mobile systems simultaneously:
mobile locality and mobile connectivity. Already this combination presents a chal-
lenge: to what extent are locality and connectivity interdependent? In plain words,
does where you are affect whom you can talk to? The answer must lie in the level
of modelling. To a user of the Internet (seeing it abstractly) there is total indepen-
dence, and we want to model it at a high level, just as it appears to users. But to
the engineer these remote communications are not atomic; they involve chains of
interactions between neighbouring entities, and we must also provide a low-level
model which reflects this reality. These two levels must surely be part of a single
multi-level model that explains how higher levels are realised by lower levels.

Of the two levels, the lower is the less novel. Indeed, von Neumann’s cellular au-
tomata are the original paradigm for it; his agents were arranged on a fixed grid and
interaction could only occur between neighbours. But in such a concrete model we
hope to realise a higher level view in which a single agent is represented by dif-
ferent cells at different moments, and may send messages to other distant agents.
So the challenge we address here is to provide the means to view locality and con-
nectivity as dependently —or independently— as you wish, and to correlate these
views. This seems to require new mathematical structures, and bigraphs attempt to
provide them.

Example 1 (sentient buildings) As a simple illustration, consider a crude version
of a sentient built environment, modelled as a bigraph in Figure 1. There are two
structures on the nodes of a bigraph; they may be nested, and they may also be
connected by links. The linkage is independent of the nesting, so links often cross
node boundaries. Nodes may be of many kinds, each represented by a control (A, B,
. . . ) associated with each node. (The shape of nodes is suggestive but redundant.)
For this particular bigraph:

• The two regions (large squares), each with one building (B), may lie arbitrarily
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far apart in a larger system, e.g. one in France and one in Australia.
• The four agents (A), perhaps humans equipped with devices, are conducting a

conference call.
• The computers (C) in each building are networked as part of its infrastructure

—another embedded subsystem.
• Many reconfigurations are possible. An agent may abandon the conference call;

an agent may enter or leave a room (R); on entry, the computer (equipped with
sensor) may connect with him/her; a computer network may contribute to the
conference call; a room may become inoperative because of fire; and so on.

We have so far considered only discrete events; but continuous events and stochastic
behaviour must also be modelled. These structures for modelling such man-made
systems are not far from those (discussed later) that have already been used to
model behaviour of biological cells.

In defining bigraphs for such modelling, we wish to embrace familiar calculi of
mobile processes, which deal with interaction and mobility in different ways. We
also want a theory that can be specialised to each of these calculi, and therefore
unifies them. This leads naturally to the second of our twin challenges.

The challenge from process calculi

Existing process calculi have made great progress with communication [5,2,20,30],
mobile connectivity [40,15] and mobile locality [3,8]. There is some agreement
among them, and their behavioural theories are well developed. At the same time
the space of possible calculi is large and not well understood. In particular, as shown
by Castellani’s [9] comprehensive survey, widely varying notions of locality have
been explored; this implies equal variety in their treatment of mobility.

The challenge from process calculi is to provide a uniform behavioural theory, so
that many process calculi can be expressed in the same frame without seriously
affecting their treatment of behaviour. It is important to assess clearly the value
of a uniform approach, in order to avoid superficial claims. For work involving the
application of an established process calculus, encoding into a common framework
such as bigraphs is unlikely to yield much benefit. But for assessing the theory of an
existing calculus there will be benefits; as an example, the study in Jensen’s forth-
coming dissertation [21] throws light upon the various bisimilarities for π-calculus,
and explains weak bisimilarity (where silent transitions are ignored) in terms of
a more general phenomenon. Finally in defining new process calculi, which may
well be needed for pervasive computing, a uniform framework will avoid adhoc
repetitive theory and could provide immediate insights for designing the calculus.

We now outline how research leading up to the bigraphical model has addressed
this challenge.
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It is common to present the dynamics of processes by means of reactions (also
known as rewriting rules) of the form r . r′, meaning that r can change its state
to r′ in suitable contexts. In process calculi this treatment is typically refined into
labelled transitions of the form a ` . a′, where the label ` is drawn from some
vocabulary expressing the possible interactions between an agent a and its envi-
ronment. These transitions have the great advantage that they support the definition
of behavioural preorders and equivalences, such as traces, failures and bisimilarity.
But the definition of those transitions tends to be tailored for each calculus.

So can these labels be derived uniformly, given a set of reaction rules of the form
r . r′? A natural approach is to take the labels to be certain (environmental) con-
texts; if L is such a context, the transition a L . a′ implies that a reaction can occur
in L ◦a leading to a new state a′. (As we shall see, bigraphical agents and contexts
live in a category, or more generally an s-category, where the composition L ◦a
represents the insertion of agent a in context L.) Moreover, we would like to be
sure that the behavioural relations —such as bisimilarity— that are determined by
the transitions are well-behaved.

But we don’t want all contexts as labels; as Sewell [49] points out, the behavioural
equivalences that result from this choice are unsatisfactory. How to find a satis-
factory —and suitably minimal— set of labels, and to do it uniformly, remained
open for many years. As a first step, Sewell was able uniformly to derive satisfac-
tory context-labelled transitions for parametric term-rewriting systems with parallel
composition and blocking, and showed bisimilarity to be a congruence. It remained
a problem to do it for reactive systems dealing with connectivity, such as the π-
calculus.

This was overcome by Leifer and Milner [26], who defined minimal labels in terms
of the categorical notion of relative pushout (RPO), also ensuring that behavioural
equivalence is a congruence. These results were extended and refined in Leifer’s
PhD Dissertation [25], and applied to action graphs with rich connectivity [10].
Meanwhile bigraphs were developed from action graphs; they were inspired by the
simplicity that comes from treating locality and connectivity independently, by the
mobile ambients of Cardelli and Gordon, and by Gardner’s development [17] of
action graphs with undirected edges. This theoretical development has been aug-
mented by a sequence of case studies applying the bigraph model to existing cal-
culi, including the π-calculus [22,23], mobile ambients [21], Petri nets [36,27] and
the λ-calculus [38]. These give confidence that the model can incorporate existing
theories.

Each of the case studies involved some specialisation of the bigraph model. The
present paper is devoted to pure bigraphs, which underlie these specialisations. It
concentrates mainly upon the theory but illustrates it by application to finite pure
CCS as a running example. Sequel papers will specialise the model in various ways,
for example to binding bigraphs which allow scope and binding for certain names,
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Fig. 2. A bigraphical reaction rule for CCS with summation

thus admitting more refined applications. It will be seen that the basic theory of
pure bigraphs is preserved by these specialisations, thus establishing pure bigraphs
as a core theory.

However, the theory cannot claim to be definitive; many variations are possible.
Therefore this work has been divided as much as possible into separate topics,
making it more amenable to variation. For example, bigraphs themselves are de-
fined in terms of two independent structures, place graphs and link graphs, and
each of these can be varied. Also, bigraphical reactive systems (Brss) are defined
as merely one instance of a general concept, wide reactive systems (Wrss), whose
abstract theory we develop in Part I; many other instances are possible.

We now introduce our running example.

Example 2 (reaction in CCS) The calculus CCS [30] has a reaction rule

(x.P +M) | (x.Q+N) −→ P |Q ,

where x.P and x.Q are guarded output and input respectively, while M and N
represent zero or more alternatives of the same nature. The rule represents a com-
munication on channel x, which may preempt other possible communicators on the
same channel; the result of the communication is to allow the continuations P and
Q to continue in parallel, while the alternatives M and N are discarded.

Figure 2 shows the corresponding reaction rule in bigraphs. It uses three controls:
send for output, get for input and alt for alternation. They are declared to be passive
controls, i.e. no reaction can occur inside them. The reaction rule means that the
redex R occurring in a larger bigraph, with anything in its holes (grey boxes), can
be replaced by the reactum R′, retaining some of the contents of R as indicated by
the ordinals in its holes. Note several points:

• The send- and get- nodes are connected inR by a link named x. In the larger con-
text these may be linked to competitors for communication on that link. Nothing
in R′ retains that link, but competitors in the larger context will retain it.
• The occupants of the holes —collectively called the parameter of the reaction—

may freely be linked to the larger context (and to each other); they may even
contain uses of the link x, which may later be activated.
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• Bigraphs are rigorous entities. Besides their diagrams, they may be written and
manipulated algebraically. Here is the algebraic form of the reaction rule, mildly
sugared to clarify which hole is which:

alt. (sendx.�0 |�1) | alt. (getx.�2 |�3) . x |�0 |�2 .

The forms such as alt. (. . .) and sendx.�0, are derived from categorical compo-
sitions; the parallel combinator ‘ | ’ is derived from tensor product.
• Those familiar with CCS may be surprised that no special bigraph combina-

tor is needed to encode the summation ‘+’. Instead, a control alt does the job,
together with the parallel combinator ‘ | ’. The latter combinator is purely struc-
tural, placing bigraphs side-by-side; the dynamic behaviour of CCS summation
— for example, that only one summand of a sum will be allowed to execute —
is captured in bigraphs by the reaction rule and the passivity of the control alt.

We shall return to this example from time to time in the following sections, to
illustrate various points. In Section 11 we shall encode finite CCS into bigraphs,
and illustrate our uniformly derived strong bisimilarity by showing that it exactly
captures the one originally defined for CCS.

Synopsis

The paper’s three parts play distinct roles. Each Part begins with an abstract, but
the following brief overview will be helpful.

Part I is entirely devoted to a mathematical framework consisting of s-categories
and a way of providing them with dynamics; in this framework, many other models
beside bigraphs can be set up. The purpose is to develop theory that will apply to
future enrichments and variations of the bigraph model.

Part II is entirely concerned with the static structure of bigraphs. The mere defini-
tion of bigraphs is not complex, but it admits a large taxonomy and many opera-
tions; the emphasis in this Part is to identify elementary bigraphs from which others
can be built, as well as basic operations from which others can be derived. It is also
shown how the static theory of Part I is instantiated in bigraphs.

Part III establishes the dynamic theory of bigraphs, and shows in turn how the
dynamic theory of Part I is instantiated. This leads to further taxonomy, some re-
finements of the theory, and in particular a notion of sorting; all of these are then
applied to recover some of the original theory of CCS. Finally, the concluding sec-
tion points to related research and future directions.

Acknowledgement I am greatly indebted to Ole Høgh Jensen and Jamey Leifer,
whose ideas have been important in developing bigraphs. I would also like to thank
the anonymous referees for comments which have helped me to improved the paper.
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2 S-categories and relative pushouts

In this section and the following one we develop a mathematical framework for the
static and dynamic properties of bigraphs. There are several varieties of bigraph,
and in this general setting we shall derive properties that will apply to all of them.
This work relies substantially on results on Leifer’s PhD dissertation [25], and has
been presented in [27]; it is repeated briefly here to make the present paper self-
contained.

Notation We accent the name of a precategory or s-category, as in ´C, to distin-
guish it from a category. We use I, J,K, . . . for objects and f, g, h, . . . for arrows.
We use juxtaposition for composition, ‘id’ for identity and ‘⊗’ and tensor product.
We denote the domain I and codomain J of an arrow f : I→ J by dom(f) and
cod(f); the set of arrows from I to J , called a homset, is denoted by ´C(I→ J).

IdS will denote the identity function on a set S, and ∅S the empty function from
∅ to S. We shall use S ] T for union of sets S and T known or assumed to be
disjoint, and f ] g for union of functions whose domains are known or assumed to
be disjoint. This use of ] on sets should not be confused with the disjoint sum ‘+’,
which disjoins sets before taking their union. We assume a fixed representation of
disjoint sums; for example, X+P +Y means ({0}×X)∪ ({1}×P )∪ ({2}×Y ),
and

∑
v∈V Pv means

⋃
v∈V ({v}×Pv). We write f �S for the restriction of a function

f to the domain S, and R�S for the restricted relation R ∩ S2.

A natural number m is often interpreted as a finite ordinal m = {0, 1, . . . ,m− 1}.
We often use i to range over m; when m = 2 we use ı for the complement 1− i of
i. We use ~x for a finite sequence {xi | i ∈ m}; when m = 2 this is an ordered pair.

Definition 2.1 (precategory) A precategory ´C is defined exactly as a category,
except that the composition of arrows is not always defined. Composition with the
identities is always defined, and id f = f = f id. In the equation h(gf) = (hg)f ,
the two sides are either equal or both undefined.

We shall extend categorical concepts to precategories without comment when they
are unambiguous. We now extend explicitly the concept of monoidal category:

Definition 2.2 (tensor product, monoidal precategory) A strict, symmetric monoidal
precategory has a partial tensor product ⊗ both on objects and on arrows. It has a
unit object ε, called the origin, such that I ⊗ ε = ε ⊗ I = I for all I . Given I ⊗ J
and J ⊗ I it also has a symmetry isomorphism γI,J : I⊗J→ J ⊗ I . The tensor and
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symmetries satisfy the following equations when both sides exist:

(1) f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h and idε ⊗ f = f (3) γI,ε = idI

(2) (f1 ⊗ g1)(f0 ⊗ g0) = f1f0 ⊗ g1g0 (4) γJ,IγI,J = idI⊗J

(5) γI,K(f ⊗ g) = (g ⊗ f)γH,J (for f : H→ I, g : J→K)

(6) γI⊗J,K = (γI,K ⊗ idJ)(idI ⊗ γJ,K) .

‘Strict’ means that condition 1 holds exactly, not merely up to isomorphism; ‘sym-
metric’ refers to the symmetry isomorphisms satisfying conditions 3–6.

In this work we shall use s-categories, a well-behaved form of precategory. A
particular case will be when arrows are bigraphs. For the present, think of these as
ordinary graphs. In our dynamic theory we shall need to make explicit the extent
to which two graphs share nodes, when they occur as subgraphs of a larger graph.
One way this can be achieved in a categorical framework is to work with graphs
as objects, and embeddings as arrows. But there is a gain in treating the graphs
as arrows (between interfaces as objects); for then the categorical composition and
tensor product are ways of building larger graphs from smaller ones.

In s-categories, each arrow is equipped with a set called its support. The support of a
bigraph will include its nodes, and this immediately allows us to handle occurrences
and the sharing of nodes. This is not mere convenience; our dynamic theory of
bigraphs depends strongly on the notion of a relative pushout (RPO), defined later
in this section. If we model bigraphs as arrows in an ordinary category, RPOs do
not exist (a counter-example, Example 6, is shown in Section 6). In Part II we show
how to construct RPOs for bigraphs in s-categories.

We discuss alternative approaches in Section 12.

Definition 2.3 (s-category) An s-category ´C is a strict symmetric monoidal pre-
category which has:

• for each arrow f , a finite set |f | called its support, such that |idI | = ∅. For
f : I→ J and g : J→K the composition gf : I→K is defined iff |g| ∩ |f | =
∅ and dom(g) = cod(f); then |gf | = |g| ] |f |. Similarly, for f : H→ I and
g : J→K withH⊗J and I⊗K defined, the tensor product f⊗g : H⊗J→ I⊗K
is defined iff |f | ∩ |g| = ∅; then |f ⊗ g| = |f | ] |g|.
• for any arrow f : I→ J and any injective map ρ whose domain includes |f |, an
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arrow ρ �f : I→ J called a support translation of f such that

(1) ρ � idI = idI (4) Id|f | �f = f

(2) ρ �(gf) = (ρ �g)(ρ �f) (5) (ρ1 ◦ ρ0) �f = ρ1 �(ρ0 �f)

(3) ρ �(f ⊗ g) = ρ �f ⊗ ρ �g (6) ρ �f = (ρ� |f |) �f
(7) |ρ �f | = ρ(|f |) .

Each equation is required to hold only when both sides are defined.

We now consider functors between s-categories.

Definition 2.4 (support equivalence, supported functor) Two arrows f, g : I→ J
in an s-category ´C are support-equivalent, written f l g, if ρ �f = g for some sup-
port translation ρ. By Definition 2.3 this is an equivalence relation. If ´D is another
s-category, then a functor F : ´C→ ´D is a function on objects and arrows that pre-
serves identities, composition, tensor product and support equivalence. If F is an
inclusion function then ´C is a sub-s-category of ´D.

When we no longer need to keep track of support we may use a quotient category
(not just s-category). To define such quotients, we need the following notion:

Definition 2.5 (congruence) Let≡ be an equivalence defined on every homset of
a supported precategory ´C. We say that ≡ is preserved by an operator ∗ if f ≡ f ′

and g ≡ g′ imply f ∗ g ≡ f ′ ∗ g′ whenever the latter are defined. Then ≡ is
congruence on ´C whenever it is preserved by composition and tensor product.

As an example of a simple congruence on bigraphs, we may define f ≡ f ′ to mean
that f and f ′ are identical when all K-nodes are discarded, for some particular
control K. The most important example of a congruence will be support equiva-
lence (l). The following definition shows that any congruence at least as coarse as
support equivalence will yield a well-defined quotient category:

Definition 2.6 (quotient categories) Let ´C be a supported precategory, and let
≡ be a congruence on ´C that includes support equivalence, i.e. l ⊆ ≡. Then the
quotient of ´C by ≡ is a category C def

= ´C/≡, whose objects are the objects of ´C
and whose arrows are equivalence classes of arrows in ´C:

C(I, J)
def
= { [f ]≡ | f ∈ ´C(I, J) } .
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In C, the identities, composition and tensor product are given by

idm
def
= [idm]≡

[g]≡[f ]≡
def
= [gf ]≡

[f ]≡ ⊗ [g]≡
def
= [f ⊗ g]≡ .

By assigning empty support to every arrow we may also regard C as an s-category,
and we call [·]≡ : ´C→C the ≡-quotient functor for ´C.

Note that the quotient does not affect objects; thus any tensor product on C may
still be partial on objects. But C is indeed a category; composition is always well-
defined because f l g implies f ≡ g, and so also is tensor product provided it is
defined on the domains and codomains. We often abbreviate [·]l to [·]; we call it the
support quotient functor. From the definition, clearly a coarser quotient [·]≡ exists
whenever ≡ is a congruence that includes support equivalence.

We now turn to the notion of relative pushout (RPO), which will be of crucial
importance in defining labelled transitions. The rest of this section, except where
stated, pertains to any precategory.

Notation We shall often use ~f for a pair f0, f1 of arrows; similarly for objects. For
example, if the two arrows share a domain H and have codomains I0, I1 we write
~f : H→ ~I .

Definition 2.7 (bound, consistent) If two arrows ~f : H→ ~I share domainH , the
pair ~g : ~I→K share codomain K and g0f0 = g1f1, then we say that ~g is a bound
for ~f . If ~f has any bound, then it is said to be consistent.

Definition 2.8 (relative pushout) Let ~g : ~I→K be a bound for ~f : H→ ~I . A
bound for ~f relative to ~g is a triple (~h, h) of arrows such that ~h is a bound for ~f and
hhi = gi (i = 0, 1). We may call the triple a relative bound when ~g is understood.

A relative pushout (RPO) for ~f relative to ~g is a relative bound (~h, h) such that
for any other relative bound (~k, k) there is a unique arrow j for which jhi = ki
(i = 0, 1) and kj = h.

h0 h1

k1

g1 g1k

f0 f1

h1h0

hg0 g0

k0

h

j

f1f0

We shall often omit the word ‘relative’; for example we may call (~h, h) a bound (or

11



RPO) for ~f to ~g.

The more familiar notion, a pushout, is a bound ~h for ~f such that for any bound ~g
there exists an h which makes the left-hand diagram commute. Thus a pushout is
a least bound, while an RPO provides a minimal bound relative to a given bound
~g. In bigraphs we shall find that RPOs exist in cases where there is no pushout; see
Constructions 6.8 and the discussion preceding it.

Now suppose that we can create an RPO (~h, h) for ~f to ~g; what happens if we try
to iterate the construction? More precisely, is there an RPO for ~f to ~h? The answer
lies in the following important concept:

Definition 2.9 (idem pushout) A pair ~h : ~I→ J is an idem pushout (IPO) for the
pair ~f : H→ ~I if the triple (~h, idJ) is an RPO for ~f to ~h.

Then it turns out that the attempt to iterate the RPO construction will yield the same
bound (up to isomorphism); intuitively, the minimal bound for ~f to any bound ~g is
reached in just one step. This is a consequence of the first two parts of the follow-
ing proposition, which summarises the essential properties of RPOs and IPOs on
which our work relies. They are proved for categories in Leifer’s Dissertation [25]
(see also Leifer and Milner [26]), and the proofs can be routinely adapted for pre-
categories.

Proposition 2.10 (properties of RPOs) In any precategory ´C:

(1) If an RPO for ~f to ~g exists, then it is unique up to isomorphism.
(2) If (~h, h) is an RPO for ~f to ~g, then ~h is an IPO for ~f .
(3) If ~h is an IPO for ~f , and an RPO exists for ~f to hh0, hh1, then the triple (~h, h)

is such an RPO.
(4) (IPO pasting) Suppose that the diagram below commutes, and that f0, g0 has

an RPO to the pair h1h0, f2g1. Then
(a) if the two squares are IPOs, so is the big rectangle;
(b) if the big rectangle and the left square are IPOs, so is the right square.

h1h0

f0 f1 f2

g0 g1

(5) (IPO sliding) If ´C is an s-category then IPOs are preserved by support trans-
lation; that is, if ~g is an IPO for ~f and ρ is any injective map whose domain
includes the supports of ~f and ~g, then ρ �~g is an IPO for ρ � ~f .
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3 Wide reactive systems

We now introduce a kind of dynamical system, of which bigraphs will be an in-
stance. In previous work [26,?] a notion of reactive system was defined. In our
present terms, this consisted of an s-category whose arrows are called contexts, in-
cluding agents whose domain is the origin ε, together with a set of agent-pairs (r, r ′)
called reaction rules, and a sub-s-category of so-called active contexts. The reac-
tion relation . between agents was taken to be the smallest such thatDr .Dr′

for every active context D and reaction rule (r, r′).

For such systems, labelled transitions based upon IPOs have been derived uni-
formly [26]. Several behavioural preorders and equivalences based upon these tran-
sitions —including bisimilarity— were shown to be congruences, subject to two
conditions: first, that sufficient RPOs exist in the precategory; second, that decom-
position preserves activity — i.e. DC active implies both C and D active.

In subsequent work, RPOs were found in interesting cases (Leifer [25], Cattani et
al [10]). Each case met the condition that decomposition preserves activity, if we
limit attention to contexts with a single hole. However, certain derived transition
systems are unsatisfactory under this limitation, as Sewell [49] has pointed out.
Also we need multi-hole bigraphical contexts, not only to represent parametric re-
action rules, but also to admit multiple or ‘wide’ agents, whose several parts may
reside in different regions of a host context.

This gives rise to contexts in which some sites may be active, i.e. may permit
reaction to occur, but not others. The following definitions for s-categories allow
for this. To do so, we have to introduce a way in which an ordered set of ‘places’ can
be associated with an interface I; we must also indicate, for any arrow C : I→ J ,
which places of I ‘lie below’ a given place in J . This is done by the width functor in
the following definition; it then leads to the wide reactive systems of Definition 3.4.

In what follows we shall use Ord, the category of finite ordinals and functions
between them.

Definition 3.1 (wide s-category) An s-category ´C is wide if equipped with a
functor width : ´C→Ord with width(ε) = 0 such that, for each bijection π on the
ordinal width(I), there is an isomorphism πI : I→ I in ´C with width(πI) = π.

The objects I, J, . . . of ´C are called interfaces, and its arrows A,B,C, . . . are
called contexts. The domain and codomain of a context will be called its inner
and outer faces. Arrows in a homset ´C(ε→ I) —which we abbreviate to ´C(I)—
are called ground arrows; we let lower case letters a, b, . . . range over these, and
abbreviate a : ε→ I to a : I .

We shall later define bigraphs as a wide s-category, since their topography is impor-
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tant. Even in the present general framework we can begin to speak about locality:

Definition 3.2 (location) A location of an interface I is a subset λ ⊆ width(I).
The width function of a context C : I→ J is extended to locations of I by

width(C)(λ)
def
= {width(C)(i) | i ∈ λ} .

The offset by n of a location λ is given by nu λ def
= {n+ i | i ∈ λ}.

Our definition of reactions for a given Wrs will depend on what it means for a
location of I to be active in any context C : I→ J . The exact meaning will depend
on the Wrs, but we need it to satisfy certain natural conditions. This is where the
width functor comes in; for example, for i ∈ I to be active in DC we require
both that i is active in C, and that its image under width(C) is active in D. More
precisely:

Definition 3.3 (activity) An activity for ´C is a map act : ´C(I, J)→ 2width(I) for
each homset, respecting l and satisfying three properties:

(1) act(idI) = width(I)

(2) i ∈ act(DC) iff i ∈ act(C) and width(C)(i) ∈ act(D)

(3) i ∈ act(C ⊗D) iff i ∈ act(C) or i−m ∈ act(D), where m = width(dom(C)) .

For any C : I→ J and λ ⊆ act(C) we say that λ is active in C, or that C is active
at λ. If this holds for λ = I then we say that C is active.

We are now ready to add dynamics to a wide s-category. By enriching it with reac-
tion rules and activity, we shall define a reaction relation over ground arrows.

Definition 3.4 (wide reactive system) A wide reactive system (Wrs) ´C(act, ´R)
is a wide s-category ´C equipped with an activity act and a set ´R is a set of ground
reaction rules of the form (r : I, r′ : I), a redex and a reactum. Both components
must be closed under support translation.

The reaction relation . over ground arrows is defined as follows: g . g′ iff
there exist a ground reaction rule (r, r′) and an active context D with g l Dr and
g′ l Dr′.

We shall usually denote this Wrs by just ´C. Note that what we have defined are
ground reaction rules. In a bigraphical reactive system, which is a special kind of
Wrs, we shall define a notion of parametric reaction rule, each generating a family
of ground rules; we have already seen one in Example 2, encoding the dynamics of
CCS.

In passing, suppose that we are only concerned with reaction in contexts D that
have interfaces of unit width 1 = {0}, so that width(D)(0) = 0. Then D is active

14



iff it is active at 0. The first and second activity conditions then amount to requiring
that the active contexts form a sub-s-category closed under decomposition. Thus,
as promised, we have a proper generalisation of the conditions under which the
original congruence theorems [25,26] were proved.

A natural notion of morphism F : ´C→ ´D between Wrss is one that preserves
width, ground reaction rules and activity. The precise definition is as follows:

Definition 3.5 (Wrs morphism, sub-Wrs) Let ´C and ´D be Wrss, andF : ´C→ ´D
a functor of wide s-categories. Then F is morphism of Wrss if it preserves the in-
gredients of a Wrs as follows (distinguishing ingredients of ´D by a prime):

width = width′ ◦F
(r, r′) ∈ R ⇒ (F(r),F(r′)) ∈ R′

act(C) ⊆ act′(F(C)) .

If F is an inclusion functor then we call ´C a sub-Wrs of ´D.

Proposition 3.6 (Wrs morphisms preserve reaction) IfF : ´C→ ´D is a Wrs mor-
phism, and g . g′ in ´C, then F(g) .F(g′) in ´D.

Clearly Wrss and their morphisms form a category. From now on we shall find it
convenient to refer to these morphisms as Wrs functors. An important example of
a morphism is the support quotient functor, extended to Wrss as follows:

Definition 3.7 (quotient Wrs) Let ´C be a Wrs. Then its support quotient Wrs is
based upon the support quotient C = ´C/l, with other ingredients as follows:

• the ground reaction rules are ([r], [r′]), for each rule (r, r′) in ´C;
• the active sites of [D] are exactly those of D.

Proposition 3.8 (quotient reflects reaction) The support quotient

[ · ] : ´C→C

both preserves and reflects reaction, i.e. [g] . [g′] in C iff g . g′ in ´C.

The quotient morphism takes a concrete Wrs, based on an s-category, to an abstract
Wrs based upon a category. In the next section we show how to obtain a behavioural
congruence for an arbitrary concrete Wrs ´C with sufficient RPOs. The support quo-
tient C of ´C may not possess RPOs, but nevertheless the quotient functor allows
us to derive a behavioural congruence for C also. This use of a concrete Wrs with
RPOs to supply a behavioural congruence for the corresponding abstract Wrs was
first represented by the functorial reactive systems of Leifer’s thesis [25].
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4 Transition systems

We now consider how to equip a Wrs with a labelled transition system. This will
comprise a set of ground arrows called agents, together with a set of transitions
of a form such as a L

. a′, where a, a′ are agents and L is a context with La de-
fined. Then bisimilarity is defined in the usual way, and we are interested in general
conditions under which it will be a congruence.

Leifer and Milner [26] defined labelled transitions as follows: a L . a′ if there is a
reaction rule (r, r′) and an active context D for which (L,D) is an idem pushout
(IPO) for (a, r) and a′ = Dr′. We shall adopt a slight refinement of this definition;
we shall equip a transition with information about locality. For an agent a : I , a
transition of the form a L

. a′ tells us the extra context L : I→ J needed by a to
create a redex, but does not specify where this completed redex occurs within La,
i.e. within which region(s) the reaction takes place. Such regions are identified by
a location λ of J , the outer face of L. It turns out that, to achieve congruence of
bisimilarity, we must index each transition by such a location. This can be illus-
trated by a simple example, for which we need only the superficial understanding
of bigraphs supplied by the Introduction.

Example 3 (non-congruence) This example shows that bisimilarity based upon
unlocated transitions, which we denote by u∼, is not in general a congruence for
bigraphical systems. Take controls K, L and M, with M passive. Links are irrelevant
in this example, so we take interfaces to be just finite ordinals (widths).

Now write K, L : 0→ 1 for atoms, i.e. a single node with no content, and M : 1→ 1
for the passive context consisting of a single M-node. Let there be a single reaction
rule (K, L); it allows the reaction K . L in any active context.

Consider the two agents a, b : 0→ 2 illustrated below, where a = K ⊗ L and
b = L⊗K. They can each do a transition that turns K into L, i.e. we have a id2 . L⊗L
and b id2 . L⊗ L . Because these two transitions do not record the different places at
which the reaction occurs, it turns out that a u∼ b.

K K K6 u∼
M

LL Lu∼

C
def
= M | id1a

u∼ b Ca 6 u∼ Cb

M

L
M

K

Now putting a and b in the context C def
= M | id1 : 2→ 1, we find Ca 6 u∼ Cb. In Cb

the K-node can react, so there is a transition Cb id1 . ; but Ca has no such transition
since its K-node cannot react.
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Transitions and bisimilarity

We are now ready to define transition systems. We allow for a broad class of tran-
sitions, within which we distinguish those based upon IPOs.

Da
r

L

r′

l a′

Definition 4.1 (transition) A transition consists of a quadruple (a, L, λ, a′), writ-
ten a L

.λ a
′, with a and a′ ground, such that La = Dr and a′ l Dr′ for some

ground reaction rule (r, r′ : I) and active D such that λ = width(D)(width(I)).

We say that the reaction rule and the diagram La = Dr underlie the transition. A
transition is minimal if the underlying diagram is an IPO.

Definition 4.2 (transition system) Given a Wrs ´C, a (labelled) transition system
for ´C is a pair L = (A, T ), where A is a set of ground arrows, the agents of L,
and T is a set of transitions a L

.λ a
′ with a, a′ ∈ A.

We abbreviate ‘(labelled) transition system’ to Lts. An Lts M is a sub-Lts of L,
writtenM≺ L, if its components are included respectively in those of L.

The full (resp. standard) transition system for a Wrs consists of all interfaces, to-
gether with all (resp. all minimal) transitions. When the Wrs concerned is under-
stood we shall denote these two transition systems respectively by FT and ST.

Returning briefly to Example 3 we now see that the location component in transi-
tions allows us to distinguish between the two agents a and b. In fact in ST their
only transitions are a id

.{0} L⊗ L and b id
.{1} L⊗ L.

Our concept of Lts is very broad, and we shall be interested in those that behave
well in various ways. For example, if two agents are support equivalent, then we
expect their transitions to ‘agree’. We define what this means more generally, for
an arbitrary congruence relation.

Definition 4.3 (respect) Let ≡ be a congruence in a Wrs equipped with L. Then
≡ and L are said to respect one another if the following holds:

Let a L .λ a
′ be a transition in L. Let a ≡ b and L ≡ M , with Mb defined. Then

there exist an agent b′ and a transition b M .λ b
′ in L such that a′ ≡ b′.

‘Respect’ is mutual between an equivalence and an Lts, so that ‘L respects ≡ ’
means the same as ‘≡ respects L’; we shall use them interchangeably.
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Our definition of transition presupposes a set of reaction rules, i.e. an unlabelled
transition relation. Sometimes, for example in CCS, labelled transition systems
have been the primary means of providing process dynamics, and unlabelled transi-
tions corresponded to transitions with a ‘null’ label (τ in CCS). But in this work we
are committed to taking reaction rules as primary, because they can be described
generally without presupposing any notion of a transition label.

Whether transitions are derived from reactions or defined in some other way, we
may use them to define behavioural equivalences and preorders. Here we shall limit
attention to strong bisimilarity. (Throughout this paper we shall omit ‘strong’ since
we do not define or use weak bisimilarity.)

Definition 4.4 (wide bisimilarity) Let ´C be a wide reactive system equipped
with an Lts L. A simulation (on L) is a binary relation S between agents with
equal interface such that if aSb and a L

.λ a
′ in L, then whenever Lb is defined

there exists b′ such that b L .λ b
′ in L and a′Sb′. A bisimulation is a symmetric

simulation. Then bisimilarity (on L), denoted by∼L, is the largest bisimulation (on
L).

We shall often omit ‘on L’, and write ∼ for ∼L, when L is understood from the
context. This will usually be when L is ST.

Note the slight departure from the usual definition of bisimulation of Park [41];
here we require Lb to be defined. This is merely a technical detail, provided that
the Lts respects support equivalence; for then, whenever La is defined there will
always exist L′ l L for which both L′a and L′b are defined. Moreover if the Wrs is
based on a category, in particular a support quotient, then the side-condition holds
automatically; in that case the definition of bisimilarity reduces to the standard one.

If S is a binary relation and ≡ an equivalence, then we define S≡ to be the closure
of S under ≡ , i.e. the relational composition ≡S≡ . It is well known [30] that if≡
is included in (strong) bisimilarity, then to establish bisimilarity it is enough exhibit
a bisimulation up to ≡ ; that is, a symmetric relation S such that whenever aSb then
each transition of a is matched by b in S≡. We now deduce from Proposition 2.10(5)
that support equivalence can be used in this way:

Proposition 4.5 (support translation of transitions) In a Wrs the full and stan-
dard transition systems respect support equivalence. Hence in each case l is a
bisimulation, and a bisimulation up to l suffices to establish bisimilarity.

We now come to our congruence theorem for a Wrs; the proof is in [27].

Theorem 4.6 (congruence of wide bisimilarity) In a Wrs with RPOs, equipped
with the standard transition system, wide bisimilarity of agents is a congruence;
that is, if a0 ∼ a1 then Ca0 ∼ Ca1.
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We shall henceforth often omit the adjective ‘wide’ when discussing bisimilarity.
Recall that we are taking (strong) bisimilarity as a representative of many preorders
and equivalences; Leifer [25] has proved congruence theorems for several others,
and we expect that those results can be transferred to the present setting. Further-
more Jensen [21] extends our theory smoothly to weak transitions and weak bisim-
ilarity.

Since there are many transition systems, there are also many variants of bisimilarity.
Some are congruences, some are not. For example, the above proof is easily adapted
to show the congruence of full bisimilarity, which is based upon all transitions, not
just those based on IPOs. But we have already commented on the unsatisfactory
nature of FT, and the fact that it involves an intractable family of labels.

In Section 11 we shall identify a transition system whose bisimilarity is a congru-
ence for a limited range of contexts, and exactly matches the original bisimilarity
of finite CCS (Milner, [31]).

Quotient transition systems

Let us now turn to transition systems derived for a quotient Wrs.

Definition 4.7 (transitions for a quotient Wrs) Let ´C be a Wrs equipped with
an Lts L = (A, T ), and let F : ´C→ ´D be a Wrs functor. We say that F respects
L if the congruence it induces on ´C respects L.

The Lts F(L) induced by F on ´D has agents F(A)
def
= {F(a) | a ∈ A}. Whenever

L has a transition a L
.λ a

′ then F(L) has the transition

F(a) F(L)
.λF(a′) .

This definition always makes sense, but it will not always make bisimilarity a con-
gruence in ´D, even if it is so in ´C. However the next theorem, proved in Ap-
pendix A, tells us when this will be ensured. Recall that a full functor is surjective
for each homset.

Theorem 4.8 (transitions induced by functors) Let ´C be equipped with an Lts
L. Let F : ´C→ ´D be a full Wrs functor that is the identity on objects and respects
L, and such that F(a) = F(b) whenever a l b. Then the following hold for F(L):

(1) a ∼ b in ´C iff F(a) ∼ F(b) in ´D.
(2) If bisimilarity is a congruence in ´C then it is a congruence in ´D.

These results prepare the way for setting up a bigraphical reactive system (Brs) as
a Wrs, and then deriving an Lts and behavioural congruences for it. We typically
want to do this for an abstract Brs, i.e. one based upon a category where support
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equivalence has been factored out, rather than for a concrete Brs based upon an
s-category, where arrows (bigraphs) have non-trivial support. For example, CCS
and Petri nets are naturally formulated as abstract Brss. But the RPOs needed to
derive satisfactory Ltss are typically not present in abstract Brss; this is implied by
a counter-example, Example 6 in Section 6.

Now, as we shall see in Section 9, a Brs (concrete or abstract) is determined by a
signature K and a set R of reaction rules. So our procedure for establishing an Lts
and congruential bisimilarity for an abstract Brs will be as follows:

• Define an abstract Brs C(K,R);
• Define a concrete Brs ´C(K,´R), of which C(K,R) is the quotient (and R the

quotient of ´R) by some equivalence ≡;
• Derive an Lts for ´C(K,´R) with an associated behavioural congruence, and en-

sure that it respects ≡;
• Use Definition 4.7 to transfer the Lts to C(K,R), and Theorem 4.8 to ensure a

behavioural congruence in the abstract Brs.

This procedure is illustrated for finite CCS in Section 11.

Adequate and definite transition systems

We now turn to a question that arises strongly in applications. Our standard Lts,
containing only the minimal transitions, is of course much smaller than the full Lts.
But it turns out that in particular cases we can reduce the standard Lts still further,
without affecting bisimilarity. We introduce here the basic concepts to make this
idea precise, since they do not depend at all on the notion of bigraph.

Definition 4.9 (relative bisimulation, adequacy) LetM≺ L. A relative bisim-
ulation forM (on L) is a symmetric relation S such that

whenever aSb, then for every transition a L
.λ a

′ inM, with Lb defined, there
exists b′ such that b L

.λ b
′ in L and a′Sb′.

Then relative bisimilarity forM on L, denoted by∼ML , is the largest relative bisim-
ulation forM on L. We callM adequate for L if ∼ML coincides with ∼L on the
agents ofM; ifM has agents A, we write this as ∼ML = ∼L �A.

Note that, for a ∼ML b, we require b only to match the transitions of a that lie inM,
and b’s matching transition need not lie inM. This means that relative bisimilarity
is in general not transitive, so it is not in itself a behavioural equivalence.

Relative bisimilarity is useful when M is adequate for L; it reduces the class of
transitions to be checked. For example, usually fewer labels are involved.

In the case that L is ST we can give a simple example of adequacy. It depends upon
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the fact that ST is closed under isomorphism, i.e. if a L .λ a
′ is a transition of ST

then so is ιa κLι−1
.λ κa

′ for any isos ι and κ. Then when checking for bisimilarity
with a given a, intuitively it should suffice to consider not every transition of a, but
only one in every iso class. Thus these representative transitions should constitute
an adequate Lts. In fact this is true more generally (for a proof see [26]):

Proposition 4.10 (representative transitions) Let L be an Lts closed under iso-
morphism, and letM ≺ L. Suppose that, for every transition a L

.λ a
′ in L, there

is a transition a κL
.λ κa

′ inM for some iso κ. ThenM is adequate for L.

A deeper example of adequacy arises when we consider parametric reaction rules;
such a rule has a parametric redex R, and generates a family of ground rules whose
redexes take the form r = Rd where d is a parameter. Most interesting reaction
rules, e.g. in the λ-calculus, take this form; indeed we shall adopt it in bigraph-
ical reactive systems, as already illustrated for CCS in Section 1 (Figure 2). Our
intuition is that the important transitions are those where the agent contributes sig-
nificantly to the underlying parametric redex. We can make this precise in terms of
support: we are interested in transitions of a whose underlying parametric redex R
is such that |a| ∩ |R| 6= ∅. We call such transitions engaged. We may naturally ex-
pect that the engaged transitions are adequate. In Section 9 we shall later prove this
for a particular class of bigraphical reactive systems, the simple ones. In Section 11
we shall see in the case of CCS that this greatly simplifies behavioural analysis.

We now look at a well-behaved kind of sub-Lts. For arbitraryM≺ L and any given
pair (L, λ), it is possible thatM contains some but not all of the (L, λ)-transitions
in L. If this is not the case then the situation is somewhat simpler.

Definition 4.11 (definite sub-Lts) LetM≺ L. CallM definite for L if, for any
transition a L .λ a

′ of L, the pair (L, λ) alone determines whether it lies inM.

In this case we find that a relative bisimilarity is an absolute one:

Proposition 4.12 (definite sub-Lts) IfM is definite for L then ∼M = ∼ML .

An important consequence is that, if we know bisimilarity to be a congruence on
L, then the same holds for anyM definite and adequate for L. In fact:

Corollary 4.13 (adequate congruence) Let M be definite and adequate for L.
Then

(1) The bisimilarities onM and L coincide on the A, the agents ofM.
(2) Let C be a context that preserves ∼L, and also preserves membership of A.

Then C preserves ∼M.
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Part II : Bigraphical structure
Section 5 defines the notion of a concrete pure bigraph formally, in terms of its two con-
stituents: a place graph representing locality and a link graph representing connectivity.
Sections 6 and 7 define these two notions in turn, ensuring that they enjoy the neces-
sary categorical properties, including RPOs. Section 8 then combines these constituents,
yielding a theory of pure bigraphs where locality and connectivity are independent. It
defines important properties and operations for bigraphs; it also introduces a quotient
functor from concrete to abstract bigraphs, where support is forgotten and the notions
of occurrence and RPO are lost.

5 Pure bigraphs: definition

In this section we define the notion of pure bigraph formally, in terms of the con-
stituent notions of place graph and link graph, which are dealt with in the following
two sections. Let us begin with an illustration.

Example 4 (resolving a bigraph) An example of a bigraph appeared in Figure 1;
it illustrated how nodes are nested, and how —independently of the nesting— they
are linked via their ports. Figure 3 shows another example, illustrating more of the
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Fig. 3. Resolving a bigraph into a place graph and a link graph

structure of bigraphs. First, it shows how a bigraph may be resolved into its two
constituents, a place graph and a link graph. This is what we mean by the indepen-
dence of placing and linking; the place graph (a forest) is completely independent
of the link graph (a kind of hypergraph) as long as they shared the same node set,
here {v0, . . . , v3}. (Controls are not shown in this example.) If we forget everything
in the bigraph except the nesting of regions (large squares), nodes and sites (grey
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holes) then we get the place graph; if on the other hand we forget this nesting but
retain the linkage, we get the link graph. From our definitions it will be clear that
these two projections are full functors.

Using this example we can also describe composition. Our bigraph has width 2
(two regions), so it can inserted in a host graph having two sites. It also has outer
names y0, y1; this means that the host bigraph must have these inner names, al-
lowing linkage to be formed by composition. Equally, our bigraph has three sites
(grey holes) and inner names {x0, x1, x2}; these provide for composition with a
three-region client that possesses these outer names. Then composition of two bi-
graphs can be described thus: first resolve into constituents, then compose these,
and finally combine two larger constituents into a bigraph.

We are now ready for a formal definition.

Definition 5.1 (pure signature) A (pure) signatureK is a set whose elements are
called controls. For each control K it provides a finite ordinal ar(K), an arity; it
also determines which controls are atomic, and which of the non-atomic controls
are active. Controls which are not active (including the atomic controls) are called
passive.

Note that a signature need not be finite, or even denumerable. Thus a bigraph,
though itself finite, may denote an element of a continuous state space.

As we saw in Example 2 in Section 1, a non-atomic node —one with a non-atomic
control— may contain other nodes. A node’s control determines its ports, and if
the control is active then reactions are permitted inside the node. A passive node —
such as a get-node in the CCS example— can be thought of as a script, or program,
awaiting activation; this must take the form of a reaction that destroys the node
boundary.

In refinements of the theory a signature may carry further information, such as a
sign and/or a sort for each port. The sign may be used, for example, to enforce
the restriction that each negative port is connected to exactly one positive port,
as in action calculi [10,32]. Sorting of ports has been used to model Petri nets as
bigraphs [36,27]. Another possible refinement is to assign a sort to each control K,
determining the possible controls for the children of any K-node; we illustrate this
in modelling CCS in Section 11. In [23] we also defined an important refinement
that allows names to have scope, and controls to bind names. The theory of pure
bigraphs is prerequisite to understanding all these refinements.

We presuppose a denumerable set X of names. We shall define concrete bigraphs
top-down; here we define a bigraph as the combination of two constituents, and in
the following sections we define those constituents themselves.

Definition 5.2 (concrete pure bigraph) A (concrete) pure bigraph over the sig-
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nature K takes the form G = (V,E, ctrl , GP, GL) : I→ J where I = 〈m,X〉 and
J = 〈n, Y 〉 are its inner and outer faces, each combining a width (a finite ordinal)
with a finite set of global names drawn from X . Its first two components V and E
are finite sets of nodes and edges respectively. The third component ctrl : V →K,
a control map, assigns a control to each node. The remaining two are:

GP = (V, ctrl , prnt) : m→n a place graph

GL = (V,E, ctrl , link) : X→Y a link graph .

Place graphs and link graphs are defined in Definitions 6.1 and 7.1 respectively. We
call G the combination of its constituents GP and GL, writing G = 〈GP, GL〉.

In concrete bigraphs the nodes and edges have identity. The support of a concrete
bigraph consists of its nodes and edges; in terms of the definition, |G| = V + E.
We shall work with s-categories of bigraphs, because RPOs exist there.

In Section 8 we revisit bigraphs in order to develop their structure, often by com-
bining attributes of their constituent place graphs and link graphs. In that section
we shall also take the quotient by support equivalence to obtain abstract bigraphs.
Until then, unless otherwise stated we shall be concerned with concrete bigraphs,
place graphs and link graphs so we shall omit ‘concrete’.

6 Place graphs

Definition 6.1 (place graph) A place graph A = (V, ctrl , prnt) : m→n has an
inner width m and an outer width n, both finite ordinals; a finite set V of nodes
with a control map ctrl : V →K; and a parent map prnt : m ] V →V ] n. We
write w >A w

′, or just w > w′, to mean w = prntk(w′) for some k > 0. The parent
map is acyclic, i.e. we insist that >A is a partial order. An atom, i.e. a node with
atomic control, cannot be a parent.

The widths m and n index the sites and roots of A respectively. The sites and nodes
—i.e. the domain of prnt— are called places. A place graph is hard if every root,
and every node except an atom, has a child.

In this paper we shall limit attention to hard place graphs. We shall therefore omit
the adjective ‘hard’; but we retain a subscript h in the name of the s-category as a
reminder. Although most of the work can be done without this limitation, it simpli-
fies certain aspects. For example, hard place graphs possess pushouts; also, Theo-
rem 9.11 (adequacy) appears to need an extra condition if we admit arbitrary place
graphs.
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Due to acyclicity, a place graph with outer width n is an ordered sequence of n
unordered trees. The sites and roots provide the means of composing two place
graphs; each root of the first is planted in the corresponding site of the second.
Figure 4 shows two simple examples of composition, B0A0 and B1A1. Formally:

Definition 6.2 (s-category of place graphs) The s-category ´PLGh has finite or-
dinals as objects and (hard) place graphs as arrows. The support of a place graph is
its node set. The composition A1A0 : m0→m2 of two place graphs

Ai = (Vi, ctrl i, prnt i) : mi→mi+1 (i = 0, 1)

with disjoint supports is A1A0
def
= (V, ctrl , prnt), where V = V0 ] V1, ctrl =

ctrl0 ] ctrl 1, and prnt = (IdV0 ] prnt1) ◦ (prnt0 ] IdV1). The identity place graph
at m is idm

def
= (∅, ∅K, Idm) : m→m.

The tensor product ⊗ in ´PLGh is defined as follows: On objects, we take m⊗ n def
=

m+ n. For the product A0 ⊗ A1 of two place graphs with disjoint support we take
the union of their node sets; for the parent map, if A0 : m0→n0, we first offset
the sites and roots of A1 by m0 and n0 respectively, then take the union of the two
parent maps.

For an injective map ρ on nodes, the support translation ρ �A is defined by system-
atic replacement of each node v by ρ(v), preserving all structure.

It is easy to check that the equations for an s-category are satisfied.

In Section 2 we motivated the notion of support set of an arrow in an s-category,
by claiming that it would serve to distinguish between occurrences of the same
entity within a larger entity. Note that a node in a place graph has an identity (its
node name) as well as a control that tells us what kind of node it is. If we do not
know the identity of a node, then we cannot distinguish between two nodes with
the same control. It follows, as we shall see shortly, that if we forget the identity of
nodes we arrive at a category of ‘abstract’ place graphs in which RPOs do not exist.
This means that our method of deriving transition systems becomes inapplicable for
abstract place graphs. We justify this remark at the end of the section; meanwhile
we shall develop the theory of hard place graphs far enough to discover they possess
not only RPOs, but even pushouts.

Definition 6.3 (sibling, active, passive) Two places are siblings if they have the
same parent. A site s of A is active if ctrl(v) is active whenever v >A s; otherwise
s is passive. If s is active (resp. passive) in A, we also say that A is active (resp.
passive) at s.

When dealing with many place graphs A, B, . . . we may index their parent maps
as prntA, prntB etc. At times we shall find it more convenient to abuse notation
and denote the parent map of a place graph A again by A. The context will prevent
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ambiguity; for example in BA we are talking of place graphs, while in B(A(v))
we are talking of their parent maps. Thus (BA)(v) means the parent map of the
composite place graph BA applied to the node v.

Proposition 6.4 (isomorphisms in place graphs) An arrow ι : m→m in ´PLGh

is an isomorphism iff it has no nodes, and its parent map is a bijection.

Epimorphisms (epis) will play a central role, both for place graphs and for link
graphs. Recall that an arrow A is epi if BA = CA implies B = C. Monomor-
phisms (monos), the dual of epis, will also be used. Let us call a place graph
inner-injective if no two sites are siblings (i.e. the parent map restricted to sites
is injective). Then:

Proposition 6.5 (epis and monos in place graphs) In ´PLGh, every place graph
is epi; a place graph is mono iff it is inner-injective.

This is analogous to the category of sets with functions, where the epis and monos
are the surjective and injective functions respectively. Indeed, in hard place graphs
the parent map is always surjective on roots; and to say that no two sites are siblings
is just to say that the parent map is injective from sites.

A related fact is that not only RPOs but pushouts exist in ´PLGh, but only for pairs
~A : h→ ~m that possess a bound. Before giving the construction of pushouts, we
give three conditions on ~A that will turn out to be necessary and sufficient for a
bound, and furthermore for a pushout. Roughly speaking, the conditions ensure
that A0 and A1 treat their shared sites and nodes compatibly; then a bound ~B can
exist, since B0 can extend A0 to include ‘the part of A1 not shared with A0’. Such
a bound will also be a pushout if, roughly, it adds no more than necessary for this.

Notation When considering a pair ~A : h→ ~m of place graphs with common sites
h, we shall adopt a convention for naming their nodes. We denote the node set of
Ai (i = 0, 1) by Vi, and denote V0∩V1 by V2. Recall that ımeans 1− i for i ∈ 2. We
shall use vi, v′i, . . . to range over Vi (i = 0, 1, 2), and ri, r′i to range over the rootsmi

(i = 0, 1). We shall also use w2, w
′
2, . . . to range over h ] V2; this is useful because

shared sites behave just like shared nodes in our construction of pushouts.

Definition 6.6 (consistency conditions for place graphs) We define three con-
sistency conditions on a pair ~A : h→ ~m of place graphs.

CP0 ctrl 0(v2) = ctrl 1(v2)

CP1 If Ai(w) ∈ V2 then w ∈ h ] V2 and Aı(w) = Ai(w)

CP2 If Ai(w2) ∈ Vi \ V2 then Aı(w2) ∈ mı, and if also Aı(w) = Aı(w2)

then w ∈ h ] V2 and Ai(w) = Ai(w2) .
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Fig. 4. A consistent pair ~A of place graphs, with bound ~B

Let us express CP1 and CP2 in words; they are both to do with children of nodes. If
i = 0, CP1 says that if the parent of a place w in A0 is a node shared with A1, then
w is also shared and has the same parent in A1. CP2 says, on the other hand, that
if the parent of a shared place w2 in A0 is an unshared node, then its parent in A1

must be a root, and any sibling of w2 in A1 must also be its sibling in A0.

Necessity of these conditions is easy, and we omit the proof:

Proposition 6.7 (consistency in place graphs) If the pair ~A has a bound, then
the consistency conditions hold.

Before going further, it may be helpful to see a simple example.

Example 5 (consistent place graphs) Consider the pair ~A in Figure 4, each with
two roots and no sites; nodes with subscript 2 are shared. (Controls are not shown).
It is worth checking that the consistency conditions hold, and that indeed ~B is a
bound.

What happens if a node u is added to A1 as a sibling of v2? If u is unshared then
CP2 is violated, so no bound exists. If u is shared, then to preserve the consistency
conditions it must also be a sibling of v2 in A0; then ~B remains a bound.

Now, assuming the consistency conditions of Definition 6.6, we shall prove that
there exists a pushout for ~A. (Thus, since any pushout is a bound, we shall also
have shown that the consistency conditions are sufficient for a bound to exist.)

Construction 6.8 (pushouts in place graphs) Assume the consistency conditions
for the pair of place graphs ~A : h→ ~m. We define a pushout ~C : ~m→n for ~A as
follows.

nodes: Take the nodes of Ci to be Vı \ V2.
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interface: Define m′i ⊆ mi, the roots to be mapped to the codomain n, by

m′i
def
= {r ∈ mi | ∀w2 ∈ h ] V2. Ai(w2) = r ⇒ Aı(w2) ∈ mı} .

Next, on the disjoint sum m′0 + m′1, define ' to be the smallest equivalence such
that (0, r0) ' (1, r1) whenever A0(w2) = r0 and A1(w2) = r1 for some w2. Then
define the codomain up to isomorphism by

n
def
= (m′0 +m′1)/' .

For each r ∈ m′i we denote the '-equivalence class of (i, r) by î, r.

parents: Define the parent map of C0 : m0→n as follows (C1 is similar):

For r ∈ m0 :

C0(r)
def
=





0̂, r if r ∈ m′0
A1(w2) if r /∈ m′0, for some w2 with A0(w2) = r

For v ∈ V1 \ V2 :

C0(v)
def
=





1̂, r if A1(v) = r ∈ m1

A1(v) if A1(v) /∈ m1 .

It is straightforward to check that each Ci is hard. We also have to show that the
definition is sound. Thus in the second clause for C0(r) we must ensure that w2 ∈
h ] V2 exists such that A0(w2) = r, and that each such w2 yields the same value
A1(w2) in V1 \ V2; in the first clause for C0(v) we must ensure that r ∈ m′1. The
consistency conditions do ensure this, and also that C0A0 = C1A1.

We now validate our construction:

Theorem 6.9 (valid pushout construction) If the pair ~A : h→ ~m is consistent
then the pair ~C : ~m→n defined by Construction 6.8 is a pushout for ~A.

Proof (outline) Let ~B be any bound for ~A. We define a mediating arrow D such
that DCi = Bi (i = 0, 1) as follows. The nodes of D are those in ~B not in V0 ∪ V1,
and for any such node v define D(v)

def
= Bi(v) (i = 0, 1). It remains to define D(s)

for s ∈ n. We have s = î, r for r ∈ m′i, for i = 0 or i = 1 or both. In either case,
set D(s)

def
= Bi(r). It can be checked from the definition of ' that this definition is

independent of the pair (i, r) chosen.

It is routine to check that DCi = Bi (i = 0, 1). Moreover, D is unique with this
property since each Ci is epi. This completes the proof.

The reader may like to check that the bound in Figure 4 is also a pushout.
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Having developed the theory of place graphs far enough, we return to the question:
how necessary is the notion of support? In particular, why should our s-category
of place graphs pay respect to the identity of nodes? Let us see the effect on our
theory if we neglect node-identity.

Following Definition 2.4, two place graphs are support-equivalent if they only dif-
fer by a bijection on their nodes. Taking the quotient of ´PLGh by support equiva-
lence, we arrive at a category (not merely an s-category) of ‘abstract’ place graphs.
In such place graphs, nodes with identical controls can no longer be distinguished.
For example, the place graph C in Figure 5 has two nodes with control L which are
not distinguishable. It follows that CC0 = CC1 = E; to see this, recall that the
children of a root or node are unordered. This turns out to destroy the possibility of
RPOs in general, as we now illustrate.

Example 6 (lack of RPOs) We claim that Figure 5 demonstrates the lack of RPOs
(and hence the lack of pushouts) in abstract place graphs. In particular, it shows that
no RPO exists for (A,A) to (E,E). For consider the two relative bounds (id, id, E)
and (C0, C1, C); from any RPO (D0, D1, D) there must exist mediating arrows F
and G respectively to these two bounds. Now, from FDi = id (i = 0, 1) we deduce
that D0 and D1 have no nodes; since they are hard place graphs we then find that
Di = id (i = 0, 1). But then, since GDi = Ci (i = 0, 1) we find that C0 = C1, a
contradiction (recalling that a place graph is an ordered set of trees).

This example justifies the need for support, for RPOs to exist in place graphs. Sim-
ilar counter-examples show the same need for link graphs, and hence for bigraphs.
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7 Link graphs

Link graphs capture the connectivity of bigraphs, ignoring their nesting. There is a
close formal analogy, but also differences, between the theories of place graphs and
link graphs. Link graphs were presented fully in a previous paper [27]; the defini-
tions and main results are repeated here to make the present paper self-contained.

As with place graphs, we assume a signatureK assigning to each controlK an arity
ar(K). We also assume an infinite set X of names.

Definition 7.1 (link graph) A link graph A = (V,E, ctrl , link) : X→Y has
finite sets X of inner names, Y of (outer) names, V of nodes and E of edges. It
also has a function ctrl : V →K called the control map, and a function link :
X ] P →E ] Y called the link map, where P def

=
∑
v∈V ar(ctrl(v)) is the set of

ports of A.

We shall call the inner names X and ports P the points of A, and the edges E and
outer names Y its links. The support of A is the set V ]E of its nodes and edges.

The outer and inner names are for interfacing, and will be important in defining
composition. When we talk of a ‘name’ without adjective, we mean an outer name.

Definition 7.2 (idle, open, closed, peer, lean) A link is idle if it has no preimage
under the link map. Outer names are open links, edges are closed links. A point
(i.e. an inner name or port) is open if its link is open, otherwise closed. Two distinct
points are peers if they are in the same link. A link graph is lean if it has no idle
edges.

Idle names play an important role; for example we may want to consider two bi-
graphs as members of the same homset, even if one of them uses a name x and
the other does not. On the other hand idle edges serves no useful purpose, but may
be created by composition. Sometimes we shall need to ensure that the property of
leanness (no idle edges) is preserved by certain constructions.

Definition 7.3 (s-category of link graphs) The s-category ´LIG has name sets as
objects and link graphs as arrows. The composition A1A0 : X0→X2 of two link
graphs

Ai = (Vi, Ei, ctrl i, link i) : Xi→Xi+1(i = 0, 1)

is defined when their supports are disjoint; then A1A0
def
= (V,E, ctrl , link) where

V = V0]V1, ctrl = ctrl 0]ctrl 1, E = E0]E1 and link = (IdE0 ] link 1) ◦ (link 0]
IdP1). The identity link graph at X is idX

def
= (∅, ∅, ∅K, IdX) : X→X .

The tensor product ⊗ in ´LIG is defined as follows: On objects, X ⊗ Y is simply
the union of sets required to be disjoint. For two link graphs Ai : Xi→Yi (i = 0, 1)
we take A0 ⊗ A1 : X0 ⊗ X1→Y0 ⊗ Y1 to be defined when the interface products
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are defined and when A0 and A1 have disjoint node sets and edge sets; then to form
their product we take the union of their link maps.

We can describe the composite link map link of A1A0 as follows, considering all
possible arguments p ∈ X0 ] P0 ] P1:

link(p) =





link 0(p) if p ∈ X0 ] P0 and link 0(p) ∈ E0

link 1(x) if p ∈ X0 ] P0 and link 0(p) = x ∈ X1

link 1(p) if p ∈ P1 .

By analogy with place graphs, we often denote the link map of A simply by A.

We have chosen to identify names in an interface alphabetically, not positionally.
This difference is mathematically unimportant. Alphabetical names are convenient
for link graphs just as they are convenient in the λ-calculus, and they also lead
naturally to forms of parallel product that are familiar from process calculi.

Proposition 7.4 (isomorphisms in link graphs) An arrow ι : X→Y in ´LIG is
an isomorphism iff it has no nodes or edges and its link map is a bijection from X
to Y .

There is an important variant of tensor product that merges outer names, i.e. does
not require them to be disjoint. This has fewer algebraic properties than the tensor
(categorically, it is not a bifunctor), but will be important in modelling process
calculi:

Definition 7.5 (parallel product) The parallel product ‖ in ´LIG is defined as
follows: On objects, X ‖Y def

= X ∪ Y . On link graphs Ai : Xi→Yi (i = 0, 1) we
define A0 ‖A1 : X0 ⊗ X1→Y0 ‖Y1 whenever X0 and X1 are disjoint, by taking
the union of link maps.

Now, analogous to place graphs, let us call a link graph inner-injective if no two
inner names are peers. Then we can characterise epis and monos as follows:

Proposition 7.6 (epis and monos in link graphs) A link graph is epi iff no name
is idle; it is mono iff it is inner-injective.

Notation When considering a pair ~A : W → ~X of link graphs with common
domain W , we shall adopt a convention for naming their nodes, ports and edges.
We denote the node set of Ai (i = 0, 1) by Vi, and denote V0 ∩ V1 by V2. We shall
use vi, v′i, . . . to range over Vi (i = 0, 1, 2). Similarly we use pi ∈ Pi and ei ∈ Ei for
ports and edges (i = 0, 1, 2). However, we shall sometimes use pi also for points,
i.e. pi ∈W ] Pi; the context will resolve any ambiguity.

As the reader will have noticed, there is a striking formal analogy between link
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graphs and place graphs. But the analogy is not complete. For a parent map is
prnt : h ] V →V ]m where both the domain and codomain include the nodes V ,
while a link map is link : W ] P →E ]X where the sets P and E are disjoint; so
unlike a parent map, a link map cannot be iterated, i.e. a link graph has no notion
of nesting.

If we did not insist on working with hard place graphs, where there are no empty
regions, then place graphs would possess RPOs but not, in general, pushouts; in
that case the RPO theories for place graphs and link graphs are almost identical.
The analogous ‘hardening’ of link graphs would be to require that no outer names
are idle; in that case link graphs also have pushouts (when consistent). But here
again the analogy fails; for in our intended applications it appears impossible to do
without idle edges.

Thus we now embark upon an RPO theory for link graphs. Let us begin with some
intuition. Suppose ~D is a bound for ~A, and we wish to construct the RPO ( ~B,B).
To form ~B, we shall first truncate ~D by removing outer names, and all points and
edges not present in ~A. Then for the outer face of ~B, we create a new link (a name)
for each point whose link was lost by the truncation, equating these new names
only when required so that B0A0 = B1A1. Formally:

Construction 7.7 (RPOs in link graphs) An RPO ( ~B : ~X→ X̂, B : X̂→Z), for
a pair ~A : W → ~X of link graphs relative to a bound ~D : ~X→Z, will be built in
three stages. Since RPOs are preserved by isomorphism, we assume X0, X1 dis-
joint. We use the notational conventions introduced above.

nodes and edges: If Vi are the nodes of Ai (i = 0, 1) then the nodes of Di are
(Vı \ V2) ] V3 for some V3. Define the nodes of Bi and B to be Vı \ V2 (i = 0, 1)
and V3 respectively. Edges Ei are treated exactly analogously, and ports Pi inherit
the analogous treatment from nodes.

interface: Construct the shared codomain X̂ of ~B as follows. First, define the
names in each Xi that must be mapped into X̂:

X ′i
def
= {x ∈ Xi | Di(x) ∈ E3 ] Z} .

Next, on the disjoint sumX ′0+X ′1, define∼= to be the smallest equivalence for which
(0, x0) ∼= (1, x1) whenever A0(p2) = x0 and A1(p2) = x1 for some p2 ∈ W ] P2.
Then define the codomain up to isomorphism:

X̂
def
= (X ′0 +X ′1)/∼= .

For each x ∈ X ′i we denote the ∼=-equivalence class of (i, x) by î, x.
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links: Define B0 to simulate D0 as far as possible (B1 is similar):

For x ∈ X0 : B0(x)
def
=





0̂, x if x ∈ X ′0
D0(x) if x /∈ X ′0

For p ∈ P1 \ P2 : B0(p)
def
=





1̂, x if A1(p) = x ∈ X1

D0(p) if A1(p) /∈ X1 .

Finally define B, to simulate both D0 and D1:

For x̂ ∈ X̂ : B(x̂)
def
= Di(x) where x ∈ Xi and î, x = x̂

For p ∈ P3 : B(p)
def
= Di(p) .

This definition can be proved sound, i.e. the right-hand sides in the clauses defining
the link mapsBi andB are well-defined links. Then the following is proved in [27]:

Theorem 7.8 (RPOs in link graphs) In ´LIG, whenever a pair ~A of link graphs
has a bound ~D, Construction 7.7 yields an RPO ( ~B,B) for ~B to ~D.

We now proceed to characterise all the IPOs for a given pair ~A : W → ~X of link
graphs. We ask: how does our RPO ( ~B,B) vary, when we keep ~A fixed but vary
the given bound ~D? As for place graphs, if ~A are both epi, then ~B remains fixed and
only B varies, so that in this case there is a pushout. In ´PLGh we confine ourselves
to epis (since every hard place graph is epi), but for link graphs we need to treat the
general case. The first step is to establish consistency conditions.

Definition 7.9 (consistency conditions for link graphs) We define three consis-
tency conditions on a pair ~A : W → ~X of place graphs. We use p to range over
arbitrary points, pi, p′i, . . . to range over Pi, and p2, p

′
2, . . . to range over W ]P2, the

shared points.

CL0 ctrl 0(v2) = ctrl 1(v2)

CL1 If Ai(p) ∈ E2 then p ∈ W ] P2 and Aı(p) = Ai(p) .

CL2 If Ai(p2) ∈ Ei \ E2 then Aı(p2) ∈ Xı, and if also Aı(p) = Aı(p2)

then p ∈W ] P2 and Ai(p) = Ai(p2) .

Again, let us express CL1 and CL2 in words. If i = 0, CL1 says that if the link of
any point p in A0 is closed and shared with A1, then p is also shared and has the
same link in A1. CL2 says, on the other hand, that if the link of a shared point p2

in A0 is closed and unshared, then its link in A1 must be open, and further that any
peer of p2 in A1 must also be its peer in A0.
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Fig. 6. A consistent pair ~A of link graphs, with bound ~B

Proposition 7.10 (consistency in link graphs) If the pair ~A has a bound, then the
consistency conditions hold.

Before going further, it may be helpful to see a simple example.

Example 7 (consistent link graphs) Consider the pair ~A : ∅→ ~X of link graphs
in Figure 6, where X0 = {x0, y0, z0} and X1 = {x1, y1}. Nodes with subscript
2 are shared. (Controls are not shown). The pair is consistent, with bound ~B as
shown. It is worth checking the consistency conditions.

Now, assuming the consistency conditions of Definition 7.9, for any given ~A we
shall construct a non-empty family of IPOs. If ~A are both epi, then there is exactly
one IPO up to isomorphism, and it is a pushout; the construction is close to that for
place graphs. Otherwise the same construction yields an IPO, but further IPOs can
be gained by eliding one or more of the idle names of Ai into Ci (i = 0, 1), i.e. the
idle name can be incorporated into any of the edges of Ci. The choice of elisions
—each yielding a different IPO— is represented below by the sets Li and functions
ηi (i = 0, 1).

Construction 7.11 (IPOs in link graphs) Assume the consistency conditions for
the pair ~A : W → ~X . We define a family of IPOs ~C : ~X→Y for ~A as follows.

nodes and edges: Take the nodes and edges of Ci to be Vı \ V2 and Eı \ E2.

interface: For i = 0, 1 choose any subset Li of the namesXi such that all members
of Li are idle. Set Ki = Xi \ Li. Define K ′i ⊆ Ki, the names to be mapped to the
codomain Y , by

K ′i
def
= {xi ∈ Ki | ∀p2 ∈ W ] P2. Ai(p2) = xi ⇒ Aı(p2) ∈ Xı} .

Next, on the disjoint sumK ′0+K ′1, define' to be the smallest equivalence such that
(0, x0) ' (1, x1) whenever A0(p2) = x0 and A1(p2) = x1 for some p2 ∈ W ] P2.
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Then define the codomain up to isomorphism:

Y
def
= (K ′0 +K ′1)/' .

For each x ∈ K ′i we denote the '-equivalence class of (i, x) by î, x.

links: Choose two arbitrary functions ηi : Li→Eı \ E2 (i = 0, 1). Then define the
link maps Ci : Xi→Y as follows (we give C0; C1 is similar):

For x ∈ X0 :

C0(x)
def
=





0̂, x if x ∈ K ′0
A1(p2) if x ∈ K0 \K ′0, for some p2 with A0(p2) = x

η0(x) if x ∈ L0

For p ∈ P1 \ P2 :

C0(p)
def
=





1̂, x if A1(p) = x ∈ X1

A1(p) if A1(p) /∈ X1 .

The soundness of the above definition, and the fact that ~C is a bound, can both be
routinely established.

Fortunately we shall not have to handle elisions in detail in this paper. It turns out
that they are usually avoided in situations where we need to analyse an IPO. This
can be either because the Ai in question has no idle names, or because the Ci in
question has no edges (i.e. it is open).

The following characterisation theorem is proved in [27]:

Theorem 7.12 (characterising IPOs for link graphs) A pair ~C : ~X→Y is an
IPO for ~A : W → ~X iff it is generated (up to isomorphism) by Construction 7.11.

8 Pure bigraphs: development

We now develop the theory of pure bigraphs. Proofs of propositions in this section
can mostly be found in [23]. Several notions introduced here will be used in Part
III for the dynamic theory.

First we combine the s-categories ´PLGh and ´LIG:

Definition 8.1 (precategory of pure concrete bigraphs) The s-category ´BIGh(K)
of pure concrete bigraphs over a signature K has interfaces I = 〈m,X〉 as objects,
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with origin ε = 〈0, ∅〉, and bigraphs G : I→ J as arrows. If F : J→K is another
bigraph with |F | ∩ |G| = ∅, then their composition is defined directly in terms of
the compositions of the constituents as follows:

FG
def
= 〈F PGP, F LGL〉 : I→K .

The identities are 〈idm, idX〉 : I→ I , where I = 〈m,X〉 . The tensor product of
two interfaces is defined by 〈m,X〉 ⊗ 〈n, Y 〉 def

= 〈m + n,X ] Y 〉 when X and Y
are disjoint. The tensor product of two bigraphs Gi : Ii→ Ji (i = 0, 1) with disjoint
supports is defined as follows, when its interfaces are defined:

G0 ⊗G1
def
= 〈GP

0 ⊗GP
1 , G

L
0 ⊗GL

1〉 : I0 ⊗ I1→ J0 ⊗ J1 .

We shall omit the adjective ‘pure’ from now on. We shall also omit ‘concrete’ for
the present; but in Definition 8.10 we shall introduce abstract bigraphs via a forget-
ful functor. We shall continue to omit the signature K except when it is important.

We now combine some familiar place graph and link graph structures:

Proposition 8.2 (isos, epis and monos in bigraphs) A bigraph in ´BIGh is iso (resp.
epi, mono) iff its constituent place graph and link graph are both iso (resp. epi,
mono).

We shall call a bigraph inner-injective if both its place graph and its link graph are
so. Thus a concrete bigraph is mono iff it is inner-injective. (The two properties
differ for abstract bigraphs.)

We now observe that bigraphs are an instance of a structure from Section 3:

Proposition 8.3 (bigraphs are wide) ´BIGh(K) is a wide s-category. The inter-
face I = 〈n,X〉 has width(I) = n, and for G : 〈m,X〉→〈n, Y 〉 the width map
width(G) sends each site i ∈ m to the unique root j ∈ n such that i <G j.

It follows that when we later equip bigraphs with reaction rules we shall have a
Wrs, and then we can apply the main congruence theorem, Theorem 4.6, provided
that we have enough RPOs. So now we draw together our RPO results for place
graphs and link graphs. We deduce from Theorem 6.9 and 7.8 the following:

Corollary 8.4 (RPOs for bigraphs) In ´BIGh an RPO for ~A to ~D is provided by

( 〈BP
0 , B

L
0 〉, 〈BP

1 , B
L
1 〉, 〈BP, BL〉 )

where ( ~BP, BP) is an RPO for ~AP and ( ~BL, BL) is an RPO for ~AL to ~DL.

Similarly we deduce from Theorems 6.9 and 7.12 that:
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Fig. 7. A consistent pair ~A of bigraphs, with IPO ~B

Corollary 8.5 (IPOs for bigraphs) A pair ~B is an IPO for ~A in ´BIGh iff ~BP is a
place graph pushout for ~AP and ~BL is a link graph IPO for ~AL.

Example 8 (Bigraph IPOs) To illustrate IPOs in ´BIGh, we can combine Exam-
ple 5 for place graphs and Example 7 for link graphs, since they have the same node
sets. In both cases the bounds ~B are IPOs, and indeed pushouts because the graphs
~A are epi in this case. The combination is shown in Figure 7.

We now give a few special cases of IPOs. First, some pushouts (hence also IPOs):

Proposition 8.6 (containment pushout) In any precategory, if A is epi then the
pair (A,FA) has the pair (F, id) as a pushout. Hence, by takingA = id and F = id
respectively:

(1) Any pair (id, F ) has (F, id) as a pushout.
(2) If A is epi then (A,A) has (id, id) as a pushout.

Next, tensor product preserves IPOs with disjoint support:

Proposition 8.7 (tensor IPO) Let ~C be an IPO for ~A and ~D be an IPO for ~B,
where | ~A, ~C|∩ | ~B, ~D| = ∅. Then (C0⊗D0, C1⊗D1) is an IPO for (A0⊗B0, A1⊗
B1), provided that all the interface products are defined.

From this, with the help of Proposition 8.6, we deduce an important form of IPO.
We shall need it in Appendix B, in the proof of Theorem 9.11, the adequacy theo-
rem.
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Corollary 8.8 (tensor IPOs with identities) Let A : I ′→ I and B : J ′→ J have
disjoint support, and let the names of I ′, I be disjoint from those of J ′, J . Then the
pair (A⊗ idJ ′ , idI′ ⊗B) has an IPO (idI ⊗B,A⊗ idJ). See diagram (a).

In particular if I ′ = J ′ = ε then A = a and B = b are ground bigraphs, and the
IPO is as in diagram (b).

J

I
idI ⊗ b

a⊗ idJ

I⊗J

b

a

idI ⊗B
I⊗J

I′⊗J

I⊗J ′
(a) (b)

A⊗ idJ ′ A⊗ idJ
idI′ ⊗B

We now prepare to define abstract bigraphs. In these, as promised, we forget the
identity of nodes and edges, but we want to do a little more. Even without identity,
idle edges may still lurk in a bigraph; we want to forget these too. Call a bigraph
lean if its link graph is lean, i.e. has no idle edges. In Section 9 we shall need to
transform IPOs by the addition or subtraction of idle edges. Let us write AE for the
result of adding a set E of fresh idle edges to A. The following is easy to prove
from the IPO construction for link graphs:

Proposition 8.9 (IPOs, idle edges and leanness) For any pairs ~A and ~B in ´BIGh:

(1) If ~B is an IPO for ~A, and A1 is lean, then B0 is lean.
(2) For any fresh set E of edges, ~B is an IPO for ~A iff (B0, B

E
1 ) is an IPO for

(AE0 , A1).

Definition 8.10 (abstract pure bigraphs and their category) Two concrete bi-
graphs A and B are lean-support equivalent, written A m B, if after discarding
any idle edges they are support equivalent. The category BIGh(K) of abstract pure
bigraphs has the same objects as ´BIGh(K), and its arrows are lean-support equiv-
alence classes of concrete bigraphs. Lean-support equivalence is clearly a congru-
ence (Definition 2.5). The associated quotient functor, assured by Definition 2.6,
is

[[·]] : ´BIGh(K)→BIGh(K) .

Of course, there are also abstract versions of place graphs and link graphs. But
we have little use for them, for we cannot combine an abstract place graph with
an abstract link graph to form an abstract bigraph! (The combination only makes
sense when nodes have identity.)

The reader might expect that we could henceforth develop our theory in abstract
bigraphs, having constructed them. But this is impossible, since they lack RPOs —
and even epis— in general. The lack of RPOs for abstract place graphs is shown by
Example 6 in Section 6; other counterexamples can be found in [23]. However, the
RPOs in concrete bigraphs will allow us in Section 9 to derive a behavioural con-
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gruence for ´BIGh; then we shall see how to transfer it, under certain assumptions,
to BIGh.

We shall now introduce some notation and concepts used in following sections.

Notation We often abbreviate an interface 〈0, X〉 to X , and {x} to x; similarly
we abbreviate 〈m, ∅〉 to m. Thus the interfaces ∅ and 0 are identical with the origin
ε, and indeed the identity idε may be written variously as ε, ∅ or 0.

Although bigraphs are chiefly interesting for the nodes that generate their dynamic
behaviour, node-free bigraphs are essential; they represent the ways in which bi-
graphs are wired together. A graph without nodes need have no sites or roots; this
leads to the following definition:

Definition 8.11 (wiring, closure, substitution) A bigraph with interfaces of zero
width, and hence having no nodes, is called a wiring; we let ω, ζ range over wirings.
They are generated by composition and tensor product from two basic forms: /x : x→ ε,
called closure; and open wirings σ, τ which we call substitutions. We denote the
empty substitution from ε to x by x : ε→ x.

ForX = {x1, . . . , xn}we write /X for the multiple closure /x1⊗· · ·⊗/xn, andX
for the empty substitution x1 ⊗ · · · ⊗ xn. For vectors ~x and ~y of equal length, with
the xi distinct, we write ~y/~x or (y0/x0, y1/x1, . . .) for the surjective substitution
xi 7→ yi. Every substitution σ can be expressed uniquely as σ = τ ⊗ X , with τ
surjective. We let α range over renamings, the bijective substitutions.

We now come to two kinds of bigraph prime and discrete, which are important both
for the algebraic structure of bigraphs (Proposition 8.15) and for their dynamics
(Definition 9.2). In both cases we are concerned with breaking down a bigraph
into easy parts; for example, Proposition 8.15 will show that every bigraph is the
composition of a wiring with a discrete bigraph.

Definition 8.12 (prime, discrete) An interface is prime if it has width 1. We shall
often write a prime interface I = 〈1, X〉 as 〈X〉; note in particular that 1 = 〈∅〉. A
prime bigraph P : m→〈X〉 has no inner names and a prime outer face. An impor-
tant prime is merge : m→ 1, where m > 0; it has no nodes, and simply maps m
sites to a single root. A bigraph G : m→〈n,X〉 with no inner names is converted
by merge into a prime (merge ⊗ idX)G.

A bigraph is discrete if it has no edges, and its link map is bijective. Thus it is open,
no two points are peers, and no name is idle.

Primes have no inner names; this ensures prime factorisation in Proposition 8.15.

Notation We often omit ‘. . .⊗ idI’ in compositions, when there is no ambiguity;
for example we write merge G for (merge ⊗ idX)G.
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Given a wiring ω : Y →Z, we may wish to apply it to a bigraph G : I→〈m,X〉
with fewer names, i.e. Y = X ]X ′. Then we may write ωG for (idm⊗ω)(G⊗X ′)
when m and X ′ can be understood from the context. Note that if ω closes a name
in X ′ then ωG has a corresponding idle edge.

We now look at variants of the tensor product, to reflect parallel composition in
process calculi, for example p | q, which allow the processes p and q to share names.
We first extend the parallel product of link graphs (Definition 7.5) as follows:

Definition 8.13 (parallel and prime product) The parallel product is defined on
interfaces by 〈m,X〉 ‖ 〈n, Y 〉 def

= 〈m + n,X ∪ Y 〉, and on bigraphs Gi : Ii→ Ji
(i = 0, 1) with disjoint support by

G0 ‖G1
def
= 〈GP

0 ⊗GP
1 , G

L
0 ‖GL

1〉 : I0 ⊗ I1→ J0 ‖ J1

when the interfaces exist. The prime product is defined on interfaces by 〈m,X〉 | 〈n, Y 〉 def
=

〈1, X ∪ Y 〉, and on bigraphs (under the same conditions) by

G0 |G1
def
= merge(G0 ‖G1) : I0 ⊗ I1→ J0 | J1 .

Both products are associative, and ε is the unit for ‖ . They are well-formed since
the factors G0 and G1 are required to have disjoint inner names. The parallel prod-
uct keeps their regions separate, while the prime product merges them. The notation
| comes from CCS and the π-calculus; the correspondence is accurate. Note that
to join a wiring to a prime we may write either ω |P or ω ‖P ; they coincide in this
case.

We now introduce primitives involving nodes.

Definition 8.14 (ion, atom, molecule) Let K be a non-atomic control with arity
k, and ~x a sequence of k names, not necessarily distinct. Let X = {~x}. We define
the ion Kv,~x : 1→〈X〉 to have a single K-node v, whose ith port is linked to the
name xi for each i ∈ k. We omit the subscript v when it can be understood. For any
prime P with names Y , the composite (K~x ‖ idY )P : m→〈X ∪ Y 〉 is a molecule;
we shall abbreviate it to K~x.P .

On the other hand ifK is atomic it has no ion, but we define the atomK~x : ε→〈X〉;
it resembles an ion but possesses no site.

Any closure of an ion is also an ion; similarly for molecules and atoms.
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A A

x

K

x

the ion Kxxy

K

the atom Ayz the molecule Kxxy.Ayz

y z y zy

The diagram shows a molecule built from an ion and an atom, in such a way that
the ion and atom share a name. The possibility for nested nodes to share a name at
different levels is important; our chosen notationK~x.P also agrees with the notation
for prefixing in CCS and π-calculus. We shall see a close semantic correspondence
in Section 11.

Let us now consider discrete bigraphs. In a precise sense they complement wiring:

Proposition 8.15 (discrete normal form) Every bigraphG : 〈m,X〉→〈n, Z〉 can
be expressed uniquely, up to a link iso on Y , as G = (idn⊗ω)D, where ω : Y →Z
is a wiring and D : 〈m,X〉→〈n, Y 〉 is discrete. Furthermore every such discrete
D may be factored uniquely, up to a place iso on the domain of each factor Di, as

D = α⊗ ((D0 ⊗ · · · ⊗Dn−1)ι)

with α a renaming, each Di prime and discrete, and ι a permutation of sites.

Note that a renaming is discrete but not prime (since it has zero width); this explains
α in the prime factorisation. Its uniqueness depends on the fact that primes have no
inner names. In the special case that D is ground, the factorisation is just D =
d0 ⊗ · · · ⊗ dn−1, a product of prime discrete ground bigraphs.

The discrete normal form (DNF) applies equally to abstract bigraphs, and plays an
important part in the complete axiomatisation of pure bigraphs [37]. Discreteness is
well behaved in other ways. Clearly both composition and tensor product preserve
it. IPOs also treat it well. In fact, we have:

Proposition 8.16 (properties of discreteness) The discrete pure bigraphs form a
sub-s-category of ´BIGh. Moreover

(1) If D is discrete and (D′, G′) is an IPO for (G,D), then D′ is discrete.
(2) If D,D′ are discrete and (D′, idn ⊗ ω) bounds (G,D), then it is a pushout.

We have to make one more preparation for Section 9 on dynamics. When we define
the notion of parametric reaction rule, we must allow a parametric redex to replicate
some factors of its parameter and discard other factors. For example, the redex R
for CCS shown in Figure 2 discards two of the four factors. We represent this by an
operation η[·] on parameters called instantiation. The following definition ensures
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that names are shared among all copies of a parameter factor.

Definition 8.17 (instantiation) Let η : n→m be a map of ordinals. For any ´C=
´BIGh(K) and any X this defines an instantiation map

η : ´C〈m,X〉→ ´C〈n,X〉

of ground arrows as follows. Decompose g : 〈m,X〉 into g = ωd, where d : 〈m,Y 〉 =
d0 ⊗ · · · ⊗ dm−1, with each di prime and discrete. Then define

η[g]
def
= ω(d′0 ‖ · · · ‖ d′n−1) ,

where d′j l dη(j) for j ∈ n. This map is well-defined up to support translation, by
Proposition 8.15. If η is injective, surjective or bijective then the instantiation η is
said to be respectively affine, total or linear.

If η is not affine then it replicates at least one factor of the parameter d. Support
translation is used to ensure that the several copies of a replicated factor have dis-
joint supports; also parallel product ‖ is used because copies of a replicated factor
will share names. If η is not total then the names of d′0 ‖ · · · ‖ d′n−1 may be fewer
than Y ; this is how idle links may arise from reactions.

Proposition 8.18 (wiring an instance) Wiring commutes with instantiation; that
is,

ζ(η[a]) l η[ζa] .

Proof Let a : 〈m,X〉, with η : m′→m. Take the DNF a = ωd, where ω : Y →X .
Then η[a] = ωd′, where d′ = d′0 ‖ · · · ‖ d′m′−1 with each d′i l dη(i). So

η[ζa] = η[ζ(ωd)] = η[(ζω)d]

l (ζω)d′ = ζ(ωd′) l ζ(η[a]) .
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Part III : Dynamics for bigraphs
Section 9 introduces the notion of a bigraphical reactive system (Brs), which is an in-
stance of the notion of Wrs from Part I. The dynamics of a Brs is provided by parametric
reaction rules. Transition systems are set up, as defined in Part I; they are shown to yield
congruential bisimilarity in both concrete and abstract Brss. A special class of simple
Brss is defined; on the basis of work on Part I, it is shown that the standard transition
system for a simple Brs can be significantly simplified. Section 10 introduces sorted
Brss, in which (as in sorted algebras) the structure of bigraphs can be constrained in
various ways to suit applications. It is shown that many sortings respect the dynamic
theory. Finally, Section 11 illustrates every aspect of bigraphical theory in terms of a
finite fragment of CCS, recovering exactly its original strong bisimilarity.

The concluding section discusses related and future work.

9 Reactions and transitions

We are now ready to apply our general notion of a wide reactive system (Wrs) to
bigraphs. We begin this section by defining a bigraphical reactive system (Brs);
we then discuss its standard transitions and show their induced bisimilarity is a
congruence. Thereafter we specialise the results to the well-behaved subclass of
simple Brss, where we can find a smaller transition system adequate for the standard
one.

Bigraphical reactive systems

To define the notion of Brs, it remains to define reaction rules over bigraphs. We
shall give a Brs a little more structure than a Wrs, since —as hinted in Section 3 and
already illustrated for CCS in Figure 2 in the Introduction— we wish to identify
the parametric reaction rules that will generate the ground rules of a Brs. First, let
us define activity for bigraphs.

Definition 9.1 (active bigraph) A bigraph D is active at the site i if every node
>D i has an active control. D is active if it is active at every site.

This defines the activity map for ´BIGh(K) for any signature K, and it is a routine
matter to check that the conditions of Definition 3.3 hold.

For parametric reaction rules, we want a ground redex to have roughly the form
r = Rd, where R is a parametric redex and d a parameter. But, since we are not
dealing with name-binding, we wish the parameter’s names to be also outer names
of r; that is, R should not close them. We therefore choose parametric redexes to
have the form R : m→ J , and for any parameter d : 〈m,X〉 we shall form a ground
redex r = (idX ⊗ R)d. Further, we shall use instantiations (Definition 8.17) to
determine how a parameter should be instantiated. We arrive at the following:

43



Definition 9.2 (reaction rules for bigraphs) A parametric reaction rule has a
redex R and reactum R′, both lean. It takes the form

(R : m→ J, R′ : m′→ J, η )

where η : m′→m is a map of ordinals. Then for every discrete d : 〈m,X〉 the
parametric rule generates every ground reaction rule of the form (r, r ′), where
r l ( (idX ⊗ R)d and r′ l (idX ⊗ R′) η[d]. We say that the rule is respectively
affine, total or linear when the instantiation η is so.

Consider Example 2 in Section 1, displayed in Figure 2. In that case we have

R : 4→〈x〉 = alt.(sendx | id) | alt.(getx | id) , R′ : 2→〈x〉 = x | id | id

and the instantiation, which is affine, is defined by η : 0 7→ 0, 1 7→ 2.

The reader may wonder why we choose parameters to be discrete. In fact the gener-
ated reaction relation would be unchanged if we allowed arbitrary ground bigraphs
as parameters, since the instantiation of any ground bigraph is defined in terms
of the factors of its underlying discrete bigraph. But discrete parameters simplify
analysis considerably, especially for transitions and bisimilarity.

We are now ready to define our central concept:

Definition 9.3 (bigraphical reactive system) A (concrete) bigraphical reactive
system (Brs) over K consists of ´BIGh(K) equipped with a set ´R of reaction rules
closed under support equivalence (l). We denote it by ´BIGh(K, ´R). A Brs is
respectively affine, total or linear when all its rules are so.

We have accented ´R, as well as ´BIGh, to indicate that our redexes and reacta are
concrete. Now, since we have determined both the ground reaction rules and the
activity of a Brs, we can assert that

Proposition 9.4 (a Brs is a Wrs) Every bigraphical reactive system is a Wrs.

We now turn to wide transition systems and bisimilarity. All of Section 4 on these
topics can be applied to Brss, including the various transition systems such as FT

and ST. Most importantly, from Theorem 4.6 we deduce a behavioural congruence:

Corollary 9.5 (congruence of wide bisimilarity) In any concrete Brs with the stan-
dard transition system ST, wide bisimilarity ∼ is a congruence.

Later we shall examine a particular class of Brss; it yields an adequacy theorem
that significantly reduces the transition system ST. But first let us transfer our be-
havioural congruence to the abstract Brs BIGh(K,R), where BIGh(K) and R are
obtained by the quotient functor [[·]] of Definition 8.10.
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This functor, the quotient by lean-support equivalence (m), is a little coarser than
the quotient by support equivalence (l). To transfer the congruence result we must
first prove that m respects ST:

Proposition 9.6 (transitions respect equivalence) In a concrete Brs with ST:

(1) Every transition label L is lean.
(2) Transitions respect lean-support equivalence (m) in the sense of Definition 4.2.

That is, whenever a L .λ a
′, if a m b and L m M with Mb defined, then

b M .λ b
′ for some b′ such that a′ m b′.

(3) Lean-support equivalence is a bisimulation.

Proof For part 1, use Proposition 8.9(1) and the fact that every discrete agent is
lean. For part 2, use Proposition 8.9(2); the fact that each redex is lean ensures that
it cannot share an idle edge with the agent a. Part 3 follows immediately from part
2.

We are now ready to transfer the congruence results of Corollary 9.5 from concrete
to abstract Brss. The following is immediate by invoking Theorem 4.8:

Corollary 9.7 (behavioural congruence in abstract Brss) Let ´C be a concrete
Brs, and C its lean-support quotient. Let ∼ denote both the bisimilarity for ST in
´C and the corresponding bisimilarity induced in C. Then

(1) a ∼ b iff [[a]] ∼ [[b]].
(2) Bisimilarity ∼ is a congruence in C.

Simple Brss

The standard transition system ST is quite tractable, since each label is ‘small’ in
the sense that it is the minimal required to allow a certain reaction. What chance do
we have to reduce the transition set even further? One attempt would be to consider
only those transitions of an agent a in which a makes a non-trivial contribution
to the underlying reaction. To be precise, we would like to avoid considering any
transition a L .λ a

′ arising from a redex r such that |r| ⊆ |L|.

We might expect such transitions to be redundant, because if a shares no node or
edge with the redex then surely any other agent b should be able to make a transition
with the same label; so to test whether a ∼ b we should not need to entertain such
transitions.

It turn out that this intuition is correct, but only for some Brss. We now proceed to
define the class of simple prime Brss, which (with one extra condition) will justify
our intuition.
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Recall from Section 7 that a link is open if it is a name, otherwise closed.

Definition 9.8 (simple, prime Brs) In ´BIGh or BIGh, call a bigraph open if every
link is open. Call it guarding if it has no inner names, and no site has a root as
parent. Call it simple 1 if it is inner-injective, open and guarding.

A Brs is simple (resp. prime) if all its redexes are simple (resp. prime).

There are good arguments why we should expect redexes to satisfy the simpleness
conditions; in fact, the only real constraint it imposes is in requiring a redex to be
open. Even so, the reactive systems for CCS, π-calculus and mobile ambients all
turn out to be simple.

We give without proof three easy properties of openness:

Proposition 9.9 (openness properties)

(1) A composition FG is open iff both F and G are open.
(2) Every open bigraph is lean (i.e. has no idle edges).
(3) If ~B is an IPO for ~A and A1 is open, then B0 is open.

We are now ready to define a sub-TS of the standard transition system, in which
every transition of a is such that a makes a contribution to the underlying reaction:

Definition 9.10 (engaged transitions) In ´BIGh a standard transition of a is said
to be engaged if it can be based on a reaction with redex R such that |a| ∩ |R| 6= ∅.
Denote by PE the transition system of prime interfaces and engaged transitions.
Denote by ·PE the sub-Lts in which the transitions are mono.

We would like to prove PE is adequate for ST (Definition 4.9), i.e. that ∼PE

ST
= ∼ST

restricted to prime interfaces; then for prime a and b, to establish a ∼ST b we need
only prove a ∼PE

ST
b. For this we need only match each engaged transition of a

(resp. b) by an arbitrary transition of b (resp. a). This is less work than matching all
transitions. Note that the relative bisimilarity ∼PE

ST
should not be confused with the

absolute bisimilarity ∼PE. (They will be proved equal under certain conditions.)

For the engaged transitions to be adequate, it is not quite enough that the Brs should
be simple and prime. 2 The following counter-example, due to Ole Jensen, shows

1 This definition of ‘simple’ pertains only to pure bigraphs; a refined definition for binding
bigraphs appears in [23]. Also, here we do not require a simple bigraph to be prime. We
sometimes need primeness as well as simpleness, but it seems natural to separate the two
notions.
2 In the Technical Report [39] on which this paper is based it was wrongly claimed that
these conditions were enough to ensure adequacy. I an grateful to Ole Jensen for pointing
out the error.

46



what can go wrong.

Example 9 (engaged transitions not always adequate) Let M : 1 and N : 0 be atomic
controls, and L : 0 non-atomic. Consider the following two reaction rules:

L. d . d | d
Mx |Mx . Mx .

This defines a simple prime Brs, not affine. Consider two prime agents, /xMx and
N. Neither has an engaged transition, hence /xMx ∼PE

ST
N. But each can do a unique

L-transition, distinguishing them as follows (in which we omit the subscript λ = 0
from prime transitions):

/xMx
L . /x (Mx |Mx)

id . /xMx

N L
. N |N 6 id . .

Thus engaged transitions are not adequate.

There are two ways to ensure adequacy of engaged transitions. One way entails an
alternative to name-closure, and involves binding bigraphs. It provides a satisfac-
tory treatment of a wide range of Brss, including full CCS and the full π-calculus,
and will be presented by Ole Jensen in his forthcoming PhD dissertation [21]. In
this paper we limit our attention pure bigraphs; we shall therefore be content to
ensure adequacy by imposing the affine condition. The resulting Lts for finite CCS
will be given as illustration in Section 11.

The following theorem is proved in Appendix B.

Theorem 9.11 (adequacy of engaged transitions) In a simple prime affine Brs
equipped with ST, the prime engaged transitions are adequate; that is, engaged
bisimilarity ∼PE

ST
coincides with bisimilarity ∼ST on prime agents.

In passing, we observe that simpleness and adequacy makes it easy to verify two
desirable properties of idle names. Recall that a bigraph consisting of just an idle
name x is itself denoted by x. Then adding extra idle names does not disturb bisim-
ilarity; but also, it is possible that bisimilar agents may differ in their idle names.
To be precise:

Proposition 9.12 (idle names and bisimilarity) In a simple prime affine Brs equipped
with ST,

(1) a ∼ b iff x⊗ a ∼ x⊗ b.
(2) a ∼ b does not imply that a and b have the same idle names.

47



Proof (1) For the forward implication, use congruence. For the converse we verify
that S = {(a, b) | x⊗a ∼ x⊗b} is a bisimulation. Let aSb, and consider a transition
a L .λ a

′. We easily deduce that x⊗a idx⊗L .λ x⊗a′, hence x⊗b idx⊗L .λ b
′′ where

x⊗a′ ∼ b′′. Assuming simpleness it can be shown that this transition of x⊗b cannot
involve an elision of x. It is then easy to verify that b′′ takes the form x ⊗ b′ (up to
isomorphism), where b L .λ b

′. But then a′Sb′ and we are done.

(2) Consider finite CCS with the rule of Example 2 in Section 1. Suppose it has
at atomic control nil representing the null process. The agent /x sendx. sendy. nil
attempts to send on the channel x, which is closed, and then to send on y. It has a
single outer name y that is not idle. On the other hand the agent y ⊗ nil has an idle
name y. But neither agent has an engaged transition, so they are bisimilar.

We now wish to transfer PE to abstract Brss, via the quotient functor

[[·]] : ´BIGh→BIGh .

To do this, we would like to know that PE is definite for ST (see Definition 4.11),
for then by Proposition 4.12 we can equate the relative bisimilarity ∼PE

ST
with the

absolute one∼PE. For this, we need to know that, from the pair (L, λ) alone, we can
determine whether or not a transition a L

.λ a
′ is engaged.

It turns out that this holds in a wide range of Brss, including the natural encoding of
π-calculus and ambient calculus. This is because they all satisfy a simple structural
condition, namely that no rule subsumes another in the following sense:

Definition 9.13 (subsume) Define ctrl(G), the control of a bigraph G, to be the
multiset of controls of its nodes. Say that a rule with redex S subsumes another rule
with redex R if ctrl(R) ( ctrl(S).

Note that this property applies equally to concrete and abstract Brss; indeed a con-
crete Brs has a subsumption iff its image under the quotient functor [[·]] has a sub-
sumption. Now with the help of Corollary 4.13, we deduce

Corollary 9.14 (engaged congruence) In a simple prime affine Brs with no sub-
sumption:

(1) The engaged transition system PE is definite for ST.
(2) Engaged bisimilarity ∼PE coincides with ∼ST on prime agents.
(3) For any context C with prime interfaces, a ∼PE b implies Ca ∼PE Cb .

We now proceed to transfer engaged transitions and bisimilarity from concrete to
abstract bigraphs. Note that the term ‘engaged’ is defined only for concrete bi-
graphs; but for convenience we shall call an abstract transition engaged if it is the
image under [[·]] of an engaged transition; and we shall also call refer to the induced
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bisimilarity of abstract bigraphs as engaged bisimilarity.

Recall from Proposition 9.9 that every simple bigraph is lean. We derive the ana-
logue of Corollary 9.7, with PE in place of ST, under extra assumptions:

Corollary 9.15 (engaged congruence in an abstract Brs) Let ´C be a simple prime
affine Brs with no subsumption, and let C be its lean-support quotient. Let ∼PE de-
note bisimilarity both for PE in ´C and for the induced transition system [[PE]] in C.
Then

(1) a ∼PE b iff [[a]] ∼PE [[b]].
(2) In C, ∼PE is a congruence.

Proof The quotient functor satisfies the conditions of Theorem 4.8. In particular,
by Proposition 9.6 it respects PE, being a sub-Lts of ST. So the theorem yields part
1 immediately. It yields part 2 with the help of Corollary 9.14.

Thus we have ensured congruence of engaged bisimilarity in an abstract Brs BIGh(K,R)
under reasonable assumptions.

10 Place sorting

In this short section we extend our results to certain place-sorted Brss, in which a
sorting discipline constrains the parent map, thus limiting the admissible bigraphs.
We begin with a brief motivation for sorting.

In significant applications we are likely to employ a rich signature, and to need
some constraint on the way in which bigraphs may be built. For example, given a
control K, we may want to constrain the children of a K-node to have only certain
controls; or we may want to constrain the linkage allowed for some or all of the
ports of aK-node. The latter kind of discipline we may call link-sorting; an instance
of it was used in [27] for representing Petri nets. The former —the constraint on the
parent map— we shall call place-sorting. Of course, we may combine link-sorting
with place-sorting.

We cannot expect our bigraph theory to remain unaffected by sorting disciplines
that place arbitrary constraints on the parent map and/or the link map. Such a con-
straint may prevent the existence of a tensor product, or of RPOs; or it may admit
RPOs but affect their construction. We seek a broad definition of place-sorting dis-
ciplines, within which we can distinguish subclasses that respect our theoretical
development, and which also reflect the demands of a wide range of applications.

We began this investigation in [35], and Jensen will continue it in his forthcoming
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PhD Dissertation [21]. In order not to lengthen the present paper we shall not ex-
plore the full variety of sorting disciplines here. Instead we shall be content to give
a very general definition of place-sorting, which can be done simply and briefly.
Then, equally simply, we shall define one particular class of place-sorting disci-
plines — the homomorphic sortings — and assert that our main results concerning
Ltss and congruential bisimilarity go through unchanged for Brss that obey these
disciplines.

Thus we prepare the way for Section 11, encoding finite CCS in bigraphs. It pro-
vides a simple and effective example of homomorphic place-sorting, and the main
result of this section will ensure that we shall derive a tractable Lts and a congru-
ential bisimilarity for finite CCS.

In the following Θ will denote a non-empty set of sorts, and θ will range over Θ.

Definition 10.1 (place-sorted bigraphs) An interface 〈m,X〉 is Θ-(place-)sorted
if it is enriched by ascribing a sort to each place i ∈ m. If I is place-sorted we de-
note its underlying unsorted interface by U(I).

We denote by ´BIGh(K,Θ) the s-category in which the objects are place-sorted in-
terfaces, and each arrow G : I→ J is a bigraph G : U(I)→U(J). The identities,
composition and tensor product are as in ´BIGh(K), but with sorted interfaces.

Note that the width of an interface has been enriched from an ordinal m to a se-
quence in Θm. Thus it may be presented as 〈~θ,X〉, where ~θ = θ0, . . . , θm−1; in
particular a prime interface takes the form 〈θ,X〉. Adding sorts to interfaces has, of
course, done nothing to constrain the internal structure of bigraphs in ´BIGh(K,Θ),
but has provided a means for adding such a constraint, as we now define:

Definition 10.2 (place-sorting) A place-sorting is a triple

Σ = (K,Θ,Φ)

where Φ is a condition on the place graphs of Θ-sorted bigraphs overK. The condi-
tion Φ must be satisfied by the identities and preserved by composition and tensor
product.

A bigraph in ´BIGh(K, Θ) is Σ-(place-)sorted if it satisfies Φ. The Σ-sorted bi-
graphs form a sub-s-category of ´BIGh(K,Θ) denoted by ´BIGh(Σ). Further, if ´R
is a set of Σ-sorted reaction rules then ´BIGh(Σ, ´R) is a Σ-sorted Brs.

Even with only a single sort there are interesting examples, since Φ may impose
constraints that have nothing to do with sorts. As a simple example, it may decree
that each root or node has at most one child. (The reader may like to confirm that
this sorting satisfies the required conditions.) As another example, it can represent
atomicity of controls and nodes, by decreeing that nodes with certain controls have
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no children. Other examples, including the homomorphic sortings which we define
shortly, are naturally expressed by first assigning a sort θ ∈ Θ to every control, and
then imposing constraints upon a bigraph in terms of the sorts thereby associated
with nodes.

As already mentioned, arbitrary sortings may destroy our theory; for example, they
may prevent the existence of RPOs, or prevent prime factorisation. What condi-
tions must we place on a place-sorting Σ = (K,Θ,Φ) to ensure that our theory is
preserved? This question can be addressed in terms of the forgetful functor which
discards sorts:

U : ´BIGh(Σ)→ ´BIGh(K) .

We shall call U a sorting functor. Such functors have at least one property:

Proposition 10.3 (place-sorting is faithful) On interfaces a sorting functor is sur-
jective (but not in general injective). On each homset it is also faithful, i.e. injective
(though not in general surjective) .

However, we need more structure than this if we wish to apply our transition theory
to a well-sorted Brs. An obvious example is that we may require the functor to
preserve and/or reflect RPOs. We shall not continue this general investigation here.
Instead, we shall focus on an attractive class of sortings. Such a sorting works by
assigning a sort to each control, and hence to each node in a bigraph G (via its
control map ctrlG); the sorting also defining a parent function on sorts. The sorting
condition requires, for each G, a homomorphism from the parent structure on its
nodes to the parent structure on sorts. More precisely:

Definition 10.4 (homomorphic sorting) In a homomorphic sorting Σ = (K,Θ,Φ)
the condition Φ assigns a sort θ ∈ Θ to each control in K. It also defines a parent
map prntΣ : Θ→Θ over sorts.

In a bigraph G, via its control map, the sort assignment to K determines a sort for
each node. Then Φ requires that, for each site or node w in G with sort θ:

− if prntG(w) is a node then its sort is prntΣ(θ) ;

− if prntG(w) is a root then its sort is θ.

Homomorphic sorting is a tight discipline, in one important sense: by the sec-
ond condition, the sort of every root (or outer region) in a well-sorted bigraph is
uniquely determined by the sorts of its children, which must be identical. This,
together with the first (homomorphic) condition, ensures that all the results in Sec-
tions 6, 8 and 9 hold for homomorphically sorted bigraphs. This refinement of the
results involves, in all cases, no more than replacing all pure interfaces 〈m,X〉 by
sorted interfaces 〈~θ,X〉. We draw attention to some specific points.

The consistency conditions of Definition 6.6 are unchanged. As asserted in Propo-
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sition 6.7 they are necessary for a bound to exist, and they indeed ensure that
Construction 6.8 constructs a (well-sorted) pushout for a pair of well-sorted place
graphs. Thus, since place-sorting does not affect link graphs, the construction of
RPOs for well-sorted bigraphs remains unchanged. The notions of primeness and
discreteness remain unchanged, except that there is a prime interface 〈θ,X〉 for
each sort θ.

Parallel product remains unchanged, but prime product (Definition 8.13) is limited
to bigraphs whose regions have identical sorts, since merge : m→ 1 is refined to
merge : (θ, . . . , θ)→ θ. Discrete normal forms exist just as before. In an instantia-
tion as defined by Definition 8.17, based on an ordinal map η : n→m, there is an
instantiation map η : ´C〈~θ,X〉→ ´C〈~φ,X〉 whenever φj = θη(j) (j ∈ n).

All results on transitions, bisimilarity and congruence in the first part of Section 9
go through as before. In the second part, dealing with simple Brss, note that the
properties open, closed, guarding, prime, lean, simple, prime, and affine mean for
well-sorted bigraphs exactly what they mean for pure bigraphs, i.e. a well-sorted
bigraph has the property iff its underlying pure bigraph has it. Finally, the ade-
quacy theorem (Theorem 9.11) for engaged transitions holds; the proof, given in
the Appendix, is virtually unchanged. We now restate it together with the impor-
tant congruence result:

Theorem 10.5 (congruence and adequacy with sortings) Let Σ be a homomor-
phic place-sorting. Then in ´BIGh(Σ, ´R):

(1) ∼ST is a congruence.
(2) If the reaction rules ´R are simple prime affine, then PE is adequate for ST.

11 CCS revisited

We are now ready to see how our results apply to pure CCS [30], for which we gave
a reaction rule in Example 2 of Section 1. This provides a nice application of the
adequacy theorem and of place sorting, introduced in preceding sections.

We limit ourselves to finite pure CCS with the following syntax. We shall let P,Q
range over processes and M,N over sums (or alternations); each summand of a
sum is a process guarded by an action λ of the form x or x.

P ::= 0
∣∣∣ νxP

∣∣∣ P |P
∣∣∣ M

M ::= λ.P
∣∣∣ M+M

λ ::= x
∣∣∣ x .

Restriction ν is the only scoping operator, and the free names of a process are
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just those not bound by ν. This is essentially the syntax of CCS as given in Def-
inition 4.1 of [31], if 0 is taken to be the empty sum and process identifiers are
omitted.

This syntax is two-sorted; we shall therefore translate it into a two-sorted s-category
of abstract bigraphs BIGh(Σccs), where Σccs = (K,Θ,Φ) is a homomorphic place
sorting (Definition 10.4). The signature is

K = { nil : 0 , alt : 0 , send : 1 , get : 1 }

and declares nil atomic, the other controls passive. We take Θ = {p,m}, where p is
for processes and m is for sums. The sorting condition Φ assigns the sort p to nil and
alt, and the sort m to send and get; it also imposes the parent map {p 7→ m,m 7→ p}
on sorts. Recall also that each interface in BIGh(Σccs) has sorted places, and that Φ
imposes the homomorphic sorting conditions on the nodes, sites and roots of a
bigraph.

We shall map CCS processes and sums into ground homsets with prime interfaces
of the form 〈p, X〉 and 〈m, X〉. Thus we define two translation maps PX [·] and
MX [·], each indexed by a finite name-set X , from finite pure CCS into BIGccs.
These maps are defined whenever X includes all free names of the argument (·), so
each process or sum has an image in many prime ground homsets.

Definition 11.1 (translation of finite CCS) The translations PX [·] for processes
andMX [·] for sums are defined by mutual recursion:

PX [0] = X | nil MX [x.P ] = sendx.PX [P ] (x ∈ X)

PX [νxP ] = /yPy]X [{y/x}P ] MX [x.P ] = getx.PX [P ] (x ∈ X)

PX [P |Q] = PX [P ] | PX [Q] MX [M+N ] = MX [M ] | MX [N ] .

PX [M ] = alt.MX [M ] .

In translating the prefix forms for input and output we have adopted the notation
K~x.P introduced in Definition 8.14, permitting names to be shared between an ion
and its contents. In translating νxP the name x is first alpha-converted to some
y 6∈ X . We shall write P

alpha≡ Q to mean that P is alpha-convertible to Q. A
substitution {y/x} on CCS terms is metasyntactic, and not to be confused with the
bigraph y/x.

Note that restriction and parallel composition are modelled directly by closure and
prime product, and need no extra controls. It is perhaps surprising that summation
‘+’ of CCS is also represented using prime product. But prime product in bigraphs
is a purely structural or static operation, with no commitment to any dynamic in-
terpretation. The distinction between parallel composition and summation in our
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bigraphical encoding of CCS is achieved by the form of its reaction rule, as we
shall see.

Our translation maps are not injective on prime ground homsets. In fact they induce
upon CCS an equivalence ≡ that is close to the structural congruence defined in
Definition 4.7 of [31]; the differences will be discussed shortly. But, due to sorting,
they are surjective; this can be proved by induction on the number of nodes in a
prime ground bigraph. We now make these points more precisely:

Definition 11.2 (structural congruence) Define structural congruence over CCS
terms to be the smallest equivalence ≡ that is preserved by all term constructions,
and such that
(1) P

alpha≡ Q implies P ≡ Q, and M
alpha≡ N implies M ≡ N ;

(2) ‘ | ’ and ‘+’ are associative and commutative under ≡ ;

(3) νxνyP ≡ νyνxP ;

(4) νxP ≡ P and νx (P |Q) ≡ P | νxQ for any x not free in P ;

(5) νx λ.P ≡ λ.νxP and νx (M+λ.P ) ≡M + λ.νxP

for any x not free in M or λ.

Note that clauses 4 and 5, taken in reverse, allow a restriction νx to be pulled
outwards from any parallel component and any summand respectively. This gives
rise to the following, analogous to the standard forms of Definition 4.8 in [31]:

Proposition 11.3 (CCS normal form) Every CCS process is structurally congru-
ent to a normal form νx1 · · · νx` P (` ≥ 0), where P is an open process form con-
taining each name xi free. Open process forms are defined recursively as follows:

• an open process form is a process term P1 | · · · |Pm (m > 0), where each Pj is
either 0 or an open sum form;
• an open sum form is a summation term M1+· · ·+Mn (n > 0), where each Mk

takes the form λ.P for some open process form P .

These forms, with restrictions outermost, are important in proving the following
theorem. It states essentially that each of our translation functions from CCS to
bigraphs is a bijection from structural congruence classes to a prime ground homset:

Theorem 11.4 (bijective translation)

(1) The translations PX [·] andMX [·] are surjective on prime ground homsets.
(2) P ≡ Q iff PX [P ] = PX [Q], and M ≡ N iffMX [M ] =MX [N ].

Proof (outline) For part 1 we prove, by induction on the number of nodes in
each prime ground bigraph, that it has at least one preimage for the appropriate
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translation function.

For the forward implication of part 2 it is useful first to prove, by induction on the
structure of process terms, that

P
alpha≡ Q implies PX [P ] = PX [Q]

and M
alpha≡ N implies MX [M ] =MX [N ] ;

then the main property can be proved by a similar induction.

For the reverse implication of part 2 first observe that, by the forward implication,
it will be enough to prove the result when P and Q are normal forms. For this, by
considering the restrictions in P and Q, the task may be reduced to proving the
property for open process forms. Finally, the property for open process forms and
open sum forms can be proved by mutual induction on their structure. In this proof
the crucial step is to show, in bigraphs, that if ai (i ∈ m) and bj (j ∈ n) are ground
molecules such that

a1 | · · · | am = b1 | · · · | bn ,
then m = n, and ai = bπ(i) for some permutation π on m.

Having thus found an accurate representation for CCS terms up to structural con-
gruence, we should point out two discrepancies between the latter and the standard
version of structural congruence.

First, we do not have P |0 ≡ P ; this is because we cannot encode 0 by the empty
prime bigraph 1, since 1 is absent in hard bigraphs. This may seem to be a disad-
vantage of the latter. On the other hand hard bigraphs are easier to work with, as
explained after Definition 6.1. Moreover, as we shall see, the bisimilarity p | nil ∼ p
holds.

The second discrepancy is clause 5 of Definition 11.2, which allows restriction to
be pushed through an action prefix. In finite CCS this is a valid law. But in CCS
with recursion (or replication), we cannot encode a restriction νx as name-closure
in bigraphs, since this would not meet the requirement that every instance of a repli-
cated process containing νx should have its own ‘private copy’ of x. Jensen [21]
will present a proper encoding of restriction in such a case.

Now let us consider dynamics for BIGccs. In our finite CCS we have the single
reaction rule

(x.P +M) | (x.Q+N) −→ P |Q ,

which may be applied anywhere not under an action prefix. On the other hand in
BIGccs we have the reaction rule from Example 2, shown again here in Figure 8 with
algebraic expressions for the redex R and reactum R′. It is easy to demonstrate that
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alt alt
R R′

x | id | idalt. (sendx | id) | alt. (getx | id)

0

1

2

3

20

getsend

Fig. 8. The reaction rule (R,R′, η) for BIGccs

there is an exact match between the reaction relations generated in CCS and in
BIGccs, in the following sense:

Proposition 11.5 (matching reaction) P −→ P ′ iff PX [P ] .PX [P ′] ,

This exact match with CCS reaction has been achieved by working in abstract bi-
graphs. We now want to match with the original behavioural theory of CCS, which
took the form of bisimilarity based upon a labelled transition system whose labels
are not contexts. For the purpose of this comparison we have to digress into con-
crete bigraphs, since that is where we find the RPOs on which our contextual Ltss
are based. So our starting point is the concrete sorted Brs

´BIGccs
def
= ´BIGh(Σccs, ´Rccs) ;

its reaction rules (R,R′, η) ∈ ´Rccs consist of all preimages (with R and R′ lean)
of the single abstract rule of BIGccs shown in Figure 8.

Our first step is to check that the prime engaged transitions in ´BIGccs yield a con-
gruential bisimilarity:

Corollary 11.6 (concrete bigraphical bisimilarity for CCS) The bisimilarity∼PE

in ´BIGccs is a congruence.

Proof Since Σccs is homomorphic we first deduce from the first part of Theo-
rem 10.5 that ∼ST is a congruence; also from the second part, since ´Rccs is simple
prime affine, that PE is adequate for ST. Next note that ´BIGccs has no subsumption,
since it has only one rule. It follows from Corollary 9.14 that PE coincides with ST,
and hence that ∼PE is a congruence.

Now recall that we are using the term PE both for a concrete Lts and for its abstract
image under the quotient by [[·]]. So, by analogy with Corollary 9.15, we are finally
able to deduce congruential bisimilarity in our bigraphical representation of CCS:

Corollary 11.7 (abstract bigraphical congruences for CCS) In BIGccs :
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(1) Two processes are bisimilar (∼PE) iff their concrete preimages are bisimilar.
(2) ∼PE is a congruence.

We devote the rest of this section to analysing this congruence. This will depend
upon a structural analysis of the transitions in PE, and for this purpose we refer back
to their preimages in ´BIGccs, where we rely on the fact that they are engaged.

Every prime transition p L . p′ arises, then, from a ground rule (r, r′) with redex

r = alt. (sendx.d · ·) | alt. (getx.e · ·)

where ‘· ·’ stands for zero or more further factors in a discrete prime product, and
(p, r) has (L,D) as an IPO with D active. Also p shares at least one of the nodes of
the underlying parametric redex R: the two alt-nodes, the send-node and the get-
node. What are the possibilities? Since p has sort p, if it shares the send-node then
it must also share the parent alt-node; similarly if it shares the get-node. So there
are two main sharing alternatives:

• p shares both nodes in one factor of R but none in the other;
• p shares all four nodes of R.

The former divides clearly into two symmetric cases. The latter also divides into
two cases; either the send- and get-ports are joined by a closed link x, or they
belong to possibly different open links.

p : I L : I→ J p′ : J condition

1 /Z(alt.(sendx.a · ·) | b) idI | alt.(getx.c · ·) /Z(a | b) | c x /∈ Z

2 /Z(alt.(getx.a · ·) | b) idI | alt.(sendx.c · ·) /Z(a | b) | c x /∈ Z

3
/Z(alt.(sendx.a0 · ·)
| alt.(getx.a1 · ·) | b)

idI /Z(a0 | a1 | b) none

4
/Z(alt.(sendx.a0 · ·)
| alt.(gety.a1 · ·) | b)

y/x
/Z y/x

(a0 | a1 | b)
x 6= y;

x, y /∈ Z

Fig. 9. The four forms for an engaged transition p L
. p′

In Figure 9 we tabulate these four cases. It shows the structure of p, L and p′ in
each case, also taking account of the fact that —for a reaction to occur— any alt-
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node shared with R must occur actively in p. In the table, a, b, c, . . . stand for any
processes, and ‘· ·’ for zero or more factors in a prime product; in the labels of cases
1 and 2 this product must be discrete. Note that, according to our convention, y/x
here denotes a substitution 〈p, X〉→〈p, Y 〉, where Y = (X \ x) ∪ y; its link map
sends x to y and is otherwise the identity.

The reader will note that the expressions for labels in our table are parametric;
for example in case 1, even for fixed p, there is a family of labels L, according
as c and the unspecified factors ‘· ·’ vary. Moreover c reappears in the reactum
p′, whereas the factors ‘· ·’ are discarded. Such parametric labels were used by
Hennessy, Merro and Zappa Nardelli [28,29] in their transition systems for mobile
ambients. Jensen will show in his forthcoming PhD dissertation [21] that essentially
the same labels are recovered in the bigraphical treatment of mobile ambients. So
label-families, represented parametrically, seem to arise naturally when labels are
taken to be contexts; they are not just an accidental consequence of our uniform
approach to deriving Ltss. As we shall see shortly, they do not prevent analysis of
the resulting behavioural relations.

Before discussing our derived Lts for CCS, let us establish a promised property:

Proposition 11.8 (unit for prime product) p ∼ p | nil .

Proof We shall prove the following relation to be a bisimulation:

S def
= {(p, p | nil) | p an agent} .

First, suppose p L . p′ by the ground rule (r, r′); then the underlying IPO is as
diagram (a) with p′ = Dr′. Since none of the possible labels L (see Figure 9)
guards its site, the IPO status is retained by adding a nil factor to both p and D,
yielding an IPO as in (b), and thus p | nil L . (D | nil)r′ = p′ | nil, maintaining the
relation S .

(b)(a)

D | nilp | nilD

L

r
p

L

r

In the other direction, suppose p | nil L . q′ by the ground rule (r, r′); then in the
underlying IPO, by commutation, the nil node cannot be shared by r, and indeed
the IPO must be as in diagram (b), with q′ = (D | nil)r′ = Dr′ | nil. But the IPO
status is retained by the omission of this shared nil-node, yielding an IPO as in
diagram (a), so that we have p L

.Dr′, again maintaining the relation S .

This completes the proof.

We are now ready to compare our derived transition system with the original CCS
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transitions, as presented in Part I of [31], which we shall call here the raw transi-
tions; they use the non-contextual labels

α ::= x
∣∣∣ x

∣∣∣ τ

where the first two represent sending and receiving a message, and τ represents a
communication within the agent. Rather than reverting to CCS syntax, we set up
the transitions p α−→ p′ of this raw system directly in BIGccs; this will ease our
comparison. The agents and label of each transition are characterised in Figure 10.

p α p′ condition

1 /Z(alt.(sendx.a · ·) | b) x /Z(a | b) x /∈ Z

2 /Z(alt.(getx.a · ·) | b) x /Z(a | b) x /∈ Z

3
/Z(alt.(sendx.a0 · ·)
| alt.(getx.a1 · ·) | b)

τ /Z(a0 | a1 | b) none

Fig. 10. The three forms for a raw transition p α−→ p′

It can be seen that the raw transitions with these labels correspond closely to the first
three forms shown in Figure 9; the notable difference is that, in the first two forms,
the contextual label is composed with the agent, and the result of the transition is
therefore larger than for the raw transitions.

However, there is no raw transition for the fourth (substitution) form of Figure 9;
this is closely connected with the fact that the original CCS bisimilarity, which we
shall denote here by∼ccs, is not preserved by substitution. But the labels of the first
three forms are mono, and the label x/y of the fourth is not, since the names x, y
are distinct and both occur in the agent’s interface.

Now let us define mono bisimilarity, .∼, to be the weakened version of standard
bisimilarity (∼) obtained by omitting the substitution labels from Figure 9. The
above remarks suggest that .∼ should coincide with the original CCS bisimilarity.
We now verify this claim.

Theorem 11.9 (recovering CCS) Mono bisimilarity recovers CCS, i.e. .∼ = ∼ccs.

Proof (⊇) To show .∼ ⊇ ∼ccs it will suffice to prove that

S def
= {(p1|q, p2|q) | p1 ∼ccs p2}

is a bisimulation for .∼; the result follows from Proposition 11.8 by taking q = nil.
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Assume p1 ∼ccs p2, and let p1 | q L . u1, where L is not a substitution label. We
seek a transition p2 | q L . u2 such that (u1, u2) ∈ S . We consider the cases for L;
we need only consider cases 1 and 3 of Figure 9, since case 2 is like the first.

Case 1 L = id | alt.(getxc · ·). Then, from Figure 9, p1 | q contains an unguarded
molecule alt.(sendxa · ·), in which x is free. There are two subcases:

If the molecule lies in q, then from Figure 9

q = /Z(alt.(sendxa · ·) | b)
u1 = p1 | /Z(a | b) | c

where x /∈ Z and we can assume no free name of p2 lies in Z. Then, from Figure 9,
p2 | q L . u2

def
= p2 | /Z(a | b) | c. But (u1, u2) ∈ S , so we are done.

On the other hand, if the molecule lies in p1 then

p1 = /Z1(alt.(sendxa1 · ·) | b1)

u1 = /Z1(a1 | b1) | q | c

where x /∈ Z1 and we can assume no free name of q lies in Z1. Then from Figure 10
there is a raw transition p1

x−→ p′1
def
= /Z1(a1 | b1), so u1 = p′1 | q | c. But p1 ∼ccs p2,

so for some p′2 we have p2
x−→ p′2 ∼ccs p

′
1, and from Figure 10 we find

p2 = /Z2(alt.(sendxa2 · ·) | b2)

p′2 = /Z2(a2 | b2)

where x /∈ Z2, and we can assume no free name of q or c lies in Z2. Then from
Figure 9 we find p2 | q L

. u2
def
= p′2 | q | c. But (u1, u2) ∈ S , so we are done.

Case 3 L = id. Then p1 | q has an unguarded pair of molecules, together corre-
sponding to a redex. There are four cases, depending on whether each molecule
lies in p1 or in q. If both lie in p1 or both in q the argument is easy; we therefore
consider just one of the remaining (symmetric) pair of cases.

Suppose then, consulting Figure 9, that

p1 = /Z1(alt.(sendxa1 · ·) | b1)

q = /Z(alt.(getxa · ·) | b)
u1 = /Z1(a1 | b1) | /Z(a | b)

where we can assume that no free name of one is closed in the other, and x /∈ Z1]Z.
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Then we have a raw transition p1
x−→ p′1

def
= /Z1(a1 | b1). But p1 ∼ccs p2, so there

exists p′2 with p2
x−→ p′2 ∼ccs p

′
1, and by Figure 10 this takes the form

p2 = /Z2(alt.(sendxa2 · ·) | b2)

p′2 = /Z2(a2 | b2) .

Then from Figure 9 we deduce p2 | q id . u2
def
= p′2 | /Z(a | b), and (u1, u2) ∈ S , so

we are done.

(⊆) To show .∼ ⊆ ∼ccs we shall prove that .∼ is a bisimulation for ∼ccs. Assume
p

.∼ q and p α−→ p′; we seek a matching transition q α−→ q′ such that p′ .∼ q′.

If α = x then the structure of p and p′ is dictated by case 1 of Figure 10. Now,
choosing L = alt.(getx.nil), we find from case 1 of Figure 9 that p L . p′ | nil. Since
p

.∼ q we have q L . q′′ with p′ | nil
.∼ q′′. By case 1 of both Figures 9 and 10 there

exists q′ such that q′′ = q′ | nil and q x−→ q′. Appealing to Proposition 11.8, we then
find p′ .∼ q′ as required.

The argument for α = x is exactly similar. The argument for α = τ is even simpler,
using case 3 of both Figures 9 and 10. This completes the proof of the theorem.

Having obtained a match in original CCS for mono bisimilarity .∼, we also naturally
try to match full derived bisimilarity ∼, which is stronger than mono bisimilarity.
Since ∼ is preserved by all contexts, even substitutions, a natural candidate is open
bisimilarity, as defined by Sangiorgi and Walker [47]. The latter is a good deal sim-
pler for CCS than it is for the π-calculus 3 . Defined in BIGccs over the raw transition
system, it consists of the smallest relation ∼o

ccs such that, for all substitutions σ,

if p ∼o
ccs q and σp α−→ p′, then σq α−→ q′ and p′ ∼o

ccs q
′ for some q′.

Since ∼ and ∼o
ccs are both coinductively defined, it is relatively easy to compare

them. In fact ∼ is strictly finer than ∼o
ccs. The proof of inclusion follows the lines

of our proof that .∼ ⊆ ∼ccs. A counter-example to equality is provided by the pair

P = νz((x+ z) | (y + z)) Q = νz((x.y + y.x+ z) | z)

where for convenience we use CCS notation, abbreviating λ.0 to λ. This pair il-
lustrates an interesting point. When translated into BIGccs, P is has a transition
labelled x/y; this can be seen as an ‘observation’ by P that its environment has
connected the x-link with the y-link. On the other hand, Q has no such transition;
so P 6∼ Q. But in the raw transition system such ‘observations’ are absent, and
indeed P ∼o

ccs Q.

3 This is because CCS agents never export restricted names (‘scope extrusion’).
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This concludes our study of bigraphs applied to CCS, which has revealed consid-
erable agreement with its original theory.

Discussion There are other equivalences for particular calculi that may or may
not be matched by our approach based upon contextual labels. One example, exam-
ined in a previous paper [27], illustrates for Petri nets the phenomenon found here
for CCS: that although derived contextual labels may differ from those in a raw
Lts, the bisimilarity congruence may be matched exactly. Indeed, uniform meth-
ods may exist to simplify the derived contextual labels while retaining the induced
bisimilarity, but this takes us beyond the scope of the present paper.

Moving aside from Ltss, can the bigraphical model contribute any uniform theory
to the study of barbed bisimilarities [47]? Here the notion of labelled transition is
replaced by unary predicates called barbs, written ↓obs, where obs indicates some
observable property of states. The value of barbs (and their associated bisimilarity)
is that they may be varied freely. For example, consider the asynchronous version
of CCS, where the output action is just x rather than x.P , i.e. the ‘continuation’ P is
required to be empty. A useful barbed bisimilarity for this calculus is one in which
the input action cannot be detected by a barb, i.e. the only barbs take the form ↓x
for detecting output actions. This illustrates that there are interesting behavioural
relations that are not obviously expressible by means of Ltss.

Just as we can define a raw (non-contextual) Lts for any Brs (as we have done for
one that represents CCS), so we can set up barbs for it, and hence study barbed
bisimilarity within the uniform framework of bigraphs. Because barbed bisimilari-
ties are useful and various, any uniform treatment of them will be valuable. How-
ever, they differ in one important way from those based upon Ltss. The latter are
typically congruential (or nearly so); it has therefore been fruitful to explore a class
of Ltss that guarantee congruence. On the other hand, barbed bisimilarities are not
close to congruence in general; indeed, barbed congruence is typically defined in-
directly as the largest congruence included in barbed bisimilarity. Thus the uniform
study of barbed bisimilarity will require methods beyond those developed here; it
is an open question whether such methods can be developed in bigraphs.

Finally, there are two directions in which the present methods may be extended.
Leifer in his PhD dissertation [25] showed that, for transition systems based upon
RPOs, certain more generous equivalences such as failures [5,20] and traces are
uniformly congruential. Leifer also extended this treatment to weak bisimilarity,
where ‘silent’ actions are ignored, and Jensen’s forthcoming PhD dissertation will
place this uniform treatment on a still broader footing.
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12 Related and future work

We first turn to related work by other researchers, apart from those previously men-
tioned. The discussion then moves towards plans and ideas for future research.

Related work The longest tradition in graph reconfiguration —often called graph-
rewriting— is based upon the double pushout (DPO) construction originated by
Ehrig [13]. Our use of (relative) pushouts to derive transitions is quite distinct from
the DPO construction, whose purpose is to explain the anatomy of graph-rewriting
rules (not labelled transitions) working in a category of graph embeddings with
graphs as objects and embeddings as arrows. This contrasts with our contextual s-
categories, where objects are interfaces and arrows are bigraphs. But there are links
between these formulations, both via cospans [16] and via a categorical isomor-
phism between graph embeddings and a coslice over s-categories [10]. Ehrig [14]
has recently investigated these links further, after discussion with the author, and we
believe that useful cross-fertilisation is possible. In the paper just cited, Gadducci,
Heckel and Llabrés Segura [16] represent graph-rewriting by 2-categories, whose
2-cells correspond to our reactions. Several other formulations of graph-rewriting
employ hypergraphs, for example Hirsch and Montanari [19]; their hypergraphs
are not nested, but rewriting rules may replace a hyperedge by an arbitrary graph.
Drewes et al [12] deal with hierarchical graphs, but their links do not join graphs at
different levels.

Another use of 2-categories is by Sassone and Sobocinski [48]. They generalise
RPOs to groupoid RPOs, in a 2-category whose 2-cells (i.e. arrows between ar-
rows) are isomorphisms. They advocate treating dynamic entities (e.g. bigraphs)
as arrows in such a 2-category. The 2-cells keep track of the identity of nodes,
which is essential for RPOs to exist, and have the potential to serve as witnesses for
rich structural congruences. An advantage in that approach over s-categories is that
composition is total; a disadvantage is the more complicated notion of 2-RPO. An-
other advantage of 2-categories is that they lie closer to ‘standard’ category theory.
However, the demands of our application are rather unlike those in other categori-
cal applications; for example, it is essential —as our case studies have shown— to
have a tractable analysis of the transitions based upon RPOs. Our s-categories lend
themselves to this task; thus we shall retain them until some other approach eases
analysis, such as the characterisation of IPOs and the adequacy theorem. In any case
the 2-categorical approach is elegant and clearly deserves further development; the
two approaches may then become complementary.

Concerning labelled transitions and bisimilarity, in recent work Merro and Hen-
nessy [28] and Merro and Zappa Nardelli [29] have developed interesting labelled
transition systems for the ambient calculus [8]; their labels are contextual. These
appear to be the most detailed studies so far of behavioural equivalences for that
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calculus. As we now see, agreement with the bigraphical approach is becoming
established.

Future work In his forthcoming PhD dissertation [21], Jensen develops bigraph-
ical theory in a number of directions of intrinsic interest, which also support more
refined case studies on behavioural analysis. First, he extends the work on weak
bisimilarity begun by Leifer [25]. Second, he puts binding bigraphs (where names
have scope) on a firmer footing than in [23], which gave their initial formulation.
Third, he develops the theory of sorting, which was first used in [27] to encode
Petri nets, and which was here illustrated in Sections 10 and 11. With these tech-
niques, still deriving transition systems uniformly for Brss, he deals with the full
π-calculus, and establishes a close match with the above-mentioned systems for
ambients.

An important task for the immediate future is to stabilise and illustrate the treat-
ment of binding bigraphs, where places are used to define the scope of links that
represent bound names. Many applications require binding; the π-calculus is one,
and Jensen [21] will treat this in his dissertation. We already know [23] that theory
established for pure bigraphs can be simply transported to binding bigraphs, via a
forgetful functor from the latter to the former. But there remain variants of binding,
and the task is to establish the best choice and treat it thoroughly.

There is a large body of literature on rewriting systems and on the λ-calculus, com-
prehensively reported by Klop et al [51] and by Barendregt [1]. So far, the work on
bigraphs has related chiefly to process calculi and their Ltss. It will be important to
establish links with the tradition of rewriting systems. For example, the notion of
confluence (of a rewriting system or some part of it) is likely to have very broad
application in real-world pervasive and distributed systems, as discussed briefly be-
low. To this end, scoped names in bigraphs are under further exploration [38]; it is
found that multiple locality of names enables parametric reduction systems, such
as the λ-calculus, to be represented succinctly. By this means, we hope that tech-
niques for confluence —and other aspects of rewriting systems— can be lifted to
bigraphs, where this broad range of applications can find expression.

One such application is to biological processes, already being explored by (for ex-
ample) Cardelli [6], building on an original model by Shapiro et al [45,44] that
used the π-calculus for this purpose. Cardelli has shown that more direct modelling
is possible using the spatial quality of ambient-like reaction rules. But such exper-
iments expose the need to adapt or extend spatially-aware models, like ambients
and bigraphs, to accommodate real-world phenomena that lie beyond their present
scope. One of these is a stochastic treatment of non-determinism, as developed in
particular by Priami [43] for the π-calculus and used in the paper by Shapiro et
al. Another important extension is to add the continuum and to allow continuous
reactions. This is already done for the π-calculus by Rounds and Song [46] in the
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Φ-calculus, which combines the mobility of the π-calculus with differential equa-
tions for the behaviour of real (i.e. continuous) variables. There is no barrier to this
extension in bigraphs, since nothing in our formulation prevents a control signa-
ture from being denumerably infinite or even a continuum; for example, a family
of controls indexed by the real numbers to represent distance. Of course there are
technical hurdles to overcome —not least in the handling of infinitesimals.

Process theory also has strong tradition of non-standard logics such as temporal
logic or the modal µ-calculus; these allow incremental analysis of processes, be-
cause simple properties (as opposed to full specifications) of a system can be ex-
pressed and verified one by one. For bigraphs, the obvious challenge is to find a
logic that is spatial as well as temporal. Indeed, work by Caires and Cardelli on
spatial logics for mobile ambients [7] has already been under way for a few years,
and provides a promising starting point for a logic for bigraphs. A first step is taken
in this direction by Conforti et al [11], where it can be seen that the independence
of placing and linking leads to simplicity in the logical constructions.

Finally an initiative is being undertaken at the IT University in Copehagen, led
by Lars Birkedal and Thomas Hildebrandt, in designing a bigraphical program-
ming language (BPL) [4]. Two principal ideas are guiding this project: first, that
programming and specification should arise out of sufficiently developed theory;
second, that a practical language for experimental use in designing communicating
systems is an essential vehicle for engineers to exert influence on further theoretical
development.

Conclusion As we said at the outset, our model based on bigraphs is not defini-
tive. Here and there we have made arbitrary choices, with the aim not only to gener-
alise existing process theories but also to reach a level at which experiments can be
mounted in describing and analysing real-world pervasive and distributed systems,
both man-made and natural. Such experiments will certainly find shortcomings. By
responding to these challenges, but retaining the continuity with existing calculi,
we can aspire to a unity in process modelling that will truly justify preliminary
efforts undertaken in computer science for more than three decades.
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APPENDIX

A Induced congruences

In this appendix we prove Theorem 4.8, which ensures that certain quotient functors
preserve and reflect bisimilarity and preserve its congruence.

Theorem 4.8 (transitions induced by functors) Let ´C be equipped with an Lts
L. Let F : ´C→ ´D be a full Wrs functor that is the identity on objects and respects
L, and such that F(a) = F(b) whenever a l b. Then the following hold for F(L):

(1) a ∼ b in ´C iff F(a) ∼ F(b) in ´D.
(2) If bisimilarity is a congruence in ´C then it is a congruence in ´D.

Proof 1. (⇒) We establish in ´D the bisimulation

R = {(F(a),F(b)) | a ∼ b} .

Let a ∼ b in ´C, and let p = F(a), q = F(b) and p M
.λ p

′ in ´D. Then by definition
of the induced Lts the triple (p,M, p′) has an F-preimage (a1, L, a

′
1) such that

a1
L .λ a

′
1 in ´C; moreover, since L l L′ ⇒ F(L) = F(L′), L can be chosen so

that La and Lb are defined. Since F respects L there exists a′ with p′ = F(a′) such
that a L .λ a

′.

Since a ∼ b and Lb is defined, there exists b′ such that b L
.λ b
′ and a′ ∼ b′. It

follows that q M
.λ q

′ in ´D, where q′ = F(b′) and (p′, q′) ∈ R, so we are done.

1. (⇐) We establish in ´C the bisimulation

S = {(a, b) | F(a) ∼ F(b)} .

Let F(a) ∼ F(b) in ´D, and let p = F(a), q = F(b) where a L .λ a
′ in ´C with Lb

defined. Then p M .λ p
′ in ´D, where M = F(L) and p′ = F(a′). So for some q′

we have q M .λ q
′ with p′ ∼ q′.

This transition must arise from a transition b1
L1 .λ b

′
1 in ´C, where q = F(b1),

M = F(L1) and q′ = F(b′1). But then b1 ≡ b and L1 ≡ L, where ≡ is the
equivalence induced by F ; we also have Lb defined, and L respects ≡, so we can
find b′ for which b L .λ b

′ and b′1 ≡ b′. But (a′, b′) ∈ S , so we are done.

2. Assume that bisimilarity in ´C is a congruence. In ´D, let p ∼ q with p, q : I , and
let G : I→ J be a context with Gp and Gq defined. Then since F is full there exist
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a, b : I and C : I→ J in ´C with p = F(a), q = F(b) and G = F(C); moreover,
since C l C ′ ⇒ F(C) = F(C ′), C can be chosen so that Ca and Cb are defined.

From 1.(⇐) we have a ∼ b, hence by assumption Ca ∼ Cb. Applying the functor
F we have from 1.(⇒) that Gp ∼ Gq in ´D, as required.

B The adequacy theorem

This appendix proves Theorem 9.11, asserting the adequacy of engaged transitions
for prime agents in a simple prime affine Brs.

We begin with a proposition asserting that if we apply an affine instantiation η to a
composition Ga, where a is prime, then the form of the result is independent of a.

Proposition B.1 (affine instantiation) Let G : 〈X〉→〈m,Z〉 be a context, and
η :: n→m an injective map. Then one of the following holds:

either there exists C : 〈X〉→〈n, Z〉 such that η[Ga] l Ca for all a ;

or there exists a ground c : 〈n, Z〉 such that η[Ga] m c for all a .

Proof Since G has prime inner face, by Proposition 8.15 we can express it as

G = ζ(idX ⊗ d0 ⊗ · · · dk−1 ⊗D ⊗ dk+1 · · · ⊗ dm−1)

for some k ∈ m and some wiring ζ : X ] Y →Z, where di : 〈Yi〉 (i 6= k) and
D : 1→〈Yk〉 are discrete and Y =

⊎
i∈m Yi.

Now any a : 〈X〉 can be expressed as a = ωd for some wiring ω : W →X and
discrete d : 〈W 〉. Then we can express the composition Ga as follows:

Ga = ζ(ω ⊗ idY )(d0 ⊗ · · · dk−1 ⊗ (idW ⊗D)d⊗ dk+1 · · · ⊗ dm−1) .

Define dk
def
= (idW ⊗D)d; its names are W ]Yk. Since dk is discrete the expression

for Ga is a DNF, and therefore by Definition 8.17 its instance by η is

η[Ga] l ζ(ω ⊗ idY )(dη(0) ⊗ · · · ⊗ dη(n−1)) .

Note that, since η is injective, the factors dη(j) have disjoint supports and name
sets, so may be combined by ⊗ (rather than by ‖ as in Definition 8.17). Since the
instantiation may not be linear, we now distinguish two cases:
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1. η(k) = ` for some ` ∈ n. Then we may rewrite the instance as

η[Ga] l ζ(ω ⊗ idY )(dη(0) ⊗ · · · ⊗ d` ⊗ · · · ⊗ dη(n−1))

= ζ(ω ⊗ idY )(dη(0) ⊗ · · · ⊗ (idW ⊗D)d⊗ · · · ⊗ dη(n−1))

= ζ(dη(0) ⊗ · · · ⊗ (idX ⊗D)ωd⊗ · · · ⊗ dη(n−1))

= Ca

where C def
= ζ(dη(0) ⊗ · · · ⊗ (idX ⊗D)⊗ · · · ⊗ dη(n−1)) is independent of a.

2. η(k) 6= ` for all ` ∈ n. Then the inner names W of ω : W →X are not among
the names of dη(0) ⊗ · · · ⊗ dη(n−1). But it is easily seen that ωW m X; hence

η[Ga] l ζ(ω ⊗ idY )(dη(0) ⊗ · · · ⊗ dη(n−1))

= ζ(ωW ⊗ idY )(dη(0) ⊗ · · · ⊗ dη(n−1))

m c

where c def
= ζ(X ⊗ idY )(dη(0) ⊗ · · · ⊗ dη(n−1)) is independent of a as required.

We continue by considering the IPO underlying a standard transition a L . a′ with
redex R. The IPO can be decomposed into an IPO pair, as shown in the diagram.
We find that, for simple R, the diagram consists of pushouts. From now on we shall
call a transition simple if its underlying redex is simple.

LredLpar

d idW⊗R
a DDpar

Proposition B.2 (transition pushouts) In a concrete Brs, the IPO pair underly-
ing a simple standard transition consists of pushouts.

Proof Let the IPO pair underlying a transition a L .λ a
′ be as shown in the dia-

gram. It will be enough to show that there can be no elisions in either IPO.

Since we are working in hard place graphs, there can be no place elisions. In the
left square there can be no link elisions from d since, being discrete, it has no idle
names; and there can be no link elisions from a into Lpar, because the latter is open
(since d is open). Thus the IPO is unique up to iso, hence a pushout. The argument
for the right square is similar, using the simpleness of R.

Next, we need two lemmas about non-engaged transitions.
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Lemma B.3 In a concrete Brs, suppose a simple standard transition is not en-
gaged. Let its underlying IPO pair be as in the diagram. Then Dpar = D′⊗ idm for
some D′, up to isomorphism, where m is the inner face of R.

Proof Since |Dpar| ⊆ |a| we also have |Dpar| ∩ |R| = ∅. Let K be the outer face
of Dpar. We have to prove, for each site i ∈ m, that i has no siblings in Dpar and
Dpar(i) = k is a root in K.

Since R is guarding, R(i) = v for some node v, hence (LredDpar)(i) = v. But v is
not in Dpar by assumption, so Dpar(i) = k and Lred(k) = v for some root k. Now
suppose i has a sibling, i.e. Dpar(w) = k for some site or node w 6= i. Then we
have (LredDpar)(w) = v, whence also R(w) = v. If w is a site this contradicts R
inner-injective; if it is a node then it contradicts |Dpar| ∩ |R| = ∅. Hence no such w
can exist. This completes the proof.

Lemma B.4 In a concrete Brs let a be prime. Let a L .λ a
′ be a non-engaged sim-

ple standard transition based upon (R,R′, η), with underlying IPO pair as in the
diagram. Let |a| ∩ |d| 6= ∅. Then |a| ⊆ |d|, and Lred, D and a′ take the following
form up to iso:

Lred = idW ′ ⊗R , D = ω ⊗ idJ and a′ = (idW ′ ⊗R′) η[Lpara] .

Proof From Lemma B.3 we find that Dpar takes the form Dpar = D′ ⊗ idm up to
iso, where D′ has domain W (with zero width) and m is the inner width of R.

We now claim that D′ has no nodes. For there exists a node u ∈ |a| ∩ |d|; if
there exists any v ∈ |D′| then also v ∈ |a|, hence (because a is prime) we would
have u, v in the same region of Lpara but different regions of Dpard, contradicting
Lpara = Dpard. Thus |a| ⊆ |d|, and Dpar = ω ⊗ idI , with ω : W →W ′ a wiring.

By Proposition B.2 the right-hand square in the diagram is a pushout, and hence a
tensor IPO by Corollary 8.8. This yields the first two equations. For the third:

a′ = D(idW ⊗R′) η[d]

= (idW ′ ⊗R′)(ω ⊗ idI′) η[d]

(∗) = (idW ′ ⊗R′) η[(ω ⊗ idI)d]

= (idW ′ ⊗R′) η[Lpara]

where at (∗) we commute an instantiation with a wiring, by Proposition 8.18.

We can now prove the adequacy theorem.
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Theorem 9.11 (adequacy of engaged transitions) In a simple prime affine Brs
equipped with ST, the prime engaged transitions are adequate; that is, engaged
bisimilarity ∼PE

ST
coincides with bisimilarity ∼ST on prime agents.

Proof We first treat the case of ∼PE

ST
and ∼ST, writing them as ∼PE and ∼ respec-

tively.

It is immediate that ∼ ⊆ ∼PE restricted to primes. For the converse we must prove
that a0 ∼PE a1 implies a0 ∼ a1. An attempt to show that ∼PE is a standard bisimu-
lation, i.e. a bisimulation for ST, does not succeed directly. Instead, we shall show
that

S = {(Ca0, Ca1) | a0 ∼PE a1} ∪m
is a standard bisimulation up to support equivalence, relying on Proposition 4.5.
This will suffice, for by taking C = id we deduce that ∼PE ⊆ ∼.

Suppose that a0 ∼PE a1. Let Ca0
M .µ b

′
0 be a standard transition, with MCa1 de-

fined. We must find b′1 such that Ca1
M

.µ b
′
1 and (b′0, b

′
1) ∈ Sl.

There exists a ground reaction rule (r0, r
′
0) and an IPO —the large square in dia-

gram (a) below— underlying the given transition of Ca0. Moreover E0 is active,
and if width(cod(r0)) = m then width(E0)(m) = µ and b′0 l E0r

′
0. By taking an

RPO for (a0, r0) relative to (MC,E0) we get two IPOs as shown in the diagram.

NowD0 is active, so the lower IPO underlies a transition a0
L .λ a

′
0

def
= D0r

′
0, where

λ = width(D0)(m0). Also E is active at λ, and b′0 l Ea′0. Since MCa1 is defined
we deduce that La1 is defined, and we proceed to show in three separate cases the
existence of a transition a1

L .λ a
′
1, with underlying IPO as shown in diagram (b).

(We cannot always infer such a transition for which a′0 ∼PE a′1, even though we have
a0 ∼PE a1, since the transition of a0 may not be engaged.) Substituting this IPO for
the lower square in (a) then yields a transition

Ca1
M .µ b

′
1

def
= Ea′1 .

In each case we shall verify that (b′0, b
′
1) ∈ Sl, completing the proof of the theorem.

(b)

(a)

D1

L

r0

E

D0a0 a1

M

L

r1

E0C

Case 1 The transition of a0 is engaged.
Then since r0 is prime, by considering the IPO (L,D0) and the outer face of D0 we
find that a′0 is prime, so the transition lies in PE. So, since a0 ∼PE a1, there exists a
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transition a1
L .λ a

′
1 with a′0 ∼PE a′1. This readily yields the required transition of

Ca1.

Case 2 |a0| ∩ |r0| = ∅.
Then the lower IPO of (a), being a pushout by Proposition B.2, is tensorial; so up
to isomorphism we have

L = idH ⊗ r0 and D0 = a0 ⊗ id .

Then a′0 = E ′a0, where E ′ = id⊗ r′0. Taking C ′ def
= EE ′, we have b′0 l C ′a0.

Form the IPO (b) by taking r1 = r0 and D1 = a1 ⊗ id; this underlies a transition
a1

L .λ a
′
1

def
= E ′a1. Substitute it for the lower square in (a), yielding a transition

Ca1
M .µ b

′
1

def
= Ea′1. Then b′1 = C ′a1, so (b′0, b

′
1) ∈ Sl as required.

Case 3 The transition of a0 is not engaged, but |a0| ∩ |r0| 6= ∅.
Then there is a rule (R,R′, η) with |a0| ∩ |R| = ∅, and a parameter d0 such that

r0 = (idW0 ⊗R)d0 and r′0 = (idW0 ⊗R′) η[d0] .

AssumeR : m→ J . Since a0 is prime, from Lemma B.4 we find that, up to isomor-
phism, the IPO pair underlying the transition of a0 takes the form of diagram (c)
below, and moreover that a′0 = (idW ′ ⊗R′) η[Lpara0] .

(c) (d)

d0 d1 idW1
⊗RidW0

⊗R

Lpar Lpar

a0 a1

Lred = idW ′⊗R Lred = idW ′⊗R

ω1⊗idJω0⊗idJ ω1⊗idm

We shall now find a similar transition for a1. We first consider Lpara1. Since d0 is
discrete we know by Proposition 8.16(1) that Lpar is discrete; by Proposition 8.15
we can find a wiring ω1 : W1→W ′ and discrete d1 : W1 ⊗ m such that Lpara1 =
(ω1 ⊗ idm)d1. By Proposition 8.16(2) this represents a pushout. By adjoining a
tensorial pushout, we have an IPO pair as shown in diagram (d). Therefore by
manipulations as in Lemma B.4 we have

a1
L
.λ a

′
1

def
=(ω1 ⊗ idJ)(idW1 ⊗R′) η[d1]

=(idW ′ ⊗R′) η[Lpara1] .

As in the previous case, this yields a transition Ca1
M .µ b

′
1

def
= Ea′1. We now have

(b′0, b
′
1) = (F η[Lpara0], F η[Lpara1])

for a certain context F , where a0 ∼PE a1 (both prime). Since η is affine, we can
appeal to Proposition B.1 to find two cases. In the first case there is a context C
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such that η[Lpara] l Ca for any a, and hence (b′0, b
′
1) ∈ Sl. In the second case

there is a ground arrow c such that η[Lpara] m c for any a, hence b′0 m b′1, so
(b′0, b

′
1) ∈ S . Thus the bisimulation up to support equivalence is established.

This completes the proof of the theorem.

As we have seen in case 1 of the proof, when a simple transition a L
.λ a

′ is en-
gaged, and a is prime, then so is a′. Thus, in proving the bisimilarity of prime
agents, we can indeed confine attention to bisimulations containing only prime
agents.
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