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Abstract

Balancing exploration and exploitation is a fundamental problem in reinforcement learning. Previous neuroimaging studies of the

exploration–exploitation dilemma could not completely disentangle these two processes, making it difficult to unambiguously

identify their neural signatures. We overcome this problem using a task in which subjects can either observe (pure exploration) or

bet (pure exploitation). Insula and dorsal anterior cingulate cortex showed significantly greater activity on observe trials com-

pared to bet trials, suggesting that these regions play a role in driving exploration. A model-based analysis of task performance

suggested that subjects chose to observe until a critical evidence threshold was reached. We observed a neural signature of this

evidence accumulation process in the ventromedial prefrontal cortex. These findings support theories positing an important role

for anterior cingulate cortex in exploration, while also providing a new perspective on the roles of insula and ventromedial

prefrontal cortex.
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Many decision problems pose a fundamental dilemma be-

tween exploration and exploitation: An agent can exploit the

option that has yielded the greatest reward in the past or ex-

plore other options that may yield greater reward, at the risk of

foregoing some reward during exploration. The optimal solu-

tion to the exploration–exploitation dilemma is generally in-

tractable, and hence resource-bounded agents must apply heu-

ristic strategies (Cohen, McClure & Yu, 2007). The specific

strategy used by humans is an open question.

Some evidence suggests that humans adopt exploration

strategies that sample options with probability proportional

to their estimated expected values (Daw, O’Doherty, Dayan,

Seymour, & Dolan, 2006) or their posterior probability of

having the maximum value (Speekenbrink & Konstantinidis,

2015). Other studies suggest that humans employ an

uncertainty-driven exploration strategy based on an explicit

exploration bonus (Badre, Doll, Long, & Frank, 2012;

Frank, Doll, Oas-Terpstra, & Moreno, 2009). Humans also

sometimes employ more sophisticated exploration strategies

using model-based reasoning (Knox, Otto, Stone, & Love,

2012; Otto, Knox, Markman, & Love, 2014; Wilson, Geana,

White, Ludvig, & Cohen, 2014; Gershman & Niv, 2015).

Neural data can potentially constrain the theories of explo-

ration by identifying dissociable correlates of different strate-

gies. For example, Daw et al. (2006) identified a region of

frontopolar cortex that was significantly more active for puta-

tive exploratory choices compared to putative exploitative

choices during a multiarmed bandit task (see also Boorman,

Behrens, Woolrich, & Rushworth, 2009). Suppression of ac-

tivity in this region, using transcranial direct current stimula-

tion, reduces exploration, whereas amplifying activity in-

creases exploration (Beharelle, Polania, Hare, & Ruff, 2015).

These findings suggest that there may exist a dedicated neural

mechanism for driving exploratory choice, analogous to re-

gions in other species that have been found to inject

stochasticity into songbird learning (Olveczky, Andalman, &

Fee, 2005; Woolley, Rajan, Joshua, & Doupe, 2014) and ro-

dent motor control (Santos, Oliveira, Jin, & Costa, 2015).

The main challenge in interpreting these studies is that

exploratory and exploitative choices cannot be identified

unambiguously in standard reinforcement learning tasks,

such as multiarmed bandits. When participants fail to

choose the value-maximizing option, it is impossible to

know whether this choice is due to exploration or to ran-

dom error (i.e., unexplained variance in choice behavior

not captured by the model). The same ambiguity muddies
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the interpretation of individual differences in parameters

governing exploration strategies (e.g., the temperature pa-

rameter in the softmax policy). Furthermore, exploitative

choices yield information, whereas exploratory choices

yield reward, obscuring the conceptual difference between

these trial types. Finally, identifying deviations from value

maximization depend on inferences about subjective value

estimates, which in turn depend on assumptions about the

exploration strategy. Thus, there is no theory-neutral way

to contrast neural activity underlying exploration and ex-

ploitation in most reinforcement learning tasks.

We resolve this problem by using an Bobserve or bet^

task that unambiguously separates exploratory and exploit-

ative choice (Navarro, Newell, & Schulze, 2016; Tversky

& Edwards, 1966). On each trial, the subject chooses either

to observe the reward outcome of each option (without

receiving any of the gains or losses) or to bet on one op-

tion, in which case she receives the gain or loss associated

with the option at the end of the task. By comparing neural

activity on observe and bet trials, we obtain pure correlates

of exploration and exploitation, respectively. This also

allows us to look at neural responses to the receipt of

information without it being confounded with the receipt

of reward. To gain further insight into the underlying

mechanisms, we use the computational model recently

developed by Navarro et al. (2016) to generate model-

based regressors. In particular, we identify regions tracking

the subject’s change in belief about the hidden state of the

world, which in turn governs the subject’s exploration

strategy.

It is important to clarify at the outset that the correlates we

identify are Bpure^ only in the sense that exploratory observe

trials do not involve value-based choice or reward receipt,

while exploitative bet trials do not involve information acqui-

sition. This is not, of course, a complete catalogue of cognitive

processes involved in task performance, and both trial types

surely involve a number of common processes (e.g., visual

perception, memory retrieval, motor control). Our goal in this

study is to isolate a subset of these processes that are central to

theories of reinforcement learning.

Materials and method

Subjects

We recruited 18 members of the Harvard community, through

the Harvard Psychology Study Pool, to participate in the

study. Eleven of the 18 subjects were female. Ages ranged

from 21 to 36 years, with a median age of 26 years. All sub-

jects were right-handed, native English speakers, and had no

history of neurological or psychiatric disease. Informed con-

sent was obtained from all subjects.

Task procedure

Subjects performed the task in two sessions. In the first ses-

sion, subjects were familiarized with the task and performed

five blocks outside of the fMRI scanner. In the second session,

subjects performed two blocks of the task out of the scanner,

and an additional four to five (depending on time constraints)

in the scanner. Subjects were paid $10 for the first session and

$35 for the second. They also received a bonus in the form of

an Amazon gift card, at an amount of $0.10 per point earned in

the task.

Subjects performed a dynamic version of the Bobserve or

bet^ task (Tversky & Edwards, 1966; Navarro et al., 2016). In

this task, subjects were asked to predict which of two lights

(red or blue) will light up on a machine. On each trial, a single

light is activated. The machine always has a bias—on a par-

ticular block, it either will tend to light up the blue or the red

light. On each trial, subjects could take one of three actions:

bet blue, bet red, or observe. If the subjects bet blue or red,

they gained a point if they correctly predicted which light

would light up but lost one if they were incorrect.

Importantly, they were not told if they gained or lost a point,

and they also did not see what light actually lit up. Instead,

subjects could only see which light was activated by taking the

observe action. Observing did not cost any points, but subjects

relinquished their opportunity to place a bet on that trial. Thus,

subjects were compelled to choose between gaining informa-

tion about the current bias (by observing) or using the infor-

mation they had gathered up to that point to obtain points (by

betting).

Each block consisted of 50 trials. On each block, the ma-

chine was randomly set to have a blue or a red bias. The biased

color caused the corresponding light to be active on 80% of

the trials. There was also a 5% chance that the bias would

change during the block. This change was not signaled to

the subject in any way and could only be detected through

taking Bobserve^ actions.

Computational model

To understand performance in our task mechanistically, we fit

a computational model to the choice behavior, created to qual-

itatively match the features of the optimal decision strategy

and shown to best fit subject behavior out of four candidate

process models (Navarro et al., 2016). Central to the model is

an evidence tally that starts with a value of zero. Positive

evidence reflects evidence that the bias is blue, and negative

reflects evidence that the bias is red. Thus, low absolute num-

bers reflect a state of uncertainty about the bias. Each time an

observation is made, the evidence value changes by +1 if blue

is observed and −1 if red is observed.

The relevance of old observations diminishes over time,

modeled using an evidence decay parameter, α. The evidence
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decay parameter dictates what proportion of evidentiary value

is lost on each trial. Thus, the evidence tally value is calculated

as follows:

et ¼ xt þ 1−αð Þet−1; ð1Þ

where e is the evidence tally, t is the current trial, xt is the

observation on the current trial (zero if a bet action is

taken), and α is the evidence decay parameter. This evi-

dence accumulation process is an instance of the the linear

operator learning rule that has a long history in theories of

learning (Bush & Mosteller, 1951) and differs from typi-

cal error-driven reinforcement learning algorithms that

have been used in most studies of reinforcement learning

(e.g., Daw et al., 2006). A number of studies have sug-

gested evidence decay over time, which can capture per-

severative tendencies of human subjects (Erev & Roth,

1998; Worthy, Pang & Byrne, 2013).

The other main component of the model is a decision

threshold. The threshold is a value at which the learner

will switch from observing to betting. In the model used

here (the best fitting model reported in Navarro et al.,

2016), the decision threshold follows a piece-wise linear

structure across trials: it remains constant until a specif-

ic trial, at which point it changes at a constant rate until

the final trial. The initial threshold, the trial at which

the threshold begins changing (the change point), and

the terminal value of the threshold are all parameters

fit to the data.

Finally, because decision-makers are noisy, we also

include a response stochast ic i ty parameter, σ .

Assuming a normally distributed noise term for each

trial, nt, with a zero mean and a standard deviation of

σ, the probability of betting blue is then:

p bet blueð Þ ¼ P et þ nt ≥dtð Þ ¼ Φ
et þ dt

σ

� �

; ð2Þ

where et, nt, and dt are the evidence tally, decision noise, and

the decision boundary on trial t, respectively, and Φ is the

cumulative distribution function for a standard normal

distribution.

Following Navarro et al. (2016), we used hierarchical

Bayesian methods to estimate individual model parame-

ters from the blocks performed outside the scanner. For

the i-th subject, we set the priors on our model’s pa-

rameters as follows (these are the same priors used by

Navarro et al., 2016). For the response stochasticity pa-

rameter:

σi∼Exp λð Þ
λ∼Gamma 1; 1ð Þ:

ð3Þ

For the evidence decay parameter:

αi∼Beta a1 þ 1; a2 þ 1ð Þ
a j∼Gamma 1; 1ð Þ:

ð4Þ

For the initial value of the decision threshold, d0i:

d0i∼Gamma g01; g02ð Þ
g0 j∼Exp 1ð Þ:

ð5Þ

For the terminal value of the decision threshold, d1i:

d1i∼Gamma g11; g12ð Þ
g1 j∼Exp 1ð Þ:

ð6Þ

For the threshold changepoint, ci:

ci∼Beta b1 þ 1; b2 þ 1ð Þ
b j∼Gamma 1; 1ð Þ:

ð7Þ

We implemented the model in Stan (Stan Development

Team, 2016) and used Markov chain Monte Carlo sampling

to approximate the posterior distribution over parameters. For

the fMRI analysis, we used the posterior median parameter

values for each subject to generate model-based regressors.

fMRI acquisition

Neuroimaging data were collected using a 3 Tesla Siemens

Magnetom Prisma MRI scanner (Siemens Healthcare,

Erlangen, Germany) with the vendor’s 32-channel head coil.

Anatomical images were collected with a T1-weighted mag-

netization-prepared rapid gradient multiecho sequence

(MEMPRAGE, 176 sagittal slices, TR = 2530 ms, TEs =

1.64, 3.50, 5.36, and 7.22ms, flip angle = 7°, 1 mm 3 voxels,

FOV = 256 mm). All blood-oxygen-level-dependent (BOLD)

data were collected via a T2*-weighted echo-planar imaging

(EPI) pulse sequence that employed multiband RF pulses and

Simultaneous Multi-Slice (SMS) acquisition (Feinberg et al.,

2010; Moeller et al., 2010; Xu et al., 2013). For the task runs,

the EPI parameters were 69 interleaved axial-oblique slices

(25 degrees toward coronal from ACPC alignment, TR =

2000 ms, TE = 35 ms, flip angle = 80°, 2.2 mm3 voxels,

FOV = 207 mm, SMS = 3). The SMS-EPI acquisitions used

the CMRR-MB pulse sequence from the University of

Minnesota.

fMRI preprocessing and analysis

Data preprocessing and statistical analyses were performed

using SPM12 (Wellcome Department of Imaging

Neuroscience, London, UK). Functional (EPI) image volumes

were realigned to correct for small movements occurring be-

tween scans. This process generated an aligned set of images
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and a mean image per subject. Each participant’s T1-weighted

structural MRI was then coregistered to the mean of the

realigned images and segmented to separate out the gray mat-

ter, which was normalized to the gray matter in a template

image based on the Montreal Neurological Institute (MNI)

reference brain. Using the parameters from this normalization

process, the functional images were normalized to the MNI

template (resampled voxel Size 2-mm isotropic) and

smoothed with an 8-mm full-width at half-maximum

Gaussian kernel. A high-pass filter of 1/128 Hz was used to

remove low-frequency noise, and an AR(1) (Autoregressive

1) model was used to correct for temporal autocorrelations.

We designed a general linear model model to analyze

BOLD responses. This model included an event for ob-

serve decisions and another for bet decisions, time

locked to the beginning of the decision period. We also

included an event for the onset of feedback (either the

observation of which light turned on, or just a visual of

the machine with the bet that was made). For the onset

of feedback, we included a parametric modulator that

was the change in the absolute value of the evidence

tally resulting from the observed outcome. Thus, this

value would be negative and due entirely to evidence

decay on a bet trial, and could be positive or negative

on an observation trial depending on whether the obser-

vation provided more evidence in favor of betting or

observing. Events were modeled with a 1-s duration.

Regions of interest

Regions of interest (ROIs) were constructed by combin-

ing structural ROIs with previously defined functional

ROIs. Specifically, to define anatomically constrained

value-based ROIs, we found the overlap between the

structural ROIs from Tzourio-Mazoyer et al. (2002)

and the value-sensitive functional ROIs from Bartra,

McGuire, and Kable (2013). We also took the specific

vmPFC and striatum ROIs from Bartra et al. (2013).

For frontopolar cortex, we constructed a spherical ROI

with a radius of 10 voxels, centered at the peak of

activation reported by Daw et al. (2006). Similarly, for

rostrolateral prefrontal cortex, the spherical ROI (10-

voxel radius) was constructed using the coordinates giv-

en in Badre et al. (2012).

Code and data availability

Code and behavioral data are available on GitHub (https://

github.com/TommyBlanchard/ObserveBet). The brain

imaging data are available upon request.

Results

Behavioral results

Eighteen subjects performed a dynamic version of the

Bobserve or bet^ task (Fig. 1; see Materials and Method

section for details). On each trial, subjects chose to either

observe an outcome (without gaining or losing points) or

bet on the outcome (without observing the outcome but

redeeming points at the end of the experiment). The out-

come probability had a small probability of changing dur-

ing the course of each block of 50 trials.

Normative behavior on this task predicts several dis-

tinctive behavioral patterns (Navarro et al., 2016). On

the first trial that subjects bet following a series of

observe actions, they should bet on the color seen last.

The intuition is that observing a color should either

make your belief about the outcome probability stronger

or weaker, and subjects should always bet on the out-

come with the higher probability. If the subject observed

on the previous trial, they were not certain enough to

place a bet based on their current belief. Observing a

surprising outcome (i.e., the outcome that is less strong-

ly predicted by the subject’s current belief) should push

the belief towards the opposite decision threshold and

therefore make the subject more likely to either observe

or bet on the last-observed outcome. Indeed, subjects

did strongly tend to bet on the last observed outcome

on the first trial following an observe action, on average

doing this 95.1% of the time (see Fig. 2a).

Subjects should also gradually reduce the probability

of observing over the course of a block. This is because

they start with no information about the outcome proba-

bility and thus must start by accumulating some informa-

tion, but this tendency to explore will eventually yield to

betting (exploitation) when the evidence becomes suffi-

ciently strong. Again, subjects follow this pattern, observ-

ing 85.3% of the time on the first trial in a block and

betting 98.4% on the final trial (see Fig. 2b).

Next, we implemented a previously developed com-

putational model and fit it to subjects’ choice data

(Navarro et al., 2016). This model consists of an evi-

dence tally that tracks how much evidence the learner

currently has about the outcome probability, and a deci-

sion threshold that captures when the subject switches

between observe and bet behaviors (see Fig. 2c). We fit

this model to each subject’s behavior from the

prescanning blocks and used the fitted model to con-

struct regressors for our fMRI analysis (see Method

section). Behavior was stable across prescanning and

scanning blocks (see Fig. 2d–e).
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fMRI results

In a follow-up session, our 18 subjects returned and performed

the Bobserve or bet^ task in an fMRI scanner. Our model

contained regressors for the appearance of stimuli, when a

subject observed, when a subject bet, and the change in the

absolute value of the evidence tally (seeMaterials andMethod

section).

We first attempted to identify regions associated with the

decision to explore versus exploit (i.e., observe vs. bet). We

chose to specifically investigate brain regions previously as-

sociated with value-based decision-making or exploration.

Specifically, we examined the frontal pole and rostrolateral

prefrontal cortex, which have both previously been implicated

in balancing exploration and exploitation (Badre et al., 2012;

Boorman et al., 2009; Daw et al., 2006; Donoso, Collins, &

Koechlin, 2014). We also investigated the striatum, ventrome-

dial prefrontal cortex (vmPFC), insula, and dorsal anterior

cingulate cortex (dACC), all of which play a role in value-

based decision-making (Bartra et al., 2013). We analyzed the

signal in each of these ROIs, averaged across voxels (see

Materials andMethod section for details of ROI construction).

In each of our predefined ROIs, we calculated an observe–

bet contrast for each subject and evaluated statistical signifi-

cance using a one-sample t test. We found a significant posi-

tive effect (observe > bet) in insula and dACC (t = 4.20, p <

.001 and t = 2.80, p = .006, respectively; see Table 1; Fig. 3a).

The peaks of these effects were at 32, 22, −8 for the right

insula; −30, 16, −8 for left insula; and 8, 16, 46 for dACC.

The effects in all other ROIs did not pass the error-corrected

threshold of p < .008 (Bonferroni correction with six compar-

isons and α = 0.05). We then performed a whole-brain analy-

sis with cluster family-wise error correction using the

bspmview package (Spunt, 2016). We found a bilateral effect

in thalamus that passed the error-corrected threshold of p < .05

(see Fig. 3b; peak at 8, −14, 2).

One potential concern with this analysis is that if people

tend to switch from observing to betting more frequently than

vice versa, any contrast between observe and bet trials would

be confounded with task switching effects. Indeed, subjects

Fig. 1 a BObserve or bet^ task. Subjects first made a choice between
betting blue, betting red, or observing. They then waited through a
variable-length interstimulus interval (during which nothing was on the
screen). Then, for 1.5 s, subjects were shown the outcome of their ac-
tion—if they bet, they were simply told which color they bet; if they
observed, they were told which color lit up. This was followed by a
variable length intertrial interval. b End of block score screen. At the

end of each block of the task, subjects were shown what had happened
on each trial. They saw one row of colored circles indicating what lit up
on each trial, and a second row showingwhat their action had been on that
trial (red or blue for betting, black for observing). They were also told
their score for that block (for more details on the task, see the Materials
and Method section). (Color figure online)
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were significantly more likely to switch following an observe

trial (p < .001, signed rank test). If this lead to differential

switch costs, then we would expect that responses should be

slower on bet trials than on observe trials, consistent with the

empirical data, t(17) = 2.2, p < .05 (mean difference: 48 ms).

Thus, our data do not allow us to completely rule out a task

switching confound.

Next, we investigated whether the BOLD signal in any

regions covaried with changes in the absolute value of the

evidence tally (a variable we termed the Bupdate^

regressor). In other words, we wanted to know which areas

might be involved in using outcome information to update

the decision policy. We again investigated the same six

ROIs (see Table 2), finding a significant negative relation-

ship between the update regressor and the BOLD signal in

vmPFC (t = −2.82, p = .006; peak of cluster at −4, 36, −16).

The negative effect means that vmPFC is more active when

predictions are confirmed (i.e., updated less). No effects in

any of our other ROIs passed Bonferroni correction. After

examining these specific areas, we performed a whole-brain

Fig. 2 Behavior on the Bobserve or bet^ task. a Proportion of time each
subject bet on the same color they observed on the previous trial. Vertical
dashed line indicates random choice. b Proportion of trials subjects
observed by trial number on each block (averaged across all subjects).
Shaded region indicated the 95% confidence interval. c Visual
representation of the model for one block. Circles indicate the action
that was taken on that trial (black for bet, red for observed red, blue for

observed blue). Gray line indicates the evidence tally on each trial. Black
lines indicate the betting threshold (see Materials and Method section for
model details). d Observe-to-bet ratio for each subject for the initial be-
havioral session and the scanner session. Line indicates the point of
equality for the two sessions. e Average evidence decay parameter across
all subjects for each block. (Color figure online)

Table 1 Table of values for the
ROI analyses for the group-level
observe–bet contrast

Brain region t value p value Peaks Cluster size (voxels)

Insula 4.20 <.001 32, 22, −8 (Right) 388 (Right)

−30, 16, -8 (Left) 282 (Left)

Dorsal Anterior Cingulate 2.80 .006 8, 16, 46 307

Note.Degrees of freedom = 17. Bonferroni-corrected p value threshold with α = 0.05 is 0.008. Significant effects
were found in insula and dorsal anterior cingulate
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analysis (see Fig. 4). No additional areas reached signifi-

cance when performing whole-brain correction.

Discussion

Using a reinforcement learning task that cleanly decouples

exploration and exploitation, our study provides the first pure

neural correlates of these processes. Insula and dorsal anterior

cingulate cortex showed greater activation for observe

(exploration) trials compared to bet (exploitation) trials.

Ventromedial prefrontal cortex showed greater activation for

bet compared to observe trials, although this result did not

survive correction for multiple comparisons across the regions

of interest that we examined. We also found behavioral evi-

dence favoring a heuristic approximation of the Bayes-

optimal exploration strategy (Navarro et al., 2016): The prob-

ability of exploration changed dynamically as evidence was

accumulated. These dynamics were accompanied by a neural

correlate in the vmPFC that negatively correlated with the size

of the belief update, suggesting that this region may encode

the degree to which outcomes match prior expectations.

The anterior cingulate cortex has figured prominently in

past research on the exploration–exploitation dilemma,

though its computational role is still unclear. Consistent with

our findings, the anterior cingulate shows increased activity

during exploration in multi-armed bandit (Amiez, Sallet,

Procyk, & Petrides, 2012; Daw et al., 2006; Karlsson, Tervo,

& Karpova, 2012; Quilodran, Rothe, & Procyk, 2008), forag-

ing (Hayden, Pearson, & Platt, 2011; Kolling, Behrens, Mars,

& Rushworth, 2012) and sequential problem-solving tasks

(Procyk, Tanaka, & Joseph, 2000). Some evidence suggests

that the anterior cingulate reports the value of alternative op-

tions (Blanchard & Hayden, 2014; Boorman, Rushworth, &

Behrens, 2013; Hayden et al., 2011; Kolling et al., 2012);

when this value exceeds the value of the current option, the

optimal policy is to explore. Shenhav, Botvinick, and Cohen

(2013) have argued that exploration is a control-demanding

behavior, requiring an override of the currently dominant be-

havior in order to pursue long-term greater long-term rewards.

In this framework, anterior cingulate reports the expected

long-term value of invoking cognitive control.

The insula has also been implicated in several studies of the

exploration–exploitation dilemma. Li, McClure, King-Casas,

and Montague (2006) found insula activation in response to

changes in reward structure during a dynamic economic

game. These changes were accompanied by rapid alterations

in the behavioral strategy. In a study of adolescents, Kayser,

Op de Macks, Dahl, & Frank (2016) found that resting-state

connectivity between rostrolateral prefrontal cortex and insula

distinguished Bexplorers^ from Bnonexplorers^ on a temporal

decision-making task. Finally, using positron emission tomog-

raphy while subjects performed a bandit task, Ohira et al.

(2013) reported that insula activity was correlated both with

Fig. 3 Observe–bet contrast. a Clusters within the significant ROIs, with
threshold set at p < .001, uncorrected. The ROI for insula is circled in
green, the ROI for ACC is circled in magenta. b Whole-brain analysis

with cluster family-wise error shows an effect in thalamus, peak activity
at 8, −14, 2. (Color figure online)

Table 2 Values for the ROI analyses for the Bupdate^ contrast

Brain region t value p value Peaks Cluster size
(voxels)

vmPFC −2.82 .006 −4, 36, −16 203

Note. Degrees of freedom = 17. Bonferroni-corrected p value threshold
with α = 0.05 is 0.008, a threshold that only the effect in vmPFC
(highlighted in bold) passes.
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peripheral catecholamine concentration and response

stochasticity. These results are consistent with our finding that

insula was positively associated with exploration, though they

do not provide insight into the region’s specific contribution.

Surprisingly, we did not find a statistically significant ef-

fects of exploration in either frontopolar cortex or rostrolateral

prefrontal cortex. Several influential studies have identified

these regions as playing an important role in regulating explo-

ration and exploitation (Badre et al., 2012; Beharelle et al.,

2015; Boorman et al., 2009; Daw et al., 2006). It is not clear

why we did not find effects in these regions; it is possible that

our ROI selection procedure failed to identify the relevant

voxels, or that these regions are primarily involved in other

kinds of tasks (e.g., standard bandit or temporal decision-

making tasks). One approach to this issue would be to define

subject-specific functional ROIs using these other tasks and

then interrogate regional responses using the observe or bet

task. Another possibility is that substantive differences in task

design and analysis account for the lack of activation. For

example, Daw et al. (2006) defined exploratory versus ex-

ploitative trials based on whether subjects chose the option

with highest expected value, whereas in our study subjects

might choose options with either high or low expected value

on exploratory trials.

Our model-based analysis posits that an important computa-

tion governing exploration is the updating of the belief state. We

found a negative effect of updating in the vmPFC, indicating that

this region was more active when expectations were confirmed.

Oneway to interpret this finding is that the ventromedial prefron-

tal cortex signals a match between outcomes and expectations

(i.e., a kind of Bconfirmation^ or Bmatch^ signal). An analogous

match signal has been observed in a visual same/different judg-

ment task (Summerfield & Koechlin, 2008). In a related vein,

Stern, Gonzalez, Welsh, and Taylor (2010) reported that signals

in vmPFC correlated with Bunderconfidence^ (the degree to

which self-reported posterior probabilities underestimate objec-

tive posterior probabilities), consistent with the hypothesis that

reduced updating will elicit greater vmPFC activity.

In the context of reinforcement learning and decision-

making tasks, the ventromedial prefrontal cortex has more

commonly been associated with reward expectation (Bartra

et al., 2013) rather than outcome-expectation comparisons.

Nonetheless, a number of studies have reported evidence ac-

cumulation correlates in this region or nearby regions

(d’Acremont, Fornari, & Bossaerts, 2013; Chan, Niv, &

Norman, 2016). More research is needed to pinpoint the rela-

tionship between these findings and exploration during rein-

forcement learning.

One limitation of our approach is that exploration is con-

founded with time: subjects are less likely to observe on later

trials. A promising approach to dealing with this issue would

be to use a yoked control condition in which subjects see the

same sequence of trials without the trial types being contin-

gent on their own actions (cf. Wang & Voss, 2014). However,

this yoked control is imperfect insofar as it essentially elimi-

nates the exploration–exploitation trade-off.

Another limitation of our approach is that we only consid-

ered a single model in detail, one developed specifically to

approximate the Bayes-optimal strategy on the observe-or-

bet task (Navarro et al., 2016). Navarro and colleagues com-

pared this model to several variants, which differed in terms of

their assumptions about evidence decay and decision thresh-

olds. They concluded, on the basis of qualitative and quanti-

tative measures of model fit, that both decaying evidence and

declining thresholds were necessary to account for the choice

data. Although this is still a fairly restricted space of models, it

is worth pointing out that most conventional reinforcement

learning models cannot address the task at all: Because the

observe action does not accrue any points, it will always be

assigned a value of zero by model-free algorithms like Q-

learning. Nonetheless, the model developed by Navarro and

colleagues invokes cognitive mechanisms that are shared

across many other models, such as incremental adjustment

of expectations (as in Q-learning) and decisions based on a

stochastic threshold-crossing (as in sequential sampling

models). The interface of these mechanisms has recently be-

come an important focus of research in reinforcement learning

(Frank et al., 2015; Pedersen, Frank, & Biele, 2017).

Finally, we must keep inmind that while the observe-or-bet

task provides Bpure^ correlates by decoupling information

acquisition and action selection, there are many other cogni-

tive processes involved in exploration and exploitation, which

Fig. 4 Update contrast. Cluster within the significant ROI. Green circle shows the ROI for vmPFC. Threshold set at p < .001, uncorrected. (Colori figure
online)
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may be shared across observe and bet trials. Thus, we cannot

decisively conclude that this contrast has perfectly isolated the

critical computations underlying exploration and exploitation.

It is unlikely that any single task will be able to achieve com-

plete purity in this sense, so our findings should be understood

as complementing, rather than superseding, previous studies

of exploration and exploitation, all of which have their

strengths and weaknesses.

In summary, the main contribution of our study is the iso-

lation of neural correlates specific to exploration. The major

open question is computational: What exactly do the insula

and anterior cingulate contribute to exploration? As discussed

in the preceding paragraphs, the literature is well-supplied

with hypotheses, but our study was not designed to discrimi-

nate between them. Thus, an important task for future research

will be to use tasks like Bobserve or bet^ in combination with

experimental manipulations (e.g., volatility or the distribution

of rewards) that are diagnostic of underlying mechanisms.
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