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1 Introduction

In the middle of the 1970’s Mazurkiewicz proposed trace theory as an algebraic
framework for studying concurrent processes [21]. Based on the early work of
Keller [19] he described the behaviour of a concurrent process not by a string,
but more accurately by some labelled partial order which is called a trace. The
partial order relation of a trace is defined via a static dependence relation so
that the set of traces forms a free partially commutative monoid. There is a
natural extension to infinite objects which lead to a notion of real trace. For
an overview on trace theory we refer to The Book of Traces [9].

One advantage of trace theory is that formal specifications of concurrent sys-
tems by temporal logic formulae have a direct (either global or local) interpre-
tation for Mazurkiewicz traces. It is therefore no surprise that temporal logics
for traces have received quite an attention, see [26,32,10,2,25,24,29].

For a global interpretation it was shown by Thiagarajan and Walukiewicz
[33] that the global temporal logic with future modalities and with past con-
stants is expressively complete with respect to the first order theory. In [4]
we were able to remove the past constants using an algebraic proof. However,
the satisfiability problem for these global logics is non-elementary [35]. The
main reason for this high complexity is that the interpretation of a formula is
defined with respect to a global configuration, i.e., a finite prefix of the trace
(downward closed subset of the partial order which defines the trace) – and
the prefix structure of traces is much more complex than in the case of linear
orders (words).

In contrast to a global formula, a local logic formula is evaluated at a local
event of the system, i.e., at some vertex of the trace. There can be exponen-
tially many different configurations in a finite trace, but the number of vertices
is just the length of the trace. This makes local model checking much easier.
In fact, if the underlying alphabet is fixed, all local temporal logics over traces
where the modalities are definable in monadic second order logic are decid-
able in Pspace [14] (both the satisfiability problem and the model checking
problem are decidable in Pspace). This is optimal since the Pspace-hardness
occurs already for words (over a two letter alphabet).

The better complexity makes local temporal logics more attractive than global
ones; and several attempts were made to prove expressive completeness with
respect to first-order logic. In [6] expressive completeness for the basic pure
future local temporal logic is established, if the underlying dependence al-
phabet is a cograph, i.e., if the modelled system can be obtained using series
and parallel compositions. Moreover, one can hope to go beyond cographs,
only if each trace is equipped with some bottom element or if we allow past
modalities. This second approach is used in [15,16] to obtain expressive com-
pleteness for all dependence alphabet. In [15], the full power of exists-previous
and since modalities equipped with filters is used. The result is improved in
[16] where only past constants are necessary. Another temporal logic based
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on more involved modalities (including both past and future modalities) was
shown to be expressively complete and decidable in Pspace [1]. However, the
most basic question remained open: whether expressive completeness holds for
a pure future local temporal logic.

The present paper gives a positive answer to this question. It is well-known
that first-order definable trace languages are aperiodic. Here, we give a self-
contained proof that every aperiodic trace language is definable in a pure
future local temporal logic based upon exists-next and until, only. The well-
known corresponding result for words is not used in the proof, formally it
becomes a corollary. We also show that a pure future process-based logic in
the spirit of the logic TrPTL introduced by Thiagarajan in [32] is expressively
complete.

Our proof is inspired by Wilke’s proof for the corresponding result on finite
words [37]. It is actually a generalization since it deals with both finite and
infinite traces, in particular it includes infinite words. It also simplifies Wilke’s
technique thanks to some non-standard construction on finite monoids, which
allows to use as a main induction parameter the size of the monoid and there-
fore avoids the deviation via transformation monoids.

An extended abstract of a preliminary version of this paper appeared in [7].

2 Preliminaries

A dependence alphabet is a pair (Σ, D) where the alphabet Σ is a finite set (of
actions) and the dependence relation D ⊆ Σ × Σ is reflexive and symmetric.
The independence relation I is the complement of D. For A ⊆ Σ, the set of
letters dependent on A is denoted by D(A) = {b ∈ Σ | (a, b) ∈ D for some a ∈
A}.
A Mazurkiewicz trace is an equivalence class of a labelled partial order t =
[V,≤, λ] where V is a set of vertices labelled by λ : V → Σ and ≤ is a par-
tial order over V satisfying the following three conditions: For all x ∈ V ,
the downward closed set ↓x = {y ∈ V | y ≤ x} is finite, for all x, y ∈ V ,
(λ(x), λ(y)) ∈ D implies x ≤ y or y ≤ x, and if x is an immediate prede-
cessor of y, then (λ(x), λ(y)) ∈ D. In the following l denotes the immediate
predecessor relation in V , i.e., l = < \ <2 and the last condition says that
x l y implies (λ(x), λ(y)) ∈ D. For x ∈ V , we also define the upper set
↑x = {y ∈ V | x ≤ y} and the strict upper set ⇑x = {y ∈ V | x < y}.
Since the alphabet is finite, we have an equivalent definition of a Mazurkie-
wicz trace t as follows: We start with a finite or infinite word a1a2 · · · where
all ai are letters in Σ. Each i is viewed as a node of a labelled graph and the
node i has label λ(i) = ai. We draw an arc from ai to aj if and only if both,
i < j and (ai, aj) ∈ D. We obtain a directed acyclic graph and t = [V,≤, λ] is
defined as the induced labelled partial order. In particular, every trace t has
a representation by some word a1a2 · · · ∈ Σ∞.
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A trace t is called finite (infinite resp.) if V is finite (infinite resp.), and
we denote by M(Σ, D) (or simply M) the set of finite traces. By R(Σ, D)
(or simply R), we denote the set of finite or infinite traces (also called real
traces). Let alph(t) = λ(V ) be the alphabet of t and alphinf(t) = {a ∈ Σ |
λ−1(a) is infinite} be the alphabet at infinity of t. For A ⊆ Σ, we let RA =
{t ∈ R | alph(t) ⊆ A} and MA = {t ∈ M | alph(t) ⊆ A}.
Let t1 = [V1,≤1, λ1] and t2 = [V2,≤2, λ2] be a pair of traces such that
alphinf(t1) × alph(t2) ⊆ I. Then we define the concatenation of t1 and t2
to be t1 · t2 = [V,≤, λ] where V = V1 ∪ V2 (assuming w.l.o.g. that V1 ∩ V2 =
∅), λ = λ1 ∪ λ2 and ≤ is the transitive closure of the relation ≤1 ∪ ≤2

∪ (V1 × V2 ∩ λ−1(D)). The set M of finite traces is then a monoid with the
empty trace 1 = (∅, ∅, ∅) as unit. If we can write t = rs, then r is a prefix
and s is a suffix of t. Note that a factorization of a real trace t ∈ R may
yield an infinite prefix and/or suffix. Consider e.g. t = (ab)ω = (aω)(bω)
with (a, b) ∈ I. The concatenation of two trace languages K,L ⊆ R is
K · L = {r · s | r ∈ K, s ∈ L and alphinf(r) × alph(s) ⊆ I}. We also use
finite or infinite (ordered) products t =

∏
i∈J ti where (ti)i∈J is a sequence of

real traces with J ⊆ N and ti ∈ R such that alphinf(ti)× alph(tj) ⊆ I for all
i < j.

We denote by min(t) the set of minimal vertices of t. We let R1 = {t ∈ R |
|min(t)| = 1} be the set of traces with exactly one minimal vertex. To simplify
the notation, we also use min(t) for the set λ(min(t)) of labels of the minimal
vertices of t.

The syntax of first-order logic FOΣ(<) is defined as follows:

ϕ ::= ⊥ | Pa(x) | x < y | ¬ϕ | ϕ ∨ ϕ | ∃xϕ

where a ∈ Σ, and x, y ∈ V are first order variables. We use the standard
semantics. Given a trace t = [V,≤, λ] and a valuation ν : V → V , t |=ν ϕ
denotes that t satisfies ϕ under ν. We interpret each predicate Pa by the set
{x ∈ V | λ(x) = a} and the relation < as the strict partial order relation of
t. The semantics then lifts to all formulae as usual. The meaning of a closed
formula (sentence) ϕ is independent of the valuation ν, hence the subscript ν
can be suppressed. We say that a real trace language L ⊆ R is expressible in
FOΣ(<), if there exists a sentence ϕ ∈ FOΣ(<) such that L = {t ∈ R | t |= ϕ}.

3 Local temporal logic

We want to compare the expressive power of local temporal logics with the
first order logic FOΣ(<). Our main focus is on the local temporal logic based
upon the two classical modalities exists-next and until. The syntax of the local
temporal logic LocTLΣ[EX,U] is given by

ϕ ::= > | a | ¬ϕ | ϕ ∨ ϕ | EXϕ | ϕ U ϕ.
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where a ranges over Σ and > denotes true.

Let t = [V,≤, λ] ∈ R be a real trace and x ∈ V be a vertex. (We write
henceforth simply x ∈ t instead of x ∈ V .) We define the semantics such that
every temporal formula is equivalent to some first-order formula with one free
variable and using at most three distinct variables.

t, x |= >

t, x |= a if λ(x) = a

t, x |= ¬ϕ if t, x 6|= ϕ

t, x |= ϕ ∨ ψ if t, x |= ϕ or t, x |= ψ

t, x |= EXϕ if ∃y (xl y and t, y |= ϕ)

t, x |= ϕ U ψ if ∃z (x ≤ z and t, z |= ψ and ∀y (x ≤ y < z) ⇒ t, y |= ϕ).

For t ∈ R1, i.e., if t has a unique minimal vertex, we simply write t |= ϕ
instead of t,min(t) |= ϕ.

We define some abbreviations. We write ⊥ for false. The formula Fϕ = >Uϕ
means that ϕ holds now or at some position in the future and the formula
Gϕ = ¬F¬ϕ means that ϕ holds at all future positions, including the current
one. For A ⊆ Σ, we also use A as a formula with the definition A =

∨
a∈A a.

The two modalities exists-next and until can be expressed by a single one, the
strict-until modality SU, the semantics of which is given by

t, x |= ϕ SU ψ if ∃z (x < z and t, z |= ψ and ∀y (x < y < z) ⇒ t, y |= ϕ).

We have EXϕ = ⊥ SU ϕ and ϕ U ψ = ψ ∨ (ϕ ∧ ϕ SU ψ). Thus, LocTLΣ[EX,U]
is clearly a fragment of LocTLΣ[SU].

We do not know any direct way how to express SU in LocTLΣ[EX,U]. But it
follows from our main result Corollary 26 that the two logics LocTLΣ[EX,U]
and LocTLΣ[SU] have the same expressive power. Note that, if D = Σ × Σ,
i.e., if we are in the classical situation of words, then ϕSUψ and EX(ϕUψ) are
equivalent, hence we get easily the equivalence of the two logics for words. But
as soon as there are letters a, b, c with (a, b) ∈ D, (b, c) ∈ D, and (a, c) ∈ I
then ϕ SU ψ is not equivalent with EX(ϕU ψ). Consider for instance the trace
t = bacb. We have t |= EX(a U b) but t 6|= a SU b.

We need some more notations. For x ∈ t and c ∈ alph(⇑x), we denote by xc

the unique minimal vertex of ⇑x ∩ λ−1(c). Note that x < xc, if xc exists. We
write xa ‖xb, if both vertices xa and xb exist, but neither xa ≤ xb nor xa ≥ xb.

Let us define some more operators that turn out to be crucial to achieve our
main result. We will see that all of them can be expressed in LocTLΣ[EX,U].
Let a, b ∈ Σ. The semantics of the operators (Xa ≤ Xb), (Xa < Xb), (Xa ‖Xb),
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Xa and Ua is defined as follows.

t, x |= (Xa ≤ Xb) if xa, xb exist and xa ≤ xb

t, x |= (Xa < Xb) if xa, xb exist and xa < xb

t, x |= (Xa ‖Xb) if xa, xb exist and xa ‖ xb

t, x |= Xa ϕ if xa exists and t, xa |= ϕ

t, x |= ϕ Ua ψ if ∃z (x ≤ z and λ(z) = a and t, z |= ψ and

∀y (x ≤ y < z and λ(y) = a) ⇒ t, y |= ϕ).

We now introduce the logic LocTLΣ[(Xa ≤ Xb),Xa,Ua] which plays the central
role in the following. Its syntax is given by

ϕ ::= > | a | (Xa ≤ Xb) | ¬ϕ | ϕ ∨ ϕ | Xa ϕ | ϕ Ua ϕ

where a, b range over Σ. The semantics has been defined above.

Note that Fϕ, (Xa < Xb) and (Xa ‖Xb) can easily be expressed in the logic
LocTLΣ[(Xa ≤ Xb),Xa,Ua], so we can freely use them. For instance, Fϕ =∨

a> Ua ϕ and (Xa ‖Xb) = Xa> ∧ Xb> ∧ ¬(Xa ≤ Xb) ∧ ¬(Xb ≤ Xa).

We show that we can deal also with process-based logics as introduced in [32].
In this framework, we start with a finite set of processes P = {1, . . . , n} and
a mapping p : Σ → 2P \ {∅}. If p(a) = {i} is a singleton then the action a is
local to process i. Otherwise, the execution of a requires the synchronization
of all processes in p(a). The dependence relation is therefore D = {(a, b) ∈
Σ2 | p(a)∩ p(b) 6= ∅}. In the following, we let Σi = {a ∈ Σ | i ∈ p(a)}. The set
C = {Σi | i ∈ P} is a covering of Σ by cliques of (Σ, D).

Note that every dependence relation D can be obtained this way. We may use
for the set P any covering of (Σ, D) by cliques and let p(a) = {C ∈ P | a ∈ C}.
Thanks to this more concrete view of the dependence alphabet based on pro-
cesses, we can define temporal modalities that involve locations of actions as
in [32]. However (c.f. Remark 1) we focus on pure future variants Xi ϕ meaning
that ϕ holds at the first event of process i which is strictly above the current
vertex and ϕ Ui ψ which means that on the sequence of vertices located on
process i and above the current vertex we observe ϕ until ψ.

More formally, we introduce the logic LocTLΣ[Xi,Ui] based on the modalities
Xi and Ui for i ∈ P by the syntax

ϕ ::= > | a | ¬ϕ | ϕ ∨ ϕ | Xi ϕ | ϕ Ui ϕ

where a, b range over Σ and i ranges over P .

For x ∈ t and i ∈ P , we denote by xi the unique minimal vertex of ⇑x∩λ−1(Σi)
if it exists, i.e., when ⇑x ∩ λ−1(Σi) 6= ∅. The semantics of the new modalities
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is given by

t, x |= Xi ϕ if xi exists and t, xi |= ϕ

t, x |= ϕ Ui ψ if ∃z (x ≤ z and λ(z) ∈ Σi and t, z |= ψ and

∀y (x ≤ y < z and λ(y) ∈ Σi) ⇒ t, y |= ϕ).

Note that Ui is a usual sequential until on the chain of vertices ↑x ∩ λ−1(Σi).

Remark 1 In [32], the formula Oiϕ means that ϕ holds at the first event of
process i that is not in the past of the current vertex. Clearly, this is not a
future modality. The until modality introduced in [32] is also not pure future.
This motivates our different choice.

Proposition 2 The expressiveness of the following local temporal logics is
increasing (or equal) in the following order:

(1) LocTLΣ[(Xa ≤ Xb),Xa,Ua],
(2) LocTLΣ[Xi,Ui],
(3) LocTLΣ[EX,U],
(4) LocTLΣ[SU].

Proof. (1) ⊆ (2): Fix a ∈ Σ and let i ∈ P with i ∈ p(a). We have Xa ϕ =
Xi(¬a Ui (a ∧ ϕ)) and ϕ Ua ψ = (¬a ∨ ϕ) Ui (a ∧ ψ).

We show now how to express the constants (Xa ≤ Xb), which is more difficult.
The idea is that t, x |= (Xa ≤ Xb) if and only if there exists a chain x0, . . . , xn

in t with n ≤ |Σ| and xa = x0 < x1 < · · · < xn = xb and (λ(xi), λ(xi+1)) ∈ D
for 0 ≤ i < n.

For this, we define inductively formulae (Xa ≤n Xb) by:

(Xa ≤1 Xb) =

⊥ if (a, b) ∈ I
Xi((> Ui b) ∧ (¬b Ui a)) otherwise, where i ∈ p(a) ∩ p(b)

and for n > 1, we define (Xa ≤n Xb) by

(Xa ≤n−1 Xb) ∨
∨

c∈D(a)\{a,b}

[(
(Xa ≤1 Xc) ∧ (Xc ≤n−1 Xb)

)
∨

[(
(Xc ≤1 Xa) ∧ (Xc ≤n−1 Xb)

)
∧(

(Xc ≤1 Xa) ∧ (Xc ≤n−1 Xb)
)

Uc

(
(Xa ≤1 Xc) ∧ (Xc ≤n−1 Xb)

)]]
.

We claim that (Xa ≤ Xb) = (Xa ≤|Σ| Xb).

We first show by induction on n that (Xa ≤n Xb) implies (Xa ≤ Xb). Fix t ∈ R
and x ∈ t. Assume first that t, x |= (Xa ≤1 Xb). Then, t, x |= Xi((> Ui b) ∧
(¬b Ui a)) for some i ∈ p(a) ∩ p(b). We deduce easily that t, x |= (Xa ≤ Xb).
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Now, let n > 1, c ∈ Σ and assume that t, x |= (Xa ≤1 Xc) ∧ (Xc ≤n−1 Xb).
By induction, we get t, x |= (Xa ≤ Xc) ∧ (Xc ≤ Xb) which implies clearly
t, x |= (Xa ≤ Xb). Finally, assume that t, x |= (Xc ≤1 Xa) ∧ (Xc ≤n−1 Xb)

and t, x |=
(
(Xc ≤1 Xa) ∧ (Xc ≤n−1 Xb)

)
Uc

(
(Xa ≤1 Xc) ∧ (Xc ≤n−1 Xb)

)
.

Let z be such that x ≤ z, λ(z) = c, t, z |= (Xa ≤1 Xc) ∧ (Xc ≤n−1 Xb) and
t, y |= (Xc ≤1 Xa) ∧ (Xc ≤n−1 Xb) for each x ≤ y < z with λ(y) = c. By
induction we get t, z |= (Xa ≤ Xc) ∧ (Xc ≤ Xb) which implies t, z |= (Xa ≤ Xb).
It remains to show that xa = za and xb = zb. Let y1, . . . , yk be the c-labelled
vertices between x and z with x = y0 < y1 < · · · < yk = z. For 0 ≤ i < k we
have t, yi |= (Xc ≤1 Xa) ∧ (Xc ≤n−1 Xb) and by induction we get (yi)c < (yi)a

and (yi)c < (yi)b (recall that c /∈ {a, b}). Since we also have (yi)c = yi+1, we
deduce that (yi)a = (yi+1)a and (yi)b = (yi+1)b

. Using x = y0 and z = yk we
obtain xa = za and xb = zb. Therefore, xa = za < zb = xb as desired.

Conversely, we show by induction on n that for t ∈ R and x ∈ t, if xa, xb

exist and there exist x0, . . . , xn with xa = x0 < x1 < · · · < xn = xb and
(λ(xi), λ(xi+1)) ∈ D for 0 ≤ i < n and n is minimal with this property, then
t, x |= (Xa ≤n Xb).

Consider first the case n = 1. Then (a, b) ∈ D and if i ∈ p(a)∩ p(b) we obtain
easily t, x |= Xi((> Ui b) ∧ (¬b Ui a)).

Assume now n > 1. Since n is minimal, we have c = λ(x1) ∈ D(a) \ {a, b}.
Without loss of generality, we may assume that x1 = (xa)c. Let y1, . . . , yk be
the c-labelled vertices between x and x1 with x = y0 < y1 < · · · < yk = x1. If
k = 1 then x1 = xc and xa < xc hence we get t, x |= (Xa ≤1 Xc). By induction
we also get t, x |= (Xc ≤n−1 Xb) (with x2, . . . , xn). Therefore, t, x |= (Xa ≤n Xb).
Assume now k > 1. Since (a, c) ∈ D, we must have yk−1 and xa ordered. If
xa < yk−1 then yk = x1 = (xa)c ≤ yk−1, a contradiction. Therefore, yk−1 < xa.
With z = yk−1 we obtain za = xa. Since xa < xb we also get zb = xb. For
0 ≤ i < k we have (yi)c = yi+1 and in particular zc = yk = x1. Therefore,
za < zc < zb and we get by induction t, z |= (Xa ≤1 Xc) ∧ (Xc ≤n−1 Xb) (with
x2, . . . , xn). Finally, let 0 ≤ i < k − 1. We have x ≤ yi < (yi)c = yi+1 ≤
yk−1 < xa and we deduce (yi)a = xa > (yi)c. Since xa < xb we also get
(yi)b = xb > (yi)c. By induction we get t, yi |= (Xc ≤1 Xa)∧(Xc ≤n−1 Xb) (with
x2, . . . , xn). Therefore, t, x |= (Xa ≤n Xb).

This concludes the proof of our claim since whenever x < y in a trace then
we find a path x = x0 < x1 < · · · < xn = y with (λ(xi), λ(xi+1)) ∈ D of
length at most |Σ|. Actually, we have (Xa ≤ Xb) = (Xa ≤k Xb) where k is the
maximal length of a simple path in the dependence alphabet (Σ, D) for a 6= b,
and where k = 1 for a = b.

(1) ⊆ (3): We include this part because in order to prove (2) ⊆ (3) we will
use the constants (Xa ≤ Xb) and the modality Xa, hence we show first how to
express them in LocTLΣ(EX,U).
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For a, b ∈ Σ with a 6= b we have

(Xa ≤ Xb) =
∨
c∈Σ

(
(Xc ≤ Xa) ∧ (Xc ≤ Xb) ∧ EX(c ∧ ¬(¬a U b))

)
.

Thus, it is enough to consider a conjunction (Xc ≤ Xa)∧EX c with a 6= c. This
is EX(c ∧ F a) ∧ (a ∨ ¬(¬c U a)).

Next, for a ∈ Σ, we have

Xa ϕ = (¬a ∧ (¬a U (a ∧ ϕ))) ∨ (a ∧ EX(¬a U (a ∧ ϕ)))

and ϕ Ua ψ = (¬a ∨ ϕ) U (a ∧ ψ). (This yields a direct proof for (1) ⊆ (3)
without the detour to process based logics.)

(2) ⊆ (3): Let i ∈ P . We have ϕ Ui ψ = (¬Σi ∨ ϕ) U (Σi ∧ ψ) and

Xi ϕ =
∨

b∈Σi

(
Xb ϕ ∧

∧
a∈Σi\{b}

¬(Xa ≤ Xb)
)
.

(3) ⊆ (4): We have already seen that EX and U are expressible with SU. 2

Remark 3 In the logic LocTLΣ[(Xa ≤ Xb),Xa,Ua], only the constants (Xa ≤
Xb) with (a, b) ∈ D and a 6= b are necessary. Indeed, we have (Xa ≤ Xa) = Xa>
and we can replace (Xa ≤1 Xb) by (Xa ≤ Xb) with (a, b) ∈ D and define
(Xa ≤n Xb) for n > 1 inductively as in the proof of Proposition 2.

Remark 4 In Corollary 26 and 27 we will see that all the logics of Proposi-
tion 2 are expressively equivalent and correspond to the first order logic over
traces. On the other hand, the logic LocTLΣ[Xa,Ua] is strictly weaker. In fact,
this fragment seems to be rather weak, even if we restrict ourselves to words
over two letters. Assume that Σ contains two dependent letters b and c and let
ϕ ∈ LocTLΣ[Xa, Ua] be a formula of length n. Let u = b(bc)m and v = (bc)m

with m > n (possibly m = ω). We can show that u |= ϕ if and only if v |= ϕ.
Since, u |= (Xb ≤ Xc) whereas v 6|= (Xb ≤ Xc). this shows that LocTLΣ[Xa,Ua]
is strictly weaker than LocTLΣ[(Xa ≤ Xb),Xa,Ua].

Note also that LocTLΣ[Xa] is strictly weaker than LocTLΣ[Xa,Ua]. Again,
we assume that Σ contains two dependent letters b and c and we consider a
formula ϕ ∈ LocTLΣ[Xa] of length n. Then, for m > n the traces (words)
(bc)m, (bc)mb, (bc)mbω and (bc)ω are undistinguishable by ϕ. But, (bc)m |=
F(c∧¬Xb>) whereas (bc)mb 6|= F(c∧¬Xb>), and (bc)mbω |= F¬Xc> whereas
(bc)ω 6|= F¬Xc>. Therefore, the fragment LocTLΣ[Xa] is strictly weaker than
LocTLΣ[Xa,Ua] both for finite and for infinite traces (or words).

Recall that a nonempty (finite or infinite) word w initially satisfies an LTL
formula ϕ if w, 1 |= ϕ where 1 is the first position in w. This can be extended
directly to traces in R1 having a unique minimal vertex and we define L1(ϕ) =
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{t ∈ R1 | t |= ϕ}. This coincides with the classical notation for nonempty
words.

The aim of the paper is to show that local temporal logics have the same ex-
pressive power than first order logic on traces. Since a first order logic formula
can be evaluated on arbitrary traces in R, we need to extend the initial sat-
isfiability of local temporal logics to all traces in R, not only to those having
a unique minimal vertex. Two approaches have been used. In [6], an initial
modality EMϕ was introduced with the meaning t |= EMϕ if there is a min-
imal position x in t with t, x |= ϕ. Then, an initial formula α is a Boolean
combination of initial modalities. The local temporal logic based on EM, EX
and U is expressively complete if and only if the dependence alphabet (Σ, D) is
a cograph [6]. Hence, in order to get a pure future expressively complete local
temporal logic as aimed in the present paper, we cannot follow this strategy.

The other approach, which we adopt here, is to consider rooted traces. Let
# be a new symbol, # /∈ Σ, and t = [V,≤, λ] ∈ R(Σ, D). The rooted trace
associated with t is #t, where both # and t are viewed as traces over the
alphabet Σ′ = Σ ∪ {#} together with the dependence relation D′ = D ∪
({#}×Σ)∪ (Σ×{#})∪{(#,#)}. Thus we have introduced a unique minimal
vertex, since # depends on every letter. In particular, #t ∈ R1(Σ′, D′). Then,
for a formula in local temporal logic ϕ (over Σ), we define L(ϕ) = LΣ(ϕ) =
{t ∈ R(Σ, D) | #t |= ϕ}. Note that #LΣ(ϕ) = L1

Σ′(ϕ) ∩#R(Σ, D).

A formula ϕ ∈ LocTLΣ[· · · ] is insensitive to the minimal letter (iml for short)
if for all t ∈ R and c ∈ Σ with ct ∈ R1 we have #t |= ϕ if and only if ct |= ϕ.

Lemma 5 Let ϕ ∈ LocTLΣ[(Xa ≤ Xb),Xa,Ua]. We can construct an iml
formula ϕ̂ ∈ LocTLΣ[(Xa ≤ Xb),Xa,Ua] such that L(ϕ) = L(ϕ̂).

Proof. We proceed by structural induction on ϕ. We have â = ⊥ for each

a ∈ Σ. Next, X̂a ϕ = Xa ϕ and ̂(Xa ≤ Xb) = (Xa ≤ Xb) since these formulae are

already iml. Finally, ϕ̂ Ua ψ = Xa(ϕ Ua ψ) for a ∈ Σ since # /∈ Σ. 2

4 Auxiliary constants

If there are letters b, c ∈ Σ such that ⇑x ∩ λ−1(b) 6= ∅ and ⇑xb ∩ λ−1(c) 6= ∅,
we denote by xbc = (xb)c the minimal vertex of ⇑xb ∩ λ−1(c). We now define
constants (Xac = Xbc) for all a, b, c ∈ Σ with a 6= c 6= b by:

t, x |= (Xac = Xbc) if xac, xbc exist and xac = xbc.

It is far from being obvious that the new constants (Xac = Xbc) can be ex-
pressed in LocTLΣ[EX,U]. We will devote the whole section to the proof of
the following result, which is in view of Proposition 2, a priori, a stronger
statement.

10



Proposition 6 For all a, b, c ∈ Σ with a 6= c 6= b, the constants (Xac = Xbc)
can be expressed in LocTLΣ[(Xd ≤ Xe),Xd,Ud].

The remaining of this section is devoted to the technical proof of this propo-
sition and can be skipped in a first reading.

The overall strategy is to proceed in O(n3) rounds where n = |Σ|. In each
round we introduce new formulae which are approximations of (Xac = Xbc).
At the end these approximations are getting so weak that we can replace them
by false. In each round, when we replace an approximation we obtain a new
formula of size O(n2). Thus, overall (Xac = Xbc) is replaced by a complex
formula of exponential size in |Σ|.

Lemma 7 1. Let z be a vertex such that λ(z) = a and zc exists. There exist
letters {a1, . . . , ak−1} ⊆ Σ \ {a, c} such that z < za1 < · · · < zak−1

< zc and
a = a0 a1 · · · ak−1 ak = c in (Σ, D).

2. Let x be a vertex and {a1, . . . , ak−1} ⊆ Σ \ {a, c} such that xa < xaa1 <
· · · < xaak−1

< xac and a = a0 a1 · · · ak−1 ak = c in (Σ, D). If xa ‖xc,
then xaai

= xcai
for some 1 ≤ i < k.

Proof. 1. We use an induction on the size of the set {y | z ≤ y < zc}. Let
y be a minimal vertex such that z ≤ y < zc and λ(y) depends on c. If y = z
then we have a c and we take k = 1. Assume now that z < y. By definition
of y, we have b = λ(y) ∈ Σ \ {a, c} and y = zb < zc. By induction, we find
letters {a1, . . . , ak−2} ⊆ Σ \ {a, b} such that z < za1 < · · · < zak−2

< zb and
a = a0 a1 · · · ak−2 ak−1 = b in (Σ, D). We conclude easily since
zb < zc, b c and c /∈ {a1, . . . , ak−2} by definition of zc.

2. Since xa ‖xc, we have (a, c) ∈ I and k ≥ 2. The vertices xc and xaak−1
must

be ordered. If xaak−1
≤ xc then xc = xac, a contradiction. Hence, xc < xaak−1

and we can choose 0 < i < k minimal with xc < xaai
. This implies xcai

≤ xaai
.

We show that xcai
= xaai

. If i = 1 we let y = xa and if i > 1 we let y = xaai−1
.

So, (λ(y), ai) ∈ D and y and xcai
are ordered. If xcai

≤ y then xc < y and this
excludes the case i = 1 since xa‖xc. Then, we get xc < xcai

≤ y = xaai−1
which

contradicts the minimality of i. Therefore, y < xcai
and using yai

= xaai
, we

deduce that xaai
≤ xcai

and therefore xcai
= xaai

. 2

Let a, c ∈ Σ, a 6= c, and let t ∈ R, x ∈ t such that xac exists. Define δx(a, c) as
the smallest integer k ≥ 1 such that there exist letters a1, · · · , ak−1 such that
xa < xaa1 < · · · < xaak−1

< xac and a = a0 a1 · · · ak−1 ak = c in
(Σ, D). Note that such an integer k exists by Lemma 7 and δx(a, c) ≤ |Σ| − 1.

We also introduce the set Fx(a, c) which consists of all pairs (d, e), d 6= e, such
that either xde does not exist or xac < xde. Note that |Fx(a, c)| ≤ |Σ|2 − |Σ|.
Throughout we use the following fact:

if x ≤ y and yfg ≤ xac, then Fx(a, c) ⊆ Fy(f, g). (∗)
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This is trivial since if x ≤ y and yde exists, then xde exists and xde ≤ yde.
Moreover, if x ≤ y and yfg < xac, then Fx(a, c) ( Fy(f, g) since (a, c) ∈
Fy(f, g) (even if yac does not exist).

Below we consider letters a 6= c 6= b together with parameters δx(a, c)+δx(b, c)
and |Fx(a, c)|. We also introduce a flag r ∈ {0, 1}.

Proposition 8 Let a, b, c ∈ Σ with a 6= c 6= b. For each triple (m, `, r) with
0 ≤ m ≤ |Σ|2 − |Σ|, 0 ≤ ` ≤ 2|Σ| − 2, and r ∈ {0, 1} we can define a formula
(Xac = Xbc,m, `, r) in terms of (Xd < Xe), Xd and Ud with d, e ∈ Σ such that
for all x ∈ t ∈ R the following assertions I and II are satisfied.

I: If t, x |= (Xac = Xbc,m, `, r), then t, x |= (Xac = Xbc).
II: If the following four conditions C1, . . . , C4 are simultaneously satisfied,

then it holds: t, x |= (Xac = Xbc,m, `, r).
C1: t, x |= (Xac = Xbc).
C2: |Fx(a, c)| = |Fx(b, c)| ≥ m.
C3: δx(a, c) + δx(b, c) ≤ `.
C4: r = 1 or t, x |= (Xa ‖Xb) ∧ ¬[(Xc < Xa) ∧ (Xc < Xb)].

Corollary 9 The formulae (Xac = Xbc) and (Xac = Xbc, 0, 2|Σ| − 2, 1) are
equivalent.

Proof. [of Proposition 8] For a = b we define (Xac = Xbc,m, `, r) by the
formula Xa Xc> which simply states that xac exists. Obviously, I and II are
both satisfied for a = b. Hence in the following we may assume |{a, b, c}| = 3.
Consider a triple (m, `, r). If now either m > |Σ|2 − |Σ| − 2 or ` ≤ 1, then
we define (Xac = Xbc,m, `, r) by false. Then I is trivially true. Assertion II
also holds since if xac and xbc exist and xac = xbc then either C2 (for m >
|Σ|2 − |Σ| − 2) or C3 (for ` ≤ 1) is impossible.

In the following we may assume by induction that formulae are defined satis-
fying both I and II for all triples (m′, `′, r′) where either m′ > m or m′ = m,
`′ < ` or m′ = m, `′ = `, and r′ < r.

Case r = 1: We define (Xac = Xbc,m, `, 1) by ϕ1 ∨ ϕ2 ∨ ϕ3 where:

ϕ1 = ((Xa < Xb) ∧ Xa(Xb < Xc)) ∨ ((Xb < Xa) ∧ Xb(Xa < Xc)),

ϕ2 = (Xac = Xbc,m, `, 0),

ϕ3 = (Xa ‖Xb) ∧ ψ1 ∧ ψ2,

ψ1 = (Xc < Xa) ∧ (Xc < Xb),

ψ2 =ψ1 Uc ((Xac = Xbc,m, `, 0) ∧ ¬ψ1).

First, we show assertion I: Let t, x |= (Xac = Xbc,m, `, 1). If t, x |= ϕ1, then
t, x |= (Xac = Xbc) by a direct verification. For t, x |= ϕ2 we obtain the
implication by induction. Hence let t, x |= ϕ3. Choose a vertex y ∈ t which is
maximal with respect to the three properties λ(y) = c, x < y < xa, and x <
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y < xb. This vertex exists since t, x |= ψ1. In particular ya = xa and yb = xb

and by maximality of y we get t, y |= ¬ψ1. Hence t, y |= (Xac = Xbc,m, `, 0)
since t, x |= ψ2. It follows by induction that xac = yac = ybc = xbc as desired.

Now we show II for r = 1. Condition C1 says that xac and xbc exist and that
we have xac = xbc. If xa < xb or xb < xa, then t, x |= ϕ1. Since a 6= b we may
therefore assume that t, x |= (Xa ‖Xb). If now in addition t, x |= ¬ψ1, then C1,
. . . , C4 hold for the triple (m, `, 0) as well. We obtain t, x |= ϕ2 by induction
and we are done in this case. Hence we may assume both xc < xa and xc < xb.
Now, again choose y ∈ t maximal with respect to λ(y) = c, x < y < xa, and
x < y < xb. Clearly, t, y |= ¬ψ1 by maximality of y. In order to show that
t, x |= ϕ3 it is enough to verify t, y |= (Xac = Xbc,m, `, 0). By induction, this
requires to check C1, . . . , C4 for y. We have ya = xa, yb = xb, yac = xac and
ybc = xbc, so the two conditions C1 and C4 are true. Clearly Fy(a, c) = Fy(b, c),
because yac = ybc. Moreover Fx(a, c) ⊆ Fy(a, c) by (∗), hence C2 holds. Finally,
δy(a, c) = δx(a, c) and δy(b, c) = δx(b, c), because ya = xa and yb = xb. Hence
C3 holds, too.

Case r = 0: We define (Xac = Xbc,m, `, 0) by τ0 ∨ τ1 ∨ τ2 ∨ τ3 where:

τ0 = (Xa < Xc) ∧ (Xb < Xc),

τ1 = (Xc < Xa) ∧
∨

b6=b′ 6=c

τ(b, b′) ∧ Xc(Xac = Xb′c,m, `− 1, 1),

τ2 = (Xc < Xb) ∧
∨

a 6=a′ 6=c

τ(a, a′) ∧ Xc(Xa′c = Xbc,m, `− 1, 1),

τ3 =
∨

a 6=a′ 6=c
b6=b′ 6=c

τ(a, a′) ∧ τ(b, b′) ∧ Xc(Xa′c = Xb′c,m, `− 2, 1),

τ(a, a′) = (Xaa′ = Xca′ ,m+ 2, 2|Σ| − 2, 1) ∧ Xa(Xa′ < Xc),

τ(b, b′) = (Xbb′ = Xcb′ ,m+ 2, 2|Σ| − 2, 1) ∧ Xb(Xb′ < Xc).

To see assertion I first, suppose t, x |= (Xac = Xbc,m, `, 0). If t, x |= τ0, then
xac, xbc exist and moreover, xc = xac = xbc in this case. In particular, t, x |=
(Xac = Xbc). The following arguments are quite similar for τ1, τ2 and τ3. The
most elaborate one is for τ3. So, we treat only this case and we assume that
t, x |= τ3. Therefore we find a 6= a′ 6= c and b 6= b′ 6= c such that the following
statements hold where we define y = xc:

xa < xaa′ = xca′ = ya′ < xac, (by induction and τ(a, a′))

xb < xbb′ = xcb′ = yb′ < xbc, (by induction and τ(b, b′))

ya′c = yb′c. (by induction and τ3, last part)

We conclude xac = ya′c = yb′c = xbc and hence t, x |= (Xac = Xbc) as desired.

We still have to verify assertion II for r = 0 and |{a, b, c}| = 3. Consider
x ∈ t ∈ R such that C1, . . . , C4 are all satisfied. In particular, xac, xbc exist
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and we have xac = xbc. If xa < xc then xc = xac = xbc hence also xb < xc

and t, x |= τ0. Similarly, if xb < xc then t, x |= τ0. Hence in the following we
assume that neither xa < xc nor xb < xc.

There are three cases:

(1) xc < xa,
(2) xc < xb and
(3) neither xc < xa nor xc < xb.

These cases correspond to τ1, τ2, and τ3, respectively. Since r = 0, C4 implies
xa ‖xb and ¬(xc < xa∧xc < xb). Hence, in case 1, using ¬(xb < xc) and b 6= c,
we get xb ‖ xc. Similarly, in case 2 we have xa ‖ xc and in case 3 we have both
xa ‖xc and xb ‖xc. So in all cases we have at least two concurrent vertices and
we will apply the following

Claim 10 If xa ‖ xc then we find a′ ∈ Σ \ {a, c} such that both δxc(a
′, c) <

δx(a, c) and t, x |= τ(a, a′).

Let k = δx(a, c), by definition we find letters a1, · · · , ak−1 ⊆ Σ \ {a, c} such
that xa < xaa1 < · · · < xaak−1

< xac and a = a0 a1 · · · ak−1 ak = c in
(Σ, D). Since xa ‖ xc, we may apply Lemma 7 (2) and we find 1 ≤ i < k with
xaai

= xcai
. Let a′ = ai and y = xc. For i < j ≤ k we have ya′aj

= xaaj
. Hence,

δy(a
′, c) ≤ k − i < δx(a, c).

To see the claim it remains to show that t, x |= τ(a, a′). Since xaa′ < xac

we have to show t, x |= (Xaa′ = Xca′ ,m + 2, 2|Σ| − 2, 1). Let us consider
conditions C1,. . . ,C4 with respect to (a, c, a′) and the triple (m + 2, 2|Σ| −
2, 1). Condition C1 holds since xaa′ = xca′ . Condition C3 trivially holds since
δx(a, a

′) + δx(c, a
′) ≤ 2|Σ| − 2. Condition C4 trivially holds since r = 1. Thus,

we need to verify C2, only. Since xaa′ = xca′ , we have Fx(a, a
′) = Fx(c, a

′). Since
xaa′ < xac we obtain Fx(a, c) ⊆ Fx(a, a

′) and in fact (a, c), (b, c) ∈ Fx(a, a
′) \

Fx(a, c). Hence |Fx(a, a
′)| = |Fx(c, a

′)| ≥ m + 2. Thus all four conditions are
satisfied and using the induction hypothesis we get t, x |= (Xaa′ = Xca′ ,m +
2, 2|Σ| − 2, 1) which concludes the proof of the claim. 2

We come back to the proof of the three cases. We start with case 2). We have
xc < xb and xa ‖ xc. Let a′ be given by Claim 10, and let y = xc. We show
that C1,. . . ,C4 hold for y, (a′, b, c) and (m, ` − 1, 1). We have xa < xaa′ =
xca′ = ya′ < xac, hence ya′c = xac. Also, x < y < xb implies ybc = xbc.
Therefore, ya′c = xac = xbc = ybc and C1 holds. Using (∗), we get Fx(a, c) ⊆
Fy(a

′, c) and C2 holds. Claim 10 also implies C3 since δy(a
′, c) < δx(a, c) and

δy(b, c) = δx(b, c). Finally, C4 trivially holds since r = 1. By induction, we get
t, y |= (Xa′c = Xbc,m, `− 1, 1) and therefore, t, x |= τ2.

Case 1) is symmetrical. For case 3), we apply twice Claim 10 in order to get
a′ and b′. We show that C1,. . . ,C4 hold for y = xc, (a′, b′, c) and (m, `− 2, 1).
As above, we have ya′c = xac and yb′c = xbc, hence C1 holds. From Claim 10
we get δy(a

′, c)+ δy(b
′, c) ≤ δx(a, c)+ δx(b, c)−2 ≤ `−2 and C3 holds. Finally,

C4 trivially holds since r = 1 and C2 can be deduced using (∗) as above. By
induction, we get t, y |= (Xa′c = Xb′c,m, `− 2, 1) and therefore, t, x |= τ3. 2
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5 Lifting Theorem

In this section A denotes a subset of Σ. For x ∈ t ∈ R we define µA(x, t) to be
the prefix of ↑x which is given by the set of vertices

{z ∈ t | x ≤ z and ∀y, x < y ≤ z ⇒ λ(y) ∈ A}.

Thus, we always have x ∈ µA(x, t) and all other vertices of µA(x, t) have a
label in A. Indeed, µA(x, t) is the maximal prefix of ↑x having this property.
The aim of this section is to establish the following theorem. The proof relies
substantially on Proposition 6.

Theorem 11 (Lifting) Let ϕ ∈ LocTLΣ[(Xa ≤ Xb),Xa,Ua] and A ⊆ Σ.
Then we effectively find a formula ϕA ∈ LocTLΣ[(Xa ≤ Xb),Xa,Ua] such that
for all x ∈ t ∈ R we have:

µA(x, t), x |= ϕ if and only if t, x |= ϕA. (1)

The rest of this section is devoted to the proof of this theorem, which is done
by structural induction on ϕ. We start with the following observations: aA = a

for all a ∈ Σ, ϕ ∧ ψA
= ϕA ∧ ψ

A
, and ¬ϕA = ¬ϕA.

Now, µA(x, t), x |= (Xa ≤ Xb) if and only if both t, x |= (Xa ≤ Xb) and
xb ∈ µA(x, t). However, xb ∈ µA(x, t) can be expressed using the next lemma,
the proof of which is easy and omitted.

Lemma 12 For A ⊆ Σ and a ∈ Σ, we let ξ1(A, a) = Xa>∧
∧

c/∈A ¬(Xc ≤ Xa).
Let t ∈ R and x ∈ t. Then,

xa exists and xa ∈ µA(x, t) if and only if t, x |= ξ1(A, a).

The remaining cases, Xa ϕ
A

and ϕ Ua ψ
A
, are much more involved. We in-

troduce first another macro SwitchA,B,a for a ∈ B ⊆ A. We want that
t, x |= SwitchA,B,a implies that both xa ∈ µA(x, t) exists and µA(x, t) ∩ ↑xa =
µB(xa, t). Moreover, whenever xa ∈ µA(x, t) exists, then we want that t, x |=
SwitchA,B,a for some a ∈ B ⊆ A. This will be stated in Proposition 14 formally.
The construction of the macro SwitchA,B,a is based on the next lemma.

Lemma 13 Let x ∈ t ∈ R and a ∈ Σ such that xa exists and xa ∈ µA(x, t).
Define

B = {a} ∪ {b ∈ A \ {a} | t, x |=
∧
c/∈A

¬(Xab = Xcb)}.

Then we have a ∈ B ⊆ A and µA(x, t) ∩ ↑xa = µB(xa, t).

Proof. Observe that xa ∈ µA(x, t) implies a ∈ A, hence B ⊆ A.

For µA(x, t)∩ ↑xa ⊆ µB(xa, t) consider z ∈ µA(x, t)∩ ↑xa and xa < y ≤ z. We
have to show that b = λ(y) ∈ B. Since x < y ≤ z and z ∈ µA(x, t) we have
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b ∈ A. If b = a, then b ∈ B. Assume now that b 6= a so that b ∈ A \ {a} and
let c ∈ Σ be such that xab = xcb. We have x < xc < xcb = xab ≤ y ≤ z and
using z ∈ µA(x, t) we get c ∈ A. Therefore, b ∈ B.

For the other direction, let z ∈ µB(xa, t). We have to prove that z ∈ µA(x, t).
For this, it is enough to show that xc ≤ z implies c ∈ A for each c ∈ Σ. So
let c ∈ Σ be such that xc exists and xc ≤ z. If xc ≤ xa then c ∈ A since
xa ∈ µA(x, t). If xa < xc then c ∈ B ⊆ A since z ∈ µB(xa, t). Hence we assume
in the following xa ‖ xc. Now choose y ∈ t which is minimal with respect to
the properties xa ≤ y ≤ z and xc ≤ y ≤ z. Since xa ‖ xc, we obtain xa < y
and xc < y. Let b = λ(y). We show that y = xab = xcb. Without loss of
generality, we assume that xab ≤ xcb and we consider y′ with xc ≤ y′ l y. We
have (b, λ(y′)) ∈ D hence xab and y′ must be ordered. Using the minimality of
y we deduce that xab ≤ y′ is impossible. Hence, y′ < xab ≤ xcb ≤ y and using
y′ l y we get y = xab = xcb as desired. Now, xa < y ≤ z ∈ µB(xa, t) implies
b ∈ B. Also, b = a is not possible since otherwise xa and y′ must be ordered,
but y′ ≤ xa contradicts xa ‖ xc and xa < y′ contradicts the minimality of y.
Therefore b ∈ B \{a} and since xab = xcb we must have c ∈ A as required. 2

Let a ∈ Σ and A,B ⊆ Σ. If a 6∈ B or B 6⊆ A then we define SwitchA,B,a = ⊥.
If, on the other hand, a ∈ B ⊆ A then we define SwitchA,B,a as a conjunction
ξ1(A, a) ∧ ξ2(A,B, a) ∧ ξ3(A,B, a) where

ξ2(A,B, a) =
∧

b∈B\{a}

∧
c/∈A

¬(Xab = Xcb),

ξ3(A,B, a) =
∧

b∈A\B

∨
c/∈A

(Xab = Xcb).

Note that SwitchA,B,a is in LocTLΣ[(Xa ≤ Xb),Xa,Ua] by Proposition 6. As a
consequence of Lemmata 12 and 13 we obtain the following proposition.

Proposition 14

(1) Let a ∈ Σ and A,B ⊆ Σ. If t, x |= SwitchA,B,a then a ∈ B ⊆ A, xa exists,
xa ∈ µA(x, t) and µA(x, t) ∩ ↑xa = µB(xa, t).

(2) Let a ∈ Σ and A ⊆ Σ. If xa exists and xa ∈ µA(x, t) then we have
t, x |= SwitchA,B,a for some a ∈ B ⊆ A.

Proof. If t, x |= SwitchA,B,a then xa exists and xa ∈ µA(x, t) by Lemma 12.
Moreover, B is exactly the set as defined in Lemma 13, since a ∈ B. Hence
we obtain (1) by Lemma 13.

Assume now that xa exists and xa ∈ µA(x, t). We get t |= ξ1 by Lemma 12.
Let B be defined as in Lemma 13. We obtain t |= ξ2(A,B, a)∧ ξ3(A,B, a). 2

We can now easily deal with the case Xa ϕ in the inductive proof of Theorem 11.

Lemma 15 The formula Xa ϕ
A

=
∨
B

SwitchA,B,a ∧ Xa ϕ
B satisfies Eq. (1).
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Proof. Assume first that µA(x, t), x |= Xa ϕ. Then, xa exists, xa ∈ µA(x, t)
and µA(x, t), xa |= ϕ. By Proposition 14(2), we have t, x |= SwitchA,B,a for
some a ∈ B ⊆ A. We get µA(x, t) ∩ ↑xa = µB(xa, t) by Proposition 14(1) and
since the evaluation of a formula only depends on the future of the current
vertex we get µB(xa, t), xa |= ϕ. By structural induction we obtain t, xa |= ϕB

and therefore t, x |= Xa ϕ
B.

Conversely, assume that t, x |= SwitchA,B,a ∧ Xa ϕ
B for some B ⊆ Σ. Then,

a ∈ B ⊆ A, xa exists, xa ∈ µA(x, t) and µA(x, t) ∩ ↑xa = µB(xa, t) by
Proposition 14(1). Using t, xa |= ϕB we get by structural induction that
µB(xa, t), xa |= ϕ. It follows µA(x, t), xa |= ϕ and µA(x, t), x |= Xa ϕ. 2

For the remaining case ϕ Ua ψ
A

of the proof of Theorem 11, we also use an
induction on A. Note first that ¬a∧ϕUa ψ = ¬a∧Xa(a∧ϕUa ψ), hence it is

enough to lift a conjunction a∧ ϕ Ua ψ. We have a ∧ ϕ Ua ψ
∅

= a∧ ψ
∅
. Now,

we may assume that a ∧ ϕ Ua ψ
B

is already defined for all B ( A and we can
use the following lemma.

Lemma 16 The formula

a ∧ ϕ Ua ψ
A

= a ∧ (SwitchA,A,a ∧ ϕA) Ua (ψ
A ∨ (ϕA ∧ σ))

where
σ =

∨
B(A

SwitchA,B,a ∧ Xa a ∧ ϕ Ua ψ
B

satisfies Eq. (1).

Proof. Assume first that µA(x, t), x |= a ∧ ϕ Ua ψ and consider a chain x =
x0 < x1 < · · · < xk with k ≥ 0 such that xi+1 = (xi)a, µA(x, t), xi |= ϕ for
0 ≤ i < k and µA(x, t), xk |= ψ. Choose j ∈ {0, . . . , k} maximal such that
t, xi |= SwitchA,A,a for all 0 ≤ i < j. Then we have µA(x, t) ∩ ↑xi = µA(xi, t)
for all 0 ≤ i ≤ j by Proposition 14(1). (Note that both indices 0 and j are
included as a possible value for i.) Hence µA(xi, t), xi |= ϕ for 0 ≤ i < j and
by structural induction we get t, xi |= ϕA for 0 ≤ i < j.

Now, if j = k then we get µA(xk, t), xk |= ψ and by structural induction

t, xk |= ψ
A
. Therefore, t, x |= a ∧ ϕ Ua ψ

A
. On the other hand, if j < k then

we have µA(xj, t), xj |= ϕ and also µA(xj, t), xj |= Xa(a∧ϕUaψ). By structural
induction we deduce that t, xj |= ϕA. Now, since t, xj 6|= SwitchA,A,a and
xj+1 = (xj)a ∈ µA(x, t) ∩ ↑xj = µA(xj, t) exists, we have t, xj |= SwitchA,B,a

for some a ∈ B ( A by Proposition 14(2). Hence, arguing as above, we deduce

that µB(xj+1, t), xj+1 |= a∧ϕUaψ. Since B ( A we get t, xj+1 |= a ∧ ϕ Ua ψ
B

by induction on A. We deduce that t, xj |= σ, and hence t, x |= a ∧ ϕ Ua ψ
A
.

Conversely, assume t, x |= a∧(SwitchA,A,a∧ ϕA)Ua(ψ
A∨(ϕA∧σ)). This means

that for some j ≥ 0 there is a chain x = x0 < x1 < · · · < xj such that we have

xi+1 = (xi)a and t, xi |= SwitchA,A,a∧ ϕA for 0 ≤ i < j and t, xj |= ψ
A∨(ϕA∧
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σ). By structural induction we obtain either µA(xi, t), xi |= ϕ for 0 ≤ i < j
and µA(xj, t), xj |= ψ, or µA(xi, t), xi |= ϕ for 0 ≤ i ≤ j and t, xj |= σ. Using
Proposition 14(1), we obtain by induction on i that µA(x, t) ∩ ↑xi = µA(xi, t)
for 0 ≤ i ≤ j. Hence, we get either µA(x, t), xi |= ϕ for 0 ≤ i < j and
µA(x, t), xj |= ψ, or µA(x, t), xi |= ϕ for 0 ≤ i ≤ j and t, xj |= σ. The first case
means µA(x, t), x |= ϕUa ψ as desired. Assume now that we are in the second

case. For some B ( A we have t, xj |= SwitchA,B,a ∧ Xa a ∧ ϕ Ua ψ
B
. Let

y = xj so that t, ya |= ϕ Ua ψ
B
. Since B ( A we obtain µB(ya, t), ya |= ϕUa ψ

by induction. Using Proposition 14(1) we know that µB(ya, t) = µA(y, t) ∩
↑ya. Since also µA(y, t) = µA(x, t) ∩ ↑y we obtain µB(ya, t) = µA(x, t) ∩ ↑ya.
Therefore, µA(x, t), ya |= ϕ Ua ψ and since µA(x, t), xi |= ϕ for 0 ≤ i ≤ j we
get again µA(x, t), x |= ϕ Ua ψ. 2

6 Expressive completeness

The aim here is to establish the following result.

Theorem 17 Let L ⊆ R be expressible in the first order logic FOΣ(<). Then
we can construct ϕ ∈ LocTLΣ[(Xa ≤ Xb),Xa,Ua] such that L = L(ϕ).

From the semantics of SU, it is classical (and easy to see) that with any formula
ϕ ∈ LocTLΣ(SU) we can associate a first order formula ϕ̃ with one free variable
such that for any t ∈ R and x ∈ t, we have t, x |= ϕ if and only if t |= ϕ̃(x).
Moreover, it is enough to use at most 3 distinct variable names for ϕ̃(x). Thus,
we obtain as a direct consequence of Theorem 17 and Proposition 2:

Corollary 18 ([36,15]) Let L ⊆ R be expressible in the first order logic
FOΣ(<) then it is expressible in FO3

Σ(<), where FO3
Σ(<) is the subset of first

order formulae using at most 3 distinct variables.

For the proof of Theorem 17 we use the algebraic notion of recognizability and
the notion of aperiodic languages. Recognizability is defined as follows. Let
h : M → M be a morphism to a finite monoid M . For s, t ∈ R, we say that
s and t are h-similar, denoted by s ∼h t, if we can write s =

∏
0≤i<n si and

t =
∏

0≤i<n ti with si, ti ∈ M \ {1} and h(si) = h(ti) for all 0 ≤ i < n, where
n ∈ N ∪ {ω}. The transitive closure ≈h of ∼h is an equivalence relation. For
t ∈ R, we denote by [t]h the equivalence class of t under ≈h. In case that
there is no ambiguity, we simply write [t], ≈, and ∼. Note that there are three
cases: an equivalence class is either reduced to the empty trace ([t] = {1}), or
consists of finite non-empty traces only ([t] ⊆ M \ {1}), or consists of infinite
traces only ([t] ⊆ R \M). Since M is finite, the equivalence relation ≈h is of
finite index with at most 1 + |M |+ |M |2 equivalence classes. This fact is well-
known and can be derived by some standard Ramsey argument, see e.g. [17].
A trace language L ⊆ R is recognized by h, if t ∈ L implies [t]h ⊆ L for all
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t ∈ R. This means that L is saturated by ≈h (or equivalently by ∼h).

A finite monoid M is called aperiodic, if there is some n ≥ 0 such that un =
un+1 for all u ∈ M . A trace language L ⊆ R is called aperiodic, if it is
recognized by some morphism to a finite and aperiodic monoid.

Theorem 19 ([10,11]) A language L ⊆ R is expressible in FOΣ(<) if and
only if it is an aperiodic language.

Theorem 17 is a direct consequence of the only–if direction of Theorem 19 and
the following result. Theorem 20 is in fact our main technical contribution.
We give a self-contained proof for it.

Theorem 20 Let L ⊆ R be an aperiodic language. Then we can construct a
formula ϕ ∈ LocTLΣ[(Xa ≤ Xb),Xa,Ua] such that L(ϕ) = L.

Recall that for A ⊆ Σ, we denote by D(A) the set of letters that depend
on some letter in A. A morphism h is called weakly alphabetic, if h(r) = h(s)
impliesD(alph(r)) = D(alph(s)) for all r, s ∈ M\{1}. Note that this condition
is trivially satisfied for free monoids: If M is free, then all morphisms are weakly
alphabetic.

The power set (2Σ,∪) is an aperiodic monoid and the mapping M → 2Σ, t 7→
D(alph(t)) is a weakly alphabetic morphism. It follows that every aperiodic
language L ⊆ R can be recognized by some weakly alphabetic morphism,
because we may replace a morphism g : M → M by h : M → M × 2Σ with
h(t) = (g(t), D(alph(t)). Of course, h is weakly alphabetic, recognizes L if g
does, and M × 2Σ is finite and aperiodic, if M shares this property.

Remark 21 Let h : M →M be a weakly alphabetic morphism and let s, s′, t, t′

be such that [s] = [s′], and [t] = [t′]. Then, D(alphinf(s)) = D(alphinf(s′)) and
D(alph(t)) = D(alph(t′)). Hence also alphinf(s) × alph(t) ⊆ I if and only if
alphinf(s′)× alph(t′) ⊆ I. To show this last statement consider A,A′, B,B′ ⊆
Σ such that D(A) = D(A′), D(B) = D(B′) and A × B ⊆ I. Let (a′, b′) ∈
A′ × B′ and assume that (a′, b′) ∈ D. Then a′ ∈ D(B′) = D(B) and we find
b ∈ B with (a′, b) ∈ D. Now, b ∈ D(A′) = D(A) and we find a ∈ A with
(a, b) ∈ D, a contradiction. Therefore, A′ ×B′ ⊆ I.

Lemma 22 Let h : M → M be a weakly alphabetic morphism and s, t ∈ R
such that alphinf(s)× alph(t) ⊆ I. Then we have [s][t] ⊆ [st].

Proof. Let s ∼ s′ and t ∼ t′. We find n ∈ N ∪ {ω} and factorizations s =∏
0≤i<n si, s

′ =
∏

0≤i<n s
′
i, t =

∏
0≤i<n ti and t′ =

∏
0≤i<n t

′
i such that h(si) =

h(s′i), h(ti) = h(t′i), siti 6= 1 6= s′it
′
i for all 0 ≤ i < n, and alph(si) ⊆ alphinf(s),

alph(s′i) ⊆ alphinf(s′) for all 0 < i < n. If necessary, we use empty factors so
that all four products are over the same index set.
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We have alphinf(s) × alph(t) ⊆ I, hence st =
∏

0≤i<n siti. Since h is weakly
alphabetic, we also get alphinf(s′) × alph(t′) ⊆ I by Remark 21. Therefore
s′t′ =

∏
0≤i<n s

′
it
′
i is well-defined, too. Since h(si) = h(s′i) and h(ti) = h(t′i), we

have h(siti) = h(s′it
′
i) for all 0 ≤ i < n and we get st ∼ s′t′. We deduce that

s′t′ ∈ [st]. Since ≈ is the transitive closure of ∼, a simple induction shows the
claim of the lemma. 2

We prove Theorem 20 by induction on the monoid M and the alphabet Σ.
More precisely, our induction parameter is the pair (|M |, |Σ|) and we use the
lexicographic order.

The assertion of Theorem 20 is easy if h(c) = 1M for all c ∈ Σ. Indeed, in
this case, the set L is a boolean combination of the sets {ε}, M \ {ε} and
R \M. Moreover, {ε} = L(

∧
a∈Σ ¬Xa>) and the set R \M of infinite traces is

expressed by the formula
∨

a∈Σ F∞ a where the macro F∞ a = Xa G(¬a∨Xa>)
means that there are infinitely many a-labelled vertices above the current one.
Note that when |M | = 1 or |Σ| = 0 then we have h(c) = 1M for all c ∈ Σ and
this special case ensures the base of the induction.

We fix in the following some letter c ∈ Σ such that h(c) 6= 1. We let A =
Σ \ {c} and ∆ = MA(cR ∩ R1). Recall that RA = {t ∈ R | alph(t) ⊆ A} and
MA = RA ∩M.

Lemma 23 Let L ⊆ R be a trace language recognized by the morphism h.
Then, L \∆ is definable by a formula in LocTLΣ[(Xa ≤ Xb),Xa,Ua].

Proof. We have R\∆ = RA∪ (RA \MA)(cR∩R1). Since L∩RA is recognized
by the restriction h �MA

of h to MA and |A| < |Σ| we get by induction a
formula ξ0 for L ∩ RA. Note that, a priori, the induction gives a formula ξ′0 ∈
LocTLA[(Xa ≤ Xb),Xa,Ua] such that L ∩ RA = {t ∈ RA | #t |= ξ′0}. Then the
formula ξ0 = ξ′0 ∧¬Xc> is in LocTLΣ[(Xa ≤ Xb),Xa,Ua] and L(ξ0) = L∩RA.

Consider now a trace t = rcs ∈ L with r ∈ RA \ MA and cs ∈ R1. The
language [r] ∩ RA of traces in RA that are h-equivalent to r is recognized by
h�MA

hence we get as above a formula ϕ[r] for [r] ∩RA. We have alph(s) ( Σ
since r is infinite and alphinf(r) × alph(s) ⊆ I. Therefore, by induction we
find a formula ψ[s] for

⋃
B(Σ[s]∩RB. By Lemma 5, we may assume that ψ[s] is

iml. Let ξ[r],[s] = ϕ[r]
A ∧ Xc ψ[s] where ϕ[r]

A is given by Theorem 11. Note that
#r = µA(x,#t) where x is the minimal vertex of #t. Hence, #t |= ϕ[r]

A and
since xc is the minimal vertex of cs and the formula ψ[s] is iml, we also have
#t |= Xc ψ[s]. Therefore, t ∈ L(ξ[r],[s]).

Let ϕ = ξ0∨
∨

(u,v)∈W ξu,v whereW is the set of pairs ([r], [s]) such that rcs ∈ L,
r ∈ RA \MA and cs ∈ R1. We have already shown that L \∆ ⊆ L(ϕ).

Conversely, let t′ ∈ L(ξ[r],[s]) where r, s are as above. Define #r′ = µA(x,#t′)
where x is now the minimal vertex of #t′. By Theorem 11 we get r′ ∈ L(ϕ[r]) =
[r] ∩ RA. Since #t′ |= Xc ψ[s], xc exists and with s′ = ⇑xc we get t′ = r′cs′,
cs′ ∈ R1 and cs′ |= ψ[s]. Since ψ[s] is iml, we deduce that s′ ∈ L(ψ[s]) ⊆ [s].
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Therefore, t′ = r′cs′ ∈ [r]c[s] ⊆ [rcs] ⊆ L by Lemma 22. Therefore, t′ ∈
L ∩ (RA \MA)(cR ∩ R1), which concludes the proof. 2

We define the notion of c-factorization for traces in R. If t ∈ R \ ∆ then its
c-factorization is t itself. The set ∆ is a disjoint union of ∆1 = MA(cMA∩R1)ω

and ∆2 = MA(cMA ∩ R1)∗(c(R \∆) ∩ R1). A trace t ∈ ∆1 can be written in
a unique way as an infinite product (its c-factorization) t = t0ct1ct2 · · · with
t0 ∈ MA and cti ∈ cMA ∩ R1 for all i > 0. Similarly, the c-factorization of a
trace t ∈ ∆2 is the finite product t = t0ct1 · · · ctk with t0 ∈ MA, cti ∈ cMA∩R1

for all 0 < i < k and ctk ∈ R1 with tk /∈ ∆.

The next step is to replace the c-factorization of t by some sequence over a
finite alphabet. For this purpose and for the rest of this section let T1 = h(MA)
and T2 = {[s]h | s ∈ R \∆}. We let T be the disjoint union of T1 and T2 and
we view T as a finite alphabet.

The c-factorization induces a canonical mapping σ : R → T∞ as follows. If
t ∈ ∆1 and its c-factorization is the infinite product t = t0ct1ct2 · · · then we
let σ(t) = h(t0)h(t1)h(t2) · · · ∈ T ω

1 . If the c-factorization of t ∈ (R \∆)∪∆2 is
the finite product t = t0c · · · ctk (k ≥ 0) then let σ(t) = h(t0) · · ·h(tk−1)[tk]h ∈
T ∗

1 T2.

Lemma 24 Let L ⊆ R be a trace language recognized by the morphism h from
M to M . Then L = σ−1(K) for some language K definable in LTLT [X,U].

The proof of this lemma uses the induction on the size of the monoid M .
The language K will be obtained from languages recognized by a (weakly
alphabetic) morphism g from T ∗ to some monoid M ′ with |M ′| < |M |. The
monoid M ′ is obtained with a non-standard construction on monoids. Since
this construction might be useful elsewhere, we explain it outside of the proof
of Lemma 24. The construction is very similar to a construction of what is
known as local algebra 1 , see [12,22] 2 .

For a moment let M be any monoid and m ∈M an element. Then mM ∩Mm
is obviously a sub semigroup, but we emphasize that it is not a monoid, in
general. (Note that we do not demand m to be idempotent.) Nevertheless, we
can define a new product ◦ such that mM ∩Mm becomes a monoid where
m is a neutral element: We define xm ◦my = xmy for xm,my ∈ mM ∩Mm.
This is well-defined since xm = x′m and my = my′ imply xmy = x′my′. The
operation is associative and m ◦ z = z ◦m = z. Hence (mM ∩Mm, ◦,m) is
indeed a monoid. If M is aperiodic, then (mM ∩Mm, ◦,m) is aperiodic, too.
Indeed, if mx ∈Mm then, by induction on n, the n-th ◦-power of mx is mxn,
hence the result. 3 Moreover, if a finite monoid M is aperiodic with neutral

1 Let A be an associative algebra and m ∈ A. The local algebra at m is defined in
the literature as mAm with new product mxm ◦mym = mxmym.
2 The reference to [12,22] is due to Benjamin Steinberg.
3 As Daniel Kirsten pointed out (mM ∩ Mm, ◦,m) is in fact a divisor of M : Let
M (m) = {x ∈ M | xm ∈ mM}. Then M (m) is a submonoid of M , and the mapping
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element 1M and m 6= 1M , then |mM ∩Mm| < |M | since 1M 6∈ mM ∩Mm.
Indeed, assume by contradiction that 1M ∈ mM ∩Mm and write 1M = mx ∈
Mm. Since M is aperiodic, we find n ≥ 0 minimal with xn = xn+1. We have
mxn = mxn+1 and since mx = 1M and n is minimal, we get n = 0. But this
implies m = mx = 1M , a contradiction.

Proof. [of Lemma 24] Let M be again the finite aperiodic monoid we fixed
above together with the morphism h. Then h(c) 6= 1 and the monoid M ′ =
(h(c)M ∩Mh(c), ◦, h(c)) has a smaller size than M . Let us define a morphism
g : T ∗ → M ′ as follows. For m = h(s) ∈ T1 we define g(m) = h(c)mh(c) =
h(csc). For m ∈ T2 we let g(m) = h(c), which is the neutral element in M ′.

Let K0 = {[s]h | s ∈ L \∆}. We claim that L \∆ = σ−1(K0). One inclusion is
clear. Conversely, let t ∈ σ−1(K0). There exists s ∈ L\∆ such that σ(t) = [s]h.
By definition of σ, this implies t /∈ ∆ and σ(t) = [t]h. Since s ∈ L and L is
recognized by h, we get t ∈ L as desired.

For n ∈ T1 and m ∈ T2, let Kn,m = nT ∗
1m ∩ n[n−1σ(L) ∩ T ∗

1m]g and let
K2 =

⋃
n∈T1,m∈T2

Kn,m. We claim that L ∩∆2 = σ−1(K2). Let first t ∈ L ∩∆2

and write t = t0ct1 · · · ctk its c-factorization. With n = h(t0) and m = [tk]h
we get σ(t) ∈ Kn,m. Conversely, let t ∈ σ−1(Kn,m) with n ∈ T1 and m ∈ T2.
We have t ∈ ∆2 and its c-factorization is t = t0ct1 · · · ctk with h(t0) = n and
[tk]h = m (k > 0). Moreover, x = h(t1) · · ·h(tk−1)[tk]h ∈ [n−1σ(L) ∩ T ∗

1m]g
hence we find y ∈ T ∗

1m with g(x) = g(y) and ny ∈ σ(L). Let s ∈ L be
such that σ(s) = ny ∈ nT ∗

1m. Then s ∈ ∆2 and its c-factorization is s =
s0cs1 · · · cs` with h(s0) = n and [s`]h = m (` > 0). By definition of g, we
get h(ct1c · · · ctk−1c) = g(x) = g(y) = h(cs1c · · · cs`−1c) and we deduce that
t ≈h s. Since s ∈ L and L is recognized by h, we get t ∈ L as desired.

For n ∈ T1, let now Kn,ω = nT ω
1 ∩ n[n−1σ(L)∩ T ω

1 ]g and let K1 =
⋃

n∈T1
Kn,ω.

As above, we will show that L∩∆1 = σ−1(K1). So let t ∈ L∩∆1 and consider
its c-factorization t = t0ct1ct2 · · · . With n = h(t0), we get σ(t) ∈ Kn,ω. To
prove the converse inclusion we need some auxiliary results.

First, if x ∼g y ∼g z with x ∈ T ω and |y|T1 < ω then x ∼g z. Indeed,
in this case, we find factorizations x = x0x1x2 · · · and y = y0y1y2 · · · with
xi ∈ T+, y0 ∈ T+ and yi ∈ T+

2 for i > 0 such that g(xi) = g(yi) for all
i ≥ 0. Similarly, we find factorizations z = z0z1z2 · · · and y = y′0y

′
1y

′
2 · · · with

zi ∈ T+, y′0 ∈ T+ and y′i ∈ T+
2 for i > 0 such that g(zi) = g(y′i) for all

i ≥ 0. Then, we have g(xi) = g(yi) = h(c) = g(y′i) = g(zi) for all i > 0 and
g(x0) = g(y0) = g(y′0) = g(z0) since y0 and y′0 contain all letters of y from T1

and g maps all letters from T2 to the neutral element of M ′.

Second, if x ∼g y ∼g z with |y|T1 = ω then x ∼g y
′ ∼g z for some y′ ∈ T ω

1 .
Indeed, in this case, we find factorizations x = x0x1x2 · · · and y = y0y1y2 · · ·
with xi ∈ T+, and yi ∈ T ∗T1T

∗ such that g(xi) = g(yi) for all i ≥ 0. Let y′i
be the projection of yi to the subalphabet T1 and let y = y′0y

′
1y

′
2 · · · ∈ T ω

1 . We

f(x) = xm is a surjective morphism from M (m) onto (mM ∩Mm, ◦,m).
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have g(yi) = g(y′i), hence x ∼g y
′. Similarly, we get y′ ∼g z.

Third, if σ(t) ∼g σ(s) with t, s ∈ ∆1 then ct ≈h cs. Indeed, since t, s ∈ ∆1,
the c-factorizations of t and s are of the form t1ct2 · · · and s1cs2 · · · . Using
σ(t) ∼g σ(s), we find new factorizations t = t′1ct

′
2 · · · and s = s′1cs

′
2 · · · with

t′i, s
′
i ∈ MA(cMA ∩ R1)+ and h(ct′ic) = h(cs′ic) for all i > 0. We deduce

ct = (ct′1c)t
′
2(ct

′
3c)t

′
4 · · · ∼h (cs′1c)t

′
2(cs

′
3c)t

′
4 · · · =

cs′1(ct
′
2c)s

′
3(ct

′
4c) · · · ∼h cs

′
1(cs

′
2c)s

′
3(cs

′
4c) · · · = cs.

We come back to the proof of σ−1(Kn,ω) ⊆ L ∩∆1. So let t ∈ σ−1(Kn,ω). We
have t ∈ ∆1 and σ(t) = nx ∈ nT ω

1 with x ∈ [n−1σ(L) ∩ T ω
1 ]g. Let y ∈ T ω

1 be
such that x ≈g y and ny ∈ σ(L). Let s ∈ L with σ(s) = ny. We may write
t = t0ct

′ and s = s0cs
′ with t0, s0 ∈ MA, h(t0) = n = h(s0), ct

′, cs′ ∈ R1,
x = σ(t′) and y = σ(s′). Since x ≈g y, using the first two auxiliary results
above and the fact that the mapping σ : ∆1 → T ω

1 is surjective, we get
σ(t′) ∼g σ(r1) ∼g · · · ∼g σ(rk) ∼g σ(s′) for some r1, . . . , rk ∈ ∆1. From the
third auxiliary result, we get ct′ ≈h cs

′. Hence, using h(t0) = h(s0), we obtain
t = t0ct

′ ≈h s0cs
′ = s. Since s ∈ L and L is recognized by h, we get t ∈ L as

desired.

Finally, let K = K0 ∪ K1 ∪ K2. We have already seen that L = σ−1(K). It
remains to show that K is definable in LTLT [X,U]. Let N ⊆ T∞, then, by
definition, the language [N ]g is recognized by g which is a weakly alphabetic
morphism to the aperiodic monoid M ′ with |M ′| < |M |. By induction on the
size of the monoid, we deduce that all languages of the form [N ]g are definable
in LocTLT [(Xa ≤ Xb),Xa,Ua] and hence in LTLT [X,U] by Proposition 2 since
for words, EX is the usual X modality. 4 Now, if a language N ⊆ T∞ is
defined by f ∈ LTLT [X,U] and n ∈ T then the language nN is defined by
n∧X f . Moreover, K0, nT

∗
1m and nT ω

1 are obviously definable in LTLT (X,U).
Therefore, K is definable in LTLT [X,U]. 2

The next lemma yields the basic transformation from an LTL formula over
words to a formula in local temporal logic over traces.

Lemma 25 For each formula f ∈ LTLT [X,U] there exists a formula f̃ ∈
LocTLΣ[(Xa ≤ Xb),Xa,Ua] such that for all t ∈ R we have σ(t) |= f if and
only if #t |= f̃ .

Proof. Clearly, we have ⊥̃ = ⊥, ¬̃f = ¬f̃ and f̃1 ∨ f2 = f̃1 ∨ f̃2.

4 The statement that an aperiodic language K over words in T∞ is definable in
LTLT [XU] is also a consequence of classical papers [30,18,23,34,13,27,28,3]. Therefore
it is of course a well-known result but we do not need it since we get it for free by
induction on the monoid size.
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Now, we consider the case f = m ∈ T1. For t ∈ R we have σ(t) |= m if and
only if t = rcs with r ∈ h−1(m) ∩ MA and cs ∈ R1. Clearly, h−1(m) ∩ MA is
recognized by h �MA

and as in the proof of Lemma 23, we get by induction
on the size of the alphabet a formula ϕm ∈ LocTLΣ[(Xa ≤ Xb),Xa,Ua] such
that h−1(m) ∩MA = L(ϕm). Using Theorem 11 we obtain: m̃ = ϕm

A ∧ Xc>.
Indeed, assume that #t |= m̃ for some t ∈ ∆. Let #r = µA(#t, x) where x is
the minimal vertex of #t. Since #t |= Xc> we have t = rcs for some s with
cs ∈ R1. Now, by Theorem 11 we get #r |= ϕm. Hence, r ∈ h−1(m)∩MA and
σ(t) |= m. The converse can be shown similarly.

Next, assume that f = m = [s]h ∈ T2. We have σ(t) |= m if and only if
t ∈ [s]h \∆. The result follows by Lemma 23.

Finally, it is well-known that, for words, the logic LTLT [X,U] is equivalent to
LTLT [XU] where f1 XU f2 = X(f1 U f2). Hence, it remains to deal with the
modality XU. For this we use the fact that ∆ = L(δ) where

δ = ¬Xc> ∨
∧

a∈A

(F∞ a⇐⇒ Xc F∞ a).

Note that F∞ a = Xa G(¬a ∨ Xa>) is an iml formula, hence δ is iml, too.

Now, we claim that ˜f1 XU f2 = δ ∧ Xc((δ ∧ f̃1) Uc f̃2), where we assume using

Lemma 5 that f̃1 and f̃2 are iml. To see this, assume first that #t |= ˜f1 XU f2

and write t = t0ct1 · · · ctj with t0 ∈ RA, cti ∈ (cRA ∩ R1) for 0 < i < j,

ctj ∈ R1, cti · · · ctj |= δ ∧ f̃1 for 0 < i < j and ctj |= f̃2. Since t |= δ and
cti · · · ctj |= δ for 0 < i < j, we deduce that ti ∈ MA for 0 ≤ i < j. Hence,

σ(t) = h(t0) · · ·h(tj−1)σ(tj). The formula f̃2 is iml, hence #tj |= f̃2 and by

induction we obtain σ(tj) |= f2. Similarly, since f̃1 is iml, we get σ(tic · · · ctj) =
h(ti) · · ·h(tj−1)σ(tj) |= f1 for 0 < i < j. Therefore, σ(t) |= f1XUf2 as required.
The proof for the converse is similar. 2

Theorem 20 is a direct consequence of Lemmas 24 and 25. By Proposition 2
and Theorem 17 we obtain:

Corollary 26 Let L ⊆ R(Σ, D) be a real trace language. The following asser-
tions are equivalent:

(1) The language L is expressible in FOΣ(<).
(2) We have L = LΣ(ϕ) for some ϕ ∈ LocTLΣ[(Xa ≤ Xb),Xa,Ua].
(3) We have L = LΣ(ϕ) for some ϕ ∈ LocTLΣ[Xi,Ui].
(4) We have L = LΣ(ϕ) for some ϕ ∈ LocTLΣ[EX,U].
(5) We have L = LΣ(ϕ) for some ϕ ∈ LocTLΣ[SU].

We obtain also easily the same equivalence for trace languages in R1.

Corollary 27 Let L ⊆ R1 be a language of real traces having a unique mini-
mal vertex. The following assertions are equivalent:

(1) The language L is expressible in FOΣ(<).
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(2) We have L = L1(ϕ) for some ϕ ∈ LocTLΣ[(Xa ≤ Xb),Xa,Ua].
(3) We have L = L1(ϕ) for some ϕ ∈ LocTLΣ[Xi,Ui].
(4) We have L = L1(ϕ) for some ϕ ∈ LocTLΣ[EX,U].
(5) We have L = L1(ϕ) for some ϕ ∈ LocTLΣ[SU].

Proof. In view of Proposition 2 we only need to show 1 implies 2. So let L ⊆
R1 be expressible in FOΣ(<). We have L =

⋃
c∈Σ c · (c−1L) and each language

c−1L = {t ∈ R | ct ∈ L} is also expressible in FOΣ(<). By Theorem 17
we find a formula ϕc ∈ LocTLΣ[(Xa ≤ Xb),Xa,Ua] such that c−1L = L(ϕc)
and we may assume that ϕc is iml by Lemma 5. We get L = L1(ϕ) with
ϕ =

∨
c∈Σ c ∧ ϕc. Indeed, let ct ∈ L. We have t ∈ c−1L hence #t |= ϕc. We

get ct |= c ∧ ϕc since ϕc is iml. Conversely, assume that s ∈ L1(c ∧ ϕc) for
some c ∈ Σ. Then, s = ct and #t |= ϕc since this formula is iml. Therefore,
t ∈ c−1L and s ∈ c · (c−1L) ⊆ L. 2

7 Concluding remarks

Since the result of this paper has been obtained in fall 2003, we have continued
the research in the following directions. In [8] we proved that our result in [4] on
the expressive completeness of the global temporal logic can be derived quite
easily from the results of the present paper. We have also started, but did not
finish yet, an investigation on local safety properties. This is quite subtle and
indicates that this concept is related to the notion of coherent closure rather
than to a pure topological concept (Scott closure), as over words or in a global
semantics [5].

Many other problems remain open. As we have seen the 3-variable fragment of
FO(<) has the same expressive power as the full first-order theory FO(<). The
2-variable fragment of FO(<) is weaker. Over finite words its expressive power
is well-understood. The 2-variable fragment corresponds to LocTLΣ[XF,YP]
which is equal to LocTLΣ[Xa,Ya], and it can be algebraically characterized by
the variety DA, [31]. Here XF means Next-Future and YP means Yesterday-
Past. Hence t, x |= XFϕ if t, y |= ϕ for some node y strictly above x (i.e.,
x < y). The operator YP is dual.

In the presence of independence the situation is more complicated. With two
variables we can express that a trace contains 2 parallel nodes. This leads out of
the variety DA. In his Ph.D. thesis [20], Kufleitner showed that for finite traces
we still have the correspondences between LocTLΣ[XF,YP], LocTLΣ[Xa,Ya],
and DA, but these fragments are weaker than the 2-variable fragment of
FO(<). It is an interesting open problem whether the 2-variable fragment of
FO(<) is decidable, in general. Indeed, compared to the rich theory of regular
word languages very little is known for recognizable trace languages.

Acknowledgement. We thank the anonymous referees for reading the ma-
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nuscript and for asking whether the logics LocTLΣ[Xi,Ui] and LocTLΣ[Xa,Ua]
were expressively complete. This leads us to strengthen Proposition 2 and
to add Remark 4. In the submitted version, we only proved that the logic
LocTLΣ[(Xa ≤ Xb),Xi,Ui] is expressively complete since we did not try to
express the constants (Xa ≤ Xb) in LocTLΣ[Xi,Ui].
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