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Introduction.

Cheeger, Goresky, and MacPherson conjectured in [CGM] an L2-de Rham theorem:
that the intersection cohomology of a projective variety V is naturally isomorphic to the
L2-cohomology of the incomplete manifold V −SingV , with metric induced by a projective
embedding. The early interest in this conjecture was motivated in large part by the hope
that one could then put a pure Hodge structure on the intersection cohomology of V and
even extend the rest of the “Kähler package” ([CGM]) to this context. Saito ([S1,S2])
eventually established the Kähler package for intersection cohomology without recourse to
L2-cohomology techniques.

However, interest in L2-cohomology did not disappear with this result, since, among
other things, L2-cohomology provides intrinsic geometric invariants of an arbitrary complex
projective variety which are not apparent from the point of view of D-modules. For
instance, L2− ∂̄-coholomology groups depend on boundary conditions ([PS]), which, as we
show here, must be treated carefully in order to give the correct Hodge components for
the L2-cohomology of a singular variety. A related fact is that for incomplete manifolds
the pure Hodge structure and Lefschetz decompositions are not direct consequences of the
Kähler condition as they are in the compact case.

Indeed, the primary obstruction to obtaining a Hodge structure on the L2-cohomology
is the following apparent technicality: on an incomplete Kähler manifold there are several
potentially distinct definitions of a square integrable harmonic form. For example, a form
h might be considered harmonic if dh = 0 = δh, or if ∂̄h = 0 = ϑh, or simply if ∆h = 0.
Moreover there are further domain considerations: one imposes boundary conditions, which
turn out to have no effect on cohomology in the case of d, but are crucial for ∂̄-cohomology.

On a compact, or even complete manifold all these definitions of harmonics coincide,
and one obtains the pure Hodge structure by decomposing harmonic forms into their (p, q)
components. The (p, q) components are harmonic in the weakest sense - they are in the
kernel of ∆. The equality of the different notions of harmonic then allows one to realize
these (p, q) components as spaces of both ∂̄ and d cohomology classes. The equivalence
of the different definitions of harmonic is also required in order to obtain the Lefschetz
decomposition. A local computation shows that interior product with the Kähler form
preserves the kernel of ∆, but one requires the equivalence to see that this also induces an
endomorphism on the L2-cohomology.

Partially supported by NSF grants DMS 95-04900 (Pardon) and DMS 9505040 (Stern)

1



2 WILLIAM PARDON AND MARK STERN

Ohsawa [O2] proved the conjectured L2-de Rham theorem under the extra assumption
that V has only isolated singularities. Strangely, the L2-cohomology in the incomplete
metric played almost no role in his proof. It entered only as a limit of cohomology groups
with respect to a family of auxiliary complete metrics, which degenerate to the incomplete
metric. The proof relies in part on earlier work of Saper [Sa] where V − SingV (under the
isolated singularities assumption) is endowed with a complete, but non-canonical Kähler
metric whose associated L2-cohomology is then shown to be isomorphic to the intersection
cohomology of V . Saper’s result also provides the intersection cohomology of varieties with
isolated singularities with a pure Hodge structure.

This paper began as an attempt to compute those L2-∂̄ cohomology groups for surfaces
which had not been computed in [PS] and to show that they give the same Hodge structure
as Hain and Zucker obtain in [HZ] using resolution of singularities. In order to show that
the ∂̄-cohomology groups actually gave the components of the Hodge structure, we were
forced to overcome the above technical difficulties and to understand the relations between
the domains of ∆, d, ∂̄, etc. Ultimately we were led to establish a ”good” harmonic theory
for varieties with isolated singularities. To do so, we show that the harmonic forms satisfy
certain growth estimates near the singular points. With these estimates we can manipulate
the harmonic forms as though they were on a complete manifold. For example, we show
that in degrees other than n−1, n, and n+1, n = dimC V , the L2 kernel of ∆ is contained
in the kernels of d, δ, ∂̄, and ϑ. With this and related results we obtain the pure Hodge
structure and the Lefschetz decomposition for the L2-cohomology, in the same manner as
in the complete case.

Some of the estimates we derive could also be obtained by appropriately elaborating
arguments of [O1] and [O2]. They are proved here, however, using the incomplete metric
itself rather than families of auxiliary complete metrics, because we hope to develop the
tools for working directly with the L2-complex in the incomplete metric. We have not,
however, reproved all the results that we need from [O1] and [O2]. In particular, we do
not reprove the isomorphism between intersection cohomology and L2-cohomology. It is
clear that our estimates do not yet imply the requisite vanishing in middle degree, which
in Ohsawa’s proof ultimately relies on a computation of Saper ([Sa]).

As we mentioned above, this line of investigation began with an attempt to calculate
those L2 − ∂̄-cohomology groups of an algebraic surface which had not already been cal-
culated in [P] and [PS]. Since the L2 − d-cohomology has a local characterization, it is
natural to put our calculations and their relation to a proposed Hodge filtration into a
local context using the derived category, which globalizes to the required Hodge structure.
Thus, the second main result of this paper is to show that (L·N/D ,F

·) admits the struc-

ture of a cohomological Hodge complex ([D]), where L·N/D is a complex of sheaves of L2

forms (with mixed Neumann and Dirichlet bounday conditions) and F · is the filtration by
holomorphic degree. We have proved this result only for complex surfaces.

Related work has been done by Fox and Haskell ([FH]) and Nagase ([N]) in which a
pure Hodge structure was stated for the L2-cohomology of normal singular surfaces. Their
work relies implicitly on the inclusion in degree 0 of the L2 kernel of ∆ in the kernel of d.
The Kähler package for curves was proved by Brüning and Lesch in [BL].

In the next section we give a precise statement of our main results.
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§1: Statement of the main results

We begin with a review of some of the basic ideas of L2-cohomology for complex varieties
([P, PS]). Let V be a projective variety with singular set SingV . From any projective
imbedding V →֒ PN , V − SingV inherits a Kähler metric g, which we call an ambient
metric; or Fubini-Study metric. It is incomplete if SingV 6= ∅. The pointwise inner
product of k-forms ω1 and ω2 with measurable coefficients will be denoted < ω1, ω2 >g,
and the global inner product is

(ω1, ω2)g :=

∫

V −Sing V

< ω1, ω2 >g dVg,

where dVg denotes the volume form of the ambient metric; subscript g’s will be dropped in
general and the norm of a form ω will be denoted ‖ω‖. Since the quasi-isometry class of an
ambient metric is independent of the choice of imbedding, there is, for each nonnegative
integer k, a well-defined sheaf Lk on V of locally L2 k-forms: if Mk denotes the sheaf on
V − SingV of k-forms with measurable coefficients, then for each open set U ⊆ V

(1.1) Lk(U) := {ω ∈Mk(U − Sing V ) | ‖ω|K ‖ <∞, for all compactK ⊆ U}.

Now since V is compact the space of global sections Lk(V ) is a Hilbert space with re-
spect to the inner product (·, ·) and the subspaces Ak

cpt(V − Sing V ) of smooth compactly

supported forms and Ak
2(V − SingV ) of smooth square integrable forms are dense. The

exterior derivative dcpt : Ak
cpt(V − SingV ) → Ak+1

cpt (V − SingV ) admits (at least) two,

possibly different closed extensions to operators dN and dD from Lk(V ) to Lk+1(V ), the
Neumann and Dirichlet extensions, so named because of the analogy with classical bound-
ary conditions: these are, respectively, the graph closures of d restricted to Ak(V −SingV )
and of dcpt ([PS, p,606]).

We adopt the convention of denoting sheaves by calligraphic font and the corresponding
space of global sections by Roman font. Thus, for example, Lk := Lk(V ).

The cohomology groups of the resulting complexes

(1.2) (L·
N , dN ) := (L· ∩ d−1

N L·, dN )

and

(1.3) (L·
D , dD) := (L· ∩ d−1

D L·, dD)

are denoted

(1.4) H∗
N (V ) and H∗

D(V )

respectively, and are called L2-de Rham-cohomology groups. The operators dN and dD are
the maximal and minimal closed extensions of dcpt. Others are possible, but it turns out
([O]) that H∗

N (V ) and H∗
D(V ) are canonically isomorphic to the intersection cohomology

groups IH∗(V ) when V has only isolated singularities, so that in this case (and probably
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in general) all choices of boundary conditions (closed extensions of dcpt) yield the same de
Rham L2-cohomology groups, which we denote

H∗
2 (V )

Now the definitions (1.2)-(1.4) for de Rham complexes and cohomology work just as
well for the corresponding ∂̄-complexes and cohomology, giving for each p, 0 ≤ p ≤ dimV ,
complexes

(1.5) (Lp,·
N , ∂̄N ), (Lp,·

D , ∂̄D)

and L2 − ∂̄-cohomology groups

(1.6) Hp,∗
N (V ), Hp,∗

D (V )

However, as was already noted in [P, (4.13)] and [PS, Theorem B], unlike the de Rham
groups, these are sensitive to changes in the boundary conditions. In order to state our
first main result about Hodge structures, we introduce another ∂̄-complex, which mixes
Dirichlet and Neumann boundary conditions, and has cohomology in general different from
that of either of the ∂̄-complexes above. Namely, we define for each p, 0 ≤ p ≤ dimV ,

(1.7) (Lp,·
N/D, ∂̄N/D) := (L· ∩ ∂̄−1

N/DL
·, ∂̄N/D)

where

(1.8) ∂̄p,q
N/D :=

{
∂̄p,q

D , p+ q < n,

∂̄p,q
N , p+ q ≥ n

and let

(1.9) Hp,∗
D/N (V )

denote its cohomology groups.
We can now state our first result concerning Hodge structure; for completeness we first

give the standard definitions:

1.10. Definition Let A be a subring of R such that A ⊗ Q is a field. An A-Hodge
structure of weight k is a quadruple (HA;HC, F ·; i), where HA is a finitely generated A-

module,HC is a C-vector space, i : HA⊗C
∼=
−→ HC is an isomorphism, and F · is a decreasing

filtration of HC such that F 0HC = HC, F k+1HC = 0 and HC = F pHC ⊕ F k−p+1HC, for
p = 0, 1, . . . , k. One calls the above data an A-Hodge structure on HC and say HC has
an A-Hodge structure. We define the Hodge (p, q)-component Hp,q, for q = k − p, to be

F pHC∩F k−pHC; it then follows that HC = ⊕Hp,q, the direct sum of its (p, q)-components,

Hp,q
∼=
−→ F p/F p+1, and Hp,q = Hq,p for all p.

Equivalently, a Hodge structure is such a direct sum decomposition; and the filtration
is recovered by setting F i = ⊕p≥iHp,q.
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1.11. Theorem A Let V be an n-dimensional complex projective variety with isolated
singularities. Then for each k, 0 ≤ k ≤ n, there is a canonical isomorphism

Hk
2 (V ) ∼= ⊕p+q=kH

p,q
D/N (V )

arising from a Z-Hodge structure of weight k, (IHk(V );Hk
2 (V ), i;F ·), where i : IHk(V )⊗

C→ Hk
2 (V ) is the canonical isomorphism ( [O2]) and F · is filtration by holomorphic degree.

This is Theorem (2.50) and is proved by decomposing the space Hk
2(V ) of harmonic

representatives of Hk
2 (V ) into a direct sum of spacesHp,q

D/N (V ) of harmonic representatives

for Hp,q
D/N (V ). In the case of complete (in particular, compact) Kähler manifolds, the d-

Laplace operator itself decomposes into a sum of ∂̄-Laplace operators ([Z1]); this is the
usual route to the Hodge decomposition above. In our incomplete case, however, it will
turn out that only in degrees k, |n − k| ≥ 2, does such an operator decomposition hold.
This is connected to the sensitivity of ∂̄ to boundary conditions and will be discussed
in detail in §2, where Theorem A is proved. In addition we will prove there that other
parts of the “Kähler package” hold, as conjectured in [CGM]: the Lefschetz decomposition
(“Hard Lefschetz”) and the polarization of the Hodge structure on the primitive subspaces
of L2-cohomology.

The second main theorem of this paper works in a context which is a sheafification of
the definition of Hodge structure above and is proved by a combination of algebraic and
analytic methods. Here we get the Hodge structure by identifying the filtered complex of
sheaves of L2-forms with a filtered complex of sheaves whose global cohomology is known
to have a Hodge structure in this sheaf-theoretic sense. The sheaf-theoretic definition of a
Hodge structure is given next.

Let R be a commutative ring and let X be a topological space. Let Db
R(X) denote the

derived category of complexes of R-sheaves on X that are bounded below, and DFb
R(X),

the corresponding derived category of filtered complexes.

1.12. Definition ([D, (8.1.2)]) Let A be a subring of R such that A⊗Q is a field. Let X
be a topological space. An A-cohomological Hodge complex is a quadruple (KA;KC,F ·;α)
where

a. KA is an object in Db
A(X),

b. (KC,F ·) is an object in DFb
C
(X),

c. α is an isomorphism KA ⊗ C
∼=
−→ KC in Db

C
(X) and

d. For each k and p the map Hk(RΓ(X,FpKC)) → Hk(RΓ(X,KC)) is injective
and the quadruple (Hk(RΓ(X,KA));Hk(RΓ(X,KC)), F ·;Hk(RΓ(X,α))) is an A-
Hodge structure of weight k on Hk(RΓ(X,KC)), where

F pHk(RΓ(X,KC)) := im (Hk(RΓ(X,FpKC))→ Hk(RΓ(X,KC))).

One calls the above data an A-cohomological Hodge structure on KC. It follows from
condition d. that the spectral sequence of the filtered complex (RΓ(X,KC)), F ·) collapses
at the E1-term and that the induced map

Hk(RΓ(X, grp
FKC)→ F p/F p+1 ∼=

←− Hp,k−p
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is an isomorphism.

1.13. Remark: The vector spaces in d. above are hypercohomology. But since all
the sheaves we use are fine, this is the same as the cohomology Hk(X;KC) of the global
sections.

1.14. Example: Let π : (Ṽ , E) → (V,Sing V ) be a resolution of singularities of a
complex projective variety V with isolated singularities SingV , where E is a divisor with
normal crossings. Define a complex of sheaves Â· on V by

Â· = π∗A
0
Ṽ

(logE)
d
−→ π∗A

1
Ṽ

(logE)
d
−→ · · ·

d
−→ π∗A

n−2

Ṽ
(logE)→

→ π∗{φ ∈ A
n−1

Ṽ
(logE)|dφ ∈ π∗(IEA

n
Ṽ

(logE))}
d
−→

→ π∗(IEA
n
Ṽ

(logE))
d
−→ π∗(IEA

n+1

Ṽ
(logE))→ · · ·

d
−→ π∗(IEA

2n
Ṽ

(logE))

which we abbreviate to

(1.15) Â· :=

{
π∗(A

k
Ṽ

(logE), k < n,

π∗(IEA
k
Ṽ

(logE), k ≥ n

where Ak
Ṽ

(logE) is the sheaf of k-forms on Ṽ with at worst logarithmic poles along E and

IE is the ideal sheaf of E. In [HZ], [Z2], Hain and Zucker noticed that Â· satisfies the
axioms ([GM]) for intersection cohomology: for small U containing a singular point v of
V , the complex of vector spaces Γ(U ;π∗(A·

Ṽ
(logE)) computes the cohomology of U − v

while Γ(U ;π∗(IEA·
Ṽ

(logE)) computes that of U , which matches the local computation of
intersection cohomology. Hence, if IHZ denotes the complex of Z-sheaves of intersection

cochains on V with middle perversity, there is a unique isomorphism ([GM]) α : IHZ⊗C
∼=
−→

Â· in Db
C
(X). It was known that the mixed Hodge structure on IH∗(V ) was pure, and they

also showed that the usual filtration by holomorphic degree induces a filtration F · on Â·

so that the quadruple (IHZ; Â·,F ·;α) is a Z-cohomological Hodge complex. In particular,

we get a Z-Hodge structure of weight k on IHk(V ; C) = Hk(V ; Â·) for all k.

1.16 Remark One may also define for each p the corresponding ∂̄-complex

Âp,· = π∗A
p,0

Ṽ
(logE)

∂̄
−→ π∗A

p,1

Ṽ
(logE)

∂̄
−→ · · ·

∂̄
−→ π∗A

p,n−p−2

Ṽ
(logE)→

→ π∗{φ ∈ A
p,n−p−1

Ṽ
(logE)|∂̄φ ∈ π∗(IEA

p,n−p

Ṽ
(logE))}

∂̄
−→

→ π∗(IEA
p,n−p

Ṽ
(logE))

∂̄
−→ π∗(IEA

p,n−p+1

Ṽ
(logE))→ · · ·

∂̄
−→ π∗(IEA

p,2n−p

Ṽ
(logE))

(1.17)

and one expects that the (p, q) components of the Hodge structure onHk(V ; Â·), the spaces

Hk(V ; grq
F Â

·), will be Hq(V ; Âp,·) for p+ q = k. This is indeed the case when n = 2, but

requires some proof, because the complexes grp
FÂ

· and Âp,· are not the same: for instance,
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a form φ of type (p, n − p − 1) in Ân−1 must satisfy ∂φ ∈ π∗(IEA
p+1,n−p−1

Ṽ
(logE)),

whereas no such condition is required for membership in Âp,n−p−1. So it must be shown
that the canonical map of complexes κ̂p : grp

F Â
· → Âp,· is a quasi-isomorphism. This issue

is treated in §4.

As with the sheafification of the notion of a Hodge structure in (1.12) above, we must
sheafify dN and dD by defining operators dN (U) and dD(U), for each open set U ⊆ V ,
which equal those defined above in case U = V . For dN this was done in [PS, p.606] and
for dD the definition is similar: for each open set U , set

(1.18) dN (U) := dw(U − U ∩ SingV ) and dD(U) := dw(U),

where dw(U − U ∩ SingV ) (resp. dw(U)) denotes the weak derivative with respect to
compact subsets of U − U ∩ SingV (resp., compact subsets of U). Finally, generalizing
(1.2) and (1.3), we define complexes of sheaves on V ,

(1.19) (L·N , dN ) := (L· ∩ d−1
N L

·, dN ),

and

(1.20) (L·D , dD) := (L· ∩ d−1
D L

·, dD).

Now the results of Ohsawa cited above in Theorem A are actually local, so that each
of these complexes of sheaves is isomorphic in the derived category Db

C
(V ) to the middle-

perversity intersection complex IHC. Also, each admits the standard filtration F · by
holomorphic degree; but neither of these filtered complexes of sheaves will easily produce
the associated gradeds we obtained in Theorem A. Rather, another incarnation of IHC

will be used, one which mixes the Neumann and Dirichlet boundary conditions as was
done in Theorem A. Namely, we define

(1.21) dk
N/D :=

{
dD k < n,

dN k ≥ n

and then

(1.22) (L·N/D , dN/D) := (L· ∩ d−1
N/DL

·, dN/D).

Similarly we have the corresponding ∂̄-complexes, (Lp,·, ∂̄N ), (Lp,·, ∂̄D) and

(1.23) (Lp,·
N/D, ∂̄N/D) := (L· ∩ ∂̄−1

N/DL
·, ∂̄N/D)

defined for each p by

(1.24) ∂̄p,q
N/D :=

{
∂̄p,q

D , p+ q < n,

∂̄p,q
N , p+ q ≥ n.

We can now state the second main theorem of this paper (see Theorem (4.9) below).
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Theorem B. Let V be a complex projective variety of dimension two with at most isolated
singularities. Then there is

a. a filtered isomorphism

γ : (L·N/D,F
·)

∼=−→ (Â·,F ·)

in DFb
C
(V ) and

b. for each p ≥ 0, a canonical isomorphism in Db
C
(V )

κ̂ : grp
FL

·
N/D

∼=
−→ Lp,·

N/D

1.25. Corollary For V as above, the quadruple (IHZ;L·N/D,F
·;β) is a Z-cohomological

Hodge complex, isomorphic to the Hain-Zucker Z-cohomological Hodge complex (IHZ; Â·,F ·;α)
and for each k, the Hodge components Hk(V ; grp

FL
·
N/D) of Hk(V ;L·N/D) are canonically

isomorphic to Hq(V ;Lp,·
N/D), p + q = k. In particular, the isomorphism Hk(V ; Â·)

∼=
−→

Hk(V ;L·N/D), induced by the canonical isomorphism γ preserves the respective (p, q)-

components of the Hodge structures and induces isomorphisms

Hq(V ; Âp,·)
∼=−→ Hq(V ;Lp,·

N/D)

Proof By uniqueness of IHC in Db
C
, there is a commutative diagram of isomorphisms

in Db
C
(V )

(1.26)

IHC

α
−−−−→ L·N/D

=

y
yγ

IHC

β
−−−−→ Â·

inDb
C
. It is immediate from the the hypercohomology spectral sequences of Â·, FpÂ·, L·N/D

and FpL·N/D that γ induces vertical isomorphisms in a commutative diagram

Hk(V ;FpÂ·) −−−−→ Hk(V ; Â·)

∼=

y
y∼=

Hk(V ;FpL·N/D) −−−−→ Hk(V ;L·N/D)

for each p = 0, . . . , n and k = 0, . . . , 2n. By the result of Hain and Zucker, the top
horizontal is injective, so the bottom one is as well. Finally, the commutativity of (1.26)
shows that the right vertical isomorphism in the above diagram preserves the underlying
real structures coming from α and β; so we are done.
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§2. The pure Hodge structure for varieties with isolated singularities

Call an L2 k-form on V − SingV weakly harmonic if it is in the kernel of the Laplace
operator ∆d := dδ+δd in the distributional sense. Although elliptic regularity implies that
a weakly harmonic form is smooth it does not imply that it is in the domain of dN or δN
as these operators may not preserve square integrability. Kähler identities imply that the
(p, q)-components of such a form are in the kernel of ∆∂̄ (again, in the distributional sense);
so, we obtain the Hodge structure on Hk

2 (V ) in the usual way, provided we can show that
the space of weak d-(resp. ∂̄-)harmonics is isomorphic to Hk

2 (V ) (resp. Hp,q
N/D(V )). The

estimates in the first part of this chapter lead to a proof of this (2.42) in case |k − n| ≥ 2
(resp. |p+ q−n| ≥ 2). In particular, no boundary conditions are present in cohomology or
harmonics in these dimensions. In case p+ q = n− 1, this cannot be so, since, in general,
H0,1

N (V ) 6= H0,1
D (V ) in case dimV = 2. In (2.43) a variational argument, requiring a

Dirichlet boundary condition near the singularity, takes care of the cases k = n ± 1. We
are then able to use Kähler identities to obtain Lefschetz decompositions of H∗

2 (V ) and
H∗,∗

N/D(V ) (2.49), and from this we deduce in (2.50) the Hodge structure. Much of this

relies on the Hodge decomposition (into harmonic, exact, and coexact forms) of the space
of L2 k-forms (or of (p, q)-forms). This is a separate issue and is treated in a short appendix
to this chapter.

To begin, we specialize the hypotheses made at the beginning of §1. Now V will be
a variety with isolated singularities which, to simplify notation, is assumed to have only
one singular point, v. Fix an embedding of V in PN and coordinates (z1, . . . , zN ) on the
complement CN of a hyperplane so that the image of v is the origin. Let U = V ∩ CN .
Then the restriction to U − {0} of the Fubini-Study metric on PN has Kähler form

(2.1) ω := i∂∂̄ log(1 + r2)/2,

where r2 =
∑
|zi|2. Unless otherwise stated, the pointwise inner product and norm

〈ξ, η〉 and |ξ| := 〈ξ, ξ〉
1
2

and the (global) L2-inner product and norm

(ξ, η) :=

∫

U−{0}
〈ξ, η〉dU and ‖ξ‖ :=

(∫

U−{0}
〈ξ, ξ〉dU

)1/2

of (p, q)-forms ξ and η on V − {0} will be with respect to the Hermitian inner product
defined by this metric, where dU denotes its volume form; since V − U has measure zero
and is supported away from the singular point, these integrals equal their counterparts
over V . We say ξ is L2 when ‖ξ‖ <∞ ; the space of locally L2 forms of type (p, q) on any
subspace W ⊆ V is denoted Lp,q(W ); similarly, that of k-forms is denoted Lk(W ).

Since dr, viewed as a 1-form on CN , has norm 1 + r2 with respect to the Fubini-Study
metric, its restriction to U has norm

(2.2) |dr| ≤ 1 + r2.
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Hence if we set

(2.3) u = tan−1(r),

then

(2.4) |du| ≤ 1

on U and of course |∂u| = |∂̄u| = 2−
1
2 |du|.

For any form α we will denote by e(α) (resp., e∗(α)) the operation of exterior (resp.,
interior) multiplication on the left by α; in case α is the Kähler form ω, we denote these
operators as usual by L and Λ. We will often use the fact that that if φ is a differential
form, then

(2.5) |e(α)φ| ≤ |α| · |φ| and |e∗(α)φ| ≤ |α| · |φ|.

On U we may uniquely express any form φ as :

(2.6) φ = φ0 + e(
∂̄u

|∂̄u|
)φ1 + e(

∂u

|∂u|
)φ2 + e(

∂̄u

|∂̄u|
)e(

∂u

|∂u|
)φ3,

where each φi is in the kernel of e∗(∂̄u) and e∗(∂u), and φi = 0, for i > 0 at any point
where du vanishes. Then

(2.7) (φ, φ) = (φ0, φ0) + (φ1, φ1) + (φ2, φ2) + (φ3, φ3).

Because the Kähler form is ∂̄-exact on U , we may express L there as

L = −i{∂̄, e(∂ log(1 + r2)/2)} = e(−i∂̄∂ log(1 + r2)/2),

where {·, ·} denotes the anticommutator. More generally, given a smooth function f , we
have

(2.8) −i{∂̄, e(∂f(log(1 + r2))/2)} = −i2r2f ′′(log(1 + r2))e(∂̄u)e(∂u) + f ′(log(1 + r2))L.

We now use this identity to relate certain weighted L2 norms of a form φ on U − {0} to
the L2 norms of ∂̄φ, ϑφ, and φ|V − U 1

2
, with

(2.9) U 1
2

:= {z ∈ V | 0 < r ≤
1

2
}.

Because of the form of the identity (2.8), our weight functions will be continuous, piecewise
smooth functions of t, where

(2.10) t = log(1 + r2).

For small r, t = r2 +O(r4); when convenient in subsequent computations, we will replace
t by r2 and so introduce the O(r4)-error term. In addition, statements like “φ/r log(1/r2)

is L2” and “φ/t
1
2 log(1/t) is L2” will be used interchangeably. We will also use

(2.11) dt = 2r du and so |dt| = (2t
1
2 +O(t))|du|.

Let D and D′ denote the operators

D := ∂̄ + ϑ D′ := ∂ + ϑ̄.
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2.12. Convention When such operators are used without subscripts D or N indicating
boundary conditions, we always mean the weak derivatives.

The basis for our estimates will be variations of the following proposition which is a
variation of a computation of [DF].

2.13. Proposition Let φ be form of type (p, q) on V , and let f : (0,∞) → R be a piece-
wise smooth (“weight”) function with f ′ continuous and vanishing for sufficiently large r.
Suppose either that φ is supported away from 0 ∈ V or that f ′ is supported away from 0.
Then we have

(n− p− q)(f ′(t)φ, φ)− (i2r2f ′′(t)[e∗(∂̄u)e∗(∂u)/|∂̄u|2, e(∂̄u)e(∂u)]φ, φ)

= −(Dφ, rf ′(t)[e(∂̄u) + e∗(∂̄u)]φ)− (D′φ, rf ′(t)[e(∂u) + e∗(∂u)]φ).

Proof: The proof is a simple computation involving only integration by parts and
Kähler identities. Starting from (2.8) above, integrate by parts (f ′ is supported away from
∞ and either φ or f ′ is supported away from 0) to get the second equality below and use
the Kähler identity i∂ = [ϑ,L] to get the fourth in

(−i2r2f ′′(t)e(∂̄u)e(∂u)φ+ f ′(t)Lφ,Lφ)

= (−i{∂̄, e(∂f(t)/2)}φ,Lφ) = (−ie(∂f(t)/2)∂̄φ, Lφ)− (ie(∂f(t)/2)φ, ϑLφ)

= (−ie(∂f(t)/2)∂̄φ, Lφ)− (ie(∂f(t)/2)φ, [ϑ,L]φ) − (ie(∂f(t)/2)φ,Lϑφ)

= (−ie(∂f(t)/2)∂̄φ, Lφ)− (ie(∂f(t)/2)φ, i∂φ) − (ie(∂f(t)/2)φ,Lϑφ).

We reorganize this as

(2.14) (f ′(t)Lφ,Lφ) = (−ie(∂f(t)/2)∂̄φ, Lφ)− (ie(∂f(t)/2)φ,Lϑφ)

− (e(∂f(t)/2)φ, ∂φ) + (i2r2f ′′(t)e(∂̄u)e(∂u)φ,Lφ).

Similarly, applying the identity (2.8) to Λφ, taking inner product with φ, and using the
Kähler identity −ϑ̄ = [Λ, ∂̄], we have

(f ′(t)LΛφ, φ)

= −(ie(∂f(t)/2)Λφ, ϑφ) − (ie(∂f(t)/2)∂̄Λφ, φ) + (i2r2f ′′(t)e(∂̄u)e(∂u)Λφ, φ)

= (−ie(∂f(t)/2)Λφ, ϑφ) − (ie(∂f(t)/2)Λ∂̄φ, φ)

+ (e(∂f(t)/2)ϑ̄φ, φ) + (i2r2f ′′(t)e(∂̄u)e(∂u)Λφ, φ).

Subtracting this equality from (2.14) and using the equality ∂f(t)/2 = rf ′(t)∂u gives

(f ′(t)[Λ, L]φ, φ)

= (irf ′(t)[e(∂u),Λ]∂̄φ, φ) + (irf ′(t)∂̄[e(∂u),Λ]φ, φ)

− (rf ′(t)e(∂u)ϑ̄φ, φ)− (rf ′(t)e(∂u)φ, ∂φ)

+ (i2r2f ′′((t)[Λ, e(∂̄u)e(∂u)]φ, φ).
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Then using the Kähler identity [Λ, L]φ = (n− p− q)φ completes the proof.
We use this proposition to bound weighted L2 norms of φ by certain weighted norms of

Dφ and D′φ.

(2.15). Corollary With notation and assumptions as in Proposition (2.13), and for any
function F : (0,∞)→ R, we have

(n− p− q)(f ′(t)φ, φ) + (|du|2r2f ′′(t)φ0, φ0)− (|du|2r2f ′′(t)φ3, φ3)

≤ (‖F (t)Dφ‖ + ‖F (t)D′φ‖) · ‖2−
1
2 |du|(rf ′(t)/F (t))φ‖.

Proof Multiply and divide by F in the first and second terms on the right in (2.13)
and use Cauchy-Schwarz.

For the applications we have in mind, we will need to relax the support hypothesis on
φ or f ′ in this Proposition. To do this we choose a sequence {φj} of compactly supported
forms converging to φ in the L2 norm; or else a sequence {f ′j} of compactly supported
functions converging to f ′. Then we let j →∞ in (2.15) or in estimates derived from it.
In practice, we always choose the approximating sequences in the same way:

φj := µj(t)φ or else f ′j = µj(t)f
′

where µj is a smooth function (0, 1)→ [0, 1] having the properties (see [PS, 3.5])

(2.16) µj(t) =

{
1, t ≥ e−ej

0, t ≤ e−ej+1

and

(2.17) |dµj(t)| ≤
2χI(k)

t
1
2 log(1/t)

,

where χI(k) is the characteristic function of the interval I(k) = [e−ek+1

, e−ek

]. Here we are

using |dt| ∼ 2t1/2.
For instance, assume φ and dφ are L2. Clearly, µjφ converges to φ in L2. To show that

dµjφ → dφ as well, we need to control dµj ∧ φ. For this, and to widen the applicability
of estimates like (2.15) to include non-compactly supported forms, the following obvious
lemma will be used.

2.18. Lemma Let ξ be an m-form on U − {0}, m ≥ 0, and suppose that ξ/r log(1/r2) ∈
Lm(U 1

2
). Then

‖dµj ∧ ξ‖ → 0

as j →∞. In particular, if ξ ∈ dom dN , then ξ ∈ dom dD.

Proof By (2.4) and (2.11) |dt| ≤ Kt
1
2 on U 1

2
for some K > 0, so

‖dµj(t) ∧ ξ‖ = ‖t
1
2 log(1/t)dµj(t) ∧ (ξ/t

1
2 log(1/t))‖ ≤ 2K‖χI(j)ξ/t

1
2 log(1/t)‖2 → 0



PURE HODGE STRUCTURE ON L2-COHOMOLOGY. 13

by the Lebesgue dominated convergence theorem. The second assertion is an immediate
consequence of this.

2.19 Remark Identical results hold where d is replaced by ∂̄, D, etc. Thus for such ξ
boundary conditions are irrelevant and we may drop the subscriptB indicating a boundary
condition from dBξ. Moreover, standard consequences of the Kähler condition, which hold
for forms compactly supported in V − 0, are valid for such ξ. For instance:

2.20. Proposition Let ξ be an m-form on V −{0} such that ξ/r log(1/r2) ∈ Lm(U 1
2
) and

Dξ is L2. Then D′ξ is L2 and ‖Dξ‖ = ‖D′ξ‖.

2.21. Proposition Let φ ∈ Lp,q(V ) where n − p − q ≥ 1. Assume that Dφ and D′φ are
L2. Then φ/r log(1/r2) ∈ Lp,q(U 1

2
).

Proof: Let k ∈ R and in (2.19) take F (t) ≡ 1; and for t < 1
2

f ′(t) = µj(t) logk(1/t)

where µj is the cut-off function recalled in (2.16) and f ′ is extended to a smooth bounded
function for t ≥ 1

2
. Then we obtain, for some positive constants C and K, the inequality

(2.22)

(χ 1
2
(t)µj(t) logk(1/t)φ, φ) + ([r2µ′j(t) logk(1/t)− kχ 1

2
(t)µj(t) logk−1(1/t)]|du|2φ0, φ0)

− ([r2µ′j(t) logk(1/t)− kχ 1
2
(t)µj(t) logk−1(1/t)]|du|2φ3, φ3)

≤ C‖rχ 1
2
(t)µj(t) logk(1/t)φ‖+K‖(1− χ 1

2
(t))φ‖

where χ 1
2
(t) denotes the characteristic function of U 1

2
. The right side is bounded in j

(non-uniformly in k). Assume that χ 1
2
(t) log(k−1)/2(1/t)φ ∈ Lp,q

2 (U 1
2
) for some k. Then

as j → ∞ the integrals (r2µ′j(t) logk(1/t)φi, φi), i = 0, 3, tend to zero by dominated

convergence. Hence (2.22) implies that the integrals (χ 1
2
(t)µj(t) logk(1/t)φ, φ) are bounded

as j →∞, so χ 1
2
(t) logk/2(1/t)φ is L2. Hence, beginning with negative k, we conclude by

induction that χ 1
2
(t) logk(1/t)φ is L2 for all k.

Return to (2.15) and this time take for t ≤ 1
2

f ′(t) = µj(t) logk(1/t), F (t) = r log
k+1
2 (1/t)

and extend them in a bounded fashion for t ≥ 1
2 , and so that F is nowhere zero. Now

using χ 1
2
(t) logk(1/t)φ ∈ Lp,q

2 (U 1
2
), we argue as above that we may discard the integrals

(r2µ′j(t) logk(1/t)φi, φi) and that we may replace µj(t) by 1. Then applying Cauchy-
Schwarz to the first term on the right side and discarding a positive term on the left, we
get, for any ǫ > 0,

(2.23) (χ 1
2
(t) logk(1/t)φ, φ)− kχ 1

2
(t) logk−1(1/t)φ0, φ0)

≤
1

2ǫ
(‖rχ 1

2
(t) log

k+1
2 (1/t)Dφ‖2 + ‖rχ 1

2
(t) log

k+1
2 (1/t)D′φ‖2) +

ǫ

2
‖χ 1

2
(t) log

k−1
2 (1/t)φ‖2

+K(‖(1− χ 1
2
(t))φ‖ + ‖(1− χ 1

2
(t))Dφ‖ + ‖(1− χ 1

2
(t))D′φ‖)
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We need the following simple telescoping series calculation:

(2.24) − 1 +
N+1∑

k=1

logk−1(1/t)

(k + 1)!
=

N∑

k=1

( logk(1/t)

(k + 1)!
−

logk−1(1/t)

k!
+

logk−1(1/t)

(k + 1)!

)

=
N∑

k=1

(
logk(1/t)

(k + 1)!
−
k logk−1(1/t)

(k + 1)!

)
.

Now the left side of (2.23) is no larger if φ0 is replaced by φ in the second term; then
dividing both sides by (k + 1)!, summing over all k ≥ 1 gives, according to (2.23),

− (χ 1
2
(t)φ, φ) + (

χ 1
2
(t)

log2(1/t)
(
1

t
− 1− log(1/t))φ, φ)

≤
1

2ǫ
(r2(

1

t
− 1− log(1/t))χ 1

2
(t)Dφ,Dφ) +

1

2ǫ
(r2(

1

t
− 1− log(1/t))χ 1

2
(t)D′φ,D′φ)

+
ǫ

2
(
χ 1

2
(t)

log2(1/t)
(
1

t
− 1− log(1/t))φ, φ) +K ′

for some positive K ′. Now take ǫ small and reorganize to get

(2.25) (1− ǫ/2)‖(χ 1
2
(t)/t

1
2 log(1/t))φ‖2

≤
1

2ǫ
(r2(

1

t
−1−log(1/t))χ 1

2
(t)Dφ,Dφ)+

1

2ǫ
(r2(

1

t
−1−log(1/t))χ 1

2
(t)D′φ,D′φ)+(φ, φ)+K ′.

So (1/r log(1/t))φ ∈ Lp,q(U 1
2
).

2.26 Remark We will use again below the device of summing estimates like (2.23) but
will leave computations like (2.24) to the reader.

When one considers forms of degree k with n− k ≥ 2, difficulties with boundary condi-
tions largely disappear as we will show with the following proposition.

2.27. Proposition Let φ ∈ Lp,q(V ) where n − p − q ≥ 2. Assume that Dφ is L2. Then
φ/r is L2, and D′φ is L2. Similarly, if φ ∈ Lk(V ) where n − k ≥ 2 and (d + δ)φ is L2,
then φ/r is L2.

Proof: We prove the first assertion. The proof of the second is identical. The idea of
the proof is to use the Kähler identities so that we can bound D′φ and thus reduce to the
preceding proposition. This of course requires integration by parts. The difficulties arise
in justifying this integration.

Reflecting our less restrictive hypotheses on the exterior derivatives of φ, we recast our
basic estimate (2.15) by applying Cauchy-Schwarz only to the first term on the right side
of (2.13): for any compactly supported form ψ, we get

(2.28) (n− p− q)(f ′ψ,ψ) + (r2|du|2f ′′ψ0, ψ0)− (r2|du|2f ′′ψ3, ψ3)

≤ ‖FDψ‖‖rf ′ |∂u|ψ/F‖ − (FD′ψ, rf ′ [e(∂u) + e∗(∂u)]ψ/F ).
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where, to shorten notation, we write F for F (t), f ′ for f ′(t), etc. Now estimate the last
term by

(2.29) − (FD′ψ, rf ′ [e(∂u) + e∗(∂u)]ψ/F )

= −(D′Fψ, rf ′ [e(∂u) + e∗(∂u)]ψ/F )+

(2rF ′[e(∂u)− e∗(∂u)]ψ, rf ′ [e(∂u) + e∗(∂u)]ψ/F )

≤ ‖D′Fψ‖‖|∂u|rf ′ψ/F‖+ (r|du|2F ′ψ0, rf
′ψ0/F ) + (r|du|2F ′ψ1, rf

′ψ1/F )

− (r|du|2F ′ψ2, rf
′ψ2/F )− (r|du|2F ′ψ3, rf

′ψ3/F ).

Using the fact that ‖DFψ‖ = ‖D′Fψ‖ (since the metric is Kähler and ψ is compactly
supported) and some elementary manipulations gives

(2.30) − (FD′ψ, rf ′/F (e(∂u) + e∗(∂u))ψ) ≤

(‖FDψ‖ + ‖2rF ′|∂u|ψ‖)‖|∂u|rf ′ψ/F‖+ (r|du|2F ′ψ0, rf
′ψ0/F ) + (r|du|2F ′ψ1, rf

′ψ1/F )

− (r|du|2F ′ψ2, rf
′ψ2/F )− (r|du|2F ′ψ3, rf

′ψ3/F ).

Let us now make the simplifying and useful choice

f ′ = F 2/r2,

Inserting this into our earlier inequality (2.28) and using (2.30) and (2.10) we get

([(n−p−q−|du|2(r2+1))F 2/r2+|du|2FF ′]ψ0, ψ0)+([(n−p−q)F 2/r2−|du|2FF ′]ψ1, ψ1)

+([(n−p−q)F 2/r2+|du|2FF ′]ψ2, ψ2)+([(n−p−q+|du|2(r2+1))F 2/r2−|du|2FF ′]ψ3, ψ3)

≤ (2
1
2 ‖FDψ‖ + ‖rF ′ψ‖)(‖Fψ/r‖

Set now for t < 1
2 , F (t) = Fk(t) = t

1
2 log

k
2 (1/t), and extend in a bounded fashion for

t ≥ 1
2 , with Fk(t)/ log

k
2 (2) uniformly bounded (for t ≥ 1

2 ) as k →∞.

Plugging this in and using t = r2 +O(r4), gives for some positive constants C and K,

(2.31) ([(n − p − q −
1

2
− Cr2) logk(1/t)− k log

k−1
2 (1/t)/2]χ 1

2
(t)ψ,ψ)

≤ (2
1
2 ‖FkDψ‖ + ‖rF ′

kψ‖)‖Fkψ/r‖ +K‖(1− χ 1
2
)Fkψ‖.

Applying Cauchy-Schwarz to two terms on the right gives

(2.32) ([(n − p − q − 1− Cr2 − 1/2M) logk(1/t)− k2 logk−2(1/t)/4]χ 1
2
(t)ψ,ψ)

≤M‖FkDψ‖
2 +K‖(1− χ 1

2
)Fkψ‖.

For M large, this is the estimate we need to prove the proposition. We may apply it
inductively as follows.
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Suppose that log
k
2 −1(1/t)φ ∈ L2 for some k. Then ‖FkDµjφ‖ → ‖FkDφ‖ (see the proof

of Lemma (2.18)). Take ψ = µjφ in (2.32); then the right side is bounded as j →∞ and

therefore so too is the left. From this we deduce log
k
2 (1/t)φ ∈ L2(U 1

2
), and by induction

we obtain the result for all k. We may now divide (2.32) by k!, sum over k ≥ 0 and, obtain
for M large,

‖χ 1
2
φ/t

1
2 ‖2 ≤ 2M‖Dφ‖2 + 4K‖(1− χ 1

2
)φ‖2 + C‖rt−

1
2χ 1

2
φ‖2 + 2

3
2 ‖ log−

1
2 (1/t)χ 1

2
φ‖2.

In particular, φ/r ∈ L2(U 1
2
).

Finally, by (2.20) D′φ is L2.

2.33. Corollary Let φ ∈ Lp,q(V ) where n − p − q ≥ 2. Assume that Dφ = 0. Then
φ/rn−p−q log(1/r2) ∈ L2(U 1

2
).

Proof: We know φ/r ∈ L2(U 1
2
), so D′φ = 0 by (2.20), and ‖ logk(1/t)µjφ‖ →

‖ logk(1/t)φ‖ for any real k. Further Dµjφ and D′µjφ both tend to zero in L2 (see
(2.18)), so we can take the limit over j of the estimates (2.29) where ψ = µjφ to get

(n− p− q)(f ′(t)φ, φ) + (r2|du|2f ′′(t)φ0, φ0)− (r2|du|2f ′′(t)φ3, φ3) ≤ 0.

As in the Proposition (see (2.31)), we obtain for some C and K the estimate

([(n− p− q − Cr2) logk(1/t)− k log(1/t)k−1]χ 1
2
(t)φ, φ) ≤ K‖(1− χ 1

2
(t))Fk(t)φ‖2.

Now, instead of multiplying by 1/k!, we multiply by Ak/(k+1)!, A to be determined. This
gives

([(n− p− q − Cr2) log(1/tA)k/(k + 1)!−Ak log(1/tA)k−1/(k + 1)!]χ 1
2
(t)φ, φ)

≤ K‖(1 − χ 1
2
(t))Fk(t)φ‖2Ak/k!.

Summing over k ≥ −1 gives

(n− p− q −A)‖χ 1
2
(t)φ/tA/2 log1/2(1/t)‖2 +A‖χ 1

2
(t)φ/tA/2 log(1/t)‖2

≤ C‖rχ 1
2
(t)φ/tA/2 log1/2(1/t)‖2 + 2AK‖(1− χ 1

2
(t))φ‖2.

This inequality implies φ/rA log(1/r2) ∈ L2 if n− p − q ≥ A.

Now let ∆w denote the weak Laplacian with respect to smooth compactly supported
forms: ∆wφ = ψ if and only if

(φ,∆τ ) = (ψ, τ )

for all smooth compactly supported τ ; if ∆wφ = 0, then φ is called weakly harmonic. Here
is a useful identity [Ag].
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2.34. Lemma If g : V → R is a smoooth function supported away from 0 and φ, ∆wφ ∈
L2, then

‖Dgφ‖2 = ‖[D, g]φ‖2 + (∆wφ, g
2φ)

Proof Since g is supported away from 0, we use integration by parts and the identity
Dgφ = gDφ+ [D, g]φ to get

(∆wφ, g
2φ) = (D2φ, g2φ) = (Dφ,Dg2φ) = (gDφ, gDφ) + 2(gDφ, [D, g]φ)

and
‖Dgφ‖2 = ‖[D, g]φ‖2 + 2([D, g]φ, gDφ) + ‖gDφ‖2

which together give the result.

2.35. Lemma Let φ ∈ Lp,q
2 (V ) be weakly harmonic where p+q ≤ n−2. Then logk(1/t)φ ∈

L2(U 1
2
) for all real k.

Proof Suppose we can show that for each k the following expression is bounded:

(2.36) ([2k logk−1(1/t)|du|2 − k2 logk−2(1/t)|du|2]χ 1
2
(t)φ, φ)−

(|du|2k logk−1(1/t)χ 1
2
(t)φ0, φ0) + (|du|2k logk−1(1/t)χ 1

2
(t)φ3, φ3).

Then by induction on k we conclude that χ 1
2
(t) logk(1/t)φ is L2 for all k as claimed.

We begin the proof of boundedness by making special choices of f ′ and F in Corollary
2.15. For any T such that 0 ≤ T ≤ 1

2 , we set

f ′(t) := f ′T (t) =





logk(1/t),

1

2
≥ t ≥ T

logk(1/T ), t ≤ T

and as in the proof of (2.27), extend in a bounded fashion for t ≥ 1
2 , with Fk(t)/ log

k
2 (2)

uniformly bounded (for t ≥ 1
2 ) as k →∞. Then set

F 2(t) := F 2
T (t) = r2f ′T .

Now using the cut-off µj = µj(t) above and suppressing the t variable as usual to simplify
notation, we have from (2.15)

(2.37) (n− p− q)(f ′T µjφ, µjφ) + (|du|2r2f ′′Tµjφ0, µjφ0)− (|du|2r2f ′′Tµjφ3, µjφ3)

≤ (‖FTDµjφ‖+ ‖FTD
′µjφ‖) · ‖(2

−1/2|du|(rf ′T /FT )µjφ‖

Now take g = FTµj in (2.34) above. Since ∆wφ = 0 and [D,FTµj ] = FT [D,µj ]+[D,FT ]µj ,
we have

‖FTDµjφ‖ ≤ ‖DFTµjφ‖+ ‖[D,FT ]µjφ‖ = ‖[D,FTµj ]φ‖+ ‖[D,FT ]µjφ‖

≤ ‖FT [D,µj ]φ‖+ 2‖[D,FT ]µjφ‖ = ‖FT [D,µj ]φ‖+ 2‖[D,FT ]µjφ‖
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Plugging this and its D′ analogue into (2.37) and using Cauchy-Schwarz, [D,FT ] =
2rF ′

T [e(∂̄u) + e∗(∂̄u)] and |∂̄u| = 2−1/2|du|, we get

(n− p− q)(f ′Tµjφ, µjφ) + (|du|2r2f ′′Tµjφ0, µjφ0)− (|du|2r2f ′′Tµjφ3, µjφ3)

≤ 4‖2−1/2|du|2rF ′
Tµjφ‖·‖2

−1/2|du|(rf ′T (t)/FT )µjφ‖+‖FT [D,µj ]φ‖·‖(2
−1/2|du|rf ′T (t)/FT )µjφ‖

≤ ‖|du|2rF ′
Tµjφ‖

2 + ‖(|du|rf ′T (t)/FT )µjφ‖
2 + ‖FT [D,µj ]φ‖ · ‖(2

−1/2|du|rf ′T (t)/FT )µjφ‖

Now the part of the integral over V −U 1
2

in the first term on the left side of this inequality

is positive, so it can be discarded. So with obvious notation we have, for some positive C
and K

(n− p− q)
(
χ 1

2

{
logk(1/t)

logk(1/T )

}

µjφ, µjχ 1
2
φ
)
−
(
|du|2r2χ 1

2

{
k logk−1(1/t)

0

}

µjφ0, µjφ0

)

+
(
|du|2r2χ 1

2

{
k logk−1(1/t)

0

}

µjφ3, µjφ3

)

≤
(
χ 1

2

{
(log

k
2 (1/t)− k log

k
2−1(1/t))2

logk(1/T )

}
µjφ, µjφ

)
+
(
χ 1

2

{
logk(1/t)

logk(1/T )

}
µjφ, µjφ

)

+‖FT [D,µj ]φ‖·‖2
−1/2|du|(rf ′T /FT )µjφ‖+C‖(rχ 1

2
log

k
2 (1/t)µjφ‖

2+K‖(1−χ 1
2
(t)) log

k
2 (2)φ‖,

where the term containing C arises from the relation t = r2 + O(r2). The terms of the

integrals on the left and right which involve logk(1/T ) and logk(1/t), except for the term
containing C , are nonnegative when moved to the left side (n − p − q ≥ 2), so may be
discarded. We rewrite the inequality as

([2k logk−1(1/t)|du|2 − k2 logk−2(1/t)|du|2]χ[T, 1
2 ]µjφ, µjφ)

− (|du|2k logk−1(1/t)χ[T, 1
2 ]µjφ0, µjφ0) + (|du|2k logk−1(1/t)χ[T, 1

2 ]µjφ3, µjφ3)

≤ ‖FT [D,µj ]φ‖ · ‖(2
−1/2|du|(rf ′T /FT )µjφ‖

+C‖(rχ 1
2

log
k
2 (1/t)µjφ‖

2 +K‖(1− χ 1
2
(t)) log

k
2 (2)φ‖

Obviously the second term on the right is bounded uniformly in j. We claim that the
first term on the right vanishes as j →∞. Once this latter point is verified, we will take
the limit of both sides of this last inequality as j → ∞ and then the limit as T → ∞ to
get the estimate

(2.38) ([2k logk−1(1/t)|du|2 − k2 logk−2(1/t)|du|2]χ 1
2
(t)φ, φ)−

(|du|2k logk−1(1/t)χ 1
2
(t)φ0, φ0) + (|du|2k logk−1(1/t)χ 1

2
(t)φ3, φ3)

≤ C‖(rχ 1
2

log
k
2 (1/t)φ‖2 +K‖(1− χ 1

2
(t)) log

k
2 (2)φ‖
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which proves the boundedness of (2.36).
It remains to show that for fixed T > 0 the term

‖FT [D,µj ]φ‖ · ‖2
−1/2|du|(rf ′T (t)/FT )µjφ‖

tends to zero as j tends to infinity. First note that for t < T , rf ′T (t)/FT (t) = log
k
2 (1/T );

hence ‖(rf ′T (t)/FT )µjφ‖ is uniformly bounded as j →∞. Again for t < T , the pointwise
norm squared

|FT [D,µj ]φ|
2 ≤

2χI(j)(t)r
2 logk(1/T )

t log2(t)
|φ|2

which is bounded and tends pointwise to zero as j →∞. This completes the proof.
Let ∆dD denote the “strong” Dirichlet Laplacian in the usual sense of functional analysis:

∆dDφ = ψ if and only if φ ∈ dom dD ∩ dom δN , dDφ ∈ dom δN , δNφ ∈ dom dD and

δNdDφ+ dDδNφ = ψ.

(Note that δN is the Hilbert space adjoint of dD .) The kernel of ∆dD in degree k is
denoted Hk

dD
and its elements are called strongly dD-harmonic. Analogous definitions

can be made for ∆∂D and ∆∂̄D
and also for Neumann boundary conditions. It follows

from Stokes’ theorem in the usual way that a form φ is strongly dD-harmonic if and only if
dDφ = 0 = δNφ; again there is an analogous statement for the other Laplacians. Evidently,
if φ is strongly harmonic in any sense, it is weakly harmonic. Outside the middle three
degrees the converse holds:

2.39. Theorem Suppose φ is a weakly harmonic (p, q)-form such that n−p− q ≥ 2. Then
φ is strongly harmonic in any of the above senses, and hence

φ/rn−p−q log(1/r2) ∈ L2.

Proof: Divide both sides of the estimate (2.38) by (k + 2)! and expand to obtain

([((n − p− q)− 2|du|2) logk(1/t)/(k + 2)! + 2 logk−1(1/t)/(k + 1)!|du|2

− 4 logk−1(1/t)/(k + 2)!|du|2 − logk−2(1/t)/k!|du|2

+ 3 logk−2(1/t)/(k + 1)!|du|2 − 8 logk−2(1/t)/(k + 2)!|du|2]χ 1
2
(t)φ, φ)

− (|du|2[(logk−1(1/t)/(k + 1)! − 2 logk−1(1/t)/(k + 2)!]χ 1
2
(t)φ0, φ0)

+ (|du|2[logk−1(1/t)/(k + 1)!− 2 logk−1(1/t)/(k + 2)!]χ 1
2
(t)φ3, φ3)

≤ C‖rχ 1
2

log
k
2 (1/t)φ‖2/(k + 2)! +K‖(1− χ 1

2
(t)) log

k
2 (2)φ‖/(k + 2)!

Sum over k ≥ −2 to obtain

((n − p− q − |du|2)/t log2(1/t)− |du|2/t log3(1/t)− 8|du|2/t log4(1/t)]φ, χ 1
2
φ)

+ (|du|2[(−1/t log2(1/t) + 2/t log3(1/t)]φ0, χ 1
2
φ0)

+ (|du|2[1/t log2(1/t)− 2/t log3(1/t)]φ3, χ 1
2
φ3)

≤ C‖rt−
1
2 log−1(1/t)χ 1

2
φ‖2 + 2 log−2(2)K‖(1 − χ 1

2
(t))φ‖ + ‖2−

1
2 log−2(1/t)χ 1

2
φ‖2
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From this inequality, we deduce that φi/r log(1/r2) ∈ L2 for i > 0, and φ0/r log3/2(1/r2) ∈
L2. If n − p − q > 2, we get φ/r log(1/r2) ∈ L2; to get this for n − p − q = 2, we must
argue more carefully. To begin, we choose for t ≤ 1

2

F (t) = log
k
2 (1/t),

extend in a bounded fashion for larger t and get from (2.34) the inequality

‖µjFDφ‖ ≤ 2‖[D,µjF ]φ‖.

If we assume that t−
1
2 log

k
2−1(1/t)φ is L2, then [D,µjF ]φ is L2 and, as j →∞, converges

in L2 to [D,F ]φ. Hence taking the limit, we obtain the following lemma.

2.40. Lemma If t−
1
2 log

k−1
2 (1/t)φ is L2 on U 1

2
, then so is log

k
2 (1/t)Dφ.

Now return to our basic estimate in Proposition (2.15) and take for t ≤ 1
2

f ′(t) = t−1 logk(1/t) and F (t) = log
k
2 (1/t)

so that

r2f ′′(t) = −t−1 logk(1/t)− t−1k logk−1(1/t) +O(r2) logk(1/t)

there; and extend both f ′ and F in a bounded fashion as usual for t ≥ 1
2
. Using n−p−q ≥ 2

and discarding some positive terms from the left side, we get, for some positive constants
C and K

‖t−
1
2 log

k
2 (1/t)µjφχ 1

2
‖2 − ‖kt−

1
2 log

k−1
2 (1/t)µjφ0χ 1

2
‖2

≤ (‖χ 1
2

log
k
2 (1/t)Dµjφ‖+ ‖χ 1

2
log

k
2 (1/t)D′µjφ‖) · ‖χ 1

2
(log

k
2 (1/t)/r)µjφ‖+

+ C‖r log
k
2 (1/t)µjφχ 1

2
‖+K(‖(1− χ 1

2
(t))φ‖ + ‖(1− χ 1

2
(t))Dφ‖ + ‖(1− χ 1

2
(t))D′φ‖)

Now if we assume that log
k
2 (1/t)Dφ is L2, then we may use (2.34) as we did above to

bring the cut-off µj past D and D′ on the right side and get

‖t−
1
2 log

k
2 (1/t)µjφχ 1

2
‖2 − ‖kt−

1
2 log

k−1
2 (1/t)µjφ0χ 1

2
‖2

≤ (‖χ 1
2

log
k
2 (1/t)µjDφ‖+ ‖χ 1

2
log

k
2 (1/t)µjD

′φ‖+ ℓ) · ‖χ 1
2
(log

k
2 (1/t)/r)µjφ‖

+ C‖r log
k
2 (1/t)µjφχ 1

2
‖+K(‖(1− χ 1

2
(t))φ‖ + ‖(1− χ 1

2
(t))Dφ‖ + ‖(1− χ 1

2
(t))D′φ‖)

for some constant ℓ. Let us now assume in addition that χ 1
2
t−

1
2 log

k−1
2 (1/t)φ is L2 and

divide both sides by ‖(log
k
2 (1/t)/r)µjφ‖. Remembering that t

1
2 ∼ r, we see that the right

side is then bounded as j →∞, so the left is as well. Hence we obtain
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2.41. Lemma If log
k
2 (1/t)Dφ and t−

1
2 log

k−1
2 (1/t)φ are L2 on U 1

2
, so is t−

1
2 log

k
2 (1/t)φ.

Now induction on the hypothesis of this last lemma, beginning with k = −2, together
with (2.40) and (2.41), proves that χ 1

2
t−

1
2 logk(1/t)φ and χ 1

2
logk(1/t)Dφ are L2 for all k.

In particular, Dφ is L2, so D′φ is as well by (2.20).
To prove that φ is strongly dD-harmonic, observe first that φ ∈ dom dD ∩ dom δD by

(2.18). Hence
‖dφ‖2 + ‖δφ‖2 = lim

j→∞
(dφ, dµjφ) + (δφ, δµjφ)

= (∆φ, µjφ) = 0.

That φ is strongly harmonic in the other senses is proved similarly; this and Proposition
(2.33) complete the proof of (2.39).

2.42. Corollary For |n− k| ≥ 2 or |n− p− q| ≥ 2,

Hk
w(V ) = Hk

B(V ) and Hp,q
w (V ) = Hp,q

B (V )

for all boundary conditions B.

Proof As remarked before the statement of the theorem, it is easy to see the inclusions
⊇; and for (p, q)-forms with n− p − q ≥ 2, the opposite inclusion is part of the Theorem.
If n−p− q ≤ −2, the result follows from this and Theorem (A2.1). The (p, q)-components
of a weakly harmonic k-form are weakly ∂̄- and ∂-harmonic, so we are done.

The preceding estimates are not quite strong enough to carry over to p + q = n − 1,
where one can obtain estimates in the complete case. We need to introduce a variational
argument to handle p+ q = n− 1. Let

dc = i(∂̄ − ∂),

and let δc denote its formal adjoint.

2.43. Theorem Let φ ∈ ker dD and suppose deg φ = n − 1. Then the dD-harmonic
representative (see Theorem (A2.1)) h of φ satisfies

δDh = dc
Dh = δc

Dh = 0,

and h/(r log(1/r2)) ∈ L2.

Proof. There is a sequence φj ∈ An−1
c (V ) such that φj → φ in Ln−1(V ) and dφj → 0

in Ln(V ). Let
Q : Ln−1(V )× Ln−1(V )→ C

be the unbounded, densely defined Hermitian form

Q(α, β) = (δα, δβ) + (dcα, dcβ) + (δcα, δcβ).

Let q(α) = Q(α,α) denote the corresponding quadratic form. Then q is nonnegative and
φj ∈ dom q since it is compactly supported; so we can define

mj = inf{q(φj + dDβ)|β ∈ dom dD}

We now show by a standard argument that this infimum is realized.
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2.44. Lemma There is βj ∈ dom dD such that q(φj + dDβj) = mj

Proof. For the proof, let us drop the subscript j’s on φjand mj . Let S denote the
Hilbert space closure of dAn−2

c (V ) with respect to the norm induced by Q. The finite
dimensionality of the L2 cohomology (and the closed graph theorem) imply this norm
dominates a multiple of the L2 norm. Moreover, by the ellipticity of d + δ, the norm is
equivalent on compact subsets to the Sobolev norm of forms with one L2 derivative.

Choose a minimizing sequence dbi ∈ S with q(φ+ dDbi) ↓ m. Because this is bounded
in S, we may extract a weakly convergent subsequence, which we also label dbi, converging
to some limit Z, which is clearly in the range of dD,

Z = dDβj ,

for some βj . Then

m = lim
i→∞

q(φ+ dbi) = q(φ) + 2Re lim
i→∞

Q(φ, dbi) + lim
i→∞

q(dbi)

= q(φ) + 2ReQ(φ,Z) + lim
i→∞

q(dbi).

Recalling that for weak limits, limi→∞ q(φ + dbi) ≥ q(φ + Z), gives q(φ + Z) ≤ m. By
hypothesis, we also have q(φ+Z) ≥ m and hence q(φ+Z) = m. The infimum is achieved.

Let us now denote a minimizing form constructed above

ψj := φj + dDβj .

By construction,
dψj = dφj and ψj ∈ dom dc

N ∩ dom δc
N .

2.45. Lemma δψj = 0, and ψj ∈ dom dc
D ∩ dom δc

D.

Proof. We apply the usual variational argument: by the minimality of q(ψj), we have
for smooth compactly supported w,

0 =
d

dt
q(ψj + tdw)|t=0 =

(δψj , δdw) + (dcψj , d
cdw) + (δcψj , δ

cdw).

Integrating by parts and using the Kähler identities gives ∆δψj = 0. Thus δψj is weakly
harmonic and of degree n − 2. By (2.39) this implies that it is strongly harmonic and
therefore perpendicular to the image of δ. Hence δψj = 0. Now the L2 boundedness of
Dψj and D′ψj allows us to use (2.21) to conclude ψj/r log(1/r2) is L2. This then implies
ψj ∈ dom dc

D ∩ dom δc
D.

Returning to the proof of the theorem, we have constructed a sequence ψj = φj + dDβj

with dψj → 0 and δψj = 0 and ‖D′ψj‖ ≤ ‖dψj‖. Hence as j → ∞, ψj converges to
the harmonic representative h of φ. Moreover, according to (2.25), ‖ψj/r log(1/r2)‖ is
bounded in terms of ‖Dψj‖, ‖D′ψj‖ and ‖ψj‖. Hence, the harmonic limit h also satisfies
h/r log(1/r2) ∈ L2. From this we may immediately deduce the claims of the theorem by
applying the Kähler identities (cf. (2.19) and (2.20)).
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2.46. Corollary Let φ ∈ Ln−1(V ) and suppose dDφ = ξ ∈ Ln(V ). Then there is ψ ∈
Ln−1(V ) such that ψ/(r log(1/r2)) ∈ Ln−1(U 1

2
), dDψ = ξ and δψ = 0.

Proof Let φj be a sequence of compactly supported forms so that φj → φ and dφj → ξ;
construct ψj = φj + dDβj as in the preceding theorem. We can then write (see Theorem
(A2.1)) for some dD-harmonic hj

ψj = hj + δNαj .

Since dDψj = dDφj → ξ and dD has closed range, δNαj converges; hj also converges (it is
the harmonic component of φj too), so ψj does. By the preceding theorem, hj/r log(1/r2) ∈
L2 and by the proof of the preceding theorem ψj/r log(1/r2) ∈ L2.Hence δNαj/r log(1/r2) ∈
L2. Taking the limit as j →∞, we obtain the desired result.

Here is a variation on the previous result in which we must keep track of (p, q)-type in
reaching a slightly different conclusion. It will be used in §4.

2.47. Theorem Let φ ∈ Lp,q and suppose ∂̄Dφ = ξ ∈ Lp,q+1. Then if p + q < n, there is
ψ ∈ Lp,q such that ψ/(r log(1/r2)) ∈ Lp,q, ∂̄Dψ = ξ and ∂Dψ ∈ Lp+1,q.

Proof The proof is quite similar to that of the previous theorem and will only be
sketched. By hypothesis there is a sequence φj ∈ Ap,q

c (V − {0}) such that φj → φ and
∂̄φj → ξ. Using the Hermitian form

Q : Lp,q(V )× Lp,q(V )→ C

where
Q(α, β) = (ϑα, ϑβ) + (∂α, ∂β) + (ϑ̄α, ϑ̄β)

as we did above, we get a sequence ψj = φj + ∂̄Dβj such that

Lemma. ∂̄ψj = ∂̄φj, ϑψj = 0, and ψj ∈ dom ∂̄D ∩ dom ϑ̄D.

Since ϑψj = 0, ∂̄Dβj is the ∂̄D-exact component of φj in its Hodge decomposition
(A2.1), so ∂̄Dβj converges because φj does. Hence ψj converges, say ψj → ψ ∈ Lp,q(V ).
Again using (2.25), we get ψj/r log(1/r2) ∈ L2 and from this

‖∂ψj‖
2 + ‖ϑ̄ψj‖

2 = ‖∂̄ψj‖
2

Now ∂̄ψj is Cauchy, so this shows ∂ψj is as well. Since ψj/r log(1/r2) ∈ L2 (uniformly)
implies ψ/r log(1/r2) ∈ L2, we have ψ ∈ dom ∂D and are done.

Let Hk
D/N (V ) denote the space of harmonic forms on V in degree k with respect to the

operator

dk
N/D :=

{
dD k < n,

dN k ≥ n

so that

(2.48) Hk
D/N (V ) =






ker dD ∩ ker δN , k < n,

ker dN ∩ ker δN , k = n

ker dN ∩ ker δD, k > n
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We now verify that the operators L and Λ act on H∗
D/N (V ) := ⊕k≥0Hk

D/N (V ), satisfying

the standard Kähler identities. In an unfortunate convergence of notation, we let L∗(V ) :=
⊕k≥0Lk(V ), let Πk : L∗(V ) → L∗(V ) be the projection to Lk(V ), and let H = ⊕k≥0(n −
k)Πk : L∗(V )→ L∗(V ). Here L∗ is not to be confused with the adjoint of L.

2.49. Theorem The operators L, Λ, and H preserve H∗
D/N (V ) and satisfy

[Λ, L] = H, [H,L] = −2L, [H,Λ] = 2Λ

In particular, H∗
D/N (V ) is an sl2(C)-module and so the Lefschetz decomposition theorem

holds for L2-cohomology.

Proof It is sufficient to verify that the three operators preserveH∗
D/N (V ). Since this is

clear for H and since Λ is dual to L, it is enough to show (omitting V from the notation
now)

LHk
D/N ⊆ H

k+2
D/N

For all k, LHk
w ⊆ H

k+2
w ; and Hk+2

D/N ⊆ H
k+2
w with equality except possibly for k = n−3, n−

2, n−1 by (2.42). In these cases, for φ ∈ Hk
D/N , we have φ/(r log(1/r2)) ∈ Lk(U 1

2
) by (2.39)

and (2.43), so that boundary conditions on φ are irrelevant and φ ∈ ker d∩ ker δ ∩ kerdc ∩
ker δc. Since dLφ = Ldφ = 0 and δLφ = Lδφ−4πdcφ = 0 and Lφ/(r log(1/r2)) ∈ Lk+2(V ),
we get dDLφ = 0 and δDLφ = 0, so the proof is complete.

We are now ready to put a Hodge structure on L2-cohomology (Theorem A in §1). Let
Hp,q

D/N (V ) denote the space of harmonic forms in degree (p, q) on V with respect to the
operator

∂̄p,q
N/D :=

{
∂̄p,q

D , p+ q < n,

∂̄p,q
N , p+ q ≥ n;

so that

Hp,q
D/N(V ) =






ker ∂̄D ∩ kerϑN , p+ q < n,

ker ∂̄N ∩ kerϑN , p+ q = n

ker ∂̄N ∩ kerϑD , p+ q ≥ n

2.50. Theorem Let V be a complex projective variety of dimension n with at most isolated
singularities. Then

L(Hp,q
D/N (V )) ⊆ Hp+1,q+1

D/N (V )

and for each k = 0 . . . 2n, we have the equality of subspaces of Lk(V )

Hk
D/N(V ) = ⊕p+q=nH

p,q
D/N(V )

where the summands on the right side are the (p, q)-components of the left side. Moreover,
there are canonical isomorphisms

Hk
D/N (V ) ∼= Hk

D/N (V ) ∼= Hk
2 (V ) and Hp,q

D/N(V ) ∼= Hp,q
D/N (V )
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for all k and for all p and q.

Proof The first assertion is proved in the same way as the last theorem. The Kähler
identities imply that

Hk
w(V ) = ⊕p+q=nH

p,q
w (V )

so for |n − k| ≥ 2, the Theorem follows from Cor. (2.42). If φ ∈ Hn−1
D/N , then Theorem

(2.43) and (2.19), (2.20) say we have

‖dφ‖2 + ‖δφ‖2 = 2‖∂̄φ‖2 + 2‖ϑφ‖2

which verifies the theorem in this case; the equality in case k = n−1 follows from this and
duality ([PS, 1.3]. In the remaining case,

Hn
D/N = kerL⊕ im L

by the Lefschetz decomposition and φ ∈ Hn
D/N if and only if dNφ = 0 = δNφ. If φ = Lψ,

where ψ ∈ Hn−2
D/N , then ψ =

∑
ψp,q, where ψp,q ∈ Hp,q

D/N(V ), so we are done by the first

assertion of the Theorem. In case Lφ = 0, Λφ = 0 as well, and so we may use the Kähler
identities

[L, δ] = dc, [Λ, d] = −δc

to conclude from dφ = δφ = 0 that dcφ = δcφ = 0. (Subscript N ’s are implicit on the
operators here.) This implies that ∂̄φ = ϑφ = ∂φ = ϑ̄φ = 0 so that if φ =

∑
φp,q, then

φp,q ∈ Hp,q
D/N . The last assertion of the theorem is proved in the appendix to this chapter.

Finally, we can conclude in the usual way ([Hi, §15.8]) that our Hodge structure (2.50),
with its Lefschetz decomposition (2.49) is polarized, in the following (standard) sense, by
the inner product (ξ, η).

2.51. Definition Let A be a subring of R such that A⊗Q is a field. A polarized A-Hodge
structure of weight k is a Hodge structure (PA;PC, F ·; i), together with a symmetric bilinear
form Q : PA × PA → A, such that

Q(F p, F k−p+1) = 0, for all p

and
ip−qQ(v, v̄) < 0, for all v ∈ P p,q

where P p,q := F p ∩ F k−p. We say the Hodge structure (PA;PC, F ·; i) is polarized by Q.

Appendix: Hodge decomposition of L2-forms on varieties with isolated sin-

gularities

The goal is to derive suitable Hodge decompositions of L2-forms into harmonic, exact,
and coexact components:
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A2.1. Theorem: Let V be a variety with isolated singularities. There are

a. Hodge decompositions

Lk(V ) = Hk
N/D ⊥ im dk−1

N/D ⊥ im (dk+1
N/D)∗

for all k, and

Lp,q(V ) = Hp,q
N/D ⊥ im ∂̄p,q−1

N/D ⊥ im (∂̄p,q+1
N/D )∗

for all p and q,
b. canonical isomorphisms

Hk
N/D

∼= Hk
N/D and Hp,q

N/D
∼= Hp,q

N/D

for all k, and for all p and q, and
c. isometries induced by ∗̄,

Hk
N/D

∼= Hn−k
N/D and Hp,q

N/D
∼= H

n−p,n−q
N/D

for all k, and for all p and q.

We will prove the Hodge decomposition only for (p, q)-forms, that for k-forms being
similar. The general fact we use is the well-known:

A2.2. Proposition [KK, Appendix]: Let

H1
D1−−→ H2

D2−−→ H3

be a sequence of densely defined operators between Hilbert spaces. If the images (ranges)
of D1 and D2 are closed, that of D∗

2 (the Hilbert space adjoint) is as well, and there is an
orthogonal decomposition

H2 = kerD2 ∩ kerD∗
1 ⊥ im D1 ⊥ im D∗

2

and a canonical (inclusion-induced) isomorphism

kerD2 ∩ kerD∗
1
∼= kerD2/ im D1.

If kerD2/ im D1 is finite-dimensional, then im D1 is closed.

Suppose we know that the image of ∂̄p,q
N/D := ∂̄p,q

N is closed for p+q ≥ n. Then using the

facts that an operator between Hilbert spaces has closed range if and only if its Hilbert

space adjoint does, that for all a and b, ϑa,b
D = (∂̄a,b−1

N )∗ and that ∗̄ is an isometry, we have,

for r + s < n, (n − r) + (n − s− 1) ≥ n and im ∂̄n−r,n−s−1
N is closed ⇒ im (∂̄n−r,n−s−1

N )∗

is closed ⇒ im ϑn−r,n−s
D is closed ⇒ im ∂̄r,s

D is closed. Since for r + s < n, ∂̄r,s
N/D := ∂̄r,s

D ,

we have shown that im ∂̄p,q
N/D is closed for all p and q.
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To show that the image of ∂̄p,q
N is closed for p+ q ≥ n, we show that Hp,q

N (V ) is finite-
dimensional for p + q > n. If q = 1, then p = n, and the finiteness follows from [PS,
Theorem A]. So we may assume q > 1. Let P be a small neighborhood with pseudoconvex
boudary of the singular point v of V and let Q be the complement of the closure of a
smaller neighborhood. The desired finiteness will follow from the Mayer-Vietoris sequence
of the cover {P,Q}

· · · → Hp,q−1
N (P )⊕Hp,q−1(Q)→ Hp,q−1(P ∩Q)→ Hp,q

N (V )→ Hp,q
N (P )⊕Hp,q(Q)→ · · ·

and the vanishing ([O]) for p+ q > n of Hp,q
N (P ), provided we know that the the cokernel

of Hp,q(Q)→ Hp,q(P ∩Q) is finite-dimensional for p+q ≥ n and that its kernel is finite for

p+ q > n. Let π : Ṽ → V be a resolution of singularities and consider the Mayer-Vietoris
sequence of the covering π−1(P ), π−1(Q) of Ṽ . Since π : (π−1(Q), π−1(P ∩Q) ∼= (Q,P ∩Q)
and Hp,q(π−1(P )) is finite-dimensional for q > 0 ([FK, 3.1.14]), the proof is complete.
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§3 Hsiang-Pati Coordinates and the Nash bundle

In the last section U denoted an affine patch V ∩ CN on a variety V with an isolated
singularity v at 0 ∈ CN . In this section we assume that dimV = 2 and that U is a small
open neighborhood of v which is given the Kähler metric g inherited from the imbedding
(U, v) ⊂ (CN , 0). Let

(3.1) π : (Ũ , E)→ (U, v)

be a resolution of the singularity v of U . Then

(3.2) γ := π∗g

is a Kähler metric on U − E. Hsiang and Pati showed ([HP]) that when π is a sufficently
fine resolution, then, up to quasi-isometry, γ assumes near E a normal form in appropriate
coordinates.
(3.3) Specifically, they showed that π : (Ũ , E)→ (U, v) can be chosen so that E = ∪Ei is
a divisor with normal crossings and has the following properties:

a. For each point e ∈ E, there is a neighborhood W of e in Ũ and linear functions
k, l : CN → C such that

γ ∼ dφdφ̄+ dψdψ̄

on W , where φ = l ◦ π and ψ = k ◦ π.
This means that the linear projection (l, k) : CN → C2 is such that (l, k) ◦ π|W

pulls back the Euclidean metric on C2 to one on W which is quasi-isometric to γ.
b. (Local description of φ) φ locally defines the scheme-theoretic inverse image π−1(mv)

of v (where mv is the maximal ideal of v). This means that if w1, w2, . . . , wN are
coordinates on CN , then the restriction of the ideal (w1◦π, · · · , wN ◦π) := π−1(mv)
in OŨ to OW is principal and is generated by φ. Hence, π−1(mv) may be identified
with its divisor Z =:

∑
miEi and there are coordinates u, v on W such that if

e ∈ Ei ∩ Ej , then Ei = {u = 0}, Ej = {v = 0} and φ/umivmj is non-vanishing
holomorphic in W ; and if e ∈ Ei is a simple point of E, then Ei = {u = 0} and
φ/umi is non-vanishing holomorphic in W .

c. (Local description of ψ) There are integers ni ≥ mi such that nimj − njmi 6= 0 if
Ei ∩Ej 6= ∅ and ψ is the sum of two holomorphic functions ψ = f(φ) + ψ′, where
f =

∑
ajzǫj is a series where the ǫj are rationals ≥ 1 and ψ′ defines a divisor

N :=
∑
niEi in W ; in fact, with the same coordinates u, v as in b), ψ′/univnj is

non-vanishing holomorphic in W if e ∈ Ei∩Ej ; and if e ∈ Ei = {u = 0} is a simple
point of E, then ψ′/univ is non-vanishing holomorphic in W . Moreover, (ni, nj)
(resp. ni) is minimal with this property: if for some linear function h : CN → C,
h ◦ π := η = g(φ) + η′ with g a series in rational powers ≥ 1 and η′/upivpj non-
vanishing holomorphic in W (resp., ψ′/upiv is non-vanishing holomorphic in W ),
where pi ≥ mi, pj ≥ mj and pimj − pjmi 6= 0 (resp., pi ≥ mi), then pi ≥ ni and
pj ≥ nj (resp., pi ≥ ni).

d. On the above neighborhood W of e ∈ Ei ∩ Ej let ζ1 = umivmj and ζ2 = univnj ;
or if e ∈ Ei is a simple point of E, let ζ1 = umi and ζ2 = univ. Then in W

γ ∼ dζ1dζ̄1 + dζ2dζ̄2,
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so we have
dφdφ̄+ dψdψ̄ ∼ γ ∼ dζ1dζ̄1 + dζ2dζ̄2.

(3.4) Remarks

a. Property (3.3d) is an easy consequence of the others (see [HP, p. 401]). In an
Appendix to this Chapter we will show, using properties of the Nash blow-up, the
existence of a linear projection (l, k) : CN → C2 satifying the first three properties.

b. It follows from (3.3b) that |φ| ∼ r ◦ π on W , where r2 = |w1|2 + · · ·+ |wN |2

c. It is not in general possible to remove g(φ) from the expression for h ◦ π in (3.3c).

One final point which will prove useful later is that it is possible to choose a linear
function h so that l can be taken to be h in (3.3a) outside a finite set of points of E; while
near each point of this finite set, k can be taken to be l. The proof will also show that l in
(3.3a) and (3.3b) is generic among all linear functions CN → C. Before stating the result,
we give an example.

(3.5) Example: Let V ⊂ C3(x, y, z) be the cone {y2 = xz}. Then blowing up V at its

singular point (0, 0, 0) produces a resolution π : Ṽ → V , where Ṽ is the total space of the
line bundle of degree -2 over P1, the exceptional divisor E, and π collapses the zero section
to (0, 0, 0). Let U be the intersection of a small ball about (0, 0, 0) ∈ C2 with V . Then

Ũ := π−1(U) is covered by two open sets Ũ1 ⊆ C2(u, v) and Ũ2 ⊆ C2(u′, v′) which contain
the u-axis and u′-axis respectively, and which are glued by

u′ = uv2

v′ = v−1

Then the linear function h on U is h(x, y, z) = y, which is uv = u′v′ on Ũ . Hence the

proper transform R ⊂ Ũ of h = 0 has two components transversely intersecting E = P1 at
0 and ∞. Notice that if l := y + ǫx is a small perturbation of y = h, then the pair {l, h}
satifies the conditions of (3.3) in neighborhoods in Ũ of 0 ∈ P1 and ∞ ∈ P1; and that in
neighborhoods of all other points on P1, h itself satisfies the conditions of l.

(3.6). Proposition: ([GS1])Let π : (Ũ , E) → (U, v) ⊂ (CN , 0) be a resolution of the
singularity v such that π−1

mv is locally principal, where mv is the maximal ideal of v.
Then there is a linear function h : CN → C such that

div(h ◦ π) = Z +R

where R is reduced and meets E transversely at smooth points of E. Moreover, if π satisfies
the conditions of (3.3) and if R ∩ Ei 6= ∅, then mi = ni; and if e ∈ R ∩ Ei, we may take
k = h in (3.3b) while if e /∈ R ∩ Ei, then we may choose l = h in (3.3a).

Proof: The idea is as follows; more details can be found in [GS1, Lemma 2.1]. Let
τ : Bℓ(U) → U denote the proper transform of U in Bℓ(CN ), the blow-up of CN at the
origin, and let C ⊂ Bℓ(U) be the reduced exceptional set, a curve in the fiber of Bℓ(CN )→
CNover the origin. Then C ⊂ PN−1 and Bertini’s Theorem says a generic hyperplane
meets C transversely in isolated smooth points of C . One gets such generic hyperplanes as
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the intersections with PN−1 of proper transforms Bℓ(H) of generic hyperplanes H in CN

passing through zero; so the desired h is a linear function vanishing on such an H. Since
mv ·OBℓ(U) is locally free of rank one on Bℓ(U) (a basic property of blowing up), and h◦τ is
a global section of it vanishing only along R, we have div(h◦τ ) = div(τ∗mv)+R. To begin

the passage from Bℓ(U) to a resolution Ũ one must first normalize Bℓ(U), which requires
a more careful, but still generic choice of H. Finally one may complete the resolution
of U with modifications away from the intersection points of C with Bℓ(H) and then
div(h ◦ π) = div(π∗mv) +R = Z +R.

Since R and E are transverse at such an intersection point e ∈ R ∩ E, there are local
equations {v = 0} of R and {u = 0} of E so that h = umv near e. A small perturbation l
of h has the form l = δum, where δ is holomorphic and nowhere zero near e, since the set
of h above was generic. Now extracting an m-th root of δ and replacing u with uδ1/m, we
have l = um and h = δ−1umv. If we replace v by δ−1v then we have coordinates {u, v}
on a neighborhood of e and linear functions k, h : CN → C such that φ := l ◦ π = um and
ψ := h ◦ π = umv. By (3.3b) and (3.3c) above (in particular, the minimality property in
(3.3c)), we are done.

The locus of the vanishing of the determinant (with respect to a nondegenerate metric

on Ũ ) of γ gives a measure of its degeneracy. Now on W , γ ∼ dφdφ̄ + dψdψ̄ and the
determinant of dφdφ̄ + dψdψ̄ is |φuψv − φvψu|2. A calculation using (2) and (3) above
shows that φuψv − φvψu locally defines the divisor

(3.7) Dγ =
∑

(mi + ni − 1)Ei = Z +N − E,

so we call it the degeneracy divisor of γ. This calculation also shows that the volume form
of γ in W is

(3.8) dŨγ ∼ |φuψv − φvψu|
2dŨ ∼ |u|2(mi+ni−1)|v|2(mj+nj−1)dŨ

where dŨ := du ∧ dū ∧ dv ∧ dv̄ is the volume form in the Euclidean metric dudū+ dvdv̄.
For any differential forms ω1, ω2 defined a.e. on Ũ , let

< ω1, ω2 >γ

denote as usual the pointwise-defined inner product and

‖ω‖γ :=

(∫

Ũ

< ω,ω >γ dŨγ

)1/2

the L2-norm of ω. Unless otherwise specified, we understand the pseudo-metric γ on Ũ
and omit the subscripts in such expressions, unless another metric is intended.

Let Lp,q
γ denote the sheaf of measurable forms on Ũ which have locally finite L2-norm.

Notice that if τ is a differential form on U − v and ω := π∗τ , then

(3.9) ‖τ‖g = ‖ω‖γ

so that the norm of a form on U−v, measured using the metric coming from the imbedding
(U, u0) ⊂ (CN , 0) is the same as the L2-norm of its pullback to Ũ . In particular, we have
the equality of sheaves for each p, q,

(3.10) π∗L
p,q
γ = Lp,q

where Lp,q denotes the sheaf of L2-forms on U . There will be advantages to working in Ũ
rather than in U ; indeed, some situations require it.
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(3.11). Definition: The Nash sheaf is defined to be

N := Ω1
Ũ,(2)

⊗OŨ(−Dγ)

where Ω1
Ũ ,(2)

is the sheaf of 1-forms which have locally finite L2-norm on Ũ and are holo-

morphic on U − E.

If i : U − E →֒ U denotes the inclusion, then N is the subsheaf of i∗Ω1
U−E defined by

the local condition: if ω is defined near u ∈ Ũ where div(dγ) = Dγ , then ω ∈ N if and
only if ‖d−1

γ ω‖ <∞. This implies that actually N ⊆ Ω1
U : since γ degenerates near E with

respect to any Hermitian (non-degenerate) metric µ, ‖d−1
γ ω‖ < ‖ω‖µ for any 1-form ω, so

the Laurent expansion of ω can have no polar part. For the same reason, dwi ∈ N for any
set w1, w2, . . . , wN of coordinates on CN .

B. Youssin independently noticed part d. of the folowing proposition ([Y]), but for
arbitrary varieties. In an appendix to this chapter, we will elaborate this point further, in
particular in relation to (3.3), and give the reason for the name “Nash sheaf”.

(3.12). Proposition

a. N|U − E = Ω1
U−E

b. N is locally free of rank 2: if W is a neighborhood of e ∈ Ũ as in (3.3a) above, then
{dζ1, dζ2} from (3.3d) is an OW -basis of N (W ); {dφ, dψ} from (3.3a) is likewise
a basis.

c. Ω1
Ũ

is a subsheaf of N ⊗O(N).

d. Lp,q
γ =M(ΛpN ⊗ ΛqN̄ ⊗ O(Dγ)), where, for any Hermitian bundle B on Ṽ and
B its sheaf of sections, M(B) denotes its sheaf of measurable sections.

Proof Part a. is obvious and reduces b. to the case stated there: that N|W is OW free
with basis {dζ1, dζ2}; we also assume W is a neighborhood of a crossing point e ∈ Ei ∩Ej

of E, the other case being similar. We may use any of the three quasi-isometric metrics
in (3.3d) to determine whether a form on W is L2 with respect to γ, and here we choose
dζ1dζ̄1 + dζ2dζ̄2. Let dγ = u(mi+ni−1)v(mj+nj−1), a local defining function for Dγ . To
begin, note that dζi ∈ N : ‖d−1

γ dζi‖ <∞ since 〈dζi, dζi〉 = 1 and |dγ |2du ∧ dū ∧ dv ∧ dv̄ ∼

the volume form of dζ1dζ̄1 + dζ2dζ̄2. Since dζ1 ∧ dζ2 vanishes only on E, dζ1 and dζ2 are
OW -independent. To show they generate, let ω ∈ N and write

ω = α1dζ1 + α2dζ2

where α1 and α2 are meromorphic. Then since ‖d−1
γ ω‖ < ∞ and dζ1 and dζ2 are point-

wise orthonormal, the αi are square-integrable on W , hence are holomorphic there. That
{dφ, dψ} is also a basis is proved in the same way. Part c. asserts that ‖u−(mi−1)v−(mj−1)ω‖ <
∞ for any holomorphic 1-form ω, which holds because ‖univnjdζ1‖ and ‖univnjdζ2‖ are
both finite. The proof of d.) is similar to that of b.).

For the coming comparison between N and Ω1
Ũ

(logE), the sheaf of holomorphic 1-forms

on Ũ with logarithmic singularities along E, it will be useful to have other local meromor-
phic sections (with poles along E) of Ω1

Ũ
with which to express elements of Ω1

Ũ
(logE) and

N .
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Let W be a neighborhood of e ∈ Ei ∩ Ej (resp., of e ∈ Ei, away from the crossings of
E) with coordinates u, v as in (3.3) above. Then we have the logarithmic frame,

(3.13) {
du

u
,
dv

v
} (resp.{

du

u
, dv}),

the standard local basis for Ω1
Ũ

(logE). Referring now to the functions ζ1 and ζ2 in (3.3d),
we define

(3.14) ζ ′2 :=

{
ζ2, if e is at a crossing of E

ζ2v
−1, if e is away from a crossing of E

and then the logarithmic Nash frame is

(3.15) {
dζ1
ζ1
,
dζ2
ζ ′2
}

If we write a meromorphic 1-form ω on W in the logarithmic frame

(3.16) ω = f
du

u
+ g

dv

v
(resp., f

du

u
+ g dv)

then in the logarithmic Nash frame,

(3.17) ω =
njf − nig

d

dζ1
ζ1

+
mig −mjf

d

dζ2
ζ ′2

(resp.
f − nigv

mi

dζ1
ζ1

+ g
dζ2
ζ ′2

)

where d = m1n2 −m2n1. Since d 6= 0 (resp., mi 6= 0), it follows from this that

(3.18) Ω1
Ũ

(logE)(W ) = {k1
dζ1
ζ1

+ k2
dζ2
ζ ′2

∣∣ k1 and k2 are holomorphic in W}

so {dζ1

ζ1
, dζ2

ζ′
2
} is also a local basis for Ω1

Ũ
(logE). And since Z = div(ζ1) and ζ ′2/ζ1 is

holomorphic in W , N (Z) is a subsheaf of Ω1
Ũ

(logE); in fact,

(3.19) N (Z) = {k1
dζ1
ζ1

+ k2
dζ2
ζ ′2

∣∣ k1 and
ζ1
ζ ′2
k2 are holomorphic in W}

(3.20). Proposition: Let IE denote the ideal sheaf of E. There is an exact sequence of

sheaves on Ũ

0→N (Z − E)
α
−→ IEΩ

1
Ũ
(log E)

β
−→ Ω2

Ũ
⊗ON−Z → 0

(3.21) Remark: Tensoring the exact sequence with O(E − Z) gives a description of the
dual sheaf in terms of resolution data:

0→N → IEΩ
1
Ũ

(log E)⊗OŨ(E − Z)→ Ω2
Ũ
⊗ON−Z(E − Z)→ 0
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Proof: For the proof Ωi and O will denote Ωi
Ũ

and OŨ . The injection α is the tensor

product of the inclusion N (Z) ⊆ Ω1(logE) with IE. To define β, recall from Proposition

(3.6) the holomorphic function h on Ũ such that div(h) = Z +R, where R is reduced and
meets E transversely and away from the crossings. Define

β̃ : IEΩ
1(log E)→ Ω2 ⊗O(R), β̃(ω) = ω ∧

dh

h

We first show that ω ∧ dh
h ∈ Ω

2 ⊗O(R). In a neighborhood W of e ∈ Ei ∩Ej as in (3.3),
we have h = kumivmj (resp., h = kumi if e ∈ Ei is away from a crossing and away from
R), where k is a nowhere-vanishing holomorphic function. Change u by mutiplying it by
the inverse of an mi-th root of k, so that h = umivmj (resp., h = umi), for this choice of

coordinates {u, v} on W . Now let ω = k1
dζ1

ζ1
+ k2

dζ2

ζ′

2
∈ IEΩ

1(logE), so that (uv)−1k1

and(uv)−1k2 are holomorphic (resp., u−1k1 andu−1k2 are holomorphic). Then

β̃(ω) = ω ∧
dh

h
= (uv)−1k2

uv dζ2 ∧ dζ1
ζ ′2ζ1

(resp. = u−1k2
uv dζ2 ∧ dζ1

ζ ′2ζ1
)

which is a holomorphic 2-form in W , since uv dζ2∧dζ1

ζ′
2ζ1

is a smooth nowhere-vanishing mul-

tiple of du∧ dv. Near a point e ∈ Ei ∩R, we can find coordinates {u, v} so that h = umiv

with R = {v = 0} and ω = f du + ug dv. Then β̃(ω) = ω ∧ dh
h = (fv−1 −mig)du ∧ dv,

which is clearly in Ω2 ⊗O(R). These computations also show that β̃ is surjective.

Finally, define β to be β̃ composed with the quotient map

Ω2 ⊗O(R)→ Ω2 ⊗O(R)/Ω2 ⊗O(R −N + Z)

Since N = Z at points of R ∩E, we have

Ω2 ⊗O(R)/Ω2 ⊗O(R −N + Z) ∼= Ω2/Ω2 ⊗O(−N +Z) ∼= Ω2 ⊗ON−Z

Looking back now to the computation of β̃(ω) in the neighborhood W of e ∈ Ei ∩ Ej ,

we see that if β̃(ω) = 0, then (uv)−1k2 ∈ O(Z −N), so (uv)−1k2
ζ1

ζ′

2
is holomorphic in W .

Consequently, we see from our description of N (Z) in (3.19) that ω ∈ N (Z −E)

To state the first corollary of the Proposition, we need a definition.

(3.22) Definition: Let F be an OŨ -module. The Serre dual of F is F̂:= HomOŨ
(F , Ω2

Ũ
).

If α : F → G is an OŨ -homomorphism, then the Serre dual of α is α̂:= HomOŨ
(α,Ω2

Ũ
).

(3.23). Corollary There is a short exact sequence of sheaves

0→ Ω1
Ũ
(log E)

α̂
−→ N (N)→ OŨ(N − Z)/OŨ → 0
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where α̂ is the Serre dual of α.

Proof: We make the notational conventions of the proof of Proposition (3.20). Wedge
product induces O-bilinear pairings

Ω1(log E)× IEΩ
1(log E)→ Ω2 and N (N) ×N (Z −E)→ Ω2

which are easily checked to be nonsingular in the sense that the inducedO-homomorphisms
are isomorphisms:

Ω1(log E)
∼=
−→ IEΩ

1(log E)̂and N (N)
∼=
−→ N (Z − E)̂

Thus, taking the Serre dual of the exact sequence of (3.20), we get an exact sequence

0→ Ω1(log E)→ N (N)→ Ext1O(Ω2 ⊗ON−Z, Ω
2)→ 0,

and it remains to identify the rightmost term with O(N −Z)/O. By [AK, p. 74], we have

Ext1O(Ω2 ⊗ON−Z, Ω
2)

∼=
−→ Ext1O(ON−Z, Ω

2)⊗ (Ω2)∗

where (Ω2)∗ := Hom(Ω2,O). By Serre-Grothendieck duality [AK, p. 13]

Ext1O(ON−Z, Ω
2) ∼= HomON−Z(IN−Z/I

2
N−Z , Ω

2 ⊗ON−Z)

where IN−Z is the ideal sheaf of N − Z, so that ON−Z
∼= O/IN−Z. Hence, since

IN−Z/I2
N−Z is locally free and Ω2 is locally free of rank one,

Ext1O(ON−Z , Ω
2) ⊗ (Ω2)∗ ∼= HomON−Z(IN−Z/I

2
N−Z, Ω

2 ⊗ ON−Z) ⊗ (Ω2)∗ ∼=

HomON−Z (IN−Z/I
2
N−Z,ON−Z)⊗Ω2 ⊗ (Ω2)∗ ∼= HomON−Z(IN−Z/I

2
N−Z ,ON−Z)

and this last is isomorphic to (IN−Z)−1/O = O(N − Z)/O as claimed.

(3.24). Corollary

a. The OŨ -homomorphisms α and α⊗OŨ(E − Z) induce surjections

α∗ : H1(Ũ ;N (Z − E)) ։ H1(Ũ ;IEΩ
1
Ũ

(log E))

and
H1(Ũ ;N ) ։ H1(Ũ ;IEΩ

1
Ũ

(log E)⊗O(−Z))

b. The OŨ -homomorphisms α̂and α̂⊗OŨ(Z − E) induce injections

α∗̂ : H1(Ũ ;Ω1
Ũ

(log E))  H1(Ũ ;N (N))

and
H1(Ũ ;Ω1

Ũ
(log E)⊗OŨ(Z − E))  H1(Ũ ;N (Dγ ))

and isomorphisms

Γ(Ũ ;Ω1
Ũ

(log E))
∼=
−→ Γ(Ũ ;N (N)) and Γ(Ũ ;Ω1

Ũ
(log E)⊗OŨ(Z − E)) ∼= Γ(Ũ ;N (Dγ ))
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Proof: Part b. is evidently equivalent to

Γ(Ũ ;O(N − Z)/O) = 0 and Γ(Ũ ;O(N −E)/O(Z − E)) = 0

which are [P, 4.1] (where D = N −Z) and [PS, p.619] (where we take D = N and observe

that H0(Ũ ;O(Z − E)) → H0(Ũ ;O(N − E)) is surjective since, by [P, 4.2], H0(Ũ ;O) →
H0(Ũ ;O(N − E)) is.)

To prove part a., let S be a coherent OŨ -module and let I denote the ideal sheaf of the
complete intersection scheme N − Z. Then

H1(Ũ ;Ω2 ⊗ON−Z ⊗S) ∼= H1(N − Z;Ω2/IΩ2 ⊗ S/IS)

which by Grothendieck duality on N − Z is isomorphic to

HomON−Z(Ω2/IΩ2 ⊗ S/IS, ωN−Z)

where ωN−Z is the dualizing sheaf of N −Z. Since

ωN−Z := Ext1O(ON−Z, Ω
2)

which is, by [AK, p. 13]
HomON−Z(I/I2, Ω2/IΩ2)

we have

HomON−Z (Ω/IΩ2 ⊗ S/IS, ωN−Z) ∼= HomON−Z(Ω2/IΩ2 ⊗ S/IS ⊗ I/I2, Ω2/IΩ2)

Since Ω2/IΩ2 is locally ON−Z-free, this last is

Hom(S ⊗ I/I2,ON−Z).

When S = O (resp. S = O(E−Z)), we get, since N−Z is a complete intersection scheme,

H0(Ũ ;O(N − Z)/O) (resp.H0(Ũ ;O(N −E)/O(Z − E)))

which were shown to vanish in the proof of part b. above.
Now combining parts a. and b. of this corollary, we get a commutative diagram, in

which the left vertical map is surjective and the right, injective:

(3.25)

H1(Ũ ;IEΩ1(logE)) −−−−→ H1(Ũ ;Ω1(logE))

α∗

x
yα̂

∗

H1(Ũ ;N (Z −E)) −−−−→ H1(Ũ ;N (N))

¿From this the first statement in the following corollary is immediate, and the second and
third are proved similarly.
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(3.26). Corollary

a. The homomorphisms α and α̂ induce an isomorphism

im (H1(Ũ ;IEΩ
1(logE))→ H1(Ũ ;Ω1(logE))

∼=−→ im (H1(Ũ ;N (Z − E))→ H1(Ũ ;N (N));

b. α and α̂⊗O(Z −E) induce an isomorphism

im (H1(Ũ ;IEΩ
1(logE))→ H1(Ũ ;Ω1(logE)⊗O(Z−E))

∼=
−→ im (H1(Ũ ;N (Z−E))→ H1(Ũ ;N (Dγ))

c. α⊗O(E − Z) and α̂ induce an isomorphism

im (H1(Ũ ;IEΩ
1(logE)⊗O(E−Z))→ H1(Ũ ;Ω1(logE))

∼=
−→ im (H1(Ũ ;N )→ H1(Ũ ;N (N))

To conclude this section recall the short exact sequences of sheaves on Ũ :

(3.27) 0→ IEΩ
1(logE) −→ Ω1 −→ ⊕i∗Ω

1
Ei
→ 0

and
0→ Ω1 −→ Ω1(logE) −→ ⊕i∗OEi → 0

These give rise to exact sequences

(3.28) H1(Ũ ;IEΩ
1(logE))

f
−→ H1(Ũ ;Ω1)

g
−→ ⊕H1(Ei;Ω

1
Ei

)

and
⊕H0(Ei;OEi)

d
−→ H1(Ũ ;Ω1)

h
−→ H1(Ũ ;Ω1(logE))

(3.29). Proposition

a. H0(Ũ ;Ω1)
∼=
−→ H0(Ũ ;Ω1(logE))

b. f(ker hf) = 0

Proof These follow easily from the fact that gd is an isomorphism, since it can be
identified with the adjoint of the cup product pairing on H2(Ũ ; C), which is well-known
to be nonsingular.

Appendix: The Nash bundle and Hsiang-Pati coordinates

Let Mm be a smooth quasiprojective variety and let Gr(n, TM) denote the bundle with
fiber Gr(n,m), the Grassmanian of n-planes in Cm, associated to the tangent bundle TM

of M . Let i : W →֒M be a subvariety (always reduced) of dimension n and let Ŵ be the
closure in Gr(n, TM) of the image of the section over W−SingW defined by the derivative
di : T (W − SingW ) → TM . Then the bundle projection Gr(n, TM) → M restricts to

a proper algebraic map π̂ : Ŵ → W whose restriction to Ŵ − π̂−1(W − SingW ) is a

biholomorphism onto W − SingW . The pair (Ŵ , π̂) is called the Nash blow-up of W ; it
is independent, in the obvious sense, of the choices made in its construction (see (A3.9b)

below). The canonical n-plane bundle over Gr(n, TM) restricts to an n-plane bundle NŴ

over Ŵ , whose restriction to Ŵ − π̂−1(SingW ) is the tangent bundle. NŴ is called the
Nash bundle and is also intrinsic.

Now one may get a resolution of singularities π : W̃ →W by resolving the singularities
of Ŵ , say π̃ : W̃ → Ŵ , and setting π := π̂ ◦ π̃. The following result was told to us by R.
MacPherson (see also [GS2], where NW̃ is called the generalized Nash bundle). It gives

bundle data on W̃ equivalent to the existence of such a factorization and allows us to
extend the notion of Nash bundle to such W̃ .
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(A3.1). Proposition Let i : W →֒M be a subvariety, let π̂ : Ŵ →W be the Nash blow-up

and let π : W̃ →W be a resolution of singularities.

a. There is a proper algebraic map π̃ : W̃ → Ŵ such that π = π̂ ◦ π̃ if and only if
there is a bundle NW̃ over W̃ and a bundle map n : TW̃ → NW̃ such that the
tangent map d(i ◦ π) : TW̃ → TM factors

d(i ◦ π) = m ◦ n

where m : NW̃ → TM is a bundle map which is injective on fibers and covers i◦π.
b. If the pair (NW̃ , n) exists as in (1), then it is unique.

(A3.2). Definition NW̃ is called the Nash bundle (of π : W̃ →W ).

We assume this result for the time being; a proof is given below.

Let now π : W̃ → W be a resolution which factors through Ŵ . Let w̃ ∈ W̃ and let
{w1, . . . , wm} be local holomorphic coordinates for M centered at w = π(w̃) ∈ M . Then
the 1-forms {dw1, . . . , dwm} can be pulled back to sections {m∗(dw1), . . . ,m∗(dwm)} of

NW̃ ∗. Since m∗ : TM∗ → NW̃ ∗ is surjective on fibers, the tensor

(A3.3) γN :=
∑

n∗dwi ⊗ n
∗dw̄i

defines a (nonsingular) Hermitian metric on NW̃ which restricts to the singular Hermitian

metric γ on TW̃ pulled up from the metric
∑
dwi ⊗ dw̄i on a neighborhood of w ∈M .

Now suppose that the exceptional set of π is a divisor E with normal crossings. Then
it is easy to see that, in local holomorphic coordinates near each w̃, the volume form of γ
is

dWγ = |dγ|
2dWσ

where dγ = 0 is the local defining equation for a divisor Dγ supported in E and dWσ is a

local (nonsingular) Hermitian form on on ΛnNW̃ . (In case dimW = 2, Dγ will turn out
to be the degeneracy divisor of γ defined in (3.7) above.) It is now immediate that

Lp,q
γ =M(ΛpN ⊗ ΛqN̄ ⊗O(Dγ ))

The proof is the same as that of part d. of Proposition (3.12) above.

Observe that if the pair (NW̃ , n) exists as in a., then π̃ : W̃ → Ŵ factors π, where

π̃(x) := (π(x),m(NW̃x) ∈ Gr(n, TM)x .

To prove the rest of the theorem and make the connection to Hsiang-Pati coordinates, we
need to work the context of sheaves. We use without comment the well-known eqivalence
between the categories of locally free sheaves and of algebraic vector bundles given in [Ha,
pp.128-129]. For example, using standard properties of the sheaf Ω1 of differentials, the
translation to the language of sheaves of part a. of the proposition is:
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(A3.4). A resolution π : W̃ → W factors through the Nash blow-up if and only if there

is a pair (N , ν : N → Ω1
W̃

), where N is a locally free sheaf of rank n on W̃ and ν|W̃ −

π−1(SingW ) is an isomorphism, such that the canonical map

δ : π∗Ω1
W → Ω1

W̃

factors through ν,

δ = ν ◦ µ

where µ : π∗Ω1
W → N is is a surjective morphism of sheaves on W̃ .

Notice that our use of N here is consistent with that of Definition (3.11): the pair

(N , π : Ũ → U), where N is the sheaf on Ũ defined there, satisfies the condition above:
we observed (following (3.11)) that N is a subsheaf of Ω1

Ũ
and that the canonical OŨ -

morphism π∗Ω1
U → Ω1

Ũ
factors through that N .

We next recall the notion of blowing up a coherent sheaf; our discussion comes directly
from [NA].

Let F be a coherent sheaf on a variety W

(A3.5). Definition We call β : Ŵ →W the blow-up of W relative to F if

a. β is birational and proper,
b. β∗F/Torsionβ∗F is locally free on Ŵ and
c. if ρ : Z →W also satifies (1) and (2), then there is a unique regular map φ : Z →

Ŵ which factors φ:

ρ = β ◦ φ

and φ∗(β∗F/Torsionβ∗F) ∼= ρ∗(F/Torsionρ∗F).

Here is a local construction of the blow-up of W relative to F , which shows that it
exists. (In fact, it is also unique, [R].) Let U →֒ W be an open affine subset over which
there is an OU -surjection

(A3.6) ON
U → F|U → 0.

Let U◦ →֒ U be the open dense subset where F|U◦ is locally free, of rank r say. From this
we get a section

(A3.7) σ : U◦ → Gr(r, ǫNU ) ∼= U ×Gr(r,N)

since the surjection ON
U → F|U of locally free sheaves on U◦ corresponds to an injection

of vector bundles

V(F|U◦) →֒ ǫN
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(A3.8). Proposition [Ro] Let Û := σ(U◦), Ê = Û − σ(U◦) and let β : Û → U and γ :

Û → Gr(r,N) be the induced maps. Then β is the blow-up of F|U , β|Û − Ê : Û − Ê → U◦

is biholomorphic and
β∗F/Torsionβ∗F ∼= γ∗Q(r,N)

where Q(r,N) is the universal quotient sheaf over Gr(r,N).

Evidently, these constructions over affine U covering W patch together to show that the
the blow-up of W relative to F exists. We call Ê the exceptional set of β.

(A3.9) Examples

a. Let F = I be an ideal sheaf in OW . Here r = 1 and β is the blow-up of the ideal
I ([Ha,Rie]). In particular, if I is the maximal ideal mw of a point w in W , then
β is the blow-up of W at w, denoted τ : Bℓ(W )→W in the proof of (3.6) above:
U◦ = U − w, a generator of the stalk of mw over x ∈ U◦ is the linear form whose
zero set is perpendicular at x to the secant line −→xw, so a section sends x ∈ U◦ to
(x,−→xw) ∈ U ×Gr(1, N) = PN−1.

b. Let F = Ω1
W be the sheaf of differentials on W . Here r = dimW and it is clear

that β is the Nash blow-up π̂ : Ŵ →W ([T, III.1.2, Remark 3]). Set

NŴ := π̂∗Ω1
W/Torsion π̂∗Ω1

W .

Then it follows from (A3.8) that NŴ is the sheaf of sections of the dual NŴ ∗ of
the Nash bundle.

We can now prove Proposition (A3.1), in the form (A3.4). Suppose that π = π̂◦π̃ : W̃ →

W is a resolution of singularities ofW which factors through the Nash blow-up π̂ : Ŵ →W
and set NW̃ := π̃∗NŴ . Then the canonical map of sheaves on Ŵ , π̂∗Ω1

W → NŴ gives
rise to π∗Ω1

W = (π̂ ◦ π̃)∗Ω1
W → π̃∗NŴ = NW̃ which evidently divides out the torsion

subsheaf. Since the canonical map δ kills torsion, δ factors uniquely through an OW map
ν : NW̃ → Ω1

W̃
. Conversely if a pair (N , ν : N → Ω1

W̃
) satifies the condition in (A3.4),

then µ is the morphism which divides out torsion. By Proposition (A3.8) a factorization
π = π̂ ◦ π̃ exists such that π̃∗NŴ = NW̃ . This completes the proof of (A3.1), including
part b., which follows from the uniqueness in (A3.5).

Now let Dr ⊆ Cm be a subspace of codimension r. Let

(A3.10) S(Dr) := {Er ∈ Gr(r,m)|dim(Er ∩Dr) ≥ 1}

This is a Schubert variety, of codimension 1 in Gr(r,m) and denoted c1(Dr) in [LeT]; in
[NA], it is S(D) where s = 1, D = (Dr) and a = (1) in the notation used there. Let

β : Ŵ →W be the blow-up of W relative to F and γ : Ŵ → Gr(r,m), the canonical map.
The following is a consequence of the transversality theorem of Kleiman ([Kl]).

(A3.11). Proposition With notation as above, we have for generic Dr in Gr(m − r,m)

a. γ−1S(Dr) ∩ (Ŵ − Ê) is smooth and dense in γ−1S(Dr),

b. γ−1S(Dr) is either empty or has codimension 1 in Ŵ and

c. γ−1S(Dr) ∩ Ê is either empty or has codimension one in Ê, can be arranged to

miss any given finite set of points of Ê, and, if dim Ê = 1, then γ−1S(Dr) ∩ Ê

consists of isolated smooth points of Ê.
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If p : Cm → Cr is any linear projection with ker p = Dr, then p induces a trivialization of
the universal sheaf restricted to Gr(r,m)−S(Dr), hence also, by [Ro], of β∗F/Torsionβ∗F

over Ŵ − γ−1S(Dr). We show next that it is this trivialization that is the source of the
linear projection CN → C2 in (3.3).

(A3.12) Examples Return to the two examples (A3.9). Since it is all we need in what
follows, we assume that W = U , the neighborhood of a singular point v ∈ V considered
throughout §3.

a. If τ : (Bℓ(U), C) → (U, v) is the blow-up of U at v, then Gr(r,m) = Pm−1, S(D)
is a hyperplane H and the trivialization of

τ ∗mw/Torsion τ∗mw = mwOBℓ(U)

over γ−1(Pm−1 − S(D)) is induced by a non-trivial linear function h : Cm → C

where H = (h) and is just the global section h ◦ τ . The reader may now recast

the proof of (3.6) using Prop. (A3.11). In particular, if π̃ : (Ũ , E) → (Bℓ(U), C)
is a resolution of singularities, e ∈ E, π := π̌ ◦ π̃ and π(e) /∈ H ∩C , then h ◦ π is a
generator of mvOŨ near e.

b. If π̂ : (Û , Ê)→ (U, v) is the Nash blow-up and k, l : Cm → C are linear functions

such that ker k∩ker l = D2, then NÛ is trivialized over Û−γ−1S(D2) by the global
sections {µ(π̂∗dk), µ(π̂∗dl)}, where µ : π̂∗Ω1

U → N is the factor of the canonical

map δ in (A3.4). Hence if π̃ : (Ũ , E)→ (Û , Ê) is a resolution of singularities, e ∈ E,

π := π̂◦ π̃ and NŨ := π̃∗NÛ and π(e) /∈ S(D)∩ Ê, then {d(k ◦π), d(l◦π)} is a basis
for NŨ near e. Remembering that M in Proposition (A3.1) is a neighborhood of
the origin in CN so that TM is identified with CN , we can equivalently say that
(k, l) ◦m : NŨ → C2 is in isomorphism on the fibers of NŨ near e.

We must now combine these examples. To do this consider the commutative diagram

(A3.13)

(Ǔ , Ě)
τ̌

−−−−→ (Û , Ê)

π̌

y
yπ̂

(Bℓ(U), C)
τ

−−−−→ (U, v)

where (Ǔ , Ě) is the fiber product of (Bℓ(U), C) and (Û , Ê). In fact, τ ◦ π̌ = π̂ ◦ τ̌ is the
blow-up of U corresponding the the sheaf (module in this case) mv ⊕ Ω1

U . Then τ̌ is the

blow-up of Ê, π̌ is one-to-one except over a finite subset B(C) of C and τ̌ is finite-to-one

outside a finite subset B(Ê) of Ê. Hence outside B(C), π̌ factors the normalization of

Bℓ(U); similarly for B(Ê) and τ̌ . Finally, let

n̄ : (Ū , Ē)→ (Ǔ , Ě)

be the normalization. Then Ū has only isolated singularities, outside (π̌ ◦ n)−1B(C) is
the normalization of Bℓ(U) − B(C) and, outside (τ̌ ◦ n)−1B(Ě), is the normalization of

Û −B(Ê).
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Now suppose given F (C), a finite subset of C and F (Ê), a finite subset of Ê. Choose
the linear function h in Example (A3.12a) (or the proof of Proposition (3.6)) so that the
corresponding hyperplane also misses B(C) ∪ F (C); and choose the linear functionals k

and l in part b. of (A3.12) so that the Schubert variety S(ker k∩ker l) misses B(Ê)∪F (Ê).
Such choices are possible and generic, according to (A3.11c).

(A3.14). Proposition Let π̃ : (Ũ , E) → (Ǔ , Ě) be a resolution of singularities factoring
through the normalization Ū of Ǔ , let e ∈ E and set π = (π̂ ◦ τ̌ ) ◦ π̃ = (τ ◦ π̌) ◦ π̃. Then
there is a hyperplane H = kerh ∈ Gr(N − 1, N) = PN−1 and a codimension two plane
D = ker k ∩ ker l ∈ Gr(N − 2, N) such that

a. h ◦ π generates mvOŨ near e,
b. {d(k ◦ π), d(l ◦ π)} generates NŨ near e and
c. D ⊂ H

Proof The discussion above, where F (C) = π̌ ◦ π̃(e) and F (Ê) = τ̌ ◦ π̃(e), proves a.
and b.

To prove c., begin with the following simple fact: Let D ∈ Gr(N − 2, N), let G be
a neighborhood of it in Gr(N − 2, N) and let D ⊂ H ∈ Gr(N − 1, N). Then any H′

sufficiently close to H is contained in some D′ ∈ G. Now call D ∈ Gr(N − 2, N) good if

it misses B(Ê) ∪ F (Ê) and H ∈ Gr(N − 1, N) good if it misses B(C) ∪ F (C). The sets
of good planes are dense and open in there respective Grassmannians by the discussion
above. Let D be a good plane in Gr(N − 2, N). Then there is a hyperplane H ⊃ D and a
sequence {Hi} of good hyperplanes converging to H. Now choose a neighborhood G of D
consisting of good D’s. Then the simple fact says we can find some D′ ∈ G and some Hj

with D′ ⊂ Hj .

We can now use these blow-up and transversality considerations to derive (3.3) in its
proper context.

(A3.15). Corollary [HP] Let v ∈ V be an isolated singular point on a complex surface.

Then there is a neighbohood U of v and a resolution of singularities π : (Ũ , E) → (U, v)
such that for each e ∈ E there are linear functions k , l : CN → C satisfying properties
a.-c. of (3.3).

Proof. It follows from part c. of Proposition (A3.14)) that we may take k = h in parts
a. and b. We take E :=

∑
miEi to have simple normal crossings and suppose e ∈ E1 ∩E2

is at a crossing; the proof in case e is a simple point of E is similar. Then we have, for
φ := k ◦ π and ψ := l ◦ π and suitable local coordinates {u, v} with E1 = {u = 0} and
E2 = {v = 0} near e,

φ = um1vm2 , dφ ∧ dψ = dγdu ∧ dv,

where dγ = 0 is a local defining eequation for the degeneracy divisor of γ. Let us now

for the sake of convenience work with elements of Ô, the ring of germs of holomorphic
functions at e. The fact that γ degenerates only along |E| means that

dγ = µud1vd2 , µ ∈ Ô∗
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for some non-negative integers d1 and d2.
Since

dφ ∧ dψ = um1−1vm2−1(m1vψv −m2uψu)

we will need the following simple lemma whose proof is left to the reader.

Lemma. Let Dm1,m2 : Ô → Ô be the C-derivation

Dm1,m2g = m1vgv −m2ugu

Then
kerDm1,m2 = C{z}

the ring of convergent power series in z := u
m1

(m1,m2) v
m2

(m1,m2) , where (m1,m2) is the greatest
common divisor of m1 and m2; and im Dm1,m2 consists of convergent power sreies

∑
ra,bu

avb

where m1b−m2a 6= 0.

Using the Lemma write

ψ =
∑

siz
i +
∑

ra,bu
avb

Since ψ must vanish along E, but to no lower order than φ, we have i ≥ (m1,m2), a ≥ m1

and b ≥ m2 in these sums. We can now compute

um1−1vm2−1
∑

(m1b−m2a)ra,bu
avb = um1−1vm2−1Dm1,m2ψ = µud1vd2

and hence ∑
ra,bu

avb = νud1−m1+1vd2−m2+1

for some ν ∈ Ô∗. Set
ni := di −mi + 1

Then since a ≥ m1 and b ≥m2 for all a and b, ni ≥ mi and the proof is complete.
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§4: The cohomological Hodge structure in dimension two.

The main purpose of this section is to prove Theorem B: we construct the filtered

quasi-isomorphism γ : (L·N/D,F
·)

∼=
−→ (Â·,F ·) and verify that the canonical maps κp

L :

grpL·N/D → L
p,·
N/D are isomorphisms for each p. In addition, we will compute ((4.19)-

(4.22)) the L2 − ∂̄-comology groups Hp,q
B (V ), where dimV = 2 and B = D, D/N and N .

Throughout this chapter we keep the notations and conventions of §1.
Since morphisms in Db

C
are in general not chain maps, but rather equivalence classes of

pairs of them, it is reasonable to expect γ to have this form, and this is indeed the case.
Let

(4.1) N k
Ṽ

:=






Ak(logE), k = 0, 1

A0(Ω2)⊕A1(N (Z − E))⊕A2(O(−E)), k = 2

0, k = 3, 4

and define

N̂ · := π∗N
·
Ṽ

We use the notation N k
Ṽ

here because of the important role to be played by the Nash sheaf
N , defined in §3.

There is an obvious decreasing filtration (by holomorphic degree) on N̂ ·, and we thus

regard it as an element of DFb
C
(V ). It is easy to see that N̂ · is a subcomplex of both L·N/D

and of Â·, respecting all the filtrations, so there are maps, λ1 and λ2 in DFb
C
(V ),

(4.2) L·N/D
λ1←− N̂ · λ2−→ Â·

What we will show is that

(4.3) γ := λ1λ
−1
2 : L·N/D −→ Â

·

is an isomorphism in DFb
C
(V ). To do this it is necessary and sufficient ([Il, V.1.2]) to show

that for each p the morphisms of the associated graded complexes

(4.4) grp
FL

·
N/D

grp
F

λ1
←−−−− grp

FN̂
· grp

F
λ2

−−−−→ grp
FÂ

·

are isomorphisms in Db
C
(V ); i.e., that grp

Fλ1 and grp
Fλ2 are quasi-isomorphisms.

Now in a fixed degree k, we have for q := k − p

(4.5) grp
FL

k
N/D ⊂ L

p,q
N/D

the L2-forms of type (p, q) on V . Here is an important observation:
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4.6. Remark This is not an equality unless p = dimV . In general, to show that a form
ω ∈ Lp,q is in the image of grp

FL
k
N/D, we must show either that ∂Bω ∈ L2 (for appropriate

B) or find a form α in Fp+1Lk
N/D so that ∂ω + dα ∈ L2.

Entirely analogous remarks apply to the filtered complexes of sheaves N̂ · and Â·: the
associated graded complex of each differs, in its imposition of an “extra” ∂-condition, from
its naturally associated “pure ∂̄”-complex, denoted N̂ p,· and Âp,·; and there are inclusions
of complexes of sheaves

(4.7) Lp,·
N/D

λp
1←− N̂ p,· λp

2−→ Â·

Now it is cohomology of these latter complexes Lp,·
N/D, N̂ p,· and Âp,· which can be

computed most easily, so our strategy is to show that the morphisms which forget the ∂-
conditions are quasi-isomorphisms and then to show that λp

1 and λp
2 are quasi-isomorphisms.

To be precise, we have the commutative diagram of complexes of sheaves

(4.8)

grpL.
N/D ← grpN̂ . → grpÂ.

↓ κ̂p
L ↓ κ̂p

N ↓ κ̂p
A

Lp, ·
N/D ← N̂ p, · → Âp, ·

Hence to prove the top horizontals in (4.8) are quasi-isomorphisms, it is enough to prove
that the vertical and bottom horizontal morphisms are.

These are local statements which are obvious on the smooth part of V , where the
complexes in (4.8) are identical. Hence Theorem B will follow from:

4.9. Theorem Let V be a complex projective surface and let S · = L·N/D, N̂ · or Â·.

a. Let v ∈ V be a singular point. Then the stalk map

κp
S,v : grpS ·v → S

p, ·
v

induces isomorphisms on cohomology for all p.

b. The local cohomology groups Hp,q(S ·v) := Hq(Sp, ·
v ), arranged in the Hodge dia-

mond,

H2,2(S ·v)

H2,1(S ·v) H1,2(S ·v)

H2,0(S ·v) H1,1(S ·v) H0,2(S ·v)

H1,0(S ·v) H0,1(S ·v)

H0,0(S ·v)

are isomorphic to the local cohomology groups
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0

0 0

π∗Ω
2
Ṽ ,v

H1(Â1,·
v ) R2π∗OṼ ,v

π∗Ω
1
Ṽ ,v

R1π∗OṼ ,v

π∗OṼ ,v

where π : Ṽ → V is any resolution of the singularities of V . Moreover, these
isomorphisms are compatible with the maps on stalk cohomology induced by the
bottom horizontal maps in (4.8).

Proof: The stalk cohomology groups are all direct limits of global section cohomology
of open neighborhoods U of v. In case S · = N̂ . or Â. these in turn are (since N̂ . and Â. are

direct image sheaves) cohomology over open neighborhoods Ũ := π−1(U) of E := π−1(v),

the exceptional divisor in Ṽ ; in case S. = L.
N/D, the same is true because of (3.9) and

(3.10). So in the proof we will work in such Ũ without further comment, except when

it is necessary to choose U (and hence Ũ) to have a psedudoconvex boundary. (This
is permissible since such U are cofinal among all neighborhoods of v in V .) Also the
compatibility of the isomorphisms in b. will be clear from the proofs and will be left to
the reader. Finally, the isomorphisms in a. will all take the form

κp,q
S,v : Hp+q(grpS ·v)→ Hq(Sp, ·

v )

and will be done case-by-case, identified by a choice of S · and of (p, q). The issue in
these arguments will be the same as that described in the introduction to this section, in
particular (4.6): the elements of grpS ·v must be in dom d, while those in Sp, ·

v satisfy the
weaker dom ∂̄ condition.
• S. = L.

N/D and (p, q) = (0, 0): Let [φ] ∈ H0(U ;L0, ·
v ). Then [φ] has a representative

φ ∈ L0,0(U) with ∂Dφ = 0. This follows from (2.27), but can also be proved more readily
in this case as follows. Let φi → φ and ∂̄φi → ∂̄Dφ = 0, where φi is a sequence of smooth
functions on U supported away from v. Let η be a smooth compactly supported function
on U , η ≡ 1 on a neighborhood U ′ of v. Clearly,

∂̄(ηφi) = ∂̄η ∧ φi + η∂̄φi → ∂̄η ∧ φ

In particular, lim ∂̄(ηφi) exists, and so is Cauchy. Now using equality of the Laplacians
∆∂ and ∆∂̄ on functions of compact support, we get

< ∂(ηφi − ηφj), ∂(ηφi − ηφj) > = < ∂̄(ηφi − ηφj), ∂̄(ηφi − ηφj) >

for all i and j, so that ∂(ηφi) is Cauchy as well. Thus we have the convergence of ∂(ηφi)
on U ′ so that φ|U ′ ∈ gr0LN/D

0.·(U ′). Thus κ0.0
LN/D,v : H0(gr0LN/D

·
v
) → H0(L0, ·

v ) is

surjective. As it is clearly injective, it is an isomorphism.
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Finally, by [P, 4.7], the natural map O(Z − E)(Ũ) → L0,0
N (Ũ ) induces an isomor-

phism onto ker ∂̄N . This implies that ker ∂̄D = O(Ũ ); for if ∂̄Dφ = 0, then by (2.27),

φ/ρ log(1/ρ) ∈ L0,0(Ũ ), where ρ = r ◦ π and r is the distance from the singular point v.

Since we already have φ ∈ O(Z −E)(Ũ ), it follows from (3.4b) and (3.3b) that φ ∈ O(Ũ ).

Conversely, if φ ∈ O(Ũ ), then clearly ∂̄Nφ = 0; and φ/ρ ∈ L0,0 by (3.4b), since Z ≤ Dγ .
Thus by (2.18), φ ∈ dom ∂̄0

D . This completes the proof of part b. in this case.

• S. = Â. and (p, q) = (0, 0): By definition, Â0,0(U) = A0,0(Ũ ; logE) = A0,0(Ũ ).

Since ∂A0,0(Ũ ) ⊆ A1,0(Ũ) ⊆ A0(Ũ ,Ω1(logE)) = Â1,0(U), κ0,0
A,v is surjective. Injectivity

is obvious.

• S. = N̂ . and (p, q) = (0, 0): In degree ≤ 1, N̂ . = Â., so this case is identical to the
previous one.

• S. = L.
N/D and (p, q) = (0, 1): To begin, observe that we have natural inclusions of

complexes of sheaves
π∗A

0,·

Ṽ
→ L0,·

N/D

and
L2,·

N/D → π∗A
2,·

Ṽ

These induce the horizontal maps in the commutative diagram

H0,1(Ũ ) −−−−→ H1(Ũ ;LD
0,·)

∼=

y ∼=

y

H2,1
c (Ũ )∗

∼=
−−−−→ H1

c (Ũ ;LN
2,·)∗

in which we take Ũ to be a pseudoconvex neighborhood of E, so that H0,1(Ũ ) andH2,1
c (Ũ )

are finite -dimensional ([FK, 4.3.2, 5.1.7]). The bottom horizontal map is an isomorphism
by the main theorem of [PS], and the verticals are Serre Duality isomorphisms ([FK,
5.1.7]and [PS, 1.3c]). This proves part b. in this case; and it shows that, given [φ] ∈
H1(Ũ ,LD

0,·), we may assume φ is a smooth 1-form on Ũ . We now claim that [∂φ] ∈
H1(Ũ ;Ω1) is in the image of the map

H1(Ũ ;N (Z − E))→ H1(Ũ ;Ω1)

induced by the inclusion ((3.19) or (3.20)) of sheaves N (Z −E) →֒ Ω1. If this is assumed,

there is ψ ∈ A(Ũ ;N (Z − E)) ⊆ A1,0(Ũ ) such that

∂̄ψ − ∂φ ∈ A1(Ũ ;N (Z −E))

Since N (Z − E) ⊆ L1,1 and ∂ψ ∈ A2,0(Ũ) ⊆ L2,0(Ũ ) we have d(ψ + φ) ∈ L1(Ũ), i.e.,
ψ + φ ∈ dom dN . But since ψ+ φ is smooth it follows from (2.18) that ψ+ φ ∈ dom dD,

so κ0,1
L,v is surjective. (Compare this argument to Remark (4.6).)

To prove the above claim, recall the exact sequence of sheaves (3.27)

0→ IEΩ
1(logE)→ Ω1 →⊕Ω1

Ei
→ 0
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This induces the exact sequence of vector spaces (3.28)

H1(Ũ ;IEΩ
1(logE))

f
−→ H1(Ũ ;Ω1)

g
−→ ⊕H1(Ei;Ω

1
Ei

)

Clearly, g[∂φ] = [∂gφ] = 0, so [∂φ] ∈ imf . Hence, (3.24a) finishes the proof of the claim.

To show injectivity, suppose ω := ψ + φ ∈ L1,0(Ũ ) ⊕ L0,1(Ũ ) = L1(Ũ ) is such that

dDω ∈ F 1L2(Ũ ) and φ = ∂̄Df for some f ∈ L0(Ũ). By the argument from the case
S. = L.

N/D and (p, q) = (0, 0) above, f ∈ dom ∂D , so in H1(gr0(L·N/D)v), [ω] = [ψ] = 0.

• S. = Â. and (p, q) = (0, 1): By definition, H0,1(Ũ )
∼=−→ H1(Ũ ;A0,·). Next, given

φ ∈ Â0,1(U) = A0,1(Ũ ) with ∂̄φ = 0, the argument in the previous case shows there is

ψ ∈ A1,0(Ũ ) ⊆ A0(Ũ ;Ω1(logE)) := Â1,0(U) such that ∂̄ψ − ∂φ ∈ A1(Ũ ;IEΩ
1(logE)) =

Â1,1(U). Since ∂ψ ⊂ A0(Ũ ;Ω2) = Â2,0(U), this shows κ0,1
A,v is surjective. Injectivity is

obvious, so κ0,1

Â,v
is an isomorphism.

• S. = N̂ . and (p, q) = (0, 1): Since N̂ 1,1(U) := A1(Ũ ;N (Z−E)) and N̂ 2,0 = A2,0, the
surjectivity follows from the proof of the case S. = L.

N/D, except that we may immediately

assume that our form φ is in A0,1, since N̂ 0,q = A0,q. The injectivity follows similarly and
H0,1(Ũ ) −→ H1(U, N̂ 0,·) is an isomorphism by the previous case, because N̂ 0,· := Â0,·.

• S. = L.
N/D and (p, q) = (0, 2): First note that H2((LN/D

0, ·)v) = 0 since, for any

pseudoconvex neighborhood Ũ of E, [PS,FK, loc.cit.] shows H0,2
D (Ũ) ∼= Ω2

c (Ũ )∗ = 0. It
remains to show that H2(gr0(L·N/D)v) = 0

Let [φ] ∈ H2(U, gr0L·N/D); then φ ∈ L2
N/D(U) and dNφ ∈ L3

N/D(U). Suppose κ0,2
LN/D

[φ] =

0; then there exists ξ ∈ L0,1
N/D(U) such that ∂̄Dξ = φ0,2. By (2.47), we can choose this ξ

so that ∂Dξ ∈ LN/D. Thus, [ψ] = 0 ∈ H2(V ; gr0L·N/D).

• S. = Â. and (p, q) = (0, 2): By Malgrange’s theorem [M], H2(Ũ ;IE) = 0, so

H2(Â0, ·
v ) = 0. We will show that

(4.11) H2(Â·
v)→ H2(gr0Â·

v)

is surjective. Then since Â· is quasi-isomorphic to IC·, the intersection cohomology com-
plex on V (see (1. )), we have H2(Â·

v) = 0 so that H2(gr0Â·
v) = 0 as well.

So let ξ = ξ2,0 + ξ1,1 + ξ0,2 ∈ Â2(U) satisfy dξ ∈ F 1Â3(U) = Â3(U). By Malgrange

again,H2(Ũ ; Â1,·) = H2(Ũ ;IEΩ1(logE)) = 0, so there is η ∈ Â1,1(U) = A1(Ũ ;IEΩ1(logE))

such that ∂̄η = ∂̄ξ1,1 − ∂ξ0,2. Since the elements of A1(Ũ ;IEΩ1(logE)) are smooth

(IEΩ
1(logE) ⊆ Ω1), ∂η ∈ A1(Ũ ;Ω2) = Â2,1(U), so η ∈ F 1Â2(U). Hence, replacing ξ

with ξ − η, we may assume that (dξ)1,2 = 0. But now we have ∂̄(dξ)2,1 = 0, so by [GR]

there is τ ∈ A0(Ũ ;Ω2) = A0(Ũ ;IEΩ2(logE)) = Â1,1(U) such that ∂̄τ = (dξ)2,1, As above
we may assume that dξ = 0. Hence (4.11) is surjective.

• S. = N̂ . and (p, q) = (0, 2): By definition, H2(N̂ 0, ·
v ) = H2(Â0, ·

v ), which was just

shown to vanish. Again it follows easily from the definition of N̂ . that H2(N̂ ·
v) →֒ H2(Â·

v),

which vanishes, as we saw above. So to show that H2(gr0N̂ ·
v) = 0 it suffices to show that

H2(N̂ ·
v)→ H2(gr0N̂ ·

v)
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is surjective. But this is immediate from the fact that N̂ 3 = 0 (so ξ ∈ N̂ 2(U) representing

an element of H2(gr0N̂ ·
v) is automatically closed).

• S. = L.
N/D and (p, q) = (1, 0): By definition, ker ∂̄N = Ω1

(2)(Ũ ) and so by (2.43) and

the definition (3.11) of N , ker ∂̄D = N (N)(Ũ ). But by (3.24b) N (N)(Ũ ) = Ω1(logE)(Ũ ),

which equals Ω1(Ũ ) by (3.29a). Hence, ker ∂̄D = Ω1(Ũ ) and it follows easily from this

that κ0,1
L,v is an isomorphism: surjectivity is the only issue, and we need only show that

if ω ∈ dom ∂̄1,0
D , then ω ∈ dom ∂1,0

D . For this, the proof above that φ ∈ dom ∂D, in case
S. = L.

N/D and (p, q) = (0, 0), applies essentially verbatim. The only thing to add is that

the identity used there becomes

< ∂̄(ηφi − ηφj), ∂̄(ηφi − ηφj) > =< ∂(ηφi − ηφj), ∂(ηφi − ηφj) > + < ϑ̄(ηφi − ηφj), ϑ̄(ηφi − ηφj) >

≥< ∂(ηφi − ηφj), ∂(ηφi − ηφj) >

where ϑ̄ denotes as usual the formal adjoint of ∂.

• S. = Â. and (p, q) = (1, 0): By definition, H0(U ; Â1,·) = Ω1(logE)(Ũ ) which equals

Ω1(Ũ ) by (ref). It follows from this that κ0,1
A,v is an isomorphism.

• S. = N̂ . and (p, q) = (1, 0): The proof here is identical to that of the previous case.

• S. = L.
N/D and (p, q) = (1, 1): Let [ξ] ∈ H2(U ; gr1L.

N/D) be in the kernel of κ1,1
LN/D,v.

Then given the decomposition ξ = ξ2,0 + ξ1,1 of ξ into type, we have dNξ ∈ F 2L3
N/D(U)

and there is φ ∈ L1,0
N/D(U) such that ∂̄Dφ = ξ1,1. We showed above in case S. =

L.
N/D and (p, q) = (1, 0) that this implies φ ∈ dom dD, so we get [ξ] = [ξ − dDφ] = 0

in H2(U ; gr1L.
N/D).

To prove surjectivity of κ1,1
LN/D,v, suppose given [ξ1,1] ∈ H1(Ũ ;L1,·). We show below that

we may take ξ1,1 to be aN (Z−E)-valued (0,1)-form. (In fact, we show there is a surjection

H1(π∗N (Z − E)v) → H1((L1,1
N/D)v)). If we assume this, then since N (Z − E) ⊆ Ω1,

∂ξ1,1 ∈ A2,1(Ũ ), the smooth (2,1)-forms on Ũ . Since ∂̄∂ξ1,1 = −∂∂̄ξ1,1 = 0, there is

([GR]) ξ2,0 ∈ A2,0(Ũ ) such that ∂̄ξ2,0 = −∂ξ1,1. Hence ξ := ξ2,0 + ξ1,1 ∈ F 1L.(Ũ ),

dNξ ∈ F 2L.(Ũ) and κ1,1
LN/D,v[ξ] = [ξ1,1] as required.

To justify the assumption just made,we show there is an isomorphism

(4.12) im(H1(π∗N (Z − E)v)→ H1(π∗N (N)v)) ∼= H1((L1,·
N/D)v),

which will also prove the isomorphism of part b. of the Theorem by (3.26a).

To begin we show there is a commutative diagram of sheaves on Ṽ

(4.13)

M0(N (Z −E))
∂̄0

−−−−→ M1(N (Z − E))
∂̄1

−−−−→ M2(N (Z − E))
y

y
xi

L1,0
γ

∂̄0
D−−−−→ L1,1

γ

∂̄1
N−−−−→ L1,2

γ
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whereM.(N (Z −E)) denotes the ∂̄-complex of sheaves of N (Z −E))-valued measurable

forms of type (0, ·) on Ṽ , Lp,q
γ is the sheaf of measurable forms on Ṽ which have locally finite

L2 norm with respect to the (degenerate) metric γ pulled up from the induced Fubini-Study
metric on V , and the vertical maps are inclusions. First of all, the two rightmost inclusions
follow from (3.12d) and the middle one shows thatM0(N (Z−E)) ⊆ dom ∂̄0

N . To complete
the justification of the diagram, we must show thatM0(N (Z−E)) ⊆ dom ∂̄0

D. By (3.12d),

L1,0
γ = M0(N (Dγ )) := M0(N (Z − E + N)). Let ρ : Ũ → R denote the composition of

π : Ũ → U with the distance map r : Ũ → R coming from the imbedding of U into CN .
Since the divisor N ≥ Z (by (3.3c)), we see from (3.4b) that if ω ∈M0(N (Z −E))), then
ω/ρ ∈ L1,0

γ . We now conclude that ω ∈ dom ∂̄0
D as in the case S. = L.

N/D and (p, q) =

(0, 0).

Let us now apply Γ(Ṽ ; ) to (4.13). Observe that the composite operator i∂̄N is com-

pactly approximable in norm since E is of real codimension two in Ũ ([PS,, proof of
(3.6)].). This allows us to replace the diagram above with the commutative diagram of
Hilbert spaces

(4.14)

M0(N (Z −E))
∂̄0

−−−−→ M1(N (Z − E))
∂̄1

−−−−→ M2(N (Z − E))
y

y
y=

L1,0
γ

∂̄0
D−−−−→ L1,1

γ

∂̄1
D−−−−→ M2(N (Z − E))

To use (4.13), we introduce the following Lemma. It gives conditions on a map between
complexes of Hilbert spaces under which one may conclude surjectivity of the induced map
on cohomology; in effect, it gives conditions under which one may reverse the standard
implication ([PS,1.3(a)]) “Hk(V,L·) finite dimensional⇒ range d closed”.

4.15. Lemma Let i· : (M ·,D·) →֒ (L·, d·) be a bounded inclusion of complexes of Hilbert
spaces, · = 0, 1, 2, such that

(1) the operators D· and d· are closed,
(2) the cohomology H1(M ·) is finite dimensional,
(3) i2 is an equality,
(4) there is a subspace L1

c ⊆ M1 such that if d1
c := d1|L1, then the operator closure

d̄1
c = d1 and

(5) range d0 and range D1 are closed.

Then if φ ∈ dom d1, there exist ψ ∈ dom D1 and λ ∈ L0 such that φ − d0λ = ψ. In
particular, H1(M ·)→ H1(L·) is surjective.

. Proof: To aid in following the proof, we display i·:

(4.16)

M0 D0

−−−−→ M1 D1

−−−−→ M2

i0

y i1

y i2

y=

L0 d0

−−−−→ L1 d1

−−−−→ L2
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An element of M i will be regarded when convenient as an element of Li.

Let φ ∈ dom d1. Assumption (4) says there is a sequence {φj} in L1
c such that φj

L1

−→ φ

and {d1φj = D1φj} converges in M2 = L2. (Here and below, ξj
H
−→ ξ means that the

sequence ξj converges in the Hilbert space H to ξ.) By assumptions (1) and (2), M1 has
a “Hodge Decomposition” ([KK, Appendix])

M1 = im D0 ⊥ im D1∗ ⊥ H1

where H1 := kerD1 ∩ kerD0∗ is finite-dimensional. Using this, write

φj = D0βj +D1∗γj + hj

Note that we do not know whether {φj} converges in M1, so we can’t conclude that any
of these tems converge there. Since D1φj = D1D1∗γj converges in M2 and the range of
D1 is closed, D1∗γj converges in M1. We replace φ with φ − limD1∗γ and denote it φ
again. We now have d1φ = 0 and a sequence {φj = D0βj + hj} in M1 (not necessarily in

L1
c) such that φj

L1

−→ φ and D1φj = d1φj
M2=L2

−−−−−→ 0.
Now write

hj = h0
j + h1

j where h0
j ∈ ker(H1 → H1(L·)), and h1

j ∈ ker(H1 → H1(L·))⊥,

and, for each j, choose αj ∈ L0 such that d0αj = D0βj + h0
j .

Since h1
j/‖h

1
j‖L1 is bounded in the finite-dimensional subspace i1H1 ⊆ L1, we may

assume, perhaps after passing to a subsequence, that it converges, say to h1 ∈ L1. We
claim the sequence {‖h1

j‖L1} is bounded. If it were unbounded, then (passing again to a

subsequence if necessary) φ/‖h1
j‖L1

L1

−→ 0, so d0(αj/‖h1
j‖L1)

L1

−→ −h1. But then, since the

range of d0 is closed, h1 ∈ im d0, which contradicts the fact that h1 ∈ ker(H1 → H1(L·))⊥.
Now since ‖h1

j‖L1 is bounded, ‖h1
j‖M1 is bounded too, because the L1- and M1-norms

are equivalent on H1. So there is a convergent subsequence, h1
j

M1

−−→ h∗, and from

φj = D0βj + h0
j + h1

j = d0αj + h1
j

we get φ− h∗ = limd0αj , which equals d0λ, for some λ ∈ L0, since d0 is closed.

We have verified that all the hypotheses of (4.15) are satisfied in (4.14) except one,
namely that the range of ∂̄0

D be closed, which we now verify. First the range of ∂̄0
D is

closed if and only if that of its Hilbert space adjoint (∂̄0
D)∗ is; and this would follow from

the ∂̄D-Hodge decomposition if we knew H1,0
D (V ) were finite. Because H1,0

D (V ) ⊆ H1,0
N (V ),

this follows from the computation made in (3.12d):

4.17. Lemma H1,0
N (V ) = H0(Ṽ ;N (Dγ ))

It now follows from (4.15) that H1(N (Z − E)v) → H1(L1,·
v ) is surjective: take φ ∈

L1,1(Ũ )for some Ũ ⊃ E, get a global form ηφ ∈ Lγ using a cut-off η as in the case
S. = L.

N/D and (p, q) = (0, 0) above and use (4.15) to get ψ ∈ M1(N (Z−E)) and λ ∈ L1,0
γ
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such that φ− ∂̄Dλ = ψ. Then on some Ũ ′ ⊆ Ũ , [φ] is in the image of H1(Ũ ′;N (Z−E))→
H1(Ũ ′;L1,·

v ).

Now we claim that the map H1(Ũ ;N (Z − E))→ H1(Ũ ;L1,·) passes to a map

im (H1(Ũ ;N (Z − E))→ H1(Ũ ;N (N))) −→ H1(Ũ ;L1,·
γ ).

To prove this, suppose that ∂̄ψ = φ ∈M1(Ũ ;N (Z−E)), where ψ ∈M0(Ũ ;N (N)). Then

in L1,·(Ũ ), ∂̄Nψ = φ, and we claim that we can replace N by D. To do this we appeal to
the argument in [PS, (3.6)]. Namely, we need the ”trace estimate” [loc. cit.,(3.7)], which
follows since the equation ∂̄ψ = φ holds inM·(N (Dγ )), where we can appeal to the same
elliptic regularity ([H2, (4.2.3)]) as was used in the proof of [PS, (3.6)]. Finally, we claim
(4.12) is an isomorphism. To see this, suppose φ ∈ M1(N (Z − E)) and ∂̄Dψ = φ, where

ψ ∈ L1,0(Ũ) =M0(Ũ ;N (Dγ )). Then by (2.47), we can arrange that ψ/ρ log ρ ∈ L1,0(Ũ ).

It now follows easily from (3.4b) that, since N = Dγ −Z +E, ψ ∈M0(Ũ ;N (N)). Hence,
(4.12) is injective.

4.18 Remark The argument in the last paragraph can be used together with (4.17) to
show (Dγ − (Z − E) = N)

H1,0
D (V ) = H0(V ;N (N))

Details are left to the reader.

• S. = Â. and (p, q) = (1, 1): Let ξ = ξ2,0 + ξ1,1 ∈ A0(Ũ ;Ω2)⊕A1(Ũ ;IEΩ1(logE))

represent an element of the kernel of κ1,1

Â,v
: hence ξ1,1 = ∂̄φ where φ ∈ A0(Ũ ;Ω1(logE)).

This implies that [ξ] is in the kernel of the natural mapH1(Ũ ;Ω1(logE))→ H1(Ũ ;IEΩ1(logE)).

This map factors through H1(Ũ ;Ω1) and(3.29b) shows [ξ] vanishes there, so there is

φ ∈ A0(Ũ ;Ω1) such that ∂̄φ = ξ1,1. Since Â2,0(U) := A(Ũ ;IEΩ2(log E)) = A(Ũ ;Ω2),

∂φ ∈ Â2,0(U), so we have [ξ] = [ξ − ξ1,1] = [ξ2,0] = 0 in H2(gr1Âv). So κ1,1

Â,v
is injective.

The proof of surjectivity is essentially the same as that in the immediately previous case.

• S. = N̂ . and (p, q) = (1, 1): That κ1,1

N̂ ,v
is injective is proved in the same way as for

κ1,1

Â,v
; we only need to add that N∗(Z − E) ⊆ IEΩ1(logE). Surjectivity again uses the

same argument as for that in case (p, q) = (1, 1) and S. = L.
N/D.

To prove the isomorphism of part b., notice first that

H1(N̂ 1,·
v ) = im

(
H1(Ũ ;N (Z − E))→ H1(Ũ ;Ω1(logE))

)

which, using the surjection in (3.24a), is isomorphic to

im
(
H1(Ũ ;IEΩ

1(logE)))→ H1(Ũ ;Ω1(logE))
)

as desired.

• S. = L.
N/D and p+q > 2: By [O1], Hq((Lp,·

N/D)v) = 0. To show Hp+q(grp(L.
N/D)v) =

0, we must strengthen Ohsawa’s argument to include ∂-control. Specifically, we need the
following result.
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Lemma. Let φ ∈ Lp,q
N/D(U), p+q > 2. Then there exists ν ∈ Lp,q−1

N/D (U) such that ∂̄Nν = φ

and ν ∈ dom ∂N .

The proof is easily adapted from the careful exposition of Ohsawa’s argument in [PS,
2.3]

Now we can argue as we have several times above: given any [ψ] ∈ Hp+q(U ; grpL.
N/D),

we may assume the (1,1)-component of ψ is zero, which means [ψ] = 0.

• S. = L.
N/D, Â

. or N̂ . and p = 2: In these cases, gr2S · = S2, ·. The calculation of

H∗(S2, ·
v ) is clear in case S. = Â. or N̂ . and follows from the main theorem of [PS] in case

S. = L.
N/D.

We now compute the Neumann and Dirichlet L2 − ∂̄-cohomology groups Hp,q
N (V ) and

Hp,q
D (V ) of an algebraic surface V . Most of this has already been done: from [PS] we have

(4.19) H2,q
N (V ) ∼= Hq(Ṽ ;Ω2), H2,q

D (V ) ∼= Hq(Ṽ ;Ω2(E − Z))

and by duality

(4.20) H0,q
N (V ) ∼= Hq(Ṽ ;O(Z − E)), H0,q

D (V ) ∼= Hq(Ṽ ;O);

and from part b. of Theorem (4.8) and (3.29a) we have

(4.21) H1,2
N (V ) ∼= H2(Ṽ ;IEΩ

1(logE)), H1,0
D (V ) ∼= H0(Ṽ ;Ω1(logE)) ∼= H0(Ṽ ;Ω1)

4.22. Theorem Let V be a complex projective surface. Then

H1,2
D (V ) ∼= H2(Ṽ ;IEΩ

1(logE)⊗O(E−Z), H1,0
N (V ) ∼= H0(Ṽ ;Ω1(logE)⊗O(Z−E)),

H1,1
D (V ) ∼= im(H1(Ṽ ;IEΩ

1(logE)⊗O(E − Z))→ H1(Ṽ ;Ω1(logE)))

and
H1,1

N (V ) ∼= im(H1(Ṽ ;IEΩ
1(logE))→ H1(Ṽ ;Ω1(logE)⊗O(Z −E)))

Proof: We begin with the Neumann groups and follow the proof of Theorem (4.1) in

the case S. = L.
N/D and (p, q) = (1, 1). There is a commutative diagram of sheaves on Ṽ

M̂0(N (Dγ))
∂̄0

−−−−→ M1(N (Z − E))
∂̄1

−−−−→ M2(N (Z − E))
y

y
xi

L1,0
γ

∂̄0
N−−−−→ L1,1

γ

∂̄1
N−−−−→ L1,2

γ

where M̂0(N (Dγ)) consists of those ω ∈ M(N (Dγ)) such that ∂̄0ω ∈ M1(N (Z − E));

in particular, the middle cohomology of the top complex is im (H1(Ũ ;N (Z − E)) →
H1(Ũ ;N (Dγ))). We again get a second diagram

M̂0(N (Dγ))
∂̄0

−−−−→ M1(N (Z − E))
∂̄1

−−−−→ M2(N (Z − E))
y

y
y=

L1,0
γ

∂̄0
N−−−−→ L1,1

γ

∂̄1
D−−−−→ M2(N (Z − E))
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and to apply (4.15) we need to know that the range of ∂̄0
N is closed. This is equivalent

to the range of (∂̄0
N )∗ being closed, which in turn follows from the finiteness of H1,0

N (V )
(Lemma (4.17)). Now following the argument above following gives us a surjection

(4.23) im (H1(V ;N (Z −E))→ H1(V ;N (Dγ)))→ H1,1
N (V )

Moreover, if ker ∂̄1 ∋ ψ = ∂̄0
Nω ∈ L

1,1
N (V ), then sinceM0(N (Dγ)) = L1,0 andM1(N (Z −

E)) = L1,1, we get ψ = ∂̄0ω. Hence (4.23) is an isomorphism. Hence the claimed compu-

tation of H1,1
N (V ) follows from (3.26b).

Now notice that since Λ2N (Dγ) = Ω2 ((3.12d)), we have nonsingular pairings

N ×N (Dγ )→ Ω2

and
N (Z −E)×N (N) → Ω2

It now follows from Serre duality and the duality between Dirichlet and Neumann coho-
mology ([PS, (1.3c)]) that there is an isomorphism

im(H1(Ũ ;N )→ H1(Ũ ;N (N))) → H1,1
D (V )

(This could also have been proved as the isomorhism (4.23) was.)

Finally, the computation of H1,0
N (V ) follows from (4.18) and (3.12d).
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