Pure Inductive Logic

Jeff Paris

School of Mathematics, University of Manchester

– in collaboration with Jürgen Landes, Chris Nix, Alena Vencovská

æ

ъ

Jeff Paris Pure Inductive Logic

This agent is assumed to have no further knowledge about M

This agent is assumed to have no further knowledge about M

This agent is assumed to have no further knowledge about M

This agent is assumed to have no further knowledge about M

We ask our agent to 'rationally' assign a probability $w(\theta)$ to $\theta \in SL$ being true in this ambient structure M.

Equivalently we're asking the agent to *pick* a 'rational' *probability function w*, where

 $w: SL \to [0,1] \text{ is a probability function on } L \text{ if it satisfies}$ $(P1) \models \theta \Rightarrow w(\theta) = 1$ $(P2) \quad \theta \models \neg \phi \Rightarrow w(\theta \lor \phi) = w(\theta) + w(\phi)$ $(P3) \quad w(\exists x \psi(x)) = \lim_{n \to \infty} w(\bigvee_{i=1}^{n} \psi(a_i))$

We ask our agent to 'rationally' assign a probability $w(\theta)$ to $\theta \in SL$ being true in this ambient structure M.

Equivalently we're asking the agent to *pick* a 'rational' *probability function w*, where

 $w: SL \to [0,1] \text{ is a probability function on } L \text{ if it satisfies}$ (P1) $\models \theta \Rightarrow w(\theta) = 1$ (P2) $\theta \models \neg \phi \Rightarrow w(\theta \lor \phi) = w(\theta) + w(\phi)$ (P3) $w(\exists x \psi(x)) = \lim_{n \to \infty} w(\bigvee_{i=1}^{n} \psi(a_i))$ We ask our agent to 'rationally' assign a probability $w(\theta)$ to $\theta \in SL$ being true in this ambient structure M.

Equivalently we're asking the agent to *pick* a 'rational' *probability function w*, where

 $w: SL \to [0, 1] \text{ is a probability function on } L \text{ if it satisfies}$ $(P1) \models \theta \Rightarrow w(\theta) = 1$ $(P2) \quad \theta \models \neg \phi \Rightarrow w(\theta \lor \phi) = w(\theta) + w(\phi)$ $(P3) \quad w(\exists x \psi(x)) = \lim_{n \to \infty} w(\bigvee_{i=1}^{n} \psi(a_i))$

. . . based on Symmetry, Relevance, Irrelevance, Analogy, . . .

Example

Constant Exchangeability Principle, Ex For $\theta(x_1, x_2, ..., x_n)$ a formula of *L* not mentioning any constants $w(\theta(a_{i_1}, a_{i_2}, ..., a_{i_n})) = w(\theta(a_{j_1}, a_{j_2}, ..., a_{j_n}))$

Similarly replacing a relation symbol R everywhere in $\phi \in SL$ by $\neg R$ should not change the probability (as in the coin toss example) – the *Strong Negation Principle*

. . . based on Symmetry, Relevance, Irrelevance, Analogy, . . .

Example

Constant Exchangeability Principle, Ex For $\theta(x_1, x_2, ..., x_n)$ a formula of *L* not mentioning any constants $w(\theta(a_{i_1}, a_{i_2}, ..., a_{i_n})) = w(\theta(a_{j_1}, a_{j_2}, ..., a_{j_n}))$

Similarly replacing a relation symbol R everywhere in $\phi \in SL$ by $\neg R$ should not change the probability (as in the coin toss example) – the *Strong Negation Principle*

. . . based on Symmetry, Relevance, Irrelevance, Analogy, . . .

Example

Constant Exchangeability Principle, Ex For $\theta(x_1, x_2, ..., x_n)$ a formula of *L* not mentioning any constants $w(\theta(a_{i_1}, a_{i_2}, ..., a_{i_n})) = w(\theta(a_{j_1}, a_{j_2}, ..., a_{j_n}))$

Similarly replacing a relation symbol R everywhere in $\phi \in SL$ by $\neg R$ should not change the probability (as in the coin toss example) – the *Strong Negation Principle*

白 ト イヨ ト イ

. . . based on Symmetry, Relevance, Irrelevance, Analogy, . . .

Example

Constant Exchangeability Principle, Ex For $\theta(x_1, x_2, ..., x_n)$ a formula of *L* not mentioning any constants $w(\theta(a_{i_1}, a_{i_2}, ..., a_{i_n})) = w(\theta(a_{j_1}, a_{j_2}, ..., a_{j_n}))$

Similarly replacing a relation symbol R everywhere in $\phi \in SL$ by $\neg R$ should not change the probability (as in the coin toss example) – the *Strong Negation Principle*

直 ト イヨ ト イヨト

. . . based on Symmetry, Relevance, Irrelevance, Analogy, . . .

Example

Constant Exchangeability Principle, Ex For $\theta(x_1, x_2, ..., x_n)$ a formula of *L* not mentioning any constants $w(\theta(a_{i_1}, a_{i_2}, ..., a_{i_n})) = w(\theta(a_{j_1}, a_{j_2}, ..., a_{j_n}))$

Similarly replacing a relation symbol R everywhere in $\phi \in SL$ by $\neg R$ should not change the probability (as in the coin toss example) – the *Strong Negation Principle*

白 ト ・ ヨ ト ・ ヨ ト

Jeff Paris

æ

Such intuitions however are easily challenged, e.g.

Given

 $R(a_1, a_2) \wedge R(a_2, a_1) \wedge \neg R(a_1, a_3)$ which of $R(a_3, a_1), \neg R(a_3, a_1)$ would you think the more likely? Such intuitions however are easily challenged, e.g.

Given

$R(a_1,a_2) \wedge R(a_2,a_1) \wedge \neg R(a_1,a_3)$

which of $R(a_3, a_1), \neg R(a_3, a_1)$ would you think the more likely?

Such intuitions however are easily challenged, e.g.

Given

$$R(a_1, a_2) \wedge R(a_2, a_1) \wedge \neg R(a_1, a_3)$$

which of $R(a_3, a_1), \neg R(a_3, a_1)$ would you think the more likely?

A state description for a_1, a_2, \ldots, a_n is a quantifier free sentence of the form

$$\bigwedge_{i,j=1}^{n} \pm R(a_i, a_j)$$

State descriptions are where it all happens in this subject because:-

Gaifman's Theorem

A state description for a_1, a_2, \ldots, a_n is a quantifier free sentence of the form

$$\bigwedge_{i,j=1}^{n} \pm R(a_i,a_j)$$

State descriptions are where it all happens in this subject because:-

Gaifman's Theorem

A state description for a_1, a_2, \ldots, a_n is a quantifier free sentence of the form

 $\bigwedge_{i,j=1}^{n} \pm R(a_i, a_j)$

State descriptions are where it all happens in this subject because:-

Gaifman's Theorem

A state description for a_1, a_2, \ldots, a_n is a quantifier free sentence of the form

$$\bigwedge_{i,j=1}^{n} \pm R(a_i, a_j)$$

State descriptions are where it all happens in this subject because:-

Gaifman's Theorem

A state description for a_1, a_2, \ldots, a_n is a quantifier free sentence of the form

$$\bigwedge_{i,j=1}^{n} \pm R(a_i, a_j)$$

State descriptions are where it all happens in this subject because:-

Gaifman's Theorem

E.g

 $w_0(R(a_1, a_2) \land R(a_2, a_1) \land \neg R(a_1, a_3)) = (1/2) \times (1/2) \times (1/2) = 1/8$

Trouble is, to our earlier question

 $egin{aligned} &\mathrm{w}_0(R(a_3,a_1) \mid R(a_1,a_2) \wedge R(a_2,a_1) \wedge
eg R(a_1,a_3)) = 1/2 = \ &\mathrm{w}_0(
eg R(a_3,a_1) \mid R(a_1,a_2) \wedge R(a_2,a_1) \wedge
eg R(a_1,a_3)) \end{aligned}$

E.g

 $w_0(R(a_1, a_2) \land R(a_2, a_1) \land \neg R(a_1, a_3)) = (1/2) \times (1/2) \times (1/2) = 1/8$

Trouble is, to our earlier question

 $egin{aligned} & \mathrm{w}_0(R(a_3,a_1) \,|\, R(a_1,a_2) \wedge R(a_2,a_1) \wedge
eg R(a_1,a_3)) = 1/2 = \ & \mathrm{w}_0(
eg R(a_3,a_1) \,|\, R(a_1,a_2) \wedge R(a_2,a_1) \wedge
eg R(a_1,a_3)) \end{aligned}$

E.g.

 $w_0(R(a_1, a_2) \wedge R(a_2, a_1) \wedge \neg R(a_1, a_3)) = (1/2) \times (1/2) \times (1/2) = 1/8$

Trouble is, to our earlier question

 $egin{aligned} &\mathrm{w}_0(R(a_3,a_1) \,|\, R(a_1,a_2) \wedge R(a_2,a_1) \wedge
eg R(a_1,a_3)) = 1/2 = \ &\mathrm{w}_0(
eg R(a_3,a_1) \,|\, R(a_1,a_2) \wedge R(a_2,a_1) \wedge
eg R(a_1,a_3)) \end{aligned}$

E.g.

 $w_0(R(a_1, a_2) \land R(a_2, a_1) \land \neg R(a_1, a_3)) = (1/2) \times (1/2) \times (1/2) = 1/8$

Trouble is, to our earlier question

$$\begin{split} \mathrm{w}_0(R(a_3,a_1)\,|\,R(a_1,a_2)\wedge R(a_2,a_1)\wedge \neg R(a_1,a_3)) &= 1/2 = \\ \mathrm{w}_0(\neg R(a_3,a_1)\,|\,R(a_1,a_2)\wedge R(a_2,a_1)\wedge \neg R(a_1,a_3)) \end{split}$$

Given a state description $\Theta(a_1, a_2, ..., a_n)$ define the equivalence relation \sim_{Θ} on $\{a_1, ..., a_n\}$ by $a_i \sim_{\Theta} a_j \iff \Theta(a_1, a_2, ..., a_n) \land a_i = a_j$ is consistent

equivalently iff a_i, a_j are indistinguishable on the basis of $\Theta(a_1, \ldots, a_n)$.

Given a state description $\Theta(a_1, a_2, \dots, a_n)$ define the equivalence relation \sim_{Θ} on $\{a_1, \dots, a_n\}$ by $a_i \sim_{\Theta} a_j \iff \Theta(a_1, a_2, \dots, a_n) \land a_i = a_j$ is consistent

equivalently iff a_i, a_j are indistinguishable on the basis of $\Theta(a_1, \ldots, a_n)$.

Given a state description $\Theta(a_1, a_2, \dots, a_n)$ define the equivalence relation \sim_{Θ} on $\{a_1, \dots, a_n\}$ by $a_i \sim_{\Theta} a_j \iff \Theta(a_1, a_2, \dots, a_n) \land a_i = a_j$ is consistent

equivalently iff a_i, a_j are indistinguishable on the basis of $\Theta(a_1, \ldots, a_n)$.

Given a state description $\Theta(a_1, a_2, \dots, a_n)$ define the equivalence relation \sim_{Θ} on $\{a_1, \dots, a_n\}$ by $a_i \sim_{\Theta} a_j \iff \Theta(a_1, a_2, \dots, a_n) \land a_i = a_j$ is consistent

equivalently iff a_i, a_j are indistinguishable on the basis of $\Theta(a_1, \ldots, a_n)$.

Example

Suppose $\Theta(a_1, a_2, a_3, a_4)$ is the conjunction of

Then the equivalence classes are $\{a_1, a_3\}$, $\{a_2\}$, $\{a_4\}$ and the spectrum is

 $\{2,1,1\}$

Spectrum Exchangeability, Sx

If the state descriptions $\Theta(a_1, \ldots, a_n)$, $\Phi(a_1, \ldots, a_n)$ have the same spectrum then

$$w(\Theta(a_1,\ldots,a_n)) = w(\Phi(a_1,\ldots,a_n))$$

- **→** → **→**

Spectrum Exchangeability, Sx

If the state descriptions $\Theta(a_1, \ldots, a_n)$, $\Phi(a_1, \ldots, a_n)$ have the same spectrum then

$$w(\Theta(a_1,\ldots,a_n))=w(\Phi(a_1,\ldots,a_n))$$

So the conjunctions of

$$\begin{array}{ll} R(a_1, a_1) & \neg R(a_1, a_2) & R(a_1, a_3) \\ R(a_2, a_1) & \neg R(a_2, a_2) & R(a_2, a_3) \\ R(a_3, a_1) & \neg R(a_3, a_2) & R(a_3, a_3) \end{array}$$

and

$$\neg R(a_1, a_1) \quad \neg R(a_1, a_2) \quad R(a_1, a_3)$$

$$\neg R(a_2, a_1) \quad \neg R(a_2, a_2) \quad R(a_2, a_3)$$

$$R(a_3, a_1) \quad R(a_3, a_2) \quad R(a_3, a_3)$$

get the same probability as both have spectrum $\{2,1\}$

Given

 $R(a_1, a_2) \wedge R(a_2, a_1) \wedge \neg R(a_1, a_3)$ which of $R(a_3, a_1), \neg R(a_3, a_1)$ would you think the more likely?

Sx implies that the $\neg R(a_3, a_1)$ is at least as likely as $R(a_3, a_1)$ (so 'analogy' wins out)

Given

$R(a_1, a_2) \wedge R(a_2, a_1) \wedge \neg R(a_1, a_3)$ which of $R(a_3, a_1), \neg R(a_3, a_1)$ would you think the more likely?

Sx implies that the $\neg R(a_3, a_1)$ is at least as likely as $R(a_3, a_1)$ (so 'analogy' wins out)

Given

 $R(a_1, a_2) \wedge R(a_2, a_1) \wedge \neg R(a_1, a_3)$ which of $R(a_3, a_1), \neg R(a_3, a_1)$ would you think the more likely?

Sx implies that the $\neg R(a_3, a_1)$ is at least as likely as $R(a_3, a_1)$ (so 'analogy' wins out)

 $R(a_1,a_1) \wedge R(a_1,a_2) \wedge \neg R(a_1,a_3) \wedge R(a_1,a_4)$

 $R(a_1,a_1) \wedge R(a_2,a_2) \wedge \neg R(a_3,a_3) \wedge R(a_4,a_4)$

should we think the more likely?

The intuition is that there is no rational reason why $R(a_1, x)$ and R(x, x) should, in isolation, differ

Hence the above 'state descriptions' should get the same probability.

$$egin{aligned} R(a_1,a_1) \wedge R(a_1,a_2) \wedge
egneric{}{\neg} R(a_1,a_3) \wedge R(a_1,a_4) \ R(a_1,a_1) \wedge R(a_2,a_2) \wedge
egnerc{}{\neg} R(a_3,a_3) \wedge R(a_4,a_4) \end{aligned}$$

should we think the more likely?

The intuition is that there is no rational reason why $R(a_1, x)$ and R(x, x) should, in isolation, differ

Hence the above 'state descriptions' should get the same probability.

$$egin{aligned} R(a_1,a_1)\wedge R(a_1,a_2)\wedge
egneric R(a_1,a_3)\wedge R(a_1,a_4)\ R(a_1,a_1)\wedge R(a_2,a_2)\wedge
egnerce R(a_3,a_3)\wedge R(a_4,a_4) \end{aligned}$$

should we think the more likely?

The intuition is that there is no rational reason why $R(a_1, x)$ and R(x, x) should, in isolation, differ

Hence the above 'state descriptions' should get the same probability.

$$egin{aligned} R(a_1,a_1)\wedge R(a_1,a_2)\wedge
egneric R(a_1,a_3)\wedge R(a_1,a_4)\ R(a_1,a_1)\wedge R(a_2,a_2)\wedge
egnerce R(a_3,a_3)\wedge R(a_4,a_4) \end{aligned}$$

should we think the more likely?

The intuition is that there is no rational reason why $R(a_1, x)$ and R(x, x) should, in isolation, differ

Hence the above 'state descriptions' should get the same probability.

$$egin{aligned} R(a_1,a_1)\wedge R(a_1,a_2)\wedge
egneric R(a_1,a_3)\wedge R(a_1,a_4)\ R(a_1,a_1)\wedge R(a_2,a_2)\wedge
egnerce R(a_3,a_3)\wedge R(a_4,a_4) \end{aligned}$$

should we think the more likely?

The intuition is that there is no rational reason why $R(a_1, x)$ and R(x, x) should, in isolation, differ

Hence the above 'state descriptions' should get the same probability.

Then, given a state description $\Theta(a_1, a_2, \ldots, a_n)$ in which a_1, a_2 are indistinguishable (i.e. $a_1 \sim_{\Theta} a_2$) there is a non-zero probability according to w that they will remain forever ndistinguishable.

Then, given a state description $\Theta(a_1, a_2, \ldots, a_n)$ in which a_1, a_2 are indistinguishable (i.e. $a_1 \sim_{\Theta} a_2$) there is a non-zero probability according to w that they will remain forever ndistinguishable.

Then, given a state description $\Theta(a_1, a_2, \ldots, a_n)$ in which a_1, a_2 are indistinguishable (i.e. $a_1 \sim_{\Theta} a_2$) there is a non-zero probability according to w that they will remain forever indistinguishable.

Then, given a state description $\Theta(a_1, a_2, \ldots, a_n)$ in which a_1, a_2 are indistinguishable (i.e. $a_1 \sim_{\Theta} a_2$) there is a non-zero probability according to w that they will remain forever indistinguishable.

Suppose that w satisfies Sx and $\Theta(\vec{a})$ is the state description of $L' \subset L$ satisfied by \vec{a} . Then according to w the most probable state description(s) of L satisfied by \vec{a} have the same spectrum as $\Theta(\vec{a})$.

Restricted to unary languages Sx can be justified by 'symmetry'

Restricted to unary languages Sx can be justified by 'symmetry'

Restricted to unary languages Sx can be justified by 'symmetry'

Restricted to unary languages Sx can be justified by 'symmetry'