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Pure Inductive Logic Framework

Imagine an agent inhabiting a structure M for a first order
language L with just finitely many relation symbols
P(x), P1(x), P2(x), R(x,y) ... etc.
and countably constant symbols aj, a5, as, ... which
name every individual in the universe, and no
function symbols nor equality.
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Pure Inductive Logic Framework

Imagine an agent inhabiting a structure M for a first order
language L with just finitely many relation symbols
P(x), P1(x), P2(x), R(x,y) ... etc.
and countably constant symbols aj, a5, as, ... which
name every individual in the universe, and no
function symbols nor equality.

This agent is assumed to have no further knowledge about M

Let SL denote the set of first order sentences of L.
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We ask our agent to ‘rationally’ assign a probability w(6) to
6 € SL being true in this ambient structure M.
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We ask our agent to ‘rationally’ assign a probability w(6) to
6 € SL being true in this ambient structure M.

Equivalently we're asking the agent to pick a ‘rational’
probability function w, where

w : SL — [0,1] is a probability function on L if it satisfies
(P1) EO = w(@)=1

(P2) O -9 = w(lV9¢)=w(d)+ w(e)

(P3)  w(Exe(x)) = limpooe w (Vi1 ¥(a))
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.. . based on Symmetry, Relevance, Irrelevance, Analogy, . . .

Example

Constant Exchangeability Principle, Ex
For O(x1, %2, ..., X,) a formula of L not mentioning any constants

W(Q(a,'l, Ainy ooy a,-n)) = W(Q(ajl, aj2, ceey ajn))
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How should shehe do it?

By the application of ‘rational principles’ . . .

.. . based on Symmetry, Relevance, Irrelevance, Analogy, . . .

Example

Constant Exchangeability Principle, Ex
For O(x1, %2, ..., X,) a formula of L not mentioning any constants

W(Q(a,'l, Ainy ooy a,-n)) = W(Q(ajl, aj2, ceey ajn))

Similarly replacing a relation symbol R everywhere in ¢ € SL
by =R should not change the probability (as in the coin toss
example) — the Strong Negation Principle
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Such intuitions however are easily challenged, e.g.

Given
R(a1, a2) A R(az, a1) A —R(a1, a3)

which of R(as, a1), 7R(as, a1) would you think the more likely?
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For simplicity assume that L has just a single binary
relation symbol R.

A state description for ay, a, ..., a, is a quantifier free
sentence of the form
n
/\i,j:l +R(aj, 3))

State descriptions are where it all happens in this subject
because:-
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Into the Polyadic

For simplicity assume that L has just a single binary
relation symbol R.

A state description for ay, a, ..., a, is a quantifier free
sentence of the form

/\7,j:1 iR(af’ aj)

State descriptions are where it all happens in this subject
because:-

Gaifman’s Theorem

w is completely determined by its values on state descriptions.
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The Completely Independent Probability Function wq gives
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The Completely Independent Probability Function

The Completely Independent Probability Function wq gives
each of the £R(a;, a;) probability 1/2 and treats them
all as stochastically independent

Eg.
wo(R(a1, a2)AR(az, a1)A—R(a1, a3)) = (1/2)x(1/2)x(1/2) =1/8
Trouble is, to our earlier question

Wo(R(a3, 31) ‘ R(al, 32) VAN R(az, 31) N _\R(al, 33)) = 1/2 =
Wo(ﬁR(a3, 81) | R(al, 32) A R(BQ, 31) A _|R(81, 83))
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Given a state description ©(ay, ay, . . ., a,) define the
equivalence relation ~g on {ay,...,a,} by
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equivalently iff a;, a; are indistinguishable on the basis of
@(31, ey a,,).
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Spectrum Exchangeability

Given a state description ©(ay, ay, . . ., a,) define the
equivalence relation ~g on {ay,...,a,} by
aj ~o aj <= O(a1,a,...,a,) N\ a; = a; is consistent

equivalently iff a;, a; are indistinguishable on the basis of
@(31, ey a,,).

The spectrum of ©(ay,. .., a,) is the multiset of sizes of the
equivalence classes according to ~g.
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Suppose O(ay, a, a3, a4) is the conjunction of

R(alu 34)

R(ai,a1) —R(a1,a) R(a1,as)

R(a2,a1) —R(az a) R(a2,a3) —R(az,a)

R(a3aal) _'R(a3732) R(a3va3)

R(a47 al)

R(a3a 84)

R(a47 a4)

R(a4,32) R(a47a3)

Then the equivalence classes are {a1, a3}, {a>}, {as} and the

spectrum is

{2,1,1}

Pure Inductive Logic
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Spectrum Exchangeability

Spectrum Exchangeability, Sx

If the state descriptions ©(ay, ..., a,), ®(a1,...,a,) have the
same spectrum then

w(©(a1,...,a,)) = w(P(a1,...,a,))
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So the conjunctions of

and

get the same probability as both have spectrum {2,1}
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The Promised Land (?)

Given
R(a1, a2) A R(az, a1) A —R(a1, a3)
which of R(asz, a1), 7R(as, a1) would you think the more likely?

Sx implies that the = R(as, a1) is at least as likely as R(as, a1)
(so ‘analogy’ wins out)
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Consider the two ‘unary relations’ R(ay, x) and R(x, x) of L.
Which of the two ‘state descriptions’

R(a1,a1) A R(a1, a2) A —R(a1, a3) A R(a1, as)
R(a1,a1) A R(az, a2) A —R(as3, a3) A\ R(a4, as)
should we think the more likely?
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Consider the two ‘unary relations’ R(ay, x) and R(x, x) of L.
Which of the two ‘state descriptions’

R(a1,a1) A R(a1, a2) A —R(a1, a3) A R(a1, as)
R(a1,a1) A R(az, a2) A —R(as3, a3) A\ R(a4, as)

should we think the more likely?

The intuition is that there is no rational reason why
R(a1, x) and R(x, x) should, in isolation, differ

Hence the above ‘state descriptions’ should get the same
probability.

Assuming Sx they do!
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Inseparability

Suppose that w satisfies Sx and is not equal to wy.

Then, given a state description ©(ay, az, ..., a,) in which aj, a
are indistinguishable (i.e. a; ~g ay) there is a non-zero
probability according to w that they will remain forever
indistinguishable.
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Inseparability

Suppose that w satisfies Sx and is not equal to wy.

Then, given a state description ©(ay, az, ..., a,) in which aj, a
are indistinguishable (i.e. a; ~g ay) there is a non-zero
probability according to w that they will remain forever
indistinguishable.

BUT the probability according to w that a;, a, will be forever

indistinguishable but be distinguishable from each of
as, as, as, . . . IS Zero
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Carnap & Stegmiiller's Analogieschluss

Suppose that w satisfies Sx and ©(3) is the state
description of L' C L satisfied by a. Then according
to w the most probable state description(s) of L

satisfied by & have the same spectrum as ©(3).
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Sx looks the business . . . but . . .

What is the rational justification for Sx 7

Restricted to unary languages Sx can be justified by ‘symmetry’

But can Sx be justified by ‘symmetry’ in the polyadic?
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