Pure Inductive Logic

Jeff Paris

School of Mathematics, University of Manchester

- in collaboration with Jürgen Landes, Chris Nix, Alena Vencovská

Pure Inductive Logic Framework

Imagine an agent inhabiting a structure M for a first order language L with just finitely many relation symbols

and countably constant symbols $a_{1}, a_{2}, a_{3}, \ldots$ which name every individual in the universe, and no function symbols nor equality.

This agent is assumed to have no further knowledge about M

Imagine an agent inhabiting a structure M for a first order language L with just finitely many relation symbols

$$
P(x), P_{1}(x), P_{2}(x), R(x, y) \ldots \text { etc. }
$$

and countably constant symbols $a_{1}, a_{2}, a_{3}, \ldots$ which name every individual in the universe, and no function symbols nor equality.

Pure Inductive Logic Framework

Imagine an agent inhabiting a structure M for a first order language L with just finitely many relation symbols

$$
P(x), P_{1}(x), P_{2}(x), R(x, y) \ldots \text { etc. }
$$

and countably constant symbols $a_{1}, a_{2}, a_{3}, \ldots$ which name every individual in the universe, and no function symbols nor equality.

This agent is assumed to have no further knowledge about M

Pure Inductive Logic Framework

Imagine an agent inhabiting a structure M for a first order language L with just finitely many relation symbols

$$
P(x), P_{1}(x), P_{2}(x), R(x, y) \ldots \text { etc. }
$$

and countably constant symbols $a_{1}, a_{2}, a_{3}, \ldots$ which name every individual in the universe, and no function symbols nor equality.

This agent is assumed to have no further knowledge about M
Let $S L$ denote the set of first order sentences of L.

We ask our agent to 'rationally' assign a probability $w(\theta)$ to
$\theta \in S L$ being true in this ambient structure M.

Equivalently we're asking the agent to pick a 'rational'
probability function w, where

$$
w: S L \rightarrow[0,1] \text { is a probability function on } L \text { if it satisfies }
$$

We ask our agent to 'rationally' assign a probability $w(\theta)$ to $\theta \in S L$ being true in this ambient structure M.

Equivalently we're asking the agent to pick a 'rational' probability function w, where

We ask our agent to 'rationally' assign a probability $w(\theta)$ to $\theta \in S L$ being true in this ambient structure M.

Equivalently we're asking the agent to pick a 'rational' probability function w, where
$w: S L \rightarrow[0,1]$ is a probability function on L if it satisfies
(P1) $\vDash \theta \Rightarrow w(\theta)=1$
(P2) $\theta \models \neg \phi \Rightarrow w(\theta \vee \phi)=w(\theta)+w(\phi)$
(P3) $\quad w(\exists x \psi(x))=\lim _{n \rightarrow \infty} w\left(\bigvee_{i=1}^{n} \psi\left(a_{i}\right)\right)$

How should shehe do it?

By the application of 'rational principles'

based on Symmetry, Relevance, Irrelevance, Analogy,

How should shehe do it?

By the application of 'rational principles' . . .

based on Symmetry, Relevance, Irrelevance, Analogy,

Example
Constant Exchangeability Principle, Ex

How should shehe do it?

By the application of 'rational principles' .
. . . based on Symmetry, Relevance, Irrelevance, Analogy, . . .

By the application of 'rational principles' . . .
. . . based on Symmetry, Relevance, Irrelevance, Analogy, . . .

Example

Constant Exchangeability Principle, Ex

For $\theta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ a formula of L not mentioning any constants

$$
w\left(\theta\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}\right)\right)=w\left(\theta\left(a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{n}}\right)\right)
$$

By the application of 'rational principles' . . .
. . . based on Symmetry, Relevance, Irrelevance, Analogy, . . .
Example

Constant Exchangeability Principle, Ex

For $\theta\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ a formula of L not mentioning any constants

$$
w\left(\theta\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}\right)\right)=w\left(\theta\left(a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{n}}\right)\right)
$$

Similarly replacing a relation symbol R everywhere in $\phi \in S L$ by $\neg R$ should not change the probability (as in the coin toss example) - the Strong Negation Principle

Such intuitions however are easily challenged, e.g.

Such intuitions however are easily challenged, e.g.
Given

$$
R\left(a_{1}, a_{2}\right) \wedge R\left(a_{2}, a_{1}\right) \wedge \neg R\left(a_{1}, a_{3}\right)
$$

Such intuitions however are easily challenged, e.g.

Given

$$
R\left(a_{1}, a_{2}\right) \wedge R\left(a_{2}, a_{1}\right) \wedge \neg R\left(a_{1}, a_{3}\right)
$$

which of $R\left(a_{3}, a_{1}\right), \neg R\left(a_{3}, a_{1}\right)$ would you think the more likely?

Into the Polyadic

A state description for $a_{1}, a_{2}, \ldots, a_{n}$ is a quantifier free sentence of the form

Into the Polyadic

For simplicity assume that L has just a single binary relation symbol R.

A state description for $a_{1}, a_{2}, \ldots, a_{n}$ is a quantifier free sentence of the form

Into the Polyadic

For simplicity assume that L has just a single binary relation symbol R.

A state description for $a_{1}, a_{2}, \ldots, a_{n}$ is a quantifier free sentence of the form

$$
\bigwedge_{i, j=1}^{n} \pm R\left(a_{i}, a_{j}\right)
$$

State descriptions are where it all happens in this subject because:-
Gaifman's Theorem W is completely determined by its values on state descriptions.

Into the Polyadic

For simplicity assume that L has just a single binary relation symbol R.

A state description for $a_{1}, a_{2}, \ldots, a_{n}$ is a quantifier free sentence of the form

$$
\bigwedge_{i, j=1}^{n} \pm R\left(a_{i}, a_{j}\right)
$$

State descriptions are where it all happens in this subject because:-
Gaifman's Theorem W is completely determined by its values on state descriptions.

Into the Polyadic

For simplicity assume that L has just a single binary relation symbol R.

A state description for $a_{1}, a_{2}, \ldots, a_{n}$ is a quantifier free sentence of the form

$$
\bigwedge_{i, j=1}^{n} \pm R\left(a_{i}, a_{j}\right)
$$

State descriptions are where it all happens in this subject because:-

Gaifman's Theorem

w is completely determined by its values on state descriptions.

The Completely Independent Probability Function

The Completely Independent Probability Function w_{0} gives each of the $\pm R\left(a_{i}, a_{j}\right)$ probability $1 / 2$ and treats them all as stochastically independent

The Completely Independent Probability Function w_{0} gives each of the $\pm R\left(a_{i}, a_{j}\right)$ probability $1 / 2$ and treats them all as stochastically independent
E.g.

$$
\mathrm{w}_{0}\left(R\left(\mathrm{a}_{1}, a_{2}\right) \wedge R\left(\mathrm{a}_{2}, a_{1}\right) \wedge \neg R\left(\mathrm{a}_{1}, a_{3}\right)\right)=(1 / 2) \times(1 / 2) \times(1 / 2)=1 / 8
$$

The Completely Independent Probability Function

The Completely Independent Probability Function w_{0} gives each of the $\pm R\left(a_{i}, a_{j}\right)$ probability $1 / 2$ and treats them all as stochastically independent
E.g.

$$
\mathrm{w}_{0}\left(R\left(a_{1}, a_{2}\right) \wedge R\left(a_{2}, a_{1}\right) \wedge \neg R\left(a_{1}, a_{3}\right)\right)=(1 / 2) \times(1 / 2) \times(1 / 2)=1 / 8
$$

Trouble is, to our earlier question

$$
\begin{aligned}
& \mathrm{w}_{0}\left(R\left(a_{3}, a_{1}\right) \mid R\left(a_{1}, a_{2}\right) \wedge R\left(a_{2}, a_{1}\right) \wedge \neg R\left(a_{1}, a_{3}\right)\right)=1 / 2= \\
& \mathrm{w}_{0}\left(\neg R\left(a_{3}, a_{1}\right) \mid R\left(a_{1}, a_{2}\right) \wedge R\left(a_{2}, a_{1}\right) \wedge \neg R\left(a_{1}, a_{3}\right)\right)
\end{aligned}
$$

Spectrum Exchangeability

Given a state description $\Theta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ define the equivalence ralation ω_{e} on $\left\{a_{1} \ldots . . a_{n}\right\}$ by equivalently iff a_{i}, a_{j} are indistinguishable on the basis of

Spectrum Exchangeability

Given a state description $\Theta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ define the equivalence relation \sim_{Θ} on $\left\{a_{1}, \ldots, a_{n}\right\}$ by

$$
a_{i} \sim_{\Theta} a_{j} \Longleftrightarrow \Theta\left(a_{1}, a_{2}, \ldots, a_{n}\right) \wedge a_{i}=a_{j} \text { is consistent }
$$

Spectrum Exchangeability

Given a state description $\Theta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ define the equivalence relation \sim_{Θ} on $\left\{a_{1}, \ldots, a_{n}\right\}$ by

$$
a_{i} \sim_{\Theta} a_{j} \Longleftrightarrow \Theta\left(a_{1}, a_{2}, \ldots, a_{n}\right) \wedge a_{i}=a_{j} \text { is consistent }
$$

equivalently iff a_{i}, a_{j} are indistinguishable on the basis of $\Theta\left(a_{1}, \ldots, a_{n}\right)$.

Spectrum Exchangeability

Given a state description $\Theta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ define the equivalence relation \sim_{Θ} on $\left\{a_{1}, \ldots, a_{n}\right\}$ by

$$
a_{i} \sim_{\Theta} a_{j} \Longleftrightarrow \Theta\left(a_{1}, a_{2}, \ldots, a_{n}\right) \wedge a_{i}=a_{j} \text { is consistent }
$$

equivalently iff a_{i}, a_{j} are indistinguishable on the basis of $\Theta\left(a_{1}, \ldots, a_{n}\right)$.

The spectrum of $\Theta\left(a_{1}, \ldots, a_{n}\right)$ is the multiset of sizes of the equivalence classes according to \sim_{Θ}.

Example

Suppose $\Theta\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ is the conjunction of

$$
\begin{array}{rrrr}
R\left(a_{1}, a_{1}\right) & \neg R\left(a_{1}, a_{2}\right) & R\left(a_{1}, a_{3}\right) & R\left(a_{1}, a_{4}\right) \\
R\left(a_{2}, a_{1}\right) & \neg R\left(a_{2}, a_{2}\right) & R\left(a_{2}, a_{3}\right) & \neg R\left(a_{2}, a_{4}\right) \\
R\left(a_{3}, a_{1}\right) & \neg R\left(a_{3}, a_{2}\right) & R\left(a_{3}, a_{3}\right) & R\left(a_{3}, a_{4}\right) \\
R\left(a_{4}, a_{1}\right) & R\left(a_{4}, a_{2}\right) & R\left(a_{4}, a_{3}\right) & R\left(a_{4}, a_{4}\right)
\end{array}
$$

Then the equivalence classes are $\left\{a_{1}, a_{3}\right\},\left\{a_{2}\right\},\left\{a_{4}\right\}$ and the spectrum is
$\{2,1,1\}$

Spectrum Exchangeability

Spectrum Exchangeability, Sx
If the state descrintions $\Theta\left(a_{1}, \ldots, a_{n}\right), \Phi\left(a_{1} \ldots, a_{n}\right)$ have the same spectrum then

$$
w\left(\Theta\left(a_{1}, \ldots, a_{n}\right)\right)=w\left(\Phi\left(a_{1}, \ldots, a_{n}\right)\right)
$$

Spectrum Exchangeability

Spectrum Exchangeability, Sx

If the state descriptions $\Theta\left(a_{1}, \ldots, a_{n}\right), \Phi\left(a_{1}, \ldots, a_{n}\right)$ have the same spectrum then

$$
w\left(\Theta\left(a_{1}, \ldots, a_{n}\right)\right)=w\left(\Phi\left(a_{1}, \ldots, a_{n}\right)\right)
$$

So the conjunctions of

$$
\begin{array}{lll}
R\left(a_{1}, a_{1}\right) & \neg R\left(a_{1}, a_{2}\right) & R\left(a_{1}, a_{3}\right) \\
R\left(a_{2}, a_{1}\right) & \neg R\left(a_{2}, a_{2}\right) & R\left(a_{2}, a_{3}\right) \\
R\left(a_{3}, a_{1}\right) & \neg R\left(a_{3}, a_{2}\right) & R\left(a_{3}, a_{3}\right)
\end{array}
$$

and

$$
\begin{array}{rrr}
\neg R\left(a_{1}, a_{1}\right) & \neg R\left(a_{1}, a_{2}\right) & R\left(a_{1}, a_{3}\right) \\
\neg R\left(a_{2}, a_{1}\right) & \neg R\left(a_{2}, a_{2}\right) & R\left(a_{2}, a_{3}\right) \\
R\left(a_{3}, a_{1}\right) & R\left(a_{3}, a_{2}\right) & R\left(a_{3}, a_{3}\right)
\end{array}
$$

get the same probability as both have spectrum $\{2,1\}$

The Promised Land (?)

Given

$R\left(a_{1}, a_{2}\right) \wedge R\left(a_{2}, a_{1}\right) \wedge \neg R\left(a_{1}, a_{3}\right)$

which of $R\left(a_{3}, a_{1}\right), \neg R\left(a_{3}, a_{1}\right)$ would you think the more likely?

Given

$$
R\left(a_{1}, a_{2}\right) \wedge R\left(a_{2}, a_{1}\right) \wedge \neg R\left(a_{1}, a_{3}\right)
$$

which of $R\left(a_{3}, a_{1}\right), \neg R\left(a_{3}, a_{1}\right)$ would you think the more likely?

Given

$$
R\left(a_{1}, a_{2}\right) \wedge R\left(a_{2}, a_{1}\right) \wedge \neg R\left(a_{1}, a_{3}\right)
$$

which of $R\left(a_{3}, a_{1}\right), \neg R\left(a_{3}, a_{1}\right)$ would you think the more likely?
Sx implies that the $\neg R\left(a_{3}, a_{1}\right)$ is at least as likely as $R\left(a_{3}, a_{1}\right)$ (so 'analogy' wins out)

Conformity

Consider the two 'unary relations' $R\left(a_{1}, x\right)$ and $R(x, x)$ of L.Which of the two 'state descriptions'

$$
\begin{aligned}
& R\left(a_{1}, a_{1}\right) \wedge R\left(a_{1}, a_{2}\right) \wedge \neg R\left(a_{1}, a_{3}\right) \wedge R\left(a_{1}, a_{4}\right) \\
& R\left(a_{1}, a_{1}\right) \wedge R\left(a_{2}, a_{2}\right) \wedge \neg R\left(a_{3}, a_{3}\right) \wedge R\left(a_{4}, a_{4}\right)
\end{aligned}
$$

should we think the more likely?
The intuition is that there is no rational reason why$R\left(a_{1}, x\right)$ and $R(x, x)$ should, in isolation, differ

Conformity

Consider the two 'unary relations' $R\left(a_{1}, x\right)$ and $R(x, x)$ of L. Which of the two 'state descriptions'

$$
\begin{aligned}
& R\left(a_{1}, a_{1}\right) \wedge R\left(a_{1}, a_{2}\right) \wedge \neg R\left(a_{1}, a_{3}\right) \wedge R\left(a_{1}, a_{4}\right) \\
& R\left(a_{1}, a_{1}\right) \wedge R\left(a_{2}, a_{2}\right) \wedge \neg R\left(a_{3}, a_{3}\right) \wedge R\left(a_{4}, a_{4}\right)
\end{aligned}
$$

should we think the more likely?
The intuition is that there is no rational reason why
$R\left(a_{1}, x\right)$ and $R(x, x)$ should, in isolation, differ
Hence the above 'state descriptions' should get the same

Conformity

Consider the two 'unary relations' $R\left(a_{1}, x\right)$ and $R(x, x)$ of L. Which of the two 'state descriptions'

$$
\begin{aligned}
& R\left(a_{1}, a_{1}\right) \wedge R\left(a_{1}, a_{2}\right) \wedge \neg R\left(a_{1}, a_{3}\right) \wedge R\left(a_{1}, a_{4}\right) \\
& R\left(a_{1}, a_{1}\right) \wedge R\left(a_{2}, a_{2}\right) \wedge \neg R\left(a_{3}, a_{3}\right) \wedge R\left(a_{4}, a_{4}\right)
\end{aligned}
$$

should we think the more likely?
The intuition is that there is no rational reason why $R\left(a_{1}, x\right)$ and $R(x, x)$ should, in isolation, differ

Conformity

Consider the two 'unary relations' $R\left(a_{1}, x\right)$ and $R(x, x)$ of L. Which of the two 'state descriptions'

$$
\begin{aligned}
& R\left(a_{1}, a_{1}\right) \wedge R\left(a_{1}, a_{2}\right) \wedge \neg R\left(a_{1}, a_{3}\right) \wedge R\left(a_{1}, a_{4}\right) \\
& R\left(a_{1}, a_{1}\right) \wedge R\left(a_{2}, a_{2}\right) \wedge \neg R\left(a_{3}, a_{3}\right) \wedge R\left(a_{4}, a_{4}\right)
\end{aligned}
$$

should we think the more likely?
The intuition is that there is no rational reason why $R\left(a_{1}, x\right)$ and $R(x, x)$ should, in isolation, differ Hence the above 'state descriptions' should get the same probability.

Conformity

Consider the two 'unary relations' $R\left(a_{1}, x\right)$ and $R(x, x)$ of L. Which of the two 'state descriptions'

$$
\begin{aligned}
& R\left(a_{1}, a_{1}\right) \wedge R\left(a_{1}, a_{2}\right) \wedge \neg R\left(a_{1}, a_{3}\right) \wedge R\left(a_{1}, a_{4}\right) \\
& R\left(a_{1}, a_{1}\right) \wedge R\left(a_{2}, a_{2}\right) \wedge \neg R\left(a_{3}, a_{3}\right) \wedge R\left(a_{4}, a_{4}\right)
\end{aligned}
$$

should we think the more likely?
The intuition is that there is no rational reason why $R\left(a_{1}, x\right)$ and $R(x, x)$ should, in isolation, differ Hence the above 'state descriptions' should get the same probability.

Assuming Sx they do!

Inseparability

> Suppose that w satisfies $S x$ and is not equal to w_{0}.
> Then, given a state description $\Theta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in which a_{1}, a_{2} are indistinguishable (i.e. $a_{1} \sim_{\Theta} a_{2}$) there is a non-zero probability according to w that they will remain forever indistinguishable.

Inseparability

Suppose that w satisfies $S x$ and is not equal to w_{0}. are indistinguishable (i.e. $a_{1} \sim_{\Theta} a_{2}$) there is a non-zero probability according to w that they will remain forever indistinguishable.

BUT the probability according to w that a_{1}, a_{2} will be forever indistinguishable but be distinguishable from each of

Inseparability

Suppose that w satisfies $S x$ and is not equal to w_{0}.
Then, given a state description $\Theta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in which a_{1}, a_{2} are indistinguishable (i.e. $a_{1} \sim_{\Theta} a_{2}$) there is a non-zero probability according to w that they will remain forever indistinguishable.

Inseparability

Suppose that w satisfies $S x$ and is not equal to w_{0}.
Then, given a state description $\Theta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in which a_{1}, a_{2} are indistinguishable (i.e. $a_{1} \sim_{\Theta} a_{2}$) there is a non-zero probability according to w that they will remain forever indistinguishable.

BUT the probability according to w that a_{1}, a_{2} will be forever indistinguishable but be distinguishable from each of $a_{3}, a_{4}, a_{5}, \ldots$ is zero

Carnap \& Stegmüller's Analogieschluss

Suppose that w satisfies $S x$ and $\Theta(\vec{a})$ is the state description of $L^{\prime} \subset L$ satisfied by \vec{a}. Then according to w the most probable state description(s) of L satisfied by \vec{a} have the same spectrum as $\Theta(\vec{a})$.

Sx looks the business
 but

What is the rational justification for S_{x} ?

Restricted to unary languages Sx can be justified by "symmetry

Sx looks the business . . . but .

What is the rational justification for $\mathrm{Sx}^{\text {? }}$

Restricted to unary languages Sx can be justified by 'symmetry'

Sx looks the business . . . but

What is the rational justification for $S x$?

Restricted to unary languages $S x$ can be justified by 'symmetry'

What is the rational justification for $S x$?

Restricted to unary languages $S x$ can be justified by 'symmetry'

But can Sx be justified by 'symmetry' in the polyadic?

