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Pure Inductive Logic Framework

Imagine an agent inhabiting a structure M for a first order
language L with just finitely many relation symbols

P(x),P1(x),P2(x),R(x , y) . . . etc.
and countably constant symbols a1, a2, a3, . . . which
name every individual in the universe, and no
function symbols nor equality.

This agent is assumed to have no further knowledge about M

Let SL denote the set of first order sentences of L.
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We ask our agent to ‘rationally’ assign a probability w(θ) to
θ ∈ SL being true in this ambient structure M .

Equivalently we’re asking the agent to pick a ‘rational’
probability function w , where

w : SL → [0, 1] is a probability function on L if it satisfies

(P1) |= θ ⇒ w(θ) = 1

(P2) θ |= ¬φ ⇒ w(θ ∨ φ) = w(θ) + w(φ)

(P3) w(∃x ψ(x)) = limn→∞ w (
∨n

i=1 ψ(ai))
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How should shehe do it?

By the application of ‘rational principles’ . . .

. . . based on Symmetry, Relevance, Irrelevance, Analogy, . . .

Example

Constant Exchangeability Principle, Ex

For θ(x1, x2, . . . , xn) a formula of L not mentioning any constants

w(θ(ai1 , ai2 , . . . , ain)) = w(θ(aj1 , aj2 , . . . , ajn))

Similarly replacing a relation symbol R everywhere in φ ∈ SL

by ¬R should not change the probability (as in the coin toss
example) – the Strong Negation Principle
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Such intuitions however are easily challenged, e.g.

Given

R(a1, a2) ∧ R(a2, a1) ∧ ¬R(a1, a3)

which of R(a3, a1),¬R(a3, a1) would you think the more likely?
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Into the Polyadic

For simplicity assume that L has just a single binary
relation symbol R .

A state description for a1, a2, . . . , an is a quantifier free
sentence of the form

∧n

i ,j=1 ±R(ai , aj)

State descriptions are where it all happens in this subject
because:-

Gaifman’s Theorem

w is completely determined by its values on state descriptions.
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The Completely Independent Probability Function

The Completely Independent Probability Function w0 gives
each of the ±R(ai , aj) probability 1/2 and treats them
all as stochastically independent

E.g.

w0(R(a1, a2)∧R(a2, a1)∧¬R(a1, a3)) = (1/2)×(1/2)×(1/2) = 1/8

Trouble is, to our earlier question

w0(R(a3, a1) |R(a1, a2) ∧ R(a2, a1) ∧ ¬R(a1, a3)) = 1/2 =

w0(¬R(a3, a1) |R(a1, a2)∧R(a2, a1)∧¬R(a1, a3))
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Spectrum Exchangeability

Given a state description Θ(a1, a2, . . . , an) define the

equivalence relation ∼Θ on {a1, . . . , an} by

ai ∼Θ aj ⇐⇒ Θ(a1, a2, . . . , an) ∧ ai = aj is consistent

equivalently iff ai , aj are indistinguishable on the basis of
Θ(a1, . . . , an).

The spectrum of Θ(a1, . . . , an) is the multiset of sizes of the
equivalence classes according to ∼Θ.
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Example

Suppose Θ(a1, a2, a3, a4) is the conjunction of

R(a1, a1) ¬R(a1, a2) R(a1, a3) R(a1, a4)

R(a2, a1) ¬R(a2, a2) R(a2, a3) ¬R(a2, a4)

R(a3, a1) ¬R(a3, a2) R(a3, a3) R(a3, a4)

R(a4, a1) R(a4, a2) R(a4, a3) R(a4, a4)

Then the equivalence classes are {a1, a3}, {a2}, {a4} and the
spectrum is

{2, 1, 1}
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Spectrum Exchangeability

Spectrum Exchangeability, Sx

If the state descriptions Θ(a1, . . . , an),Φ(a1, . . . , an) have the

same spectrum then

w(Θ(a1, . . . , an)) = w(Φ(a1, . . . , an))
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So the conjunctions of

R(a1, a1) ¬R(a1, a2) R(a1, a3)

R(a2, a1) ¬R(a2, a2) R(a2, a3)

R(a3, a1) ¬R(a3, a2) R(a3, a3)

and

¬R(a1, a1) ¬R(a1, a2) R(a1, a3)

¬R(a2, a1) ¬R(a2, a2) R(a2, a3)

R(a3, a1) R(a3, a2) R(a3, a3)

get the same probability as both have spectrum {2, 1}
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The Promised Land (?)

Given

R(a1, a2) ∧ R(a2, a1) ∧ ¬R(a1, a3)

which of R(a3, a1),¬R(a3, a1) would you think the more likely?

Sx implies that the ¬R(a3, a1) is at least as likely as R(a3, a1)
(so ‘analogy’ wins out)
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Conformity

Consider the two ‘unary relations’ R(a1, x) and R(x , x) of L.
Which of the two ‘state descriptions’

R(a1, a1) ∧ R(a1, a2) ∧ ¬R(a1, a3) ∧ R(a1, a4)

R(a1, a1) ∧ R(a2, a2) ∧ ¬R(a3, a3) ∧ R(a4, a4)

should we think the more likely?

The intuition is that there is no rational reason why
R(a1, x) and R(x , x) should, in isolation, differ

Hence the above ‘state descriptions’ should get the same
probability.

Assuming Sx they do!
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Inseparability

Suppose that w satisfies Sx and is not equal to w0.

Then, given a state description Θ(a1, a2, . . . , an) in which a1, a2
are indistinguishable (i.e. a1 ∼Θ a2) there is a non-zero
probability according to w that they will remain forever
indistinguishable.

BUT the probability according to w that a1, a2 will be forever
indistinguishable but be distinguishable from each of
a3, a4, a5, . . . is zero
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Carnap & Stegmüller’s Analogieschluss

Suppose that w satisfies Sx and Θ(~a) is the state

description of L′ ⊂ L satisfied by ~a. Then according

to w the most probable state description(s) of L

satisfied by ~a have the same spectrum as Θ(~a).
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Sx looks the business . . . but . . .

What is the rational justification for Sx ?

Restricted to unary languages Sx can be justified by ‘symmetry’

But can Sx be justified by ‘symmetry’ in the polyadic?
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