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PURE INTERPRETATIONS OF EOL FORMS (*)

by H. A, MAURER (*), G. ROZENBERG (2),

A. SALOMAA (3) and D . W O O D (4)

Communicated by M. NIVAT

Abstract. - The notion ofanEOLformcombinedwith pure interprétations is studied. Thisapproach
is compared and contrasted with the original approach of an EOLform with its interprétations. In
particular it is shown there are no pure very complete EOL farms.

Résumé. — On étudie la notion déforme EOL avec interprétation pure. Cette approche se distingue
de V approche originale d'une f orme EOL avec ses interprétations. On montre en particulier qu'il n'existe
pas déformes EOL pures très complètes.

1. INTRODUCTION

In [6] the notion of an EOL form was introduced, with its attendant notions of
the interprétation of a form, the family of EOL Systems derived from a form and
the family of EOL languages generated by a form. The approach taken in [6]
should be compared with the pioneering paper of Cremers and Ginsburg [2] for
(context-free) grammar forms. Apart from the underlying rewriting System being
an EOL System rather than a (context-free) grammar, the major distinction is the
restriction of interprétations of EOL forms to be strict interprétations in the
grammar form framework, see [1] and [4]. In a recent paper [5], strict
interprétations for non-context-free grammar forms have been investigated.

Ho wever, in the present paper we present the resul ts of an investigation int o
the notion of a pure interprétation. Pure forms and interprétations were first
defined in section 7 of [6], where some preliminary results were given. Our
present emphasis is upon the pure interprétation of an EOL form rather than of a
pure form. This distinction will be clarified in section 2 which includes a brief
review of the relevant notions. In section 3 we turn to normal form or réduction
results as well as pure completeness. In contrast to the results in [6] on EOL
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348 H. A. MAURER et al.

forms we show that forms cannot be shortened under pure interprétation, which
in turn implies that there are no pure very complete EOL forms. Section 4
investigates which EOL forms give rise to the same language family under both
interprétation methods. Section 5 considers the speed-up of a form, showing that
the language family is preserved under speed-up when an EOL form fulfills a
simple condition. Again the contrary resuit is obtained under the usual
interprétations. Finally, section 6 briefly considers goodness and strong
goodness.

2. EOL FORMS AND PURE INTERPRETATIONS

We first review some basic définitions including the définition of an EOL form
and its interprétations, bef ore introducing pure interprétations.

An EOL scheme Tis a triple T=(V,T» P) where Fis a finite set of symbols,
E <= Fis called the set of terminais, F— S the set of non terminais and P is a finite
set of pairs (A, a) with A in F and a in F* such that for each A in Fat least one
such pair is in P. The éléments p = {A, a) of P are called productions and are
"usually written as A -> a. r i s a propagating EOL scheme, abbreviated as an
EPOL scheme if in each production A -> a the right hand side differs from s.

Let T=(V, S, P) be an EOL scheme. For words x = Ax A2.. ,An with At in F
&nd y ~y1y2.. .yn with yt in F* we write x=>rj/if ^ -> j^is a production ofP for
every i. We write x =>£x for every x' in F* and write x =>£y if for some z in
F*x=>rz=>JT1}; holds. By x=> *y we mean x^> ?y for some n^O, and by
x=>^ y we mean x=>Jy for some n ^ l .

For convenience, the EOL scheme will often not be indicated below the arrow
=> if it is understood by the context.

A séquence of words x0, xlf x2, . . -, xn with

XQ => Xx => Xi => . . . => X„_! => Xn

is called a dérivation (of length n leading from x0 to xn).
EOL and EPOL schemes (F, £, P) where F=Z are called OL and POL

schemes, respectively, and are written as pairs (X, P).
An EOL system G is a quadruple G = (V, £, P, S) where ( F, E, P, S) where

( F, Z, P) is an EOL scheme and S in F— S is called the start symbol. The notions
introduced for EOL schemes are carried over to EOL Systems in the obvious
manner. The language generated by G is denoted by L(G) and defined as
L(G)= {xis in Z* : S=s**x}.

In the same way as adding a stârt symbol to an EOL scheme yields an EOL
System, adding an arbitrary word wt called the axiom, to an OL. scheme
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PURE INTERPRETATIONS OF EOL FORMS 349

r = ( Z , P) gives an OL System G = (Z, P, w), where L{G) is defined by

For convenience, languages which differ by at most the empty word willbe
considered equal (modulo e)vClasses of languages will be considered equal if for
any nonempty language in one class there is an equal (modulo e) languâge in the
other class, and conversely. The class of EOL languages is denoted by ^£ (EOL),
i.e. i f (EOL) = { L (G) : G is an EOL system}. Similarly, i f (FIN), i f (REG),
^£ (CF), ^ (CS) and 5£ (RE) will dénote the classes of fini te, regular, context-free,
context-sensitive and recursively enumerable languages, respectively.

For a word x, alph (x) is the set of ail symbols occurring in x. For a language L,
LS (L) = {| x | : x is in L } is the length set ofL. For a set M of symbols and a set N
of words M -> N dénotes the set of productions {A -> a : A in M, a in N } .

Let G = (V, 2 , P, S) be an EOL system. A symbol A in V is called reachable
(from S) if S ==>* x A y holds for some x, y.

G is called reduced if each A in F is reachable. G is called looping if A => + A
holds for some reachable A in V. G is called expansive if A=>* xAy Az holds for
some reachable AinV and some x, y, z in P*. We say x0 =>'xl is nonterminal
[total nonterminal] and write xo^>l

ntXi[xo^>\ntxi\f if for any j / 0 , z0 such that
S=>*j;oxozo and for some [any] séquence of words

xlf x2, . . ., Xi-i with Xi => x i + 1 for z —0, . . ., Z— 1,

implies y^x^z, contains at least one nonterminal for each i with 1 = i^Z— 1.

We now introducé the notions of EOL forms and their interprétations.

DÉFINITION: An EOLform F is an EOL system, F={V, S, P, S). An EOL
system F = ( V', Z', P' , S') is called an interprétation of F (modulo \i),
symbolically F'< F(n), if n is a substitution defined on F and (i)-(v) hold:

(i) p.(i4)£ K ' - Z ' for each A in F - E ;
(ii) ^ ( a ) ^ ^ ' for each a in E';

(iii) \i(A)n\i(B) = Ç) for aü'A^B in V\
(ïv) P ' £ [i (P) where fi (P) = (J M (A) ^ ^ (a);

(iv) S ' i s in \L(S).

9(F)={F' :Ff<F} is the family of EOL forms generated by F, and
&{F)= { L(F') : P ' < F} is called thz family of languages generated by F.

DÉFINITION : Two EOL forms F1 and F2 are called equivalent U L(Fl) = L\F 2).
They are called form equivalent if
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350 H. A. MAURER et aL

We now introducé the central concept of this paper, namely, pure
interprétations.

DÉFINITION: An EOL System F' =( F', Z', P', S') is called a pure interprétation
of an EOL form F = {V, Z, P, S) (modulo u), F'<\F(\i) if n is a substitution

P

defined on V and (i)-(iv) hold:
(i) \L(V)£V';

(ii) \i(A)n\i(B) = Ç> for ail A^Bin F;
(iii) P'gu(P);
(iv) S' is in p.(S) and S' is in K'-Z' .

As for usual interprétations we introducé $P{F) and ^£P{F), the families of
EOL forms derived from F under pure interprétations and languages generated
by F under pure interprétations, respectively. We say two forms Ft and F2 are
pure form equivalent if ^p(F1) = ^p(F2).

It should be observed that pure interprétations are more gênerai than the
usual interprétation so that ^(F)^^P{F) and £f(F)^&p(F).

Secondly, observe that symbols in F can yield both nonterminal and terminal
symbols in F', although the disjointness condition (ii) still holds. Because of this
we have added the condition that S' must be nonterminal in F', that is, condition
(iv). Since F' is to be an EOL System this, we feel is a reasonable restriction. If 5'
is allowed to be terminal some of the results of the folio wing sections would be
invalidated. Since no distinction is made between terminals and nonterminals
in F, F is essentially an OL form with a single symbol axiom, that is,
F = (Z,P, S). Contrast this with the notion of a pur e form in [6, section 7]. A pure
form F is a pair F = (Z, P) such that (Z, Z, P) is an EOL scheme in other words, the
nonterminal alphabet is empty. An EOL System F'~(Vf, Z', P', Sf) is an
interprétation of F modulo p. if (i) \x (1) £ V'; (ii) ^ {a) n |i {b) = 0 , for ail a £ b; (iii)
p'ü |i(P), and (iv) S'is in |i(Z). The only distinction is that S' is the interprétation
of a terminal in the pure form case whereas S' is an interprétation of a
nonterminal in the pure interprétation case.

We make précise the relationship between pure forms and pure interprétations
in the folio wing theorem, which should be compared with theorem 7.2 in [6].

THEOREM 2.1: For ever y pure form F = (£, P),

&(F)= y sev(Fs),

S in S

where FS = (Z,0, P, S), for ail S in I .

R.A.I.R.O. Informatique théorique/Theoretical Informaties



PURE INTERPRETATIONS OF EOL FORMS 351

Proof: Observe that FS<\F, for ail S in S, therefore

Conversely, if F'< F (u), where F' = (V', E', P', S% then clearly F ' « Fs, where

5' is in u(S). Hence we have the reverse inclusion. •

We feel that pure interprétations of an EOL form are préférable to pure
interprétations of EOL schemes (or interprétations of pure forms) since we avoid
carrying around the union of language families and, more importantly, the
sentence symbol S' of a pure interprétation F' <\ F(\x) is obtained from the

sentence symbol S of F. This is in agreement with our previous work on both
EOL and ETOL forms [6, 7].

We close this section by summarizing those results of interest which carry over
from the EOL form theory [6].

THEOREM 2.2: (1) the relation < is decidable and transitive;
P

(2) Let F and F' be EOL forms

9P(F')^ 9P{F) iff F' < F;
p

(3) it is decidable for arbitrary EOL/orras F and F' whether 9P(F)= &p(F
f);

(4) let F = (K, L, P, 5), F =(V,T,,P, S) be HOL forms and let l^t 1 be an integer.

IfX^ainP implies X =>ja then <£p(F)gS£p(F);

(5) let F and F' be EOL forms, where F' <3 F. IfF' is looping (expansive) then F
p

is looping (expansive).

3. REDUCTION AND P-COMPLETENESS

In [6] a number of réduction results are proved, which are analogous to the
usual réduction results for EOL Systems. The chief exception being that an EOL
form does not necessarily have a form equivalent synchronized EOL form. It is
clear that each EOL form under pure interprétations trivially has such a p-form
equivalent synchronized EOL form since we can consider all symbols to be
nonterminal. Ho wever, in contradistinction to the usual EOL form

vol. 13, n° 4, 1979



352 H. A. MAURER et al

interprétation, we show that réduction to short normal form does not in gênerai
preserve the language family under pure interprétations.

NOTATION: We use the prefix/? in the foliowing to dénote the pure
interprétation variant of the usual interprétation terminology, for example,
p-interpretation, p-form equivalent, p-complete, etc.

DÉFINITION: Consider an EOL form F = (V,2,,P, S), F is separated if A -> a in
P implies (i) a is in E u (F— E)* and (ii) A is in S implies a is not in E. F is
synchronized if for each a in E, a => + a implies a is not in E*. F is short if A -* a is
in P implies | a | g2.

It is clear that the folio wing resuit holds:

LEMMA 3 .1 : For ever y EOL form F a p-form equivalent reduced EOL form F can
be constructed,

Since we can consider ail members of Fin an EOL form F = ( F, E, P, S) to be
nonterminal, we can trivially obtain a p-form equivalent separated form from F.

Although an EOL fofm can be trivially synchronized under p-in terpre tations,
we also have a much stronger synchronization resuit which tells us that a
p-family is similar to the family of EOL Systems in this respect.

LEMMA 3.2: For every propagating EOL form F = (V,H,P,S) and for every L
in i?p(F) there exists an F'<\ F such that F' is synchronized and L = L(Ff).

p

Proof: We need the folio wing synchronization transformation.

DÉFINITION: Let F-={V, E, P, S) be an EOL form. Construct

SYNCH (F)=T=(V, E, P, S) as follows:

Let ~V=VuV1uV2, where

Vt={NA : ,4 in F}, V2= {1 : Ain F} ,
and letting

\x(A)*= { A, NÂ, J} for ail A in F,

p = { A -> p : A -> a in P and P is in \i(a) n Vf }

u {X -t p : >1 -• a in P and p is in \x(a) n(V* u Vf)}

u { NA -• p : A -^ a in P and p is in ji(a) n Vf}.

In the above définition it is clear that F <] F(\i). Essentially it is the standard
p

synchronization technique, where the symbols NA play a blocking rôle.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



PURE INTERPRETATIONS OF EOL FORMS 353

Notice however, that we also have F<F( | Ï ) , that is F < SYNCH(F)(n),
p P

where \i is defined by:

for ail A in V,

and for ail A in F2 ,

Immediately F O F (p,).
p

Returning to the lemma in hand, for each L in JS?P(F) there exist s F' <\F with

L^L{F'). Applying SYNCH to F' we obtain the resuit since p-interpretation is
transitive. D

We need the propagating condition since if a -> £ is in F then it is also present
in SYNCH (F). In fact the lemma is not true, in gênerai, if F is not propagating,
consider F : S -> a; a -• s; then F is not synchronized, and for L = L (F) = { a} in
JSPp(F), there is no synchronized F' '< F with L(F') = L.

P

If we can synchronize in the above sensé then can we also carry out the
propagating transformation ? Or more generally, for ail forms F does there exist
a propagating form F with JSf p (F = <£? p (F) ? This difficult question has opened
up a new area of investigation, namely, the family of length sets of a form under
pure interprétation, which we hope to return to in the near future. Note that
synchronized EOL forms and Systems can be reduced to propagating forms or
Systems which are form equivalent and equivalent, respectively. On the other
hand, OL Systems cannot be so reduced.

We have the following:

THEOREM 3 .3 : Let F be defined by S - • cA abx c2 ab2 c3 ab3; a -> £; bt -> ct abt\

c{ -> Ci; l ^ f ^ 3 , then there is no propagating F with S£P{F =«Sfp(F).

Proof: Consider an F ' < F with L(F) = L(F), F ' is an EPOL System. Now
p _

consider F' as the POL System F" [i.e., Letting E' = (V', S', P', S') then
F " = (F , F ,P ' ,S ' ) ] . Thus

L(F!/)^L(F) and L(F)= {c\ abx c
n
2ab2c

n
3ab3 : n^l }.

Following Ehrenfeucht and Rozenberg [3], if a POL system F " générâtes a

language containing L(F) then L(Fn) also contains a word x = x1z1 x2 z2x3 z3
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354 H. A. MAURER et al.

with | x 1 | = | x 2 | = | x 3 | and \zt \ = \z2\ = |z31 ^ 2 such that
a l p h ( x l ) n a l p h ( x J ) ^ 0 for some i, j in { l, 2, 3} and i£j.

Evidently no such word can occur in any language L' ~L(F') where F' <l F.
p

Hence L{F") is not in &P(F). Since I" <T we have £ep{F)£ £ep{F), as
p

désir éd. •
We now demonstrate that we cannot shorten EOL forms under pure

interprétation. For an EOL form F let min r (F) and max r (F) dénote the length of
the shortest and longest, respectively, right hand side of the productions in F.
The folio wing technical resuit will prove useful.

LEMMA 3.4: For every reduced EOL form F = {V, X, P, S) there exists a
language L in !£p (F) with L = { x} and min r (F) S \ x | ̂  max r (F).

Proof: Let S -» a be in P. Consider the isolating p-interpretation
F' - ( F u S' u { X } , S', P', X) < F(ji), where the only dérivation is:

P

X => a' =̂ >+ blocking,
where a' is in S'*. [We can always isolate in this manner. Consider E = 0 without
loss of generality and define \i(A)={A', A) for all A in K - { S } , and
ji(S)= { X, S, S'}. Choose X -• a' in u(5 -> a) such that oc' consists of primed
symbols, let A' -> (3 for all X in F, (3 in F* such that 4̂ -• (3 is in P and fmally
include all the rules in P. Letting YJ=\A'\A in F}, then clearly
X^x'=>+ blocking.]

Immediately, L (F') = { ot'} and min r (F) <; | a' | ̂  max r (F). Q
We also have the weaker result that every p-family contains a singleton

language.

THEOREM 3.5: There exist EOL forms which cannot be shortened under
p-interpretation.

Proof: Let F = ( {S }, 0 , {S -> SSS ), S) be an EOL form, then for every short
EOL form F, £ep{F)J=5ep{F). Consider any short form F. Then
0 g min r(F)S max r(F)^ 2, hence there is a language L in JSf p (F) with Z, = { x}
and 0 S \ x \ ̂  2. Ho wever since min r (F) = max r (F) = 3, L is not in &p (F). •

We can apply lemma 3.4 more generally.

DÉFINITION : An EOL form F is p-complete if S£p (F) = Jïf (EOL). F is said to be
p-vomplete (p-very complete) if for all EOL forms F there exists F' <\ F with
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PURE INTERPRETATIONS OF EOL FORMS 355

In [8] the notion of vompleteness is investigated and it shown that vomplete
EOL forms exist. A resuit to the contrary is now proved for p-interpretations.

THEOREM 3.6: There are no p-vompîete EOL forms.

Proof: Assume that F is a p-vomplete EOL form. We argue by contradiction.
Let m = maxr(F). Consider F =({S}, Ç>, { S - > S m + 1 } , S). Now
minr(F = maxr(F = ra + 1 , hence for ail L in &P(F) the length of the smallest
word in L is at least m + 1 . However, for ail F' < p F, since
minr(F ' )^minr(F) and maxr(F ' )^maxr(F) = m, there exists a singleton
language {x} in &P(F') with 0 ^ | x | ^ m . Hence i ? p (F) £ JS?P (F) for any

F' < F. Therefore F is not p-complete. D
p

For p-completeness we have more positive results, namely:

THEOREM 3.7:

F1 : S->S\SS and F2: S-*z\S\SS;

are p-complete.

Proof: F\ is shown to be complete and hence p-complete in [6] and since

^ i < l F2, i f j P (F 1 )g i f p (F 2 ) , therefore F2 is also p-complete. •
P

An EOL form is a one-let ter form if its only symbol is S, We can characterize
p-complete one-letter forms as folio ws:

THEOREM 3.8: Let F be a one-letter form:

(i) if F is propagating then F is p-complete iff P contains the rules S -» S and
S -> SS;

(ii) If F is not propagating then F is p-complete iffP contains the rules S -• S and
S -> Sm, for some m ̂  2.

Proof: Part (i) has been shown in [6], it remains to prove part (ii). Note that a
one-letter form is always a pure form in the [6] sensé.

If F contains S - • e, S -* S and S-*Sm, for some m^2, then there is a
p-interpret ation F' = ({S, Slt .. ., Sm\, Ç), P\ S) where P' contains
S^>S1...Smt S^Slt S1^S> S2^S and St -> s, 3 ^ z ^ m . Then
S'-*f.S, S=>j>SS, therefore Fx of theorem 3.7 is simulated by F', hence
^ ( ^ i ) i ^ p ( H ^ ^ p W - b y theorem 2.2, hence F is p-complete.

If F is p-complete, F must be looping, that is, S => + S must hold since F is a
one-letter form we must have S -> S in P. If F has no rule S -• Sm with m ̂  2, then
no word of length g: 2 can be generated by any interprétation of F. Therefore
S -> 5m is in P for some m ^ 2 . •
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356 H. A. MAURER et ai

In closing this section we need the foliowing:

DÉFINITION: Let F be an EOL form. We say F is regular-p-complete if

We now show that we can obtain the regular languages with pure
interprétations as well as with the usual interprétations [6]. We first prove a more
gênerai resuit.

THEOREM 3.9: Let F = (F, S, F, 5) be an EOL form for which thefollowing three
conditions hold:

(i) V— V1 0 V2 and S is in Vx {to avoid triviality);
(ii) For ail Ain VltA =>*X1...Xm Yimplies Xt is in V2, l£i£mtm^0and Y

is in V, and
(ii) for ail A in V2, 4̂ ̂ * a implies a is in V2.

Then^p{F)^^ (REG).

Proof: Note that each F' <]F will fulfill the same three conditions, hence it
p

suffices to prove that L{F) is in if (REG).
For ail A in V2 and ail Ï > 0 , defme

Mt(A)={B : A=>iB}nI,.

Clearly there exist integers t and p such that Mt(A) = Mt + Xp(A), for ail A in V2,
and ail X^O, where t>0 and p>0. Defme a new alphabet V= {A{i) : A is in V
and l^i<^t + p}v F and a right linear grammar G = (F, S, P, S) where P
contains:

(i) forain, 0<iSp, S-* S(i+t);
(ii) for ail i, l<ii^t + p,

M l - _ 1 ( X 1 ) . . . M , _ 1 ( Z J 7 ( i - 1 ) if A^X1...XmYisinP

(iii)

^(1^ -> M ^ J X i ) . . .Mp_! (XJ 7(^ if A^X,.. ,XmYi$ in P.

It shouïd be clear that L(G)^L(F), and further that L(F)~-L(G) is finite; the
"initial mess".

Hence L(F) is regular and J5?p0F)gJS?(REG). •

COROLLARY 3.10*. Let F be S -+ aS\a; a-• a, t/ien F is regular prcomplete.

Proof: Since F fulfills the conditions of the theorem. •
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PURE INTERPRETATIONS OF EOL FORMS 357

4..P-STÀBILITY

When comparing pure interprétations with the usual interprétations an
immédiate question is raised, namely, when is if p (F) = <£ (F) ? We say an EOL
form is p-stable when this holds. A straightforward observation yields:

LEMMA 4.1: Let F be a complete EOL form. Then F is p-stable.

Proof: Clearly if {H) g if p (F) and since F is complete ££ (F) = <£p (F). •
The reverse is, of course, not necessarily so, since F : S -• a; a -• a; is not

complete but S£p (F) = J£(F), the family of all single letter languages. Similarly if
F is p-complete F is not necessarily p-stable. Consider F : S -• S | SS; F is
p-complete but if (F) = { 0 } .

A related question is: can we always transform an EOL form into a p-form
equivalent p-stable form? In this case the answer is positive. We first need:

DEFINTTTON: Let F = (V, I , P, S) be an EOL form. Construct
SPLIT(F)-F=(F, Z, P, S)<F (\i) with ~V=V\J{À : A in V) as folio ws:

p

Letii(i4)={4, ï},for alMin K ; ï = I u { ï : Ain F - Z } , and P-u(P) .

THEOREM 4.2: Let F = (F, Z, P, S) be an EOL /orm. Then
gp (F) =<g (SPLIT (F)).

Proo/' Since the combination of a p-interpretation and an interprétation is a
p-interpretation, ^(SPLIT(F))g 3^(F). Consider F /-(K', Z', P', SO^FtM-).

— — ' p

De&ne an interprétation \x such that F' < SPLIT (F) (\i).
First define two substitutions \xt and |xn on V by:
For ail A in F:
(i) M ^ E E ' a n d [ i n ( i ) i F ' - r and
(ii) u(A) = ^(A)uun(A).
Secondly, define jï on F = SPLIT (F) by :

(i) for ail A in F - Z , jï(A) = m(A) and iï(Â) = nt(i4);

(ii) for ail A in Z, ^(A)-u tU) and ^(A) = un(A).
Clearly P'g^i (P), therefore F'<3 F (ji), which gives the required resuit. D
We now prove the main resuit:

THEOREM 4.3: Let F be an EOL form.
Then SPLIT (F) is p-stable.

Proof: We need to show that ifp(SPLIT(F))-if (SPLIT(F)). We prove a
stronger resuit, namely, <êv(SPLIT(F)) = 9 (SPLIT(F)). To obtain this strong
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équivalence we only need to show that %p (SPLIT (F)) g<S (SPLIT (F)),
since an interprétation is always a p-interpretation. Now since SPLIT (F)
is a p-interpretation of F, ^ p (SPLIT (F)) g ^ p (F) = ̂  (SPLIT (F)) by
theorem 4.2. •

Letting ££ dénote the class { if (F) : F is an EOL form }, <£ p dénote the class
{^P(F) : F is an EOL form} and ifsynch dénote the class {if(F) : F is a
synchronized EOL form}, theorem 4.2 also leads to:

THEOREM 4.4:

<£p%<£ and &p^synch.

Proof: Since every EOL form F can be transformed into a p-stable EOL form
SPLIT (F), such that if p (F) = i? (SPLIT (F)) then if'pçif\ We obtain proper
inclusion by considering the EOL form F : S -> a; a~+b; b^>b. For ail
F' O F, L (F') contains at least two words. Ho wever from lemma 3.4 we know
that every p-family contains singleton languages, therefore there is no EOL form
F with if p (F) = if (F).

Using the SYNCH transformation detailed in lemma 3.2 we can
synchronize a p-stable form F to give F = SYNCH (F). Now since SYNCH is
a p-interpretation we have ^ (SYNCH (F)) ̂  #p(F), hence
Se (SYNCH (F)) <^ï£p (F) = S£ (F). We observed previously in lemma 3.2 that
SYNCH has the property, F< SYNCH(F), that is, ifp (F) g if (SYNCH (F)),

p

Hence we have shown that for every EOL form F there exists an EOL form F
such that <$?p(F) = g'(F) and F is synchronized. Therefore yp^£?synch. •

We leave as an open problem whether ^p^^synch. Notice that we have
implicitly introduced a stronger version of p-stability. We say an EOL form F is
strong p-stable if 9P(F) = # (F). Theorem 4.3 states that for every EOL form F
there is a strong p-stable EOL form F which is p-form equivalent to F. Clearly if
F is strong p-stable it is p-stable, is the converse true? Similarly we have shown
that SPLIT (F) is always (strong) p-stable, This raises the question whether given
a (strong) p-stable EOL form F, there always exists an F such that
F = SPLIT (F)?

5. SPEED-UP

We show that the language family of an EOL form under p-interpretations is
preserved under speed-up in certain cases. This is in contradistinction to the
usual mode of interprétation.
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DÉFINITION: Let F = {V, Z, P, S) be an EOL form and n>\ an integer. Let
F =(V, S, P, S) = n-SPEED{F), where

{̂ 4 -> a : A =>J a, ;4 in F and a in K*}.

We say F is a speed-up of F.

Consider F : 5 -• a; a^b; b -> b; then the 2-speed-up of F is F : S -• a | b;
a^>b;b->b. Now &{F)£&(F) since each L in if (F) contains at least two
words whereas letting F' be S -> fe; b -• b; where F ' < F, we have L (F ') = {b }.

now have:

THEOREM 5.1: Let F = (V, t, P, 5) hé? a distinguished EOL form. Then for ail
n>0, JS?P(F) = ifp(«-SPEED(i0).

Proo/ First observe that L(F) = L(F) where F -n-SPEED(F) and F = (V, S,
P, S). Clearly any F-dérivation S=>ma can be expanded as an F-derivation
S^>qa, where q = k + ln, 0^k<n and 1^0. Conversely given an F-derivation
S =>m a, if m ̂  n then 5 -> a is in P, that is, S =>• a in F, otherwise m = in +j, where
i>0, and O^j<n. Letting

S = a0 => ai = > . . . ^ am = a i a f
we obtain

Now let F'<F and construct n-SPEED(F'). Clearly L{F') = L{n-
p

SPEED(F')) and n-SPEED(JF') < F. Hence Xp(F)çSep(n-SPEED{F)).
P

Conversely, consider F' < F (|i). Construct F' < F such that for each rule
_ _p p

A' -> a' in F ' with A' not in \x (S), there is a unique nt-derivation A' =>n af in F\ By
unique we mean that each symbol appearing in an intermediate word is
nonterminal and only appears in that position. Similarly for each rule S' -* a' in
F' construct a unique nt-derivation S' =>ka' in F', where \x~1 (S') =>k \i~1 (a') in
F. Essentially F' is a tnt-simulation of F ' apart from the initial starting séquences

from S'. Hence L{F') = L{Ff). Clearly F' <\F so we have demonstrated the
required result. • P
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The assumption that F is distinguished is crucial. Consider

F: S->SS\aa;a^NN] N^NN,

and the 2-speed-up of F,

F : S -+ SS\SSS\aa\aaaa\NNN;

a _> NNNN; N -> NNNN.

Now L (F) = { am : m = 2", where n è 1} and 5 => 55 => aaaaaa in F, which is not
inL(f).

Similarly, -jSf p(F)£<3?P(F). Since each rule in F is a "doubling" rule then for
ail a such that 5 => + a in F, we have | a =2" for some n ̂  1. This is also true in

any interprétation F ' < K Hence L5(L (F'))g {2" : n ^ l } . We have already
p

demonstrated that each L (F) in =âf P(F) contains a word of length 6, which is
not a power of 2. Hence the resuit.

However, we can change a form such that it is distinguished using the obvious
transformation. That is, if F = {V, S, P, 5), let F = ( F u { 5 } , Z,
P u { 5 -> a : 5 -> a in P } , S), then &P(F) = &P{F). Hence we have:

THEOREM 5.2:LetF = (V, X, P, 5) fee an EOL /orm. 7?iere exists a distinguished

EOL form F such that:

(i) J5fp(F) = ^fp(F),an^
(ii) /or a// n> l , j5fp(n-SPEED(F)) = ifp(F).

6. P-GOODNESS AND STRONG P-GOODNESS

An EOL form F is said to be p-good if for every EOL form G with

JSfp(G)cifp(F) there exists F ' < F such that £ep(F') = £ep(G). Clearly F is
p

p-vomplete if F is p-good and p-complete. We have already shown that no
p-vomplete forms exist (th. 3.5), since a form cannot be shortened. We would
expect from this resuit that p-goodness is rare. This is indeed the case. But first
the positive resuit s.

THEOREM 6.1: F1 : S->5, F2 : S-> S\ £ and F3 : S ^ am; a->a, m^ l are

p-good.

Proof: Fi,F2 and F3 are p-good by arguments similar to those given in [8] for
the goodness of S -+ a; a^> a. The important observation is that each Ft

générâtes a family of fini te sets. •
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When F is "infinité", however, F cannot be p-good.

THEOREM 6.2: Let F = (V, 2, P, S) be a propagating EOL form such that
(a : S^$a}=SF(F) is infinité. Then F is not p-good.

Proof: Assume F is p-good. Let m = maxr(F), and consider a in SF(F) with
| a | >m [such an a must exist if SF{F) is infinité]. Let F = ({ S } u F, E, P, S)
w h e r e P = P u { S - » a } . Clearly maxr(F)>m and &p(F)^p{F). However,

for ail F' <l F. t hère are languages in if p (F') which contain words whose lengths
P

are at most m. Whereas the smallest length word in each language in =5fp(F) has
length greater than m. A contradiction. •

COROLLARY 6.3: F : S -> SS is not p-good.

Notice that Fx : S -> S has the unusual property that for ail propagating F

with JS?p(F)g JSPpfJFi), not only does there exist F[ <\ Fx with Jg?p(Fi) = JSPp(i
îl)

p

but also F <I Fx. In this case we say Fx is strong p-good.
p

By the technique displayed in the proof of theorem 6.2 we can construct from
an arbitrary infinité F = ( V, S, F, 5) a particular F = ( V u { S } , £ , P u { S - > a } ,
S), where S =>/ a and | a | > max r {F). Clearly if p (F) g if p (F) and F cannot be a
p-i nterpretation of F. Similarly choosing a in S* with | a| >maxr(F) we can
obtain an analogous resuit for the usual interprétations [note that it is sufficient
that there is an a (in £*) with S =>/ a and a > max r (F) to give the contradiction
in either case].

We have just shown:

THEOREM 6.4: Let F = (V, S, P, S) be an EOL form for which S=>£ a with
a | > max r (F), for some a (some a in £*). TTien F isnot strong p-good (not strong

good).

In other words strong p-goodness is very rare.
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