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1Unité Mixte du CNRS et de l’Ecole Normale Supérieure associée à l’Université Pierre et Marie Curie
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1 Introduction

Non-perturbative completions of string perturbation theory have been proposed in various

backgrounds. One prominent avenue to advance beyond perturbative results is via the

holographic correspondence between gauge theories and theories of gravity with a negative

cosmological constant. Another approach (with holographic applications) which has proved

fruitful is to map string theories or some of their observables to matrix models and to

compute non-perturbative corrections using techniques such as localization. Nevertheless,

the non-perturbative definition of string theory in generic backgrounds remains a wide

open problem.

Topological string theory is a promising framework within which to tackle this prob-

lem, as the nature of the perturbation theory is the same as that of the full string theory

— giving rise to a generically non-convergent genus expansion explicitly linked to compu-

tations on underlying Riemann surfaces. Any indication as to what type of approximation

to a non-perturbative theory gives rise to such a perturbation theory could help clarify the

structures underlying string theory. For a large class of backgrounds, the topological string

theory partition function Ztop is fully computable in various series expansions. Lifting these

expansions to analytic functions would take us a long way towards a non-perturbative un-

derstanding of the theory.

The gauge theory limit of certain topological string theories is (ε1, ε2)-deformed N = 2

supersymmetric Yang-Mills theories in four dimensions. The genus expansion parameter

gs of the topological string is encoded in the εi-parameters via g2
s = ε1ε2. The problem

of determining the instanton partition function Zinst of these theories, which descends

from the topological string partition function Ztop, has been solved in [1]. The solution is

presented as a power series in the instanton counting parameter Λ, with coefficients that are

rational functions of ε1 and ε2. The parameter Λ reflects the coupling of the gauge theory,

which maps to certain Kähler parameters in the string theory setting. The disadvantage

of the resummation of the εi-series is that it occurs at the expense of introducing this new

expansion. For instance, modular properties of the expansion coefficients of the εi-series

are masked in the Λ-series.

Yang-Mills theories with N = 2 supersymmetries are related to two-dimensional con-

formal field theory via the two-dimensional / four-dimensional correspondence [2]. The

powerful computational techniques that exist in the framework of two-dimensional confor-

mal field theory can thus be put to use to elucidate εi-deformed gauge theories, and by

extension, topological string theory.

The conformal field theory technique at the heart of the analysis in this paper relies

on null vector decoupling. It permits the computation of conformal blocks, mapped to

Zinst under the 2d/4d correspondence, via solution of a differential equation. It has been

shown [3–5] that the WKB analysis of this equation, in the limit ε2 → 0, reproduces

the non-convergent ε1-expansion of Zinst. Methods exist to enhance WKB results non-

perturbatively (see e.g. [6–15]). The point of departure of this paper is to ask what these

methods can teach us about the nature of the εi-expansion of the instanton partition

function Zinst and eventually the topological string partition function Ztop. Indeed, our
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analysis will yield corrections to this expansion in the form ∼ exp[−SW periods

ε1
]. As the

instanton partition function Zinst in the formulation of [1] is thought to converge [16], we

conclude that these non-perturbative corrections arise when the order of summation over

powers of the instanton counting parameter Λ and over powers of ε1 is inverted. At the locus

ε1 = −ε2, we have a worldsheet description of the topological string theory, and it gives

rise to a (non-convergent) expansion of Zinst with this reversed order of summation. Once

a worldsheet description of the general εi-deformed theory is formulated (see [17–21] for

attempts in this direction), one should seek to compute the non-perturbative corrections

in ε1 within that framework. Here, we determine them by conformal field theory and

exact WKB methods. As Zinst in an εi-expansion remains divergent when restricted to the

conventional topological string locus ε1 = −ε2, similar non-perturbative corrections in εi
should also arise in this more standard setting. Note that period integrals commonly play

a central role in determining non-perturbative effects of the type discussed here, see [22],

or e.g. [23] for a more recent reference.

The theory we shall study is pure N = 2 gauge theory in four dimensions, whose

instanton partition function maps to an irregular conformal block in two-dimensional con-

formal field theory [24]. The relevant null vector decoupling equation maps to the Mathieu

equation with complex parameters. We will perform an exact WKB analysis of this equa-

tion, determining the Stokes regions for various complex values of the parameters, and

incorporating Stokes phenomena in the computation of the characteristic exponent of its

solutions. This procedure introduces corrections of the order exp[− 1
ε1

] in the relation be-

tween the characteristic exponent, linked to the vacuum expectation value a of the scalar

field in gauge theory, and a certain complex parameter u of the equation, which is related

to the gauge theory partition function via a Matone-style relation. Inverting this relation

maps these corrections to non-perturbative corrections to the ε1-expansion of the partition

function as a function of the expectation value a.

For other studies of non-perturbative effects in topological string theory and propos-

als for its non-perturbative completion, see e.g. [25]. Inspired by results in ABJM theory

and building on [26], the authors propose a non-perturbative completion to the topological

string on toric Calabi-Yau manifolds based on a rigorous study of the quantized mir-

ror curve [27]. The completion involves a non-trivial combination of both the Nekrasov-

Shatashvili limit [28] and the conventional topological string amplitude.

In [29], the authors consider the topological string partition function in Gopakumar-

Vafa form, closely related to the Nekrasov form of Zinst lifted to topological string theory,

in light of resummation techniques. In [30], the holomorphic anomaly equations are con-

jectured to hold non-perturbatively, and invoked to conjecture structural properties of a

transseries expansion of the topological string free amplitude. These ideas are refined and

tested on the example of the topological string on local CP2 in [31], based on computational

results for the topological string free energies Fg with g up to ∼ 100. A similar analysis for

the spherical partition function of N = 2 superconformal gauge theory and N = 2∗ gauge

theory was performed in [32]. The paper [33] studies the Mathieu equation in the context

of exact WKB and the 2d/4d correspondence, as we shall do in the following; unlike the

present paper, it restricts to u ∈ R, thus centering the discussion around the band structure

of the equation that is specific to this domain.
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The paper is structured as follows. In section 2, we review the relation between the

instanton partition function of εi-deformed pure N = 2 super Yang-Mills theory and irreg-

ular conformal blocks. We recall the null vector decoupling equation the latter satisfy and

map it to a standard form of the Mathieu equation. Section 3 is dedicated to the study

of this equation. Some known facts about the Mathieu equation are summarized in sec-

tion 3.1. In section 3.2, we study the WKB approximation to the solution of the Mathieu

equation. We go beyond perturbation theory in section 3.3. We discuss the Stokes graphs

associated to the Mathieu equation with complex parameters and use exact WKB meth-

ods to determine properties of analytic solutions to the differential equation. In section 4,

we discuss the non-perturbative corrections to the exact periodicity of the irregular block,

and its consequences for non-perturbative corrections to the ε-expansion of the instanton

partition function. We conclude and list interesting open problems in section 5. Some

technical details are relegated to appendix A, while appendices B and C are dedicated to

numerical results.

2 Pure N = 2 SYM and Conformal Field Theory

In this section, we review the relation between the gauge theory instanton partition func-

tion of pure N = 2 SYM and the irregular conformal block, as predicted by the 2d/4d

correspondence [2, 24].

2.1 The Seiberg-Witten theory of pure N = 2 SYM

The gauge theory we will be concerned with in this paper is pure N = 2 SU(2) super Yang-

Mills theory, i.e. the theory of a single vector multiplet with gauge group SU(2). This is

the original theory solved by Seiberg and Witten [34] using geometric methods. The

prepotential of the theory is a function of the vacuum expectation value a of the scalar in

the vector multiplet. The coefficients of all instanton contributions were determined in [1]

in a form amenable to direct comparison with conformal field theory.

The Seiberg-Witten curve in [34] was given in the form1

y2 = (x2 − 1)(x− u) , (2.1)

with Seiberg-Witten differential

λ =

√
x− u√
x2 − 1

dx . (2.2)

We can choose branch cuts from x = −1 to x = 1 on the real axis, and from x = u to

infinity, not crossing the real axis. A basis of cycles on the Riemann surface (2.1) is then

given by a curve circling the line connecting x = −1 and x = 1 in positive orientation

without intersecting the second branch cut, and the curve circling the points x = 1 and

x = u, intersecting both branch cuts once and intersecting the first curve with intersection

1A mass scale Λ has here been set to 1. It can easily be introduce by dimensional analysis, with x and

u carrying mass dimension 2.
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number 1. These choices define the A- and the B-cycle of the torus respectively. The

corresponding Seiberg-Witten periods are

a(0) =

∮
A
λ , a

(0)
D =

∮
B
λ . (2.3)

The superscripts indicate that these periods constitute the leading terms in formal power

series to be introduced shortly.

Based in part on previous work [35, 36], Gaiotto in [37] suggested shifting the emphasis

onto quadratic differentials when analyzing N = 2 theories. In the case at hand, the

quadratic differential reads

φSW =
x− u
x2 − 1

dx⊗ dx . (2.4)

For our upcoming analysis, the variable redefinition

x = cos q (2.5)

will prove useful, with regard to which φSW takes the form

φSW = (u− cos q) dq ⊗ dq . (2.6)

The relation between the variables x and q is one-to-one if we restrict the variable q to the

range Re q ∈ [−π, π], Im q ≥ 0 — we will refer to this region as the fundamental domain of

the q-plane — and identify the half-lines Re q = −π and Re q = π, as well as the intervals

[−π, 0] and [0, π] via the map q 7→ −q. See figure 1. The branch cut connecting the points

x = ±1 maps to the intervals [−π, 0] and [0, π] of the q-plane, undoing the identification of

these two intervals (as the factor
√

1− x2 = sin q in the curve variable y differs by a sign

between previously paired points). The second branch cut runs from the preimage qu of u

in the fundamental domain to positive imaginary infinity, without crossing the imaginary

axis. We can identify the second sheet of the x-plane with the image of the fundamental

domain of the q-plane under the map q 7→ −q. Overall, the Riemann surface (2.1) in the

q coordinate is hence given by a cylinder with branch cuts emanating from qu and −qu
towards the two ends of the cylinder. In this representation of the Riemann surface, the

A-cycle on the q-plane is represented by a curve running from π+i|q0| to −π+i|q0| without

intersecting the second branch cut, or simply by a cycle of the cylinder. The B-cycle is

represented by a curve running from a point on the second branch cut in the fundamental

domain of the q-plane to its image point in the lower half-plane, crossing both branch

cuts once.

A third choice of variable, underlying the analysis in [24, 38] relating pure N = 2

SU(2) gauge theory to conformal field theory, is given by

z = eiq . (2.7)

In terms of z, the quadratic differential is (up to an overall factor, and with the scale Λ

re-introduced, as it will come in handy in subsection 2.2) given by

φSW =

(
Λ2

z3
− 2u

z2
+

Λ2

z

)
dz ⊗ dz . (2.8)
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Figure 1. The q-plane. The solid black line is mapped to the real axis of the x-plane. The interval

[−π, π] is the double cover of the branch cut [−1, 1] in the x-plane.

2.2 The irregular conformal block

The original 2d/4d correspondence [2] conjectured a relation between the instanton parti-

tion function of superconformal N = 2 gauge theories and Virasoro conformal blocks. This

relation was extended to asymptotically free gauge theories in [24] by introducing irregular

conformal blocks. These are defined as the norm of so-called Gaiotto vectors: formal power

series |∆,Λ2〉 in the parameter Λ2 with coefficients valued in the Verma module of highest

weight ∆ satisfying the relations [24]

L1|∆,Λ2〉 = Λ2|∆,Λ2〉 , L2|∆,Λ2〉 = 0 (2.9)

order by order in Λ2. The requirements on the states |∆,Λ2〉 are chosen such that the

ensuing expectation value of the energy momentum tensor in the semi-classical limit repro-

duces the quadratic differential (2.8), following the prescription of [2], further elucidated

in [39].

Gaiotto states can be constructed via collision of primary fields [38]. In this manner,

the irregular conformal block for pure SU(2) can be obtained by a limiting procedure from

the conformal block on the sphere with four insertions [38]. Starting from the conformal

Ward identity satisfied by the product of two primaries Ψ∆i acting on the vacuum |0〉,

T>(z)Ψ∆2(z2)Ψ∆1(z1)|0〉 =

(
∆2

(z − z2)2
+

1

z − z2
∂2 +

∆1

(z − z1)2
+

1

z − z1
∂1

)
(2.10)

×Ψ∆2(z2)Ψ∆1(z1)|0〉 ,
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where T> indicates the sum over modes of the energy-momentum tensor T with weight

larger or equal than −1, we can send the insertion z1 → 0 to generate a primary state |∆1〉.
We moreover use the fact that L−1 = ∂1 + ∂2 generates a translation on the correlator, as

well as the parameterizations

Q = b+ b−1

∆i = αi(Q− αi)
c1 = −z2α1

α = α1 + α2 , (2.11)

to find, in the second limit z2 → 0 and α and c1 fixed,

T>(z)Ψ∆2(z2)Ψ∆i(z1)|0〉 =

(
− c2

1

z4
+

2c1(Q− α)

z3
+
α(Q− α)

z2
+

1

z2
c1∂c1 +

1

z
L−1

)
× lim
z2→0

(z2α1α2
2 Ψ∆2(z2)|∆1〉) .

(2.12)

To relate this expression to the quadratic differential (2.8) with third order pole, we take

the further limit Λ2 = −c2
1 → 0 while Λ1 = 2c1(Q − α) is kept finite. The state that this

limiting procedure gives rise to satisfies the Whittaker properties

Ln|∆, {Λi}〉 = Λn|∆, {Λi}〉 (2.13)

with Λ1 = Λ2 and Λn = 0 for n > 1 [24].

By explicit calculation to a fixed order, it was demonstrated [24] that the norm of

this state coincides with the instanton partition function of εi-deformed pure N = 2 super

Yang-Mills theory

〈∆,Λ|∆,Λ〉 = Zinst
N=2,SU(2)pure(acft) (2.14)

with the conventional 2d/4d identifications

b2 =
ε2
ε1
, p =

acft

2πi
√
ε1ε2

, (2.15)

where the momentum p is related to the conformal weight ∆ by the formula ∆(ip) = Q2

4 +p2.

We will introduce numerous variables closely related to the vacuum expectation value of the

adjoint scalar in the gauge theory, and have therefore denoted the conformal field theory

quantity determining the weight of the exchanged state with the subscript ‘cft’.

2.3 The null vector decoupling equation

Our point of departure will be the fact that the irregular block after insertion of a degenerate

operator satisfies a null vector decoupling equation. We denote the irregular block with

insertion Φh2,1 at the point z as Ψ(z),

Ψ(z) =

〈
∆

(
acft

2πi
√
ε1ε2

− b

4

)
,Λ|Φh2,1(z)|∆

(
acft

2πi
√
ε1ε2

+
b

4

)
,Λ

〉
. (2.16)
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In this definition, we slightly shift the momenta of the incoming and outgoing irregular

vectors away from acft
2πi
√
ε1ε2

such that

∆

(
acft

2πi
√
ε1ε2

+
b

4

)
−∆

(
acft

2πi
√
ε1ε2

− b

4

)
=

acft

2πiε1
. (2.17)

This condition is necessary for the correlator not to vanish. The derivation of the null

vector decoupling equation this correlator satisfies was worked out in e.g. [40, 41]. After a

change of variables z = ew and the rescaling

Ψ(z) = z
∆(

acft
2πi
√
ε1ε2
− b

4
)−∆(

acft
2πi
√
ε1ε2

+ b
4

)−h2,1
Y (w) , (2.18)

the equation reads(
ε1
ε2
∂2
w +

acft

πiε2
∂w +

Λ2

ε1ε2
(ew + e−w) +

Λ

4
∂Λ

)
Y (w) = 0 . (2.19)

To simplify the equation further, we define

Ξ(w) = e
2a2cft
πiε1ε2

log Λ
e
− acft

2πiε1
w
Y (w) . (2.20)

As the monodromy of Ψ(z) that follows from its definition (2.16) is accounted for by the

prefactor in (2.18), the function Ξ(w) has periodicity Ξ(w − 2πi) = e
acft
ε1 Ξ(w). It satisfies

the equation (
ε1
ε2
∂2
w +

Λ2

ε1ε2
(ew + e−w) +

Λ

4
∂Λ

)
Ξ(w) = 0 . (2.21)

This differential equation for Ξ(w) is exact, both in ε1 and in ε2.

2.4 The semi-classical limit in the central charge

To be able to extract the conformal block (2.14) of interest from solutions of the null vector

decoupling equation (2.21), we will study it to leading order in ε2/ε1. This is a first WKB

approximation. The limit renders the Gaiotto state heavy compared to the light degenerate

insertion, justifying the factorization ansatz

Ξ(w) = e
1

ε1ε2
F(Λ)

χ(w|Λ) , (2.22)

with logχ(w|Λ) finite in the limit ε2 → 0. The first factor is to be identified with the

irregular block without the degenerate insertion, while the second factor is associated to

the light degenerate mode. Plugging the ansatz into equation (2.21), we obtain(
ε1
ε2
∂2
w +

Λ2

ε1ε2
(ew + e−w) +

Λ

4
∂Λ +

1

4ε1ε2
∂log ΛF

)
χ(w|Λ) = 0 . (2.23)

We multiply the equation by ε1ε2/Λ
2 to find(

ε21
Λ2
∂2
w + (ew + e−w) +

1

4Λ2
∂log ΛF

)
χ(w|Λ) = 0 . (2.24)
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The differential equation is exact in ε1. It was already studied (pre-2d/4d correspon-

dence!) in [42] to obtain the prepotential of pure N = 2 SU(2) gauge theory. Upon the

variable redefinition

w = iq ,
ε21

2Λ2
= ε2 , − 1

8Λ2
∂log ΛF = u , (2.25)

it is mapped to the form

(−ε2∂2
q + cos q)ψ(q) = uψ(q) . (2.26)

This is the Mathieu equation, which has been studied from various angles in the mathe-

matics literature (see e.g. [43, 44]). Note that unlike most of these studies, we will impose

no reality conditions on the variables occurring in equation (2.26).

3 The Mathieu equation and exact WKB

The technical core of this paper is the exact WKB analysis of the Mathieu equation. This

method will permit us to compute corrections to the formal WKB solutions to the equation,

in a sense which we shall make precise in this section. Recall that the formal solutions

reproduce the non-convergent ε-expansion of the instanton partition function of pure N = 2

gauge theory at large a/ε. The correction terms computed here yield information beyond

this asymptotic expansion.

Before turning to the WKB analysis in subsection 3.2, we collect some general results

regarding the Mathieu equation and its solutions in the following subsection, based on the

exposition in [43].

3.1 The Mathieu equation

The Mathieu equation (2.26) is an ordinary differential equation of degree 2. It has a

unique solution upon specifying two boundary conditions on the solution ψ, e.g. the values

of ψ and its derivative ψ′ at a point. The solution is entire in the variable q as well as the

parameters uε−2 and ε−2 [43]. As the potential term in the Mathieu equation is periodic

(of period 2π in the variable q), Floquet theory applies. In particular, two independent

solutions of the equation exist that satisfy(
ψ

ψ′

)
(q) = eiνq/2χ(q) , (3.1)

for appropriate ν, with χ a 2π periodic vector valued function of q. Such solutions are called

Floquet solutions. The factor eiνπ, which reflects the monodromy of the solution ψ under

q → q + 2π, is called a characteristic multiplier of the equation, and ν is a characteristic

exponent. Since the characteristic exponent is defined via the log of the characteristic

multiplier, it is only defined modulo 2Z. In equation (3.1), shifting the characteristic

exponent ν by 2Z requires rescaling the periodic function χ(q). We introduce the parameter

ν̂ by writing ν = ν̂ + 2n for n ∈ Z and Re (ν̂) ∈ [−1, 1]. The characteristic exponents ν̂ of

the two independent Floquet solutions of the Mathieu equation add to 0, by the absence

– 9 –
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of a first order derivative term in (2.26). We can express the Floquet solutions as linear

combinations ψ = Aψ1 +Bψ2 of two solutions ψ1, ψ2 satisfying the boundary conditions(
ψ1 ψ2

ψ′1 ψ
′
2

)
(0) =

(
1 0

0 1

)
. (3.2)

Requiring that coefficients A and B exist such that the corresponding linear combina-

tion satisfies the Floquet monodromy condition with characteristic exponent ν entails the

following constraint on the characteristic exponent:

cosπν = ψ1

(
u, ε,

π

2

)
. (3.3)

This equation is called the characteristic equation of the Mathieu equation, or somewhat

less fortuitously, a quantization condition. For fixed parameters u and ε, equation (3.3)

determines the characteristic exponent up to a sign and 2Z ambiguity. As we have seen,

the 2Z ambiguity corresponds to a rescaling of the periodic function χ(q) in (3.1) (or a

relabeling of the Fourier coefficients of ψ), whereas the two signs correspond to the two

independent Floquet solutions.

In applications, it is often important to know the possible values of the parameter u

that are consistent with given values of the parameter ε and the characteristic exponent ν.

When the Mathieu equation arises as a Schrödinger equation in quantum mechanics, fixing

ν corresponds to fixing the periodicity condition on the wave function, and determining the

values of u that permit solutions with this periodicity is tantamount to determining the

spectrum of the Hamiltonian. In the context of this paper, ν corresponds to the exchanged

momentum of the conformal block Ξ(w) in (2.20) via

iνπ =
acft

ε1
. (3.4)

By the 2d/4d correspondence, the characteristic exponent hence maps to the scalar vac-

uum expectation value of the adjoint scalar in the vector multiplet of the SU(2) gauge

theory. The corresponding u determines the partition function of the gauge theory via

the generalized Matone relation [39, 45, 46] as it arises in (2.25), u = − 1
8Λ2 Λ∂F

∂Λ . We will

review in subsection 3.2 that the characteristic exponent at fixed u is approximated by the

A-period of the Seiberg-Witten differential in a WKB analysis of the Mathieu equation,

and study how exact WKB methods permit determining corrections to this relation in

section 3.3. In the rest of this subsection, we will review what can be learned about the

relation between ν and u from the study of the characteristic equation (3.3), following the

classic reference [43].

For a given ε and a non-integer ν, a discrete infinite number of solutions of the equa-

tion (3.3) for u exists. We can label these as u(ν,N, ε), with N ∈ Z. Notice that by the

periodicity of the cosine function, we can define an integer-valued function N(M1,M2) on

Z×Z such that u(ν+2M1,M2, ε) = u(ν,N(M1,M2), ε) for M1,M2 ∈ Z. One can moreover

show that the choice N(M1,M2) = 2(M1 + M2) is possible, allowing us to combine the

variables ν and N and express the solution u as a function u(ν + 2N, ε). No generality is

– 10 –
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ν

ν

1

✏

1

✏ u(⌫, ✏)

4u(⌫, ✏)

✏2

Figure 2. The variable u is discontinuous as a function of real ν. On the left, the behavior 4u
ε2 ∼ ν

2

is visible, as well as the narrowing of the bands as ε→∞. On the right, the limit u→ −1 as ε→ 0

is apparent.

lost by calling the first variable ν. Recall that by Floquet theory, we furthermore have the

parity property u(ν, ε) = u(−ν, ε).
At integer ν = n ∈ Z−{0}, two discrete infinite families of solutions to the character-

istic equation (3.3) exist, labelled as u+(n, ε) and u−(n, ε) (these solutions, rescaled by the

factor 4ε−2, are usually denoted an and bn). The function u(ν, ε) for ν ∈ R is discontinuous

at ν ∈ Z,

lim
ν→n±

u(ν, ε) = u±(n, ε) , (3.5)

with ν → n± indicating that n ∈ Z is approached from above/below respectively. These

discontinuities along the real axis give rise to what is referred to as the band structure of

the spectrum of the Mathieu equation, see figure 2.

Convergent and asymptotic series in ε for u are known, at large and small ε respectively.

It can be uniquely characterized by its convergent power series expansion around ε =∞,

1

ε2
u(ν, ε) =

ν2

4
+

1

4(ν2 − 1)

1

ε2
+O(

1

ε4
) . (3.6)

The coefficients of the series expansion can be found by equating negative powers of ε in

the following continued-fraction equation. With the notation x = 4uε−2,

x− ν2 − ε−2

x− (ν + 2)2−
ε−2

x− (ν + 4)2−
· · · = ε−2

x− (ν − 2)2−
ε−2

x− (ν − 4)2−
· · · . (3.7)

The series that results from this procedure has finite convergence radius when the parameter

ν is not an integer. For integer ν, convergent power series expansions around ε =∞ exist

as well, with leading term

1

ε2
u±(n, ε) =

n2

4
+O

(
1

ε2

)
, (3.8)
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but the corresponding coefficients are given by recourse to different continued-fraction

equations. E.g., for u+ and even n,

x− (2n)2 − ε−2

x− (2n− 2)2−
ε−2

x− (2n− 4)2−
· · · ε−2

x− 22−
2ε−2

x

=
ε−2

(2n+ 2)2 − x−
ε−2

(2n+ 4)2 − x−
· · · . (3.9)

Notice that this continued-fraction equation is different in nature from the one appearing

in equation (3.7), as the variable n also appears as a summation index. Hence, the equation

yields the coefficients of the series expansion only once n has been assigned a value. For

large n, the leading coefficients in the series expansion can nevertheless be expressed as

rational functions of the parameter n, and they coincide with the coefficients for ν non-

integer, evaluated at ν = n. This agreement breaks down for higher terms in the series,

rendering (3.8) convergent, whereas (3.6) diverges for integer ν.

For ε2 real and small, it is known that the values of the two solutions u+(n, ε) and

u−(n+ 1, ε) approach each other and have the asymptotic expansion, for ε2 positive,

u+(n, ε) ∼ u−(n+ 1, ε) ∼ −1 +
s√
2
ε− 1

32
(s2 + 1)ε2 + . . . , (3.10)

where s = 2n + 1, n = 0, 1, 2, . . .. A similar expansion can be derived for ε2 small and

negative, with leading term +1. One can show that the difference between u+(n, ε) and

u−(n+ 1, ε) scales like exp
(
− 1
|ε|
)
. The asymptotic expansion (3.10) is hence also valid for

u(ν, ε), with ν real and in the interval n < ν < n+ 1.

Finally, one can ask about the analytic properties of u(ν, ε) as a function of ν. Accord-

ing to [43], the solution ψ1 on the right hand side of the characteristic equation (3.3) is

analytic as a function of ν and ε away from possible branch cuts. By the implicit function

theorem, the parameter u will be analytic as a function of ν and ε away from these branch

cuts and from zeros of the u-derivative of F (u, ν) = ψ1(u, ε, π2 )− cosπν. By writing

∂ψ1(u, ε, π2 )

∂u
= −π∂ν

∂u
sinπν , (3.11)

the discontinuities of u for real ν become visible as the zeros of sin πν. Additional analytic

complications will arise at zeros of the factor ∂uν. Using Mathematica, we found some

evidence for the existence of one stationary point u0(n) of ν(u) for each pair u±(n), n ∈ Z,

with u−(n) < u0(n) < u+(n).

3.2 WKB analysis of the Mathieu equation

In this section, we will review the WKB approximation to the Mathieu equation. This

is standard material. For future convenience, we use the conventions in [14]. For further

results on the WKB analysis of this equation, see [47, 48].

The starting point of the general theory is a second order differential equation of

the form

[ε2∂2
q −Q(q, ε)]Ψ(q) = 0 , (3.12)

– 12 –



J
H
E
P
0
8
(
2
0
1
5
)
1
6
0

on a Riemann surface Σ, depending on a potential Q(q, ε) =
∑N

k=0Qk(q)ε
k which is a

polynomial in ε with coefficients Qk(q) that are meromorphic on Σ, satisfying conditions

outlined in [14]. We will immediately specialize to the Mathieu equation in the form

[ε2∂2
q − (cos q − u)]Ψ(q) = 0 , (3.13)

with Σ chosen as the cylinder −π ≤ Im q < π compactified to a sphere by adding points

at ±i∞. The parameters ε and u can be complex. Hence,

Q0 = cos q − u (3.14)

and, since we pick the parameter u to be ε-independent, we have Qn = 0 for n > 0.

The WKB ansatz for the solution of the differential equation is

ψ(q, ε) = exp(

∫ q

S dq) , (3.15)

with S expanded as a formal power series in ε,

S =
1

ε
S−1 + S0 + εS1 + . . . . (3.16)

By plugging this ansatz into the differential equation, one immediately derives the following

recursion relation for the coefficients Sn:

S2
−1 = Q0 , (3.17)

2S−1Sn+1 +
∑

n1+n2=n
0≤nj≤n

Sn1Sn2 +
dSn
dq

= Qn+2 , n > −1 . (3.18)

Equation (3.17) has two solutions, S−1 = ±
√
Q0. We note that up to normalization, the

Seiberg-Witten differential of pure N = 2 SU(2) gauge theory thus arises in the WKB

analysis of the Mathieu equation as λ = S−1dq. In this matching, the variable u defined

via (2.25) coincides with the conventional variable parametrizing the Seiberg-Witten u-

plane introduced in subsection 2.1, a manifestation of a generalized Matone relation.

Depending on the choice of the sign of S−1, we obtain two solutions to the recur-

sion relations, which we label S±. The first few series coefficients, for u chosen to be

ε-independent, are given by

S±−1 = ±
√

cos q − u ,

S±0 = −1

2
d logS−1/dq =

1

4

sin q

cos q − u
,

S±1 = ±cos 2q + 8u cos q − 9

64(cos q − u)5/2
,

S±2 = −
sin(q)

(
20u cos(q) + cos(2q) + 8u2 − 29

)
128(u− cos(q))4

,

S±3 = ∓ 1

16384(cos(q)− u)11/2

(
16
(
32u2 − 265

)
u cos q + 20

(
112u2 − 173

)
cos 2q

+912u cos 3q + 25 cos 4q − 1344u2 + 5355
)
.
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Introducing

Sodd =
1

2
(S+ − S−) , Seven =

1

2
(S+ + S−) , (3.19)

one can show that

Seven = −1

2

d logSodd
dq

. (3.20)

The formal WKB solution (3.15) thus takes the form

ψ±(q, ε) =
1√

Sodd(q, ε)
exp

(
±
∫ q

Sodd(q, ε) dq

)
, (3.21)

where this formal expression is to be interpreted as an analytic function in q with branch

cuts multiplying a formal power series as follows:

ψ±(q, ε) = exp

(
±1

ε

∫ q√
Q0(q) dq

)
ε1/2

∞∑
k=0

εkψ±,k(q) . (3.22)

To fix the normalization of (3.21), we need to specify the starting point of the integral.

In this paper, we will choose this starting point to coincide with the zeros of Q0, called

turning points. Care is required in defining the ensuing integral [14], as the coefficients Sn,

n ≥ 0, have poles at the turning points.

Our analysis will require comparing WKB solutions normalized with regard to different

turning points. These are related by exponentials of periods of Sodd, for which we introduce

the notation

a = ε

∫
A
Sodd dq , aD = ε

∫
B
Sodd dq . (3.23)

The integrals are to be understood order by order in ε. To leading order, the integrals a

and aD equal the Seiberg-Witten periods a(0) and a
(0)
D , which can be expressed in terms of

hypergeometric functions,

a(0) = −2πi
√
u+ 1 2F1

(
−1

2
,

1

2
; 1;

2

u+ 1

)
, (3.24)

a
(0)
D = − π√

2
(u− 1) 2F1

(
1

2
,
1

2
; 2;−1

2
(u− 1)

)
. (3.25)

Instead of evaluating the integrals over the coefficients Sn, n ≥ 0 directly, one can define

differential operators D2n of order 2n that map S−1 to S2n−1 up to total derivative terms [3,

48]. The first few of these are [48]

D2 =
1

24
(2u∂2

u + ∂u) , (3.26)

D4 =
1

27

(
28

45
u2∂4

u +
8

3
u∂3

u +
5

3
∂2
u

)
,

D6 =
1

29

(
124

945
u3∂6

u +
158

105
u2∂5

u +
153

35
u∂4

u +
41

14
∂3
u

)
,

D8 =
1

28

(
127

23 × 4725
u4∂8

u +
13

175
u3∂7

u +
517

24 × 63
u2∂6

u +
9539

23 × 945
u∂5

u +
15229

27 × 135
∂4
u

)
.
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Derivatives of the hypergeometric functions can in turn be rewritten as hypergeometric

functions. By acting with the D2n on a(0) and a
(0)
D , one hence obtains the coefficients of

the formal power series (3.23) again in terms of hypergeometric functions of the modulus u.

Note that expressing the higher order corrections to the A- and B-period via deriva-

tive operators acting on the leading contribution establishes that the monodromy matrix

governing the behavior of a(0) and a
(0)
D upon circling singularities in the u-plane is not

corrected at any order in ε: schematically, D
(
a(0) log u

)
= Da(0) log u + a(0)D log u, and

D log u does not exhibit monodromy.

The two formal series allow us to eliminate u, and to solve for instance for F(a, ε),

which agrees with the perturbative expansion of the Nekrasov instanton partition function.

We performed successful numerical checks on the perturbative WKB approximation in

a range of parameters where the Stokes phenomena we shall discuss in the next subsection

are numerically negligible. We give an example of such a check in appendix B.1.

3.3 Beyond perturbation theory

We have seen that the monodromy of the solution to the null vector decoupling equa-

tion (2.24) plays an important role in our analysis: it corresponds to the exchanged mo-

mentum of the conformal block or, equivalently, to the scalar vacuum expectation value

in the gauge theory. We also know by Floquet theory that a basis of exact solutions

to the Mathieu equation (3.13), called Floquet solutions, exists with monodromy behavior

ψ± → e±πiνψ±. As we have reviewed above, the WKB ansatz gives rise to two independent

formal solutions of the differential equation as a power series in ε which formally diagonal-

ize the monodromy matrix; they hence approximate in a sense we shall discuss presently

the Floquet solutions of the Mathieu equation. Their monodromies under q → q + 2πi

to leading order in ε are given by ± the A-period integral of S−1, which can be identified

with the Seiberg-Witten differential λ. This period hence provides an approximation to

the characteristic exponent ν via a ∼ iπεν. In this section, we will see how to incorporate

exp[−1/ε] corrections in this analysis. We introduce the notation aex for the A-period in-

corporating these corrections, such that aex = iπεν. In terms of the quantities introduced

in section 2.2, aex/ε = acft/ε1.

The formal power series ψ± obtained from the WKB ansatz in the form (3.22) gener-

ically do not converge. Instead, they provide asymptotic expansions to actual solutions

to the given differential equation: for ε contained in a sector arg ε ∈ (θ1, θ2) (we will

have much more to say about this range in the following), solutions Ψ± exist of the form

Ψ± = exp
(
±1
ε

∫ q√
Q0(z) dz

)
ε1/2f±(q, ε), with f± analytic in q and in the given sector

for ε, such that for any N ∈ N and ρ > 0, a constant C > 0 exists with

|ε|−N |f±(q, ε)−
N−1∑
k=0

ψ±,kε
k| ≤ C ∀ε : |ε| < ρ , arg ε ∈ (θ1, θ2) . (3.27)

It is easy to see from the definition that a function with an asymptotic expansion in terms

of formal power series has precisely one such expansion.

Borel resummation is a technique, given a formal power series in ε, to construct a

function analytic in a sector of the ε-plane which has the formal series as its asymptotic
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expansion. The Borel sum is constructed in two steps. The Borel transform ψB of a formal

series ψ is defined as

ψ(ε) =

∞∑
k=0

ψkε
k → ψB(y) =

∞∑
k=1

ψk
yn−1

(n− 1)!
. (3.28)

If ψB converges around y = 0 and can be analytically continued along a half-line `θ con-

necting 0 to infinity at an angle −θ to the positive real y-axis, we can define the Laplace

integral of ψB in direction θ as

Sθ[ψ](ε) = ψ0 +

∫
`θ

e−
y
ε ψB(y) dy . (3.29)

If this integral exists, Sθ[ψ] provides the sought after analytic function; it is called the

Borel sum of ψ in direction θ, and ψ is called Borel summable. Notice that at given ε, the

existence of the integral generically constrains θ to lie within the sector

θ ∈
(
− π

2
− arg ε,

π

2
− arg ε

)
. (3.30)

The WKB analysis of the Mathieu equation gives rise to formal WKB series that are

assumed2 to be Borel summable away from a discrete infinite set of angles θ. These angles

partition the y-plane into sectors, half of which, given an ε and in accord with (3.30),

determine Borel sums of ψ, possibly differing by exponentially suppressed terms amongst

each other. This ambiguity or integration path dependence of Borel resummation gives

rise to the so-called Stokes phenomenon.

When the asymptotic series being resummed is the WKB solution to a differential

equation, its coefficients depend on a parameter q, and Borel resummation under favorable

circumstances leads to analytic solutions of the differential equation. For an ordinary differ-

ential equation of second order, this space is two-dimensional. The Stokes phenomena thus

corresponds to assigning a different linear combination of a given basis of analytic solutions

of the differential equation to WKB solutions via the process of Borel resummation.

When considering q-dependent coefficients, two types of singularities, mobile and fixed,

can appear in the Borel plane; mobile singularities are those whose position depends on

q. Away from isolated points in parameter space, all singularities that appear in the Borel

plane are mobile. Our analysis will hence essentially focus on this case. Keeping the

integration path of the Laplace transform in the Borel plane fixed, the Stokes phenomenon

in this context manifests itself by discontinuities in the Borel resummation when q crosses

certain lines, called Stokes lines, on Σ. The Stokes lines divide Σ into domains called Stokes

regions. By the foregoing, the two solutions of the Mathieu equation that we obtain by

Borel resummation of the formal WKB solutions depend on the Stokes region: the analytic

continuation of the Borel resummation into a different Stokes region will equal a linear

combination of the Borel resummed solutions native to that region. In other words, Borel

2The mathematical literature on this subject is uncharacteristically beset by assumptions and deferred

proofs. But see [49] for a proof of Borel summability in the case of a particular polynomial potential, and

the forthcoming work [50] for the general polynomial case.
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resummation and analytic continuation in q do not commute (before Borel resummation,

analytic continuation is to be understood term by term).

Returning now to the question of determining the characteristic exponents of the Math-

ieu equation, we see that two phenomena need to be taken into account when passing from

WKB to exact results. Firstly, the period of Sodd, which naively coincides with the char-

acteristic exponent, must be Borel resummed. The resulting analytic function of ε, called

a Voros multiplier,3 will depend on the integration path chosen for the Laplace transform.

Secondly, to determine the monodromy matrix of a pair of solutions requires analytically

continuing them between different Stokes regions. As a consequence, we will see that the

Floquet solutions to the differential equation do not coincide with the Borel resummation

of the WKB solutions. Both manifestations of the Stokes phenomena must be taken into

account to determine the characteristic exponents of the Mathieu equation. We will show

that apparent ambiguities due to the choice of integration path cancel out in the process.

3.3.1 The Stokes graphs

Studying the Borel resummation behavior of the WKB solutions requires determining the

Stokes graphs of the Mathieu equation (3.13) for a given choice of the parameters u and ε.

These are entirely determined by the leading contribution Q0 to the potential specifying

the differential equation (3.12). More precisely, upon a change of variables q → q̃ and a

rescaling of the solution Ψ to absorb the ensuing first order derivative, (3.12) remains form

invariant upon replacing Q0(z) by

Q̃0(z̃, ε) = Q0(z(z̃)

(
dz̃

dz̃

)2

, (3.31)

and shifting the higher order coefficients Qn. The invariant quantity is hence

φ = Q0 dz
⊗2 . (3.32)

It is thus natural to interpret Q0 as the coefficient of a section of the line bundle K⊗2,

with K the canonical line bundle on Σ. Such sections are called quadratic differentials.

We encountered them in the context of Seiberg-Witten theory in section 2.1. As we re-

marked above, the square root of the quadratic differential, λ = S−1 dq, coincides with

the Seiberg-Witten 1-form of the underlying gauge theory; consequently, the quadratic

differentials (3.32) and (2.6) coincide (up to irrelevant normalization).

To render λ single-valued, we introduce the double cover Σ̂ of the Riemann surface

Σ, branched at the simple zeros and poles (if present) of φ. Note that since we have not

restricted Re q ≥ 0 in defining Σ, Σ̂ does not coincide with the conventional Seiberg-Witten

curve. In particular, the branch cuts in figure 1 in the upper and lower half-plane are not

identified on Σ̂, and a path connecting them does not yield a cycle. Since the two branch

cuts can be chosen to be mapped into each other under q → −q, and the formal power series

Sodd which determines the formal WKB series (3.21) is even in q, we can essentially ignore

3In the literature, this term is sometimes also used to indicate the formal period before Borel

resummation.
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this subtlety until the end of subsection 3.3.2. In an abuse of terminology, we will continue

to refer to a path connecting the two turning points as the B-cycle or as homologous to

the B-cycle.

We define trajectories of the quadratic differential φ, called WKB curves by [36], by

the condition that λ have constant phase along them. In other words, tangent vectors ∂t
to trajectories satisfy

eiθ λ · ∂t ∈ R+ . (3.33)

This translates into the integral condition

Im eiθ
∫ q

λ = const . (3.34)

Distinguished points on the Riemann surface Σ are given by the zeros of φ. These are

called turning points of the differential equation. Depending on the order of the zero,

we distinguish between simple, double, or higher order turning points. A Stokes line is a

trajectory that ends on a turning point q0, hence satisfies the equation

Im eiθ
∫ q

q0

λ = 0 . (3.35)

The graph formed by these Stokes lines is called the Stokes graph in the direction θ. As

noted above, the relevance of Stokes lines stems from their relation to the position of the

poles of the Borel transform of the formal WKB solutions: when q lies on a Stokes line

associated to an angle θ, the Borel transform exhibits a pole on the line `θ.

For the analysis of transition behavior between Stokes regions, it is important to endow

Stokes lines with an orientation. We will define the real part of eiθ
∫ q
λ to increase in the

positive direction along a trajectory. This convention implies that a Stokes lines is oriented

away from the turning point q0 if Re eiθ
∫ q
q0
λ > 0 along it.

By equation (3.35), we see that the pattern of Stokes lines is determined by θ ∈ [0, π);

under θ → θ+π, the pattern remains invariant, but the orientation of each Stokes line flips.

A local analysis establishes that the number of Stokes lines emanating from a turning

point is determined by its order, as follows: an order n turning point leads to local behavior

z
n
2

+1 of the integral (3.34) and therefore has n + 2 Stokes lines emanating from it, with

angle 2π/(n+ 2) between two neighboring lines. Two types of Stokes lines will be relevant

for our analysis: simple (or single or separating) Stokes lines, which run between a turning

point and a pole of φ, and double Stokes lines (or Stokes saddles) that run between two

turning points. Simple Stokes lines that are oriented away from turning points will be called

dominant, those oriented towards turning points recessive. The Stokes lines emanating from

a turning point are alternately dominant and recessive, except upon crossing a branch cut.

The Stokes graphs of the Mathieu differential equation have been studied in the

Gaiotto-Witten variables in [36]. We will study them on the q-cylinder more directly

related to the traditional form of the Mathieu equation. For the computation of non-

perturbative corrections to the approximation to the characteristic exponent given by the
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A-period of the Seiberg-Witten differential, we will need to study the Stokes graphs for

any complex value of the parameter pair (u, ε).

In our variables, the quadratic differential φ is given by

φ = (cos q − u) dq ⊗ dq . (3.36)

Its turning points on the cylinder lie at

qup/down ∈ cos−1 u , (3.37)

with the subscript indicating the q-halfplane on which the respective preimage of u lies.

The differential φ has an essential singularity at the infinity of the complex plane. To

analyze its behavior restricted to Σ, it is convenient to revert to the variable z = cos q,

to discover a pair of cubic poles, one at each point at infinity on Σ. The behavior at

such poles is that trajectories which approach sufficiently are attracted to the pole along

a tangent line (more generally, the number of tangent lines equals 2 less than the order of

the pole) [51].

Critical Stokes graphs. Fixing a pair (u, ε), studying the occurrence of double Stokes

lines at special angles θ, called critical, is important for several reasons. We can imagine the

y-plane4 being divided into sectors via the critical angles. The global topology of Stokes

graphs is constant within each sector, and transitions upon crossing into a neighboring

sector in a simple manner. Pairs of sectors related by reflection through the origin differ

only in the orientation of all Stokes lines. Voros multipliers exhibit jumping behavior upon

transition between sectors.

We can make qualitative statements about the occurrence of double Stokes lines by

recourse to an observation of [36, 52] matching BPS states in the spectrum of the N = 2

gauge theory associated to a given Seiberg-Witten curve with the occurrence of such lines.

The charges of the BPS state correspond to the homology class associated to the line (recall

that the double Stokes lines connect turning points on different sheets of the Riemann

surface, hence determine closed curves on it). From our knowledge of the BPS spectrum of

pure N = 2 gauge theory [34, 53], we are thus led to distinguish two regions on the u-plane,

separated by the curve of marginal stability, which runs through the points u = ±1. Inside

the curve, the BPS spectrum consists of the monopole and the dyon, of charge ±(0, 1)

and ±(1,±1) respectively (the relative sign between the electric and magnetic charge of

the dyon is not monodromy invariant). Hence, at fixed ε and any value of u within this

region, two values of the angle θ in the interval [0, π) should give rise to Stokes graphs

exhibiting a double Stokes line. One of these will connect the turning points qup and qdown

directly, the other will wrap around the cylinder once before connecting the turning points.

These angles shifted by π correspond to the respective antiparticles. Outside the curve of

marginal stability, the spectrum consists of infinitely many BPS particles, of charge ±(n, 1)

for n ∈ Z (in addition to the vector bosons at charge ±(1, 0), which also give rise to distinct

Stokes patterns, see [36, 52]). At a given value of u in this region, infinitely many values of

4Recall that y is the Borel dual variable to ε.
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Figure 3. Stokes graphs: the graph in the first row is for u on the curve of marginal stability at

u = −1, the second row depicts the two critical graphs inside the curve of marginal stability, and

the third row a selection of critical graphs outside the curve of marginal stability.

θ in the interval [0, π) hence give rise to double Stokes lines, one for each wrapping number

n ∈ Z around the cylinder.

We now turn to a more systematic study of the critical graphs.

Critical Stokes graphs at u = ±1. A good starting point for the systematic study

of the Stokes graphs of the Mathieu equation is at the values of u at which the quadratic

differential exhibits double turning points, i.e. at the monopole and dyon points u = ±1.

According to our general analysis above, n + 2 = 4 Stokes lines emanate from each such

point. For concreteness, let us consider the point u = −1. A critical Stokes graph for this

choice of u occurs at θ = 0, as λ · ∂t ∈ R along the line connecting the turning points
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at q = −π and q = π along the real axis. This double Stokes line corresponds to the

monopole. The dyon at u = −1 is massless, the corresponding double Stokes line has zero

length. It arises at θ = π
2 . The corresponding two graphs are depicted in the first row of

figure 3.

Critical Stokes graphs: inside the curve of marginal stability. Moving away from

the singular points u = ±1 into the strong coupling region inside the curve of marginal

stability, each double turning point splits into two single turning points. These have n+2 =

3 Stokes lines emanating from them. Keeping u real, the two critical Stokes graphs still

lie at θ = 0 and θ = π
2 , as depicted in the second row of figure 3. The dyon acquires a

mass, as the double Stokes line corresponding to θ = π
2 now has finite length; along it, λ

is purely imaginary. Giving u an imaginary part moves the turning points off of the real

axis, while maintaining the topology of the diagrams. In particular, the two simple Stokes

lines at each turning point run off to imaginary infinity in opposite half-planes.

Critical Stokes graphs: outside the curve of marginal stability. Starting from

u = −1, moving into the weak coupling region outside the curve of marginal stability while

keeping u real gives rise to the Stokes graphs depicted in the third row of figure 3. The

double Stokes lines in the leftmost diagram correspond to the n → ∞ limit of the BPS

particles of charge na + aD. Within a small interval around θ = 0, an infinite number of

double Stokes lines arise, which wrap, as θ approches 0, an increasing number n of times

around the cylinder before connecting the two turning points, corresponding to central

charge na + aD. The second graph in the last row of figure 3 corresponds to the value

n = 2. Moving away from θ = 0, n decreases, till it reaches 0 at θ = π
2 , as depicted

in the final graph in the third row. Further increasing θ yields double Stokes lines that

wrap the cylinder in the opposite direction. Giving u an imaginary part shifts the turning

points away from the line Re q = ±π, while maintaining the topology of the diagram. In

particular, aside from the two critical graphs corresponding to n → ∞ with two double

Stokes lines attached to each turning point, all other critical graphs exhibit two simple

Stokes lines at each turning point moving off to imaginary infinity in the same half-plane.

In accord with the BPS analysis above, the y-plane is hence split into four sectors

inside the curve of marginal stability. Outside this curve, it is split into infinitely many

sectors that accumulate at θ = 0 and θ = π. We will introduce a convenient indexation of

these sectors below.

Generic Stokes graphs. As we move off of a critical value of θ, the double Stokes line `0
splits into two simple Stokes lines. These can avoid each other in two topologically distinct

manners: upon decreasing θ away from a critical value, the lines swerve to the left of `0
as seen from the turning point from which they emerge, upon increasing θ, they swerve

to the right. This behavior is visible in figure 4 for u lying outside the curve of marginal

stability, and again in figure 6 for u inside the curve. The Stokes graphs on the two sides

of the critical θ-value are said to be related via a flip.

The generic Stokes graph hence has three Stokes lines emerging from each turning

point and running off towards infinity, two towards infinity in the upper half-plane of the
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Figure 4. Two Stokes graphs related by a flip. If θ0 denotes the critical angle, and δ is a small

positive constant, the graph to the left is representative of the topology at θ0 − δ, the graph to the

right of that at θ0 + δ.

q-plane and one towards infinity in the lower half-plane, or vice versa. Inside the curve

of marginal stability, these two cases are interchanged by a flip. Outside this curve, the

turning point in the upper half-plane always exhibits two simple Stokes lines running off to

infinity in the positive half-plane. By the symmetry q → −q of the equation, the behavior

at the alternative turning point is obtained by reflection through the origin.

3.3.2 Computing non-perturbative corrections to the characteristic exponent

Having determined the Stokes graphs of the Mathieu equation, we are now in a position

to compute contributions to the monodromy of its solutions that are not visible via formal

WKB analysis.

As explained in the introduction to this section, the Borel resummations of the two

formal WKB solutions ψ±(q, ε), at fixed ε, yield a different basis of solutions of the Mathieu

equation depending on the Stokes region in which the argument q lies. The solutions Ψ
(i)
±

obtained upon Borel resummation with q in Stokes region (i) can be analytically continued

into a neighboring Stokes region (j), yielding a basis of solutions also here. A second such

basis can be obtained directly by Borel resummation of ψ±(q, ε) with q chosen in region (j).

The matrix S(i)→(j) relating these two bases of solutions is referred to as the connection

matrix from region (i) to region (j). It depends on the choice of normalization of the

WKB solutions. In this paper, we will, as pointed out in section 3.2, normalize the WKB

solutions ψ± at the turning point from which the Stokes line emanates that we wish to

cross. Denoting the turning points as qk, we will use the notation (qk)
(i)
± to indicate the

Borel resummations in Stokes region (i) of the WKB solutions normalized at turning point

qk, with qk lying on a boundary of the Stokes region (i).

In this notation,  (q)
(i)
+

(q)
(i)
−

 (q(j)) = S(i)→(j)

 (q)
(j)
+

(q)
(j)
−

 (q(j)) , (3.38)
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where q(j) labels a point in Stokes region (j) neighboring Stokes region (i). With the given

choice of normalization, the matrices S(i)→(j) take a simple form ([8], theorem 2.25 of [14]):

upon analytically continuing across a dominant Stokes line counterclockwise with regard

to the turning point, it is given by [14]

Sdom =

(
1 i

0 1

)
, (3.39)

whereas analytic continuation counterclockwise across a recessive Stokes line, requires the

connection matrix [14]

Srec =

(
1 0

i 1

)
. (3.40)

As a consistency check, note that a full revolution around a turning point yields the unit

matrix as connection matrix:

SrecSbranchSrecSdom =

(
1 0

0 1

)
, SdomSbranchSdomSrec =

(
1 0

0 1

)
, (3.41)

with

Sbranch = −i

(
0 1

1 0

)
(3.42)

the transition matrix upon crossing a branch cut. The factor −i is due to the square root

in the denominator of (3.21).

From the form of the WKB solution (3.15), we can read off the following relation

between two solutions (q1)
(i)
± and (q2)

(i)
± , when q1 and q2 lie on the boundary of the same

Stokes region (i):

(q1)
(i)
± =

(
exp

[
±
∫ q2

q1

Sodd

])
s

(q2)
(i)
± . (3.43)

The prefactor of (q2)
(i)
± is the Voros multiplier associated to the cycle represented by the

line connecting the two turning points q1 and q2: the notation (·)s denotes the Borel

resummation of the formal power series in parentheses. The subscript s indicates the sector

in the y-plane in which this resummation is performed: as we will review below, Voros

multipliers are locally constant functions of θ in a given sector; they can jump as θ crosses

a critical angle. We have suppressed the sector dependence elsewhere in the notation.

The A-monodromy outside the curve of marginal stability. Computing the A-

monodromy for any value of the parameter pair (u, ε) with u outside the curve of marginal

stability, requires crossing at least two Stokes lines. To standardize our calculations, we will

always start off at a point q in a Stokes region, henceforth Stokes region (1), chosen such

that the first Stokes line to cross in analytically continuing the solution along the negative

A-cycle (recall from section 2.1 that the A-cycle runs from π to−π in the q-plane) is a Stokes

line connected to a turning point in the upper half-plane, q1. The analytic continuation

across this line into Stokes region (2) will involve one of the two connection matrices (3.39)

or (3.40), depending on whether the Stokes line is dominant or recessive. The next Stokes

– 23 –



J
H
E
P
0
8
(
2
0
1
5
)
1
6
0

!5 0 5 10

!3

!2

!1

0

1

2

3

u=!2 +2 $, %=0

(1) (2) (3)

q q1

2

3

q

Figure 5. The Stokes regions (1), (2), (3) and turning points q1, q2, q3 as introduced in the text.

line to cross is a Stokes line emanating from a turning point, q2, in the lower half-plane,

and has opposite orientation. We thus arrive in Stokes region (3), which is identified with

Stokes region (1) by the periodicity of the problem. Choosing our branch cuts, as we shall

do throughout, to connect the turning points in the upper/lower half plane to imaginary

infinity in the same half plane (see figure 1), no branch cut is crossed along this path of

analytic continuation. The terminology introduced here is exemplified in figure 5.

The terminology introduced in the previous paragraph allows us to introduce the in-

dexing of sectors of the y-plane promised above: given qi ∈ [−π + 2πki, π + 2πki] for

k1,2 ∈ Z, we define n = k1 − k2, such that the cycle connecting q1 and q2 is homologous

to ±(nA+B), with the orientation of the cycle chosen to coincide with that of the double

Stokes line connecting the two turning points at the appropriate boundary of the θ-sector.

The sign is correlated with whether the first Stokes line crossed is dominant (+) or reces-

sive (−). At a given choice of (u, ε), the sectors of the y-plane are hence uniquely indexed

by (n,±). If an angle θ lies within the sector (n,±), then θ + π yields the same Stokes

graph with the orientation of all Stokes lines reversed, hence lies in the sector (n,∓). In

accord with (3.30), exactly one of these choices of θ is compatible with the phase of the

parameter ε, which we have kept fixed throughout the argument. Flipping the sign of ε

necessitates making the alternative choice. In this sense, flipping the sign of ε results in

the map (n,±) 7→ (n,∓),

ε 7→ −ε ⇒ (n,±) 7→ (n,∓) . (3.44)

Introducing the notation Ni→j for the matrix mapping a basis of solutions obtained via

Borel resummation of formal WKB functions normalized at turning point qi to the basis

obtained from WKB functions normalized at turning point qj , the analytic continuation
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we have described is encapsulated in the following equation: (q1 + 2π)
(3)
+

(q1 + 2π)
(3)
−

 (q + 2π) = N2→3S
−1
(2)→(3)N1→2S

−1
(1)→(2)

 (q1)
(1)
+

(q1)
(1)
−

 (q + 2π) . (3.45)

By the periodicity of the differential equation, (q1 + 2π)
(3)
+

(q1 + 2π)
(3)
−

 (q + 2π) =

 (q1)
(1)
+

(q1)
(1)
−

 (q) , (3.46)

thus permitting us to identify the product of matrices in (3.45) as the monodromy matrix

MA (recalling again that the A-cycle runs from π to −π). With the notation introduced

in subsection 3.1 and by Floquet theory,

TrMA = e
aex
ε + e−

aex
ε . (3.47)

With the conventions introduced above, the appropriate normalization matrices Ni→j are

given by

N1→2 =

(
e−

aD+na

ε 0

0 e
aD+na

ε

)
s

, (3.48)

and

N2→3 =

(
e
aD+(n+1) a

ε 0

0 e−
aD+(n+1) a

ε

)
s

. (3.49)

The formal periods a and aD were introduced in (3.23), and the subscript s denotes the

sector in which the Borel resummation is to be performed.

Substituting all matrices into equation (3.45), we obtain the following trace of the

monodromy matrix:

TrMA =

(
2 cosh

a

ε
+ e∓

1
ε
(a(1+2n)+2aD)

)
(n,±)

(3.50)

At a given choice of the parameter pair (u, ε), a unique answer for TrMA exists — in

particular, this answer cannot depend on the choice of integration direction θ of the Laplace

transform, i.e. the choice of sector (n,±). We hence need to explain the two apparent θ-

dependencies of this result: that we have a priori arrived at two different expressions,

depending on whether the first Stokes line crossed is dominant or recessive, i.e. whether θ

lies in the sector (n,+) or (n,−), and the n-dependence of these expressions. The key to

resolving the first apparent ambiguity lies in the relation (3.30): the phase of ε determines

whether the sector (n,+) or (n,−) is appropriate. Moreover, by (3.44), flipping the sign

of ε leaves the result invariant. To address the apparent n dependence of the result,

we will need to discuss the jumping behavior for Voros multipliers. We will do this in

subsection 3.3.3 below.
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Figure 6. Inside the curve of marginal stability.

The A-monodromy inside the curve of marginal stability. Representative graphs

for the two sectors (up to orientation inversion) that arise inside the curve of marginal

stability are depicted in figure 6. The graphs in the first row arise at Im u > 0, those in

the second at Im u < 0. The topology of the graphs 6a/6c can be distinguished from that

of the graphs 6b/6d by whether the turning point in the upper half-plane is connected to

imaginary infinity in the upper half-plane via one or two Stokes lines. We introduce the

notation (+−−) and (+ +−) to distinguish the corresponding θ-sectors. The graphs that

arise in the sector (+ + −) for Imu > 0, Imu < 0 match the graphs in the sectors (0,±),

(−1,±) outside the curve of marginal stability. The corresponding trace of the monodromy

matrix thus follows from (3.50) and is given by

TrMA =


(

2 cosh
a

ε
+ e±

1
ε
(a+2aD)

)
(++−)

if Imu > 0 (graph 6a),

(
2 cosh

a

ε
+ e±

1
ε
(−a+2aD)

)
(++−)

if Imu < 0 (graph 6c).

(3.51)

To compute the A-monodromy for the sector (+−−), we can either cross four Stokes lines,

or cross two Stokes lines and two branch cuts. The two computations are related by the
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relation (3.41). The former choice translates, in the case that the first Stokes line crossed

is dominant, into the sequence of transition matrices

N2→3SrecSdomN1→2S
−1
recS

−1
dom , (3.52)

with

N1→2 =

(
e−

aD
ε 0

0 e
aD
ε

)
, N2→3 =

(
e
aD+a

ε 0

0 e−
aD+a

ε

)
(3.53)

for 6b and

N1→2 =

(
e
aD
ε 0

0 e−
aD
ε

)
, N2→3 =

(
e
aD−a
ε 0

0 e−
aD−a
ε

)
(3.54)

for 6d. The transition matrices upon shifting θ by π are obtained by exchanging Sdom and

Srec, which results in changing the sign of both a and aD in the monodromy matrix. We

thus obtain

TrMA =



(
2 cosh

2aD + a

ε
+ e±

1
ε
a

)
(+−−)

if Imu > 0 (graph 6b),

(
2 cosh

2aD − a
ε

+ e±
1
ε
a

)
(+−−)

if Imu < 0 (graph 6d).

(3.55)

Upon inspection of figure 6, one concludes that the results for Im u > 0 should be mapped

to those for Imu < 0 via the map aD 7→ aD − a; this relation is in accord with the results

of our computation.

As was the case outside the curve of marginal stability, we again obtain multiple results

for the trace of the monodromy matrix at a given fixed parameter u. The orientation

dependence as reflected in the ± in the exponents in (3.51) and (3.55) is again resolved

upon fixing the parameter pair (u, ε): only one orientation is compatible with a given choice

of ε due to the relation (3.30). We will see in section 3.3.3 that the apparent difference

between the results for the sectors (+ + −) and (+ − −) is accounted for by the jumping

behavior of Voros multipliers.

The B-monodromy. From the point of view of the Seiberg-Witten curve, a natural next

task is to determine the B-monodromy of the solutions to the differential equation (3.13).

However, from the point of view of the q-plane on which the differential equation is for-

mulated, the notion of B-monodromy is not meaningful, as the turning points qup/down

are not identified. The best we can do is ask how the wave functions obtained from Borel

resummation of the WKB solution are related at qup/down:

ψ±(qdown)→ ψ±(qup) =
1√

Sodd(qup)
exp

(
±
∫ qup

Sodd(q) dq

)
(3.56)

=
1√

Sodd(qdown)
exp

(
±(

∫ qup

qdown

+

∫ qdown

)Sodd(q) dq

)
. (3.57)

In the final step, we have invoked the parity of the formal series Sodd. As both inside and

outside the curve of marginal stability, an angle θ exists at which we can connect qup and
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qdown without crossing a Stokes line, we can elevate this relation to the level of the Borel

resummed functions:

Ψ±(qdown)→
(
e±

aD
ε

)
s

Ψ±(qdown) , (3.58)

where the arrow indicates transport along a path connecting qdown to qup. On the Seiberg-

Witten curve Σ/∼, the quotient given by the identification q → −q along the branch cut,

equation (3.58) indeed describes the B-monodromy of Ψ±.

3.3.3 Jumping phenomena for Voros multipliers

It is possible to choose the normalization of WKB solutions such that their Borel transform

remains locally invariant even as θ traverses a critical value [14]. This result implies that

Voros multipliers must be sector dependent, and allows the determination of their transition

behavior [14]. Let θ0 denote a critical angle at which a Stokes graph exhibits a single

double Stokes line `0. Given a cycle γ on the Riemann surface Σ̂ (the double cover of Σ,

see discussion below 3.32), the associated Voros multipliers (e
aγ
ε )− and (e

aγ
ε )+ at θ0 − δ

and θ0 + δ, δ a small positive constant, are related as follows [14]:

(e
aγ
ε )− = (e

aγ
ε )+(1 + (e

aγ0
ε )+)−(γ0,γ) . (3.59)

Here, γ0 is a cycle on Σ̂ whose projection onto Σ encircles `0, with orientation chosen

such that

Re eiθ
∮
γ0

λ dz < 0 . (3.60)

The intersection pairing (·, ·) is chosen such that upon projection on Σ, the real and imag-

inary q-axis have intersection number one.

Outside the curve of marginal stability. Above, we labelled the sectors in between

critical angles by an integer n determining the topology of the Stokes graph, and a sign

determining orientation. The integer n increases with θ, as we will argue in appendix A.

The double Stokes line `(n,±) which occurs at an angle θ on the boundary between sectors

(n− 1,±) and (n,±) is homologous to the cycle ±(B+nA), and therefore the cycle γ(n,±)

encircling it, with the orientation choice given by (3.60), is homologous to ∓(2B + 2nA).

By the property (3.59), the Voros multiplier associated to this cycle does not jump at the

splitting of the Stokes line, i.e.

(e
2
ε
(aD+na))(n,±) = (e

2
ε
(aD+na))(n−1,±) . (3.61)

Noting finally that

− (γ(n,±),∓γA) = 1 , (3.62)
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with γA of Σ̂ a simple cover of the A-cycle on Σ, we can establish the independence of the

trace of the monodromy matrix from the sector in which θ lies as follows:

TrMA =
(
e
a
ε + e−

a
ε + e∓

1
ε
(a(1+2n)+2aD)

)
(n,±)

(3.63)

=
(
e∓

a
ε

)
(n,±)

(
1 + e∓

1
ε
(2na+2aD)

)
(n,±)

+
(
e±

a
ε

)
(n,±)

(3.64)

=
(
e∓

a
ε

)
(n,±)

(
1 + e

1
ε
aγ(n,±)

)−(γ(n,±),∓γA)

(n,±)
+
(
e±

a
ε

)
(n,±)

(3.65)

=
(
e∓

a
ε

)
(n−1,±)

+
(
e±

a
ε

)
(n−1,±)

(
1 + e

1
ε
aγ(n,±)

)−(γ(n,±),∓γA)

(n,±)
(3.66)

=
(
e∓

a
ε

)
(n−1,±)

+
(
e±

a
ε

)
(n−1,±)

(
1 + e

1
ε
aγ(n,±)

)−(γ(n,±),∓γA)

(n−1,±)
(3.67)

=
(
e±

a
ε + e∓

a
ε + e∓

1
ε
(a(1+2(n−1))+2aD)

)
(n−1,±)

. (3.68)

Inside the curve of marginal stability. Let us discuss the transition from the sector

(+ + −) to (+ − −) at Imu > 0 (figure 6a to 6b). The one at Im u < 0 will then follow

upon the mapping a 7→ aD − a. The cycle γ0 in this case is given by γ0 = ∓2B, where the

− sign is for the case that the first line crossed in 6a is dominant. It follows that(
e∓

a
ε

)
(++−)

=
(
e∓

a
ε

)
(+−−)

(1 + e∓
2aD
ε ) , (3.69)

and hence

TrMA =
(
e
a
ε + e−

a
ε + e±

a+2aD
ε

)
(++−)

=
(
e±

a
ε (1 + e±

2aD
ε ) + e∓

a
ε

)
(++−)

(3.70)

=

(
e±

a
ε

)
(+−−)

(1 + e±
2aD
ε )

1 + e∓
2aD
ε

+
(
e∓

a
ε

)
(+−−)

(1 + e∓
2aD
ε ) (3.71)

=
(
e

2aD+a

ε + e−
2aD+a

ε + e∓
a
ε

)
(+−−)

. (3.72)

3.3.4 At the singular points u = ±1

The ε-neighborhoods of the singular points u = ±1 have received particular attention in

the literature [6, 7, 33, 54–56], as one is driven to these points at small real ε and constant

real characteristic exponent ν (see the discussion around equation (3.10)). From the gauge

theory perspective, u = ±1 are the points on moduli space where an extra state becomes

massless and the effective gauge theory description breaks down. Nevertheless, we briefly

touch upon this region in this subsection, and show how existing results for TrMA align

with those we found above.

The analysis presented in subsection 3.3.2 must be modified for the choice of modulus

u = ±1 + ε U , as the Stokes analysis depends on the function Q0, the leading term of

Q(q, ε) as introduced in (3.12), and is hence blind to the ε U distance from the singular

points. At these points, the two turning points of Q0 coalesce into a double turning point,

and the connection matrices (3.39) and (3.40) are no longer valid. A calculation in the

same spirit as the ones presented in subsection 3.3.2 was performed in [54] at these points,
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proving a conjecture of [6, 7] for the form of the characteristic exponents for this choice

of u. The expression for TrMA as cited e.g. in equation (2.14) of [33] for u = −1 can be

expressed in terms of the periods a and aD by invoking the formulas (3.28), (3.8), and

(3.33) of [33], yielding

TrMA = e
1
ε
(a+2aD) + e−

1
ε
a + e±

1
ε
(a+aD)−aD

ε (3.73)

=


2 cosh

a+ 2aD
ε

+ e−
1
ε
a

2 cosh
a

ε
+ e

1
ε
(a+2aD) ,

(3.74)

with the periods a and aD evaluated at u = −1 + ε U ∈ [−1, 1]. This result coincides with

the characteristic exponents for Im u > 0 inside the wall of marginal stability found above,

for a particular orientation of the Stokes graphs. The two signs ± in the first line of this

equation are due to choosing different branches (e±πi)
1
πiε

(a+aD) for the term (−1)
1
πiε

(a+aD)

which emerges from equation (2.4) of [33]. A careful matching of conventions should allow

reproducing the Im u < 0 results as well.

4 Non-perturbative effects in the 2d/4d dictionary

Our strategy in computing the instanton partition function exp 1
ε1ε2
F of the gauge theory

in [4, 5] was to compute the monodromy of the formal WKB solution to the null vector

decoupling equation in the ε2 → 0 limit as a function of u, and to then determine u as a

formal power series by imposing that this monodromy have no ε-dependence. In this paper,

using exact WKB methods, we have determined exponentially suppressed contributions

∼ exp[−1
ε ] to the relation between u and the monodromy of the Floquet solutions to the

differential equation. To analyze how these corrections manifest themselves in the instanton

partition function, we wish to invert the relation between u and the monodromy, and then

invoke the definition (2.25) of u in terms of F to determine exponentially suppressed

corrections to the latter.

The framework within which we will be performing these computations is that of

transseries, a concept we will review in the next subsection before performing the calcula-

tion outlined above in subsection 4.2

4.1 Transseries

We will here consider the simplest class of transseries, which are formal power series in a

finite number of generators (see for instance [15]) — for our purposes, these consist e.g. of

ε, exp[−a(0)

ε ], and exp[−a
(0)
D
ε ], organized term by term with regard to the obvious relation

� (with the relative size of the last two generators immaterial). To make sense of such

series, we will require the formal power series in ε that can be extracted at each exponential

order in exp[−a(0)

ε ] and exp[−a
(0)
D
ε ] to be Borel summable. E.g., the transseries to the left

of the arrow in the expression

e−
a
ε

∑
m

cmε
m −→ e−

a
ε Sθ
(∑

m

cmε
m

)
(4.1)
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is to be associated to the analytic function in ε (within a given sector) to its right.

Transseries hence allow us, at the level of formal series, to distinguish between functions

with the same asymptotic power series expansion, such as exp[−a
ε ] and 0. Furthermore,

the relation� lifts to the level of Borel transforms: an exponentially suppressed pre-factor

cannot be compensated upon multiplication by the Borel transform of a formal power

series, as a formal power series cannot capture the asymptotics ∼ exp[−1
ε ].

When manipulating transseries, two questions naturally arise: is the result again a

transseries, and can it be mapped to a function via Borel resummation (or a generalization

thereof)? The former question is naturally easier to address than the latter, but also of

limited usefulness: subdominant contributions are only well-defined in the context of the

map (4.1), and will generically depend sensitively on the integration direction θ, as we

have seen.

Transseries arise naturally in the context of exact WKB solutions. By removing the

brackets (·)• in (3.50), (3.51) and (3.55), we map our results for the trace of the mon-

odromy matrix into transseries form. The coefficients of these transseries depend on u.

The manipulation we wish to perform on these transseries is to solve them for u. As

we will demonstrate in the next subsection, this is possible formally, and yields u as a

transseries in the generators ε, exp[−aex
ε ], and exp[−aD(aex)

ε ]. A proof that this series is

Borel summable is perhaps possible, combining information about the u-dependence of the

coefficients (they are hypergeometric functions) and the growth behavior in ε as follows on

general grounds from WKB theory, but goes beyond the confines of this work.

4.2 ε-instanton corrections to the instanton partition function

Since we are here interested in non-perturbative corrections to the instanton partition func-

tion, we will consider the large u regime. Our goal is thus to solve the transseries equation5

e
aex
ε + e−

aex
ε = e

a(u,ε)
ε + e−

a(u,ε)
ε + e−

1
ε
(a(u,ε)+2aD(a,ε)) (4.2)

underlying (3.50) for u expressed as a transseries in the generators ε, e−
aex
ε , and e−

aD(aex)

ε .

Recall that a(u, ε) and aD(u, ε) are defined as formal power series in (3.23). In (4.2), we

have expressed aD as a function of a and ε, which is always possible at large u. We will

proceed by first solving (4.2) to express a as a function of aex, and then plugging this

relation into u(a, ε) to obtain the desired result. With the ansatz

a = aex + ε

∞∑
m,n=1

cmne
− 1
ε
(2maex+2naD(aex,ε)) , (4.3)

the first step amounts to solving consecutively6 for the coefficients cmn. Note that these

coefficients will generically be formal power series in ε, as they depend on derivatives of

5We choose the sector (0,+) for convenience. The dependence of our result on the sector is a reflection

of the shortcomings of transseries in the absence of a resummation result, as discussed above.
6One possible order is to solve for all m+ n = i for consecutive i.
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aD(a) evaluated at aex. The first few terms are given by

a = aex − ε
(
e−

1
ε
(2aex+2aD(aex)) + e−

1
ε
(4aex+2aD(aex))

+
1

2
(3 + 4a′D(aex))e

− 1
ε
(4aex+4aD(aex)) + . . .

)
. (4.4)

The first terms of u(a, ε) as a formal series in Λ
a and ε1

Λ can be computed based on the

information provided in subsection 3.2 to be

u(aSW, ε) =
1

2
a2
SW +

1

4a2
SW

+
5

64a6
SW

+ . . .+ ε2
(

1

8a4
SW

+ . . .

)
+ . . . , (4.5)

where we have simplified the expression at the expense of introducing yet another a-

variable, aSW =
√

2a
2πi . The dual period aD as a function of aSW is given by

√
2

2πi
aD(aSW, ε) = − 1

4πi

(
8aSW ln 2aSW − 8aSW +

1

a3
SW

+
15

32a7
SW

+ . . .

+ε2
(

1

3aSW

+
1

a5
SW

+ . . .

)
+ . . .

)
. (4.6)

Plugging (4.4) into (4.5) yields the parameter u in terms of aex,

u = − 1

4π2

(
a2
ex − 2εaex exp

(
−2aex + 2aD(aex)

ε

))
+O(ε2)

+O(higher non-perturbative) . (4.7)

We can restore the scale Λ using

ε = ε1/(
√

2Λ) and aex = acft/(
√

2Λ) (4.8)

and find

u = − 1

8π2Λ2

(
a2
cft − 2ε1acft exp

(
−2acft + 2aD,cft(acft/(

√
2Λ))

ε1

))
+O(ε21)

+O(higher non-perturbative) . (4.9)

Integrating ∂ΛF = −8Λu with regard to Λ thus yields the following first ε1 non-perturbative

correction to the instanton amplitude:

F =
1

π2
a2
cft log Λ +

i

2π
ε21 exp

(
−2acft + 2aD,cft(acft/(

√
2Λ))

ε1

)
+ . . . . (4.10)

Note that the expression (4.2) is invariant under the residual Z2 gauge symmetry aex →
−aex. To proceed, we choose a particular sign for aex such that the exponential corrections

in (4.3) are small. This choice corresponds to a gauge fixing of the residual symmetry.
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5 Conclusions and open problems

We have seen that exact WKB methods strongly suggest that the general form of correction

to the instanton partition function Zinst in an ε-expansion be in terms of powers of exp[−aex
ε ]

and exp[−aD(aex)
ε ]. We computed such corrections to Zinst, the result arising upon formally

solving a transseries equation for one of its parameters, u. It remains to be shown that

the formal series thus obtained for the parameter u indeed corresponds to a transseries

in the strong sense of subsection 4.1. We checked the consistency of our computation by

demonstrating independence of our result from the integration direction θ of the inverse

Laplace transform. The specifics of the transseries form do depend on this parameter.

The techniques used in this paper can equally well be used to compute non-perturbative

corrections to superconformal gauge theories, such as N = 2∗. The modularity constraints

in such theories may allow for the extraction of more detailed non-perturbative information.

More broadly, we relate Zinst to the null vector decoupling equation by taking the limit

ε2 → 0 in parameter space for which no worldsheet description of the topological string

theory is yet available. Filling this gap, or adapting our methods to apply away from this

limit, will be an important step towards the further physical interpretation of our results.
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A Local analysis of Stokes lines

Consider the part of parameter space where |u| � 1. In this case, the two turning points

of Q0 in equation (3.14) lie far from the real axis,

qtp ∼ ±i log 2u+ 2πn , (A.1)

and the cosine can be well approximated by an exponential. For a turning point in the

upper half-plane, ∫
λ dq ∼

∫ √
1

2
e−i(qtp+x) − u dq ∼ 2i

3u
(−ixu)

3
2 . (A.2)

The angles φx at which the Stokes lines emerge from the turning point are determined to

first order by the condition

− 1

2
π + φx + φu =

2

3

(
− θ + nπ − 1

2
π + φu

)
, n ∈ Z , (A.3)

with u = |u|eiφu . The lines hence emanate in the directions φx = −2
3θ + 2

3π(n + 1
4) −

1
3φu. Note that increasing θ results in φx decreasing, the Stokes lines hence rotating anti-

clockwise. This implies that when decreasing an angle from a critical value, the two simple
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Stokes lines into which the double Stokes line splits swerve to the left, as seen from the

turning point from which they emerge, whereas when increasing it, they swerve to the

right. This is a property we used in subsection 3.3.3. Let us now consider u > 0 and θ = 0

for illustration purposes. In this case, the Stokes lines occur at angles φx = −1
2π,

1
6π,

5
6π.

Which n corresponds to each of these three angles depends on the choice of branch cut, i.e.

the choice of interval for the phase of the argument of the square root. Note that the pattern

of Stokes lines is hence independent of the choice of branch cut, whereas the orientation of

the Stokes lines does depend on this choice: for n even, the Stokes line is dominant, for n

odd, it is recessive. To have e.g. the Stokes line in the negative imaginary direction have

different parity from the other two, we can choose the argument of the radicand to lie in

the interval [0, 2π], corresponding to a branch cut in the positive imaginary direction. The

values of −1
2π+φx (the phase of the argument of the square root) that fall into this interval

are 1
3π, π,

5
3π, with π corresponding to the negative imaginary direction. The corresponding

values of n are 1, 2, 3, hence the distinguished Stokes line is dominant.7 For a turning point

in the lower half-plane, we obtain∫
λ dq ∼

∫ √
1

2
ei(qtp+x) − u dq ∼ − 2i

3u
(ixu)

3
2 , (A.4)

hence with the same choice of branch cut, φx = −1
6π,

1
2π,

7
6π, corresponding to n = 0, 1, 2.

The Stokes line pointing in the positive imaginary direction is hence recessive.

B Numerical results

In this appendix, we will compare results for the Mathieu characteristic exponent obtained

numerically with those attainable by evaluation of the formulae determined in subsec-

tion 3.3.

B.1 Numerical WKB perturbation theory

In a first numerical experiment, let us illustrate the efficacy of WKB perturbation theory.

Consider the following values of u and ε:

ε =
1

10
, u = 2 + 2i . (B.1)

The value of ε is small compared to 1 and the value of u lies outside the curve of marginal

stability. The values of a and 2aD − a at leading order in perturbation theory are8

a(0)/ε ∼ 41− 97i , (2aD − a)(0)/ε ∼ −90 + 19i . (B.2)

7Note that there is a small subtlety here due to the nature of branch cuts. The branch of the square

root is specified by specifying the interval within which the phase of its argument lies. If the argument is a

function, we usually specify this interval for the variable of that function. But even in the simplest case of

a linear function αz, this requires specifying the phase of the factor α exactly, i.e. not only up to multiples

of 2π. This is why we specify the branch cut not in terms of φx, but in terms of the argument of −ix.
8In this appendix, the symbol for a formal power series with superscript (n) will indicate that power

series numerically evaluated up to the n-th order term.
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Non-perturbative effects are hence heavily suppressed, and the Mathieu characteristic ex-

ponent should be well approximated by the a-period of the differential λ and its higher

order corrections in ε. Indeed, the Mathematica routine for the numerical approximation

to the Mathieu exponent gives the value9 (up to 20 digits)10

µ = 41.209556582920410400− 97.333703725326654896i . (B.3)

The successive approximations using the WKB formulae (3.26) in ε-perturbation theory are

a(0)/ε = 41.20893− 97.33334i ,

a(2)/ε = 41.20955667− 97.33370309i ,

a(4)/ε = 41.2095565837− 97.33370372575i ,

a(6)/ε = 41.2095565829175− 97.3337037253288i ,

a(8)/ε = 41.209556582920406− 97.33370372532663i . (B.4)

Each iteration enhances the accuracy by approximately two digits, which is what one would

naively expect of a perturbation series in ε2 = 10−2. These numerical results demonstrate

the usefulness of WKB perturbation theory, even in its asymptotic form.

B.2 Numerics and the Stokes corrected formula

In this subsection, we will consider examples for which the non-perturbative effects com-

puted in subsection 3.3 become numerically significant. The evaluation of the formulae

derived there will be sector dependent, as we will approximate Voros multipliers by the

first terms in their asymptotic expansion. We will work inside the curve of marginal sta-

bility. Of the two sectors that occur here, we will observe that one yields the better

approximation to the characteristic exponent, indicating that the Voros multiplier in this

particular sector is better approximated by its asymptotic series.

Let us consider the values

ε =
1

5
, u =

1

3
e−i

π
10 . (B.5)

We shall compare the value for the trace of the monodromy matrix determined by Mathe-

matica [57] to those which follow from the numerical evaluation of the perturbative WKB

result and the exact WKB result in the sectors (+ +−) and (+−−), to 0th and 4th order

in perturbation theory.

TrMMathematica
A = 3078.40577− 11972.57629i ,(

2 cosh
a

ε

)(0)

= 3313.34282− 11850.61433i ,(
2 cosh

a

ε
+ e

1
ε
(2aD−a)

)(0)

= 2810.06097− 12265.24243i ,

9We record the Mathematica value times −iπ to render normalizations uniform.
10Here and in the following, we do not round the numerical values.
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(
2 cosh

2aD − a
ε

+ e
1
ε
a

)(0)

= 2810.05976− 12265.24153i ,(
2 cosh

a

ε

)(4)

= 3582.79033− 11581.22299i ,(
2 cosh

a

ε
+ e

1
ε
(2aD−a)

)(4)

= 3078.40503− 11972.57314i ,(
2 cosh

2aD − a
ε

+ e
1
ε
a

)(4)

= 3078.40377− 11972.57226i . (B.6)

The formulae for the two sectors (+ + −) and (+ − −) yield numerically close results, as

we are approximating(
2 cosh

a

ε
+ e

1
ε
(2aD−a)

)
(++−)

∼ e
1
ε
a(4) + e

1
ε
(2aD−a)(4) + e−

1
ε
a(4) , (B.7)(

2 cosh
2aD − a

ε
+ e

1
ε
a

)
(+−−)

∼ e
1
ε
a(4) + e

1
ε
(2aD−a)(4) + e−

1
ε
(2aD−a)(4) , (B.8)

with

a(4)/ε = 9.40284 + 17.5788i , (2aD − a)(4)/ε = 6.45897− 15.0481i . (B.9)

To be able to better discriminate numerically between the two equations (B.7) and (B.8),

we shall next choose a value of u at which |2aD − a| is small, and then choose the phase of

ε to eliminate the real part of a.

To this end, let us choose

u = −4

5
i . (B.10)

Then

a(4) = 4.23320 + 4.3172i = 6.04636 eiπ(0.25312) , (2aD − a)(4)/ε = 0.04966− 0.28854i .

(B.11)

Choosing ε to rotate away the phase of a,

ε =
1

10
eiπ( 1

4
+ 1

2
) , (B.12)

we obtain

TrMMathematica
A = 9.84414 ,(

2 cosh
a

ε

)(0)

= −1.46994 ,(
2 cosh

a

ε
+ e

1
ε
(2aD−a)

)(0)

= 10.03070 ,(
2 cosh

2aD − a
ε

+ e
1
ε
a

)(0)

= 10.85260 + 0.67809i ,(
2 cosh

a

ε

)(4)

= −1.46174 ,
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(
2 cosh

a

ε
+ e

1
ε
(2aD−a)

)(4)

= 9.84414 ,(
2 cosh

2aD − a
ε

+ e
1
ε
a

)(4)

= 10.66350 + 0.68251i . (B.13)

For this example, the approximate evaluation of our exact WKB formulae in the sectors

(+−−) and (++−) yields appreciably different values, and one sector, (++−), yields the

better approximation. This indicates that the Voros multipliers are better approximated

by their asymptotic expansion in this sector.

C Periodicity, determinant, and numerics

In this section, we review the determinant formula for the exact periodicity, an efficient

way to evaluate the determinant, and how the resulting numerics may improve on a built-in

Mathematica [57] evaluation of the Mathieu characteristic exponent.

C.1 Hill’s method

Hill’s method yields an exact formula for the Mathieu characteristic exponent ν in terms

of the parameters in the Mathieu equation (see e.g. [58] and references therein).

The derivation of this formula proceeds as follows. The power series

eiνq/2p(z) = eiνq/2
+∞∑
r=−∞

c2re
irq (C.1)

provides a formal solution to Mathieu’s equation (3.13) if its coefficients satisfy

2c2r−2 + (ε2(2r + ν)2 − 4u)c2r + 2c2r+2 = 0 . (C.2)

By dividing all coefficients in this recursion relation by the coefficient of the second term, the

determinant ∆(ν) of the matrix underlying this linear set of equations for the coefficients cr
becomes convergent [58]. For a non-trivial solution to this infinite set of equations to exist,

∆(ν) must vanish. The determinant is invariant under ν → 2n± ν (with n integer), and is

therefore even and periodic in ν with period 2. It has simple poles at (2r+ν)2−4uε−2 = 0,

and it tends to 1 as ν →∞. This behavior determines, by Liouville’s theorem, the form of

∆(ν) up to a constant [58]

1−∆(ν) =
(∆(0)− 1) sin2(π

√
uε−2)

sin2 πν
2 − sin2(π

√
uε−2)

. (C.3)

Imposing ∆(ν) = 0 then gives rise to the following constraint equation on ν:

sin2 πν

2
= ∆(0) sin2 π

√
uε−2 , (C.4)

or equivalently

cosπν = 1− 2∆(0) sin2 π
√
uε−2 . (C.5)
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C.2 Linear recursion

The determinant ∆(0) can be computed efficiently as it satisfies

∆(0) = detA , (C.6)

where A is a tri-diagonal matrix [58]. We denote the determinant of the submatrix of size

(2i + 1) × (2i + 1) acting on (c−2i, . . . , c−2, c0, c2, . . . , c2i)
T as ∆i. In the limit i → ∞, we

recover ∆. The determinants ∆i satisfy a linear recursion relation (proved by computing

minors)

∆i = (1− αi)∆i−1 − αi(1− αi)∆i−2 + αiα
2
i−1∆i−3 , (C.7)

with

αn =
1

4(n2ε2 − u)((n− 1)2ε2 − u)
, (C.8)

and initial terms

∆0 = 1 ,

∆1 = det

 1 ξ2 0

ξ0 1 ξ0

0 ξ−2 1

 ,

∆2 = det


1 ξ4 0 0 0

ξ2 1 ξ2 0 0

0 ξ0 1 ξ0 0

0 0 ξ−2 1 ξ−2

0 0 0 ξ−4 1

 , (C.9)

where

ξn =
2

n2ε2 − 4u
. (C.10)

Our implementation of this linear recursion in Mathematica demands a computation time

that grows linearly in the size of the matrix A. The reduced cost is due to the fact that A

is a tridiagonal matrix.

C.3 The determinant, Mathematica, and WKB

Mathematica provides a convenient numerical algorithm for finding the Mathieu char-

acteristic exponent for any complex parameters of the Mathieu equation. However, the

algorithm is a black box. In our numerical experiments, we have found that the algorithm

must be used with caution, in particular at small values of |ε|, as the following example

demonstrates. We will compute the characteristic exponent in a particular case using three

methods, namely Mathematica, WKB perturbation theory, and the numerical algorithm

based on Hill’s method describe in subsections C.1 and C.2.
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We consider the values

ε = 10−2 , u = 6ei
π
8 , (C.11)

and have Mathematica compute the parameters

aM = 4u/ε2 , qM = 2/ε2 (C.12)

and the characteristic exponent

N[−iπMathieuCharacteristicExponent[aM , qM ], 20]] , (C.13)

yielding the result

301.3467972919577793− 1507.3089399330755493i . (C.14)

The WKB approximation to fourth order for the a-period yields

301.7573905535926129− 1507.2622454539553016i . (C.15)

At small ε, we expect to obtain a better approximation to the characteristic exponent than

the comparison of (C.14) and (C.15) would suggest, given that a/ε ∼ 302 − 1507i and

2aD − a ∼ −2020 + 770i imply highly suppressed non-perturbative corrections.

To check the Mathematica result, we programmed a numerical algorithm based on

Hill’s method. For a matrix of size 2 × 105, we found the result

301.75739055567594974 + 0.70222826914545431i . (C.16)

This agrees with WKB perturbation theory to high order — the difference in the imaginary

part is an integer multiple of 2π, which corresponds to the ambiguity in the Mathieu charac-

teristic exponent. Thus, for small ε, the perturbative WKB approximation is more reliable

than the (unspecified) Mathematica algorithm. It agrees with an alternative numerical

algorithm which has linear cost in the size of the (sparse) matrix used in the evaluation of

the determinant.
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[31] R. Couso-Santamaŕıa, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent transseries and

the holomorphic anomaly: nonperturbative closed strings in local CP2, Commun. Math. Phys.

338 (2015) 285 [arXiv:1407.4821] [INSPIRE].

[32] I. Aniceto, J.G. Russo and R. Schiappa, Resurgent analysis of localizable observables in

supersymmetric gauge theories, JHEP 03 (2015) 172 [arXiv:1410.5834] [INSPIRE].
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