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Pure non-local machine-learned density functional
theory for electron correlation
Johannes T. Margraf 1✉ & Karsten Reuter1,2

Density-functional theory (DFT) is a rigorous and (in principle) exact framework for the

description of the ground state properties of atoms, molecules and solids based on their

electron density. While computationally efficient density-functional approximations (DFAs)

have become essential tools in computational chemistry, their (semi-)local treatment of

electron correlation has a number of well-known pathologies, e.g. related to electron self-

interaction. Here, we present a type of machine-learning (ML) based DFA (termed Kernel

Density Functional Approximation, KDFA) that is pure, non-local and transferable, and can be

efficiently trained with fully quantitative reference methods. The functionals retain the mean-

field computational cost of common DFAs and are shown to be applicable to non-covalent,

ionic and covalent interactions, as well as across different system sizes. We demonstrate

their remarkable possibilities by computing the free energy surface for the protonated water

dimer at hitherto unfeasible gold-standard coupled cluster quality on a single commodity

workstation.

https://doi.org/10.1038/s41467-020-20471-y OPEN

1 Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany.
2 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany. ✉email: johannes.margraf@ch.tum.de

NATURE COMMUNICATIONS |          (2021) 12:344 | https://doi.org/10.1038/s41467-020-20471-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20471-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20471-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20471-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20471-y&domain=pdf
http://orcid.org/0000-0002-0862-5289
http://orcid.org/0000-0002-0862-5289
http://orcid.org/0000-0002-0862-5289
http://orcid.org/0000-0002-0862-5289
http://orcid.org/0000-0002-0862-5289
mailto:johannes.margraf@ch.tum.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


In their seminal 1964 paper, Hohenberg and Kohn proved that
there exists a universal functional F[ρ] of the electron density
ρ, that captures all electronic contributions to the total energy

of a system of interacting electrons1. This universal functional has
since become something of a holy grail for chemistry, physics,
and materials science, as its knowledge would allow determining
the exact ground-state energy and electron density for any
molecule or solid2. Unfortunately, the concrete form of F[ρ] itself
has remained elusive. Indeed, it has been shown that the universal
functional likely has the same prohibitive computational com-
plexity as solving the Schrödinger equation directly3.

Nevertheless, Hohenberg and Kohn’s density functional theory
(DFT) has become an essential method in the toolkits of compu-
tational chemistry, condensed matter physics, or surface science.
This is mostly owing to the formulation of Kohn and Sham (KS),
which reduces the problem to finding a density functional Exc[ρ]
for electronic exchange and correlation4. Again, the exact form of
Exc[ρ] is unknown, but many useful density functional approx-
imations (DFAs) exist, which are generally considered to offer a
good trade-off between computational complexity and accuracy.

The large zoo of DFAs that has been developed over the years
is often organized in the hierarchy of Jacob’s ladder, where
approximations are grouped according to the ingredients that are
used in their functional form5. At the lower rungs of this ladder,
(semi-)local DFAs are found, which only require information
about the local density and its derivatives. Such functionals are
sometimes called pure, because they can be computed from the
electron density alone. At higher-rungs, information about the
occupied and/or unoccupied KS orbitals is also included6–8.
These so-called (double) hybrid DFAs are therefore no longer
pure in the sense described above. This increases their compu-
tational complexity, but also makes them more accurate, because
they incorporate non-local information.

In spite of their known limitations (e.g., regarding electron self-
interaction)9, the pure functionals at the bottom of Jacob’s latter
are a widely used state-of-the-art, e.g., in practical calculations of
large systems or with extensive sampling. This reveals a crucial
dilemma of Jacob’s ladder, namely that very often it is not pos-
sible to use a higher-rung functional due to computational con-
straints, even if the nature of the system of interest would in
principle require a more accurate description.

Recently, machine-learning (ML)-based DFAs have been
shown to break the constraints of Jacob’s ladder, offering highly
accurate, pure, and non-local density functionals for different
one-dimensional model systems10–13. Although these approaches
show that it is possible to learn the highly non-linear mapping
from the electron density to the energy from data, they cannot be
directly transferred to real systems. A straightforward real-space
representation of the electron density (e.g., on a grid) is extremely
inefficient in three dimensions. Even for a small molecule, a single
reference energy value would have to be fitted as a function of on
the order of one hundred thousand input values. Furthermore,
grid-based models are not in general size-extensive, particularly if
they require the grid to be of constant size. Very recently, Burke
and co-workers developed ML-based DFT models, which repre-
sent the density in a plane-wave basis14,15. These models have
successfully been applied to real molecules, though they are still
not size-extensive.

These issues can be circumvented if the reference energy is
projected onto the grid in the form of an energy density16–18. This
brings the number of target values to the same order of magni-
tude as the number of input values, leading to a much better
defined fitting problem. On the other hand, this also makes the
resulting ML-DFAs more like the traditional functionals in
Jacob’s ladder. For instance, if a semilocal Ansatz is chosen to fit a
reference energy density, the resulting functional will display

electron self-interaction, even if the reference method does not17.
Developing correlation functionals in this manner is particularly
challenging. Correlation energy densities based on high-level
wavefunction methods can, e.g., display significant positive values
at the centers of stretched bonds, where the electron density is
vanishingly small19.

In this paper, we therefore propose a new route to pure ML-
based DFAs, using a density-fitting representation of the electron
density. This representation is much more compact than a real-
space grid, and allows decomposing the density into atomic
contributions. As a consequence, the presented ML-DFAs can
readily be applied to real molecules and are by construction size-
extensive. At the same time, any reference method can be used for
training without the need for real-space projection or energy
decomposition.

Results
Density representation. In KS-DFT, the electron density is
computed from the occupied KS orbitals ψi(r). These are in turn
expanded as a linear combination of basis functions χμ(r):

ρðrÞ ¼
X
i

jψiðrÞj2 ¼
X
νμ

DμνχμðrÞχνðrÞ ð1Þ

with the density matrix elements Dμν. A noteworthy aspect of
eq. (1) is that the density is expanded in terms of products of basis
functions, which are not in general atom-centered, even if the basis
functions themselves are (see Fig. 1, left). This leads to the
appearance of memory intensive four-index integrals in the com-
putation of Coulomb and exchange contributions to the KS matrix.

In many electronic structure codes it is therefore common
practice to use additional density-fitting (DF) basis functions
ϕQ(r− rA), which allow an atom-centered expansion of the
density (see Supplementary Note 1):

ρðrÞ ¼
X
A

X
Q

CA
QϕQðr � rAÞ ¼

X
A

ρAðrÞ: ð2Þ

Fig. 1 Illustration of conventional and density-fitting based basis
expansions of the electron density. Left: In a conventional Kohn–Sham
DFT calculation, the electron density (solid black line) is expanded in terms
of density matrix elements Dμν and products of basis functions χμχν. Right:
Density-fitting (DF) allows expanding the density in terms of fitting
coefficients CA

Q and atom-centered basis functions ϕQ (dotted black line).
The DF expansion can unambiguously be decomposed into atomic
contributions. Note that higher angular momentum functions are needed in
the DF basis to correctly describe the overlap region between the atoms.
This is illustrated in the schematic figure by the use of only s-type basis
functions for the Kohn–Sham expansion and s- and p-type basis functions
for the DF expansion.
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Here, the first sum is over all atoms A, and CA
Q is the expansion

coefficient of basis function Q on atom A. Unlike eq. (1), the DF
expansion can readily (and unambiguously) be decomposed into
atomic densities ρA (see Fig. 1, right)20,21.

It should be noted that the accurate DF representation of ρ(r)
requires significantly larger basis sets than those used for the
expansion of the KS orbitals. Nonetheless, the density can
typically be precisely represented with the knowledge of ca. 100
coefficients per atom and a set of DF basis functions that only
depend on the element of the atom. This is in contrast to eq. (1),
where the product basis is dependent on the geometry (i.e. on the
relative position of pairs of atoms) of the molecule in question.

The DF basis thus offers a highly compressed and transferable
representation of ρ, both of which are desirable properties
for ML. However, there is also a significant downside to this
representation, namely that the coefficients CA

Q are not in general
rotationally invariant. In other words, rotating a molecule and its
density will lead to a different set of coefficients CA

Q, even though
the target energy remains unchanged. Although this invariance
could in principle be learned from data, this would require
significantly more training data and only lead to an approxi-
mately invariant model.

This issue can be circumvented by borrowing a trick from the
Smooth Overlap of Atomic Positions (SOAP) representation of
atomic environments22: Instead of using the coefficients directly,
we use their rotationally invariant power spectrum pA (see
Supplementary Note 2), which has the added benefit of further
compressing the representation. In the following, we will refer to
this as the rotationally invariant density representation (RIDR).

Correlation functionals from ML. We can now proceed to
construct a ML-DFA based on the RIDR. Herein, we will focus
on learning correlation energy functionals from calculated
Hartree-Fock (HF) densities. Although exchange is treated exactly
within HF, the combination of full HF exchange with conven-
tional pure DFT correlation functionals leads to poor results23.
This is because the non-local exchange in HF is incompatible with
(semi-)local correlation5. We therefore train our model on non-
local correlation energies obtained from many-body wavefunction
methods. Specifically, we will consider second-order Møller-Ples-
set theory (MP2) and gold-standard Coupled Cluster theory with
single, double, and perturbative triple excitations (CCSD(T)), to
illustrate the approach for both an efficient and a fully quantitative
treatment of electron correlation, respectively24–26. In addition to
being non-local, both these methods also provide much improved
fractional charge behavior, overcoming one of the main patholo-
gies of conventional DFAs9,27–29.

Because wavefunction-based reference calculations are compu-
tationally expensive, it is critical to choose an ML approach that is
as data-efficient as possible. In chemistry applications, Kernel
Ridge Regression (KRR) has been found to be a good choice in
this respect30–33. We can write a generic KRR correlation
functional as:

Ec½ρ� ¼
XN
i

αiKðρ; ρiÞ; ð3Þ

where the sum runs over N training densities, αi are regression
coefficients and K(ρ, ρi) is a kernel function that measures the
similarity between the target and training densities. To ensure
size-extensivity of the functional, we construct K(ρ, ρi) from the
atomic densities provided by the DF representation (see eq. (2)):

Kðρi; ρjÞ ¼
X

A2i;B2j
kðρA; ρBÞ: ð4Þ

Now a kernel k(ρA, ρB) that measures the similarity of atomic
densities can be defined using the RIDR. A wide range of kernel
functions are possible, but we found that a simple polynomial
Ansatz (as used for the SOAP kernel) already displays very
promising performance, as discussed below:

kðρA; ρBÞ ¼
p>ApBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp>ApAÞðp>B pBÞ
p
 !2

: ð5Þ

Having defined the kernel function, the regression coefficients
αi (in eq. (3)) can be determined in closed form, for a given
training set (see Supplementary Note 3). In the following these
functionals are referred to as kernel density functional approx-
imations (KDFA).

Performance and applications. KDFAs need to be trained on
data, and are consequently always to some extent system specific.
Nonetheless, a useful ML-DFA methodology should be general in
the sense that it can easily be trained for different chemistries and
system sizes34. Herein, three types of systems are considered,
namely water clusters, microsolvated protons and linear alkanes
of different sizes. In all cases, training and test structures are
randomly drawn from molecular dynamics (MD) simulations at
350 K (see Methods section for details). For this part, we will
concentrate on the results obtained with MP2 reference data. As
also further commented below, CCSD(T) energies can be learned
with the same accuracy and a full account of these results is
provided in the SI.

In Fig. 2, learning curves of ML correlation functionals for the
three types of systems are shown. In all cases, mean absolute
errors (MAEs) below 25 meV (roughly corresponding to kBT at
300 K) are reached with 100 training examples. Indeed, in many
cases so-called chemical accuracy (1 kcal mol−1 ≈ 43 meV) is
already achieved with only 10 training structures. Within each
class, the MAEs generally increase for larger systems. However,
the errors for pure and protonated water clusters with three and
four molecules are nearly identical. This is readily understood, as
the intermolecular interactions are approximately additive in
these systems. In contrast, the interactions in longer alkane chains
are harder to learn, e.g., owing to more pronounced interactions
between the molecular termini in butane (C4H10) than in propane
(C3H8).

Overall, these results show that highly accurate, non-local
correlation functionals can be learned from easily tractable
reference data sets. In fact, the similarity of the learning curves
obtained for the three systems suggests that high-level energies
for a large ensemble of configurations can already be obtained
with only 10–100 reference calculations. In many applications,
even such a limited number of high-level reference calculations
may not be feasible, however, owing to the prohibitive scaling of
wavefunction methods with system size35,36.

Here, the size-extensivity of our approach becomes important,
as it enables us to train on small systems and predict the energies
of larger ones34,37. In Fig. 3, this is highlighted for the water
octamer and octane, with the corresponding KDFAs trained
exclusively on the systems with up to four monomers (i.e., at most
half the size of the predicted systems). Clearly, this is a
challenging test for the transferability of the functionals. The
observed MAEs are indeed somewhat larger than for models
validated on configurations of the same size as the training set (74
and 48 meV for (H2O)8 and octane, respectively). A larger error
should be expected for larger systems, however, precisely owing
to the extensive nature of the correlation energy38,39. Further-
more, the prediction errors are somewhat systematic, in particular
for (H2O)8. Consequently, the MAE for relative energies of water
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octamer configurations is further reduced to 42 meV (46 meV
for octane).

Of comparable computational cost as conventional low-rung
functionals, the transferable KDFA approach provides access to
quantitative CCSD(T) simulations for systems that before were
on the brink of largest-scale supercomputing studies or simply
not tractable at all. We demonstrate this for the shared proton in
a protonated water dimer, as an intensely studied testbed for the
role of electron correlation and nuclear quantum effects in
hydrated excess protons40–49. An ensemble of 100,000 uncorre-
lated configurations of the protonated water dimer was drawn
from a 5 ns MD trajectory generated at the semiempirical GFN2-
XTB level of theory50. From this ensemble, 100 structures were
randomly sampled and their energies computed at the CCSD(T)/
def2-TZVP level. These configurations were used to train a
KDFA, which was used to predict the energies of all 100,000
configurations. These KDFA energies were then used to generate
a CCSD(T)-level ensemble, via the Monte Carlo resampling
(RSM) approach of Essex and co-workers (see Supplementary
Note 4)51.

The two dominant reaction coordinates for this system are the
oxygen–oxygen distance (rOO) and the proton transfer coordinate
ν40. The latter is defined as the difference between the O-H
distances of the shared proton and each oxygen atom, with a
value of ν= 0 meaning that the proton is equidistant to both
oxygens, whereas positive or negative values indicate that the
proton is closer to one of the oxygen atoms. In Fig. 4 (left) the
free-energy surface derived from the semiempirical MD trajectory
is shown with respect to these coordinates. This reveals a fairly
broad single-well potential with a minimum around rOO ≈ 2.45 Å

and ν= 0. The location of the minimum and the overall shape of
the well are in good agreement with previously reported
probability distributions obtained from MD simulations with
dispersion-corrected (semilocal) DFT52.

In contrast, the free-energy surface for the CCSD(T)-quality
KDFA displays some strikingly different features. Here, the
minimum is more narrow and at shorter rOO. Furthermore, the
potential well has a distinct heart-shape, meaning that at larger
values of rOO, the proton is no longer equidistant to both oxygen
atoms but preferentially located closer to one or the other. Finally,
the energy range of both free-energy plots differs by over 100meV,
indicating that the minimum is much deeper and narrower at the
CCSD(T) level. The comparison with the semiempirical surface
(and analogous semilocal DFT surfaces)40,52 shows that the electron
delocalization errors of these methods also leads to proton over-
delocalization. Interestingly, the inclusion of nuclear quantum
effects actually does delocalize the proton more strongly40,41.
However, to obtain good agreement with the experimental
properties of water both an explicit treatment of nuclear quantum
effects (i.e., via path-integral MD) and a quantitatively correct
classical potential energy surface (as provided by our CCSD(T)-
quality KDFA) are required53,54.

Overall, the features of the presented CCSD(T) surface are in
good agreement with the one recently reported by Kühne and co-
workers, which was based on tour-de-force MD simulations
requiring millions of CCSD/cc-pVDZ calculations41, i.e., in
comparison with our work without perturbative triples in the
coupled cluster ansatz and using an inferior basis set. In contrast,
our combined KDFA/RSM approach only required 100 CCSD(T)
reference calculations and was quickly performed in a matter of

Fig. 2 Learning curves. Shown is the mean absolute error (MAE) vs number of training densities (Ntrain) for the correlation energy in water clusters (left),
protonated water clusters (center) and alkane configurations (right). For reference, the dashed line denotes an error of 1 kcal mol−1≈ 43meV and the
dash-dotted one an error of kBT≈ 25meV (at 300 K).

Fig. 3 Model transferability. Shown are error histograms for predicted correlation energies EML
C of water octamer (left) and octane configurations (right)

relative to MP2 reference energies EMP2
C . The corresponding models were exclusively trained on systems with up to four monomers, exploiting the size-

extensivity of the ML correlation functional.
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hours on a single workstation, even though we chose to employ a
much larger ensemble to arrive at a better free-energy sampling.

Discussion
Given the large variety of ML approaches reported in recent
years, it is important to discuss the proposed KDFA method in a
broader context. Most prominently, kernel and neural network
regression has been very successfully used to directly learn the
relationship between atomic coordinates and ground-state ener-
gies, i.e., the potential energy surface (PES)22,30,31,33,48,55–66. The
main advantage of this direct approach is that electronic structure
calculations are only required for training, whereas predictions
can be performed using just the atomic coordinates as input. On
the other hand, this also means that the complex physics
underlying the PES has to be learned completely from data, which
often translates to very large training sets from tens of thousands
to millions of configurations, depending on the system (see
Supplementary Note 5)67,68. Another downside is that most such
ML forcefields are by construction short-ranged, meaning that
long-range Coulomb and dispersion interactions are not
included.

Von Lilienfeld and co-workers proposed the so-called Δ-ML
approach to mitigate these downsides69. Here, the idea is to use
an inexpensive semiempirical method as a baseline and learn the
energy difference to a higher-level method like DFT or CC. They
showed that this requires much less training data to reach a given
accuracy than for a pure ML model. Broadly speaking, the KDFA
approach proposed here also falls into this category. However,
rather than learning the total energy differences between different
approximations wholesale, we exclusively focus on the correlation
energy, which is generally much smoother (and therefore easier to
learn) than the total PES32,70. Furthermore, unlike the original
Δ-ML approach, we use the electron density as input, rather than
geometric information. Our ML models are thus genuine density
functionals.

The presented approach is closest in spirit to the work of Miller
and co-workers, where pair-correlation energies are learned from
molecular orbital based descriptors (MOB-ML)34,37. As in their
work, our models are based on a rigorous physical theory of
electron correlation and are by construction size-extensive. The

main difference is that in our case no previous energy decom-
position or orbital localization is required. This enables us to
choose arbitrary reference methods, for which pair-correlation
energies may not be available or implemented (i.e., the random
phase approximation, RPA, or quantum Monte Carlo methods).
Furthermore, the requirement of orbital localization makes the
application of MOB-ML to metallic or small band-gap systems
fundamentally difficult.

Of course, the work of Burke, Müller, Tuckermann, and co-
workers on ML-based DFT is also highly pertinent10,11,13–15.
Their most recent method focuses on the integrated prediction of
both the valence electron density and the exchange-correlation
energy14. This work was originally aimed at accelerating the
computation of established DFAs, but has very recently been
extended to also learn corrections to higher-level methods like
CCSD(T)15. The main difference to our work is their choice of
density representation. Specifically, they work in a plane-wave
basis instead of the atom-centered Gaussians used herein. This
makes learning the density much easier, since all basis functions
are orthogonal. As a consequence of this choice, their models are
not size-extensive, however. Furthermore, molecular symmetry
can only be included in an approximate form, i.e., through data-
augmentation. Consequently, these models can only be applied if
at least some number of high-level CC calculations are affordable
for the complete system, and if the predictions are done on fairly
similar configurations (i.e., within an MD trajectory). It should
also be noted that Ceriotti, Corminbeauf, and co-workers have
recently developed a method for learning electron densities in
atom-centered basis sets20,21,71. In future work, integrated, size-
extensive KDFAs could thus be developed that can predict both
densities and energies.

Finally, a note on self-consistency is in order. KS-DFT calcu-
lations are commonly carried out self-consistently. One could
therefore argue that the presented approach is more closely
related to post-HF methods like Coupled Cluster theory. None-
theless, we feel that our models are more accurately described as
DFAs, as they exclusively depend on the electron density. In
particular, no information related to virtual orbitals is required.
The models therefore share the favorable computational scaling
of pure DFAs. We also note that higher-rung DFAs (i.e., double

Fig. 4 Free-energy surfaces for the shared proton in a protonated water dimer. Left: original surface from the semiempirical molecular dynamics
simulation. Right: resampled free-energy surface from the machine-learned coupled cluster functional. Histograms of the underlying distributions along
both coordinates are also shown. Free energies are given in meV as a function of the proton reaction coordinate (ν) and the O–O distance (rOO). Note the
different topology of the two surfaces discussed in the text, but also the largely different energy range obtained at the two levels of theory.
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hybrids or RPA-based functionals) are still commonly used non-
self-consistently6,8. Indeed, even classic semilocal functionals like
Becke’s B88 were developed in a non-self-consistent framework72.
In the same vein, a self-consistent extension of the proposed
method is clearly possible and will be the subject of future work.
This will, however, likely require significantly more training data.

To conclude, we have presented a novel method to learn pure,
non-local and transferable density functionals for the correlation
energy from data. The high accuracy and data-efficiency of the
method was demonstrated for a range of non-covalent, ionic
and covalent systems of different sizes. In all cases, MAEs
below 25 meV could be achieved with <100 training structures.
We also demonstrated the transferability and size-extensivity of
the approach by training and predicting on differently sized
systems. As an exemplary application of the new method, a highly
accurate free-energy surface for the shared proton in a protonated
water dimer was obtained by resampling a semiempirical
MD trajectrory with a CCSD(T)-based KDFA at mean-field
computational cost.

Methods
Computational details. Most electronic structure calculations were performed
with the Psi4 package73. The KDFA method was implemented as an external
plugin to Psi4 via the Psi4numpy interface74. CCSD(T) and MP2 calculations
were performed with ORCA75. The Karlsruhe def2-TZVP basis set and corre-
sponding DF basis were used throughout76,77.

Molecular dynamics. NVT MD simulations were performed with the semi-
empirical GFN2-XTB method and the atomic simulation environment50,78. All
simulations were run with a timestep of 0.5 fs and a Langevin thermostat with a
coupling constant of 0.1 atomic units. For the learning curves in Fig. 2, decorrelated
snapshots from 50 ps trajectories at 350 K were used. For the free-energy surfaces
in Fig. 4, a trajectory of 5 ns at 300 K was calculated.

Data availability
All data sets used in this paper are available in the supplementary information
(Supplementary Data 1).

Code availability
The code used to fit the ML models is available at https://gitlab.com/jmargraf/kdf.
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