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Abstract. States of a quantum system may be influenced by an external inter-
vention. Following HAAG and KASTLEK, such a transformation of states is called
an operation, and is called pure if it transforms pure states into pure states.
Operations are discussed here under the assumption that they are caused by inter-
actions with another system (apparatus), described by a S matrix. Pure operations
are then shown to correspond, with one exception, to operators A with norm
smaller than one. The Hermitean operators F = A* A represent quantum effects
as defined axiomatically by LUDWIG. The particular case of local operations in
quantum field theory is also investigated.

In algebraic quantum theory as proposed by SEGAL [1] and applied
to local field theory by HAAG and KASTLEB [2], observables are repre-
sented by Hermitean elements H of an abstract (7*-algebra 21 with unit
element /. States are positive linear functionals φ over 21 with φ(I) — 1,
the expectation value of H in state φ being given by φ(H). A state φ
is called pure if it cannot be decomposed as φ — α^α -f (1 — oc) ψ2 with
0 < α < 1 and φ1 Φ φ2.

The (Heisenberg) state φ changes if (and only if) the system is
influenced externally. In Ref. [2] interventions of this type are called
operations. They are called pure operations if they transform pure states
into pure states. Pure operations are assumed to be in one-to-one corres-
pondence with elements A of 21 with ||.4|| ^ 1, the pure operation
corresponding to A transforming a state φ into φ^ defined by φ^ (H)

φ(A* HA]
= — ( Δ * Λ \ The quantity φ (A* A) represents the transition probability

between states φ and φA, and therefore φA is defined only if φ (A* A) Φ 0.
Any faithful *-representation E of 21 by a concrete C*-algebra _β(2l)

of operators acting on a Hubert space § may be used to describe the
system under question in the usual Hubert space framework of quantum
mechanics, different faithful *-representations being physically equiv-
alent [2]. Let us furthermore assume that 21 is primitive, i.e., as
possessing an irreducible faithful *-representation.

Subsequently, a fixed irreducible faithful * -representation R of 21 will
be used throughout. We will use the letters 21 for .72(21) and X for R(X),
X £ 21, i.e., 2ί will be identified with the concrete (7*-algebra jR(2l) on
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Hubert space ί). Of course, R(I) = 1 (unit operator in §) for such
representations. Then it suffices [2] to consider, instead of arbitrary
states φ, the particular subset of states given by φ(X) = Tr(X W) with
an arbitrary density matrix W, i.e., a positive Herrαitean operator W
on § with Tr W = 1. Pure states in this subset are given by one-
dimensional projections W = Pf= |/) {/| with / ζ §, | | / j | = 1 .

Consider now a second system, called apparatus, with state space §',
and let it interact with the first system, called object, during a finite
time interval. Using a suitable interaction picture, the final result of this
interaction may be described by a unitary operator 8 on the product
space § ® £)'. If object and apparatus before the interaction are in
states W and W ', respectively, the state of the combined system after
the interaction becomes S(W <S> W) S*. Assume furthermore that, after
the interaction, the observer looks for some property of the apparatus,
described by a projection operator Qr on ίj', and selects such instances
for which Qf is true. According to the theory of quantum measurement
(e.g., LπυwiG [3]) the state of object plus apparatus becomes

W ^
W = -^τ- with W=(1®Q')S(W®W')S*(I®Q'). (1)

If the object is considered separately, its state is

W = Tr/W=~^- with W = Tΐ'W. (2)
ΎrW { }

Here Tr' denotes the trace with respect to £j', i.e., with arbitrary /, g ζ$),

(f, Tτ'Wg) = Σ ((/ ® /ί), W(g ® £)) (3)
def. „

with a complete orthonormal system f'v in §', which may be chosen
arbitrarily. The described process thus transforms the object state W
into W, and should be considered an operation in the sense of Ref. [2].

The transition probability is Tr W - TrίF- Tr((l <8> Qr) S(W® W'} 8*),
because the latter expression represents the probability that the appa-
ratus has the property Qr after the interaction.

The transformation W -> W may also be described directly in the
object Hubert space §. With the spectral decomposition W — Σ czAr/>

i
cί > 0> Σ cί — 1» an(^ a complete orthonormal system f'k in the subspace

Q'$)f of §', define operators Aki on § by

(A -4*<17) ~ ((/ ® /ί), S(ff 0
def.

This definition implies immediately

~ ((/ ® /ί), S(ff 0 j7ί)) ίor arbitrary /, gr ζ § . (4)
def.

M«l ^ i . (5)
15*
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and a straightforward calculation from (1) and (2) (cf. Appendix 1) yields

W = Σ<=iAkiWAfί. (6)
kί

Finally, TΐW = Tr (Σ ciA^iAkiW\ < 1 for all W leads to
W /

F~ Σ^A,^}. (7)
def. ki

The transition probability TrTF is then given by Tΐ(FW) as well.
General operations of the type (6), with Aki restricted by (5), (7),

and perhaps some further conditions, will be the subject of future
investigations. Here we will confine ourselves to the particular case of
pure operations. In this case, Eq. (6) for W = Pf = |/} {/| with an
arbitrary unit vector / £ $) must imply W =- λ Pg with g = g (/) and

λ ^ 1. Since
AkiPfA*ί=\A]cii}(Akίf\,

this holds if and only if

Λ</=«*<(/)?(/) (8)

with g (/) independent of i and k.
Eq. (8) may be evaluated by means of the following
Lemma. For a finite or infinite sequence of linear operators Av =4= 0

with Avf = ocv (/) g (/) there are two alternatives:
(i) Av = ocvB with a fixed operator B.

(ϋ) Av — |<?) (jv\ with g fixed, fv arbitrary and not all fv parallel.
This lemma is proved in Appendix 2. Thus according to Eq. (8), pure
operations can be divided into two classes.

Pure operations of the first kind correspond to alternative (i) of the

lemma, Aki = ockίB. Eq. (7) implies Σ ci lα*u * B* B ^ 1, and accord-
ki

ingly A = (Σci ocki

 2V/2 B satisfies \\A\\ ̂  1. By (6) and (7),
def \ki /

W = AWA* (9)
and

F = A*A. (10)

This case resembles the definition of pure operations given by HAAG
and KASTLEH.

Pure operations of the second kind, corresponding to alternative (ϋ) of
the lemma, are described by Akί = \g} (jki , with at least two linearly
independent vectors fki. In Appendix 3 Λve shall give an example for W,
Q', and S, which via (1) and (2) yield a pure operation of this type.
Therefore, within our approach, pure operations of the second kind
cannot be excluded a priori. They can not, however, occur in quantum
field theory. As shown below, Aki in this case has to belong to some local
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algebra of observables. Therefore, according to MISRA [4], it can not
be a completely continuous operator like |0r) ( f k i \ .

According to Eq. (9), pure operations of the first kind correspond to
operators A with norm smaller than one. We shall show now that any
such operator may be considered as describing a pure operation. More
precisely, there is a Hubert space £)', a density matrix W ', a projection
Q', and an operator 8, such that Eqs. (1) and (2) lead to (9). If there
were no physical restrictions for the possible states and properties of an
apparatus and its interactions with the object, then pure operations (9)
with an arbitrary A actually could be performed. The proof of this
assertion will be most simple if we assume a two-dimensional state space
§' and W = Q' — Pg( and construct a suitable unitary operator S.
Choose a second unit vector g'2 in ξ)' orthogonal to g{. Then ξ) <g> §' may
be decomposed as ̂  Θ §2> with ̂  — § ® g{ and §2 = S) ® g'% both iso-
morphic to §, such that they may be canonically identified with £j,
leading to£)<8>£)' = §Θ£>. The operator

A α-^*)
- A* A)V* A*

in ξ) Θ § is obviously a unitary one (RiESZ-NAGY [5]). Since g\ and f'k,
as defined above, now coincide with g{} definition (4) with (11) yields one
single operator Aτl = A} because

(/, Ang) = ((/ ® gΐ), S(g® s-ί)) = (/,

for all /, g ζ $ ) . Therefore (6) leads to (9), q.e.d.
At this point, some remarks on the operators F defined by (7) or, for

a particular case, by (10), seem appropriate. An axiomatic approach to
quantum theories different from the algebraic one has been developed
by LUDWIG [6]. This approach starts from so-called effects, which are
produced by the quantum objects on suitable macroscopic devices. The
operator F, defined by (7), describes exactly such an effect, if in Eq. (1)
W is a realizable state and Q' a macroscopic property of a macroscopic
apparatus [3], and if S corresponds to a physical interaction. If we do
not take into account these physical restrictions on W , Q', and S, as we
have done so far, any Hermitean operator F with 0 ̂  F ^ 1 represents
such an effect. Because then, according to the discussion above, .F1/2 = A
will describe an operation, and Eq. (10) leads back to F. (Of course, the
correspondence between effects and operations, or even pure operations,
is not one-to-one: Many different operations lead to the same effect.)
A more physical approach should take into account the above-mentioned
physical restrictions on W ', Q', and 8, and then should determine the
classes of pure operations A and effects F which are not only mathemati-
cally possible, but actually realizable.
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Some restrictions of this type, at least for S, may easily be formulated
in algebraic quantum field theory, which assigns local algebras of observ-
ables *ΆC to all finite space -time regions C. Particular cases are the so-
called Haag fields, for which the Qίc are von Neumann algebras. A very
natural requirement for a local operation, caused by interaction of an
apparatus with the field in the region (7, is the assumption

Sζ2lσ ® £(£'), (12)

with £(§') denoting the algebra of all bounded operators on $)'. Consider
an arbitrary operator T ζ $i'c. Then T <g> 1 commutes with
[7]), and therefore (4) leads to (/, AkiTg) = ((/ <g> /&), S(Tg Θ

= (/, TAki g). This implies Aki ζ 2l{ί = %c> and (7) yields F ζ 2lc. With
(12), therefore, local operations correspond to operators AJci £ Sί̂ , local
pure operations to A ζ 21 ,̂ and local effects to F ζ 31̂ .

Moreover, for arbitrary ^4 £ 21̂  the operator 8 defined by (11) satisfies
the requirement (12) [7], Therefore any A £210 with ||^4|| g 1 and any
Hermitean jP £ 21(7 with 0 ̂  jP g 1 may again be interpreted as describ-
ing a local pure operation and a local effect, respectively, if no other
physical restrictions than (12) are imposed.
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Appendix 1: Proof of Eq. (6)

By (1) and (3),

W) s*(i ® g') fa® /ί)) . (A i)

Complete the orthonormal basis /£ in Q'§' to a basis fv in §', and use
these /y in (A 1). Likewise, complete the eigenvectors g\ of W' to a second
basis g'μ in §'. Choose any basis ^in ξ), and insert as intermediate states
in (A 1) the basis gλ ® g'μ of § Θ §' at the appropriate places. This yields

= Σ ((/ ® /*
fcλρΐ

= Z1 c<(/, Akigλ) (gλ, Wgρ) (gρ, A^ g) ,
A i Λ ρ

the last step following from definition (4) of Aki. The result is exactly
Eq. (6).
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Appendix 2: Proof of the Lemma

Lemma. A finite or infinite sequence of bounded linear operators Av φ 0
on Hilbert space ξ) with Avf = ocv(f) g(f) satisfies Av = ocvB with a fixed
operator B, or Av = |</) (Jv\ with arbitrary vectors fv and g.
(Note that Av = |̂ ) (Jv\ with /„ = oc<*f may also be written Av = ocv\gy (j\
— otvB, Λvhich means that these possibilities are mutually exclusive only
if some fv are linearly independent.)

Proof. Denote by 3lv the subspace of ξ) with Avf = 0 for all / £ 3lv,
and by £„ its orthogonal complement £) 0 9lv. $,v is one-dimensional if
and only if Av — |grv) {/„[. We prove the lemma by complete induction
with respect to the number n of operators Av. For n=\ the lemma is tri-
vial. Suppose its validity for n operators Al . . . An. Consider An and An+l.

(i) Let the dimension of £w be one, i.e., An = |gr) (/n|, and assume the
dimension of £n+1 to be greater than one. Then there is at least one /
orthogonal to fn with An+1 f Φ 0. Moreover, An+l f parallel to g for all
such / would imply An+1 = \g} {/n+1 , since An+1 fn) too, must be
parallel to Anfn = lfn\\2ff Therefore, a vector / orthogonal to fn exists
with An+1f not parallel to g. Then An+I(f + fn) is n°t parallel to
A n ( f - } - f n ) = ίi/n | |2<7, Λvhich is a contradiction. The same conclusion is
valid for n and n + I interchanged. Therefore, Qn one-dimensional is
equivalent to £n+1 one-dimensional.

(ϋ) Let $,n be one-dimensional, i.e., An == |g) (jn . Then An+l
= bn+i) <7Wιl> and -^n+i/ parallel to Anf obviously implies gn+l - ag,
or .4n+1 - |gr> </Λ+1| with /Λ+1 = α*AΛ+1.

(iii) Let Sn be more than one-dimensional. Suppose there is a vector
/ £ 3ln with 4n+1/ - ̂  φ o. For h ζ £n, ^(& -f /) - ̂ n^ has to be pro-
portional to An+l(h + /) = An+1h + gr. If ^n+1^ 4= 0, we have ^n+1&
= βAnh with |8 =f= 0, and Anh turns out to be proportional to g. If
An+lh = 0, the latter is obvious. This implies ^4nΛ parallel to g for all
h ζ £n, and thus for all h ζ $), i.e., An = \g} (jn . This contradiction leads
to $ln C 9ln+1. Interchange of ^4n and ^4n+1 yields the opposite inclusion,
hence 9ln = ̂ n+1 = 91.

def.

Take linearly independent / and g in £ = § 0 91. Then Anf and ^4ng
def.

are linearly independent, too, and An+1f = ocAnf, An+1g = ocrAng with

α , α ' Φ θ . But An+l(f + g) = κ(Anf+ ^-Ang) parallel to -4n(/ + ^)

= ^4n/ + ^4n^ implies α = α'. Thus An+1f = ocAnf for all / £ £, i e ?
-^n+i ̂  α^n — ococnB — ocn+1B. This completes the proof.

Appendix 3: An Example for Pure Operations of Second Kind

Consider state spaces § of countably many, and £)' of three dimen-
sions. With two different orthonormal systems /{, f'2, f'3 and g'l9 g'2, g'3 in
§', define Q' - Py/ + Pfί, W = ̂ P^ + c2P^, P' = P^ + P^ Further-
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more, choose three arbitrary unit vectors /1? /2, g in £j and a unitary
2

two-by-two matrix ukί) and define fk — Σ uki(fi ® 9ί)> k = 1> 2. The
i = l

vectors /fc are orthonormal and belong to the subspace (1 ® P') (§ <g> §')
of ί) <g> §'.

Then the projection operators

P! - PΛ + P/§, P2 = (1 ® P') - PI, PS = 1 ® (1 - P') = 1 ® P/J
decompose § ® £)' into three orthogonal subspaces, the first being two-
dimensional, the second and third of infinite dimension. The same holds
true for

PI - P. ® Q' , Pa = i ® (i - <8') = i ® P*j , P3 = (i - Λ) ® Q' -
Consequently, there is a unitary operator S with SPΛS* = Pα, α = 1, 2, 3,
which in addition may be assumed to satisfy Sfk = ̂ 0 / ^ j ^ ~ 1,2. Then

(1 ® Q') SP2 = (1 ® Q') P2S = (1 ® Q') (1 ® (1 - Q')) S = 0 ,

SPX = SP^j = PjSPj --= (Pβ β Q') SP, = (1 ® Q') SPj ,
and therefore

(1 Θ Q') S(l ® P') = (1 ® Q') S(P! + P2) = SPα --= S £ |/3 > </3 | .
Thus, finally, j~l

(t, Aklh] = ((/ ® /ί), S(A ® j/ί)) = ((/ ® /*). (1 ® 6') S(l ® P') (h ® βrί))

= (/, ί7)

with / fcί = %Ji
If /j and /2 are not parallel, these operators Akί belong to a pure operation
of the second kind.
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