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Pure orientation filtering: A scale-invariant
1mage-processing tool for perception
research and data compression

JOHN G. DAUGMAN and DANIEL M. KAMMEN
Harvard University, Cambridge, Massachusetts

A method is described for scale-invariant segregation of image structure solely on the basis
of orientation content. This kind of image decomposition is an unexplored image-processing method
that is complementary to the well-explored method of filtering in spatial frequency bands; the
latter technique is rotation-invariant, whereas the former technique is scale-invariant. The com-
plementarity of these two approaches is explicit in the fact that orientation and spatial frequency
are orthogonal variables in the two-dimensional Fourier plane, and the filters employed in the
one method depend only on the radial variable, whereas those employed in the other method
depend only on the angular variable. The biological significance of multiscale (spatial frequency
selective) image analysis has been well-recognized and often cited, yet orientation selectivity is
a far more striking property of neural architecture in cortical visual areas. In the present paper,
we begin to explore some coding properties of the scale-invariant orientation variable, paying
particular attention to its perceptual significance in texture segmentation and compact image
coding. Examples of orientation-coded pictures are presented with data compression to 0.3 bits

per pixel.

A fertile and well-explored image-processing technique
for research on spatial visual mechanisms is spatial fre-
quency filtering. The current popularity of multiscale
pyramid methods for image analysis and encoding (Burt,
1984; Rosenfeld & Kak, 1976), as well as for simulating
human visual processes (Marr, 1982), is partially inspired
by the neurobiological finding that visual neurons have
receptive fields of many different sizes and spatial fre-
quency characteristics (Blakemore & Campbell, 1969;
Enroth-Cugell & Robson, 1966; Kuffler, 1953). Among
the many striking demonstrations of the ability of scale-
dependent (or spatial frequency selective) manipulations
to simulate human visual processes have been
(1) Ginsburg’s (1971) suggestion that many of the clas-
sic Gestalt principles of perceptual organization, as well
as the geometrical illusions, can be captured by simple
lowpass spatial frequency filtering; (2) the demonstration
by Harmon and Julesz (1973) that quantized pictures can
be perceptually unmasked by lowpass filtering, and
Julesz’s (1980) demonstration of a critical band for such
unmasking by noise of appropriate relative spectral con-
tent; and (3) Rentschler and Huebner’s (1985) explora-
tion of the processes of face recognition through the
frequency-selective construction of compound images.

A common technique in such investigations is to
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manipulate the Fourier transform of an image by multiply-
ing it with a weighting function (a filter) that emphasizes
some spatial frequencies at the expense of others. Tak-
ing the inverse Fourier transform of this weighted product
then creates in the image domain a new version of the
original image, whose spectral content has now been
changed according to the specified filter function. (This
operation can also be carried out entirely in the image do-
main by convolving the image with the desired filter’s im-
pulse response function, if it is known.) The significance
of such manipulations derives in part from the fact that
different kinds of information are contained in the differ-
ent spatial frequency bands: highpass filtering an image
extracts its edges and regions with large derivatives,
whereas lowpass filtering performs a kind of averaging
that blurs together details but preserves the gross image
structure. Thus, different scales of spectral analysis can
extract nonredundant information.

The type of spectral manipulation described above in-
volves only one of the two polar variables spanning the
two-dimensional Fourier plane, namely spatial frequency
(the radial variable). Such filter functions are rotation-
invariant, and hence they treat all orientations equiva-
lently. Much less attention has been paid to the orthogonal
variable, namely orientation, either in the spatial visual
‘“‘channels’’ literature or in the image coding and data
compression literatures. Our major purpose here is to be-
gin to explore the perceptual coding properties of this
neglected orientation variable, within existing paradigms
of texture analysis and image data compression, by a class
of image manipulations based only on the angular vari-
able in the Fourier plane.

Copyright 1986 Psychonomic Society, Inc.
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FORMAL METHODS

Scale-invariant orientation filtering is achieved by mul-
tiplying the Fourier transform of an image with a filter
function that depends only on the angular coordinate of
the Fourier plane, and then taking the inverse Fourier
transform. Scale-invariance is entailed by the fact that all
spatial frequencies are treated equally.

In Cartesian coordinates, the two-dimensional Fourier
transform F(u,v) of an image I(x,y) is defined as

oo

1
Fu,y) = vy f S I(x,y)e "= dxdy. )

The Fourier plane coordinates (#,v) can be interpreted in
terms of the polar variables of spatial frequency « and
orientation @ through the coordinate transformations

u = wcos(f)

v = wsin(f), 2
which can be inverted to obtain
0 = NV
v
f = arctan[;] , 3)

and thus we can redefine the Fourier transform of the im-
age I(x,y) in polar coordinates as H(w,0):

1 -]
H(wp) = a2 -‘ s I(x,y)eie eos @rsin @) dxdy  (4)
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The scale-invariant orientation-filtering operation consists
of multiplying H(w,§) by some angular filter function,
S(6), which depends only on orientation and not on spa-
tial frequency and which is even-symmetric (in order to
keep the recovered image a real rather than complex func-
tion). The orientation-filtered image, I;(x,y), is then the
inverse Fourier transform of this product H(w,6)S(8):

Loy = §7 I H@,0)S@) e <@ wdudg.
®)

The particular family of angular filter functions S(0)
that we discuss here are given by the following expression:

SO = [Vo—1ocos(2nf+¢)]™. ©)

These filters are periodic in angle 6 and parameterized
with three parameters (m,n,$) (m and n being positive
integers) in order to provide parametric control over the
following filter properties: angular frequency of the pass-
bands (determined by n); angular bandwidth of each pass-
band (determined by m); and angular phase of the pass-
bands (determined by ¢). It should also be noted that this
family of filter functions are normalized to take on am-
plitudes only between 0 and 1. Examples of several mem-
bers of this angular filter family are shown in Figure 1,
giving both a bird’s-eye view of the filters over the Fou-
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b)

c)

d)
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Figure 1. Examples of the angular filter function S (6) (Equation 6).
The left panels show two-dimensional filter energy distributions in
the Fourier (u,v) domain, and the right panels show filter profiles
as a function of orientation, independent of spatial frequency. The
Fourier domain plots are defined over the 256 X256 pixel grids used
in the filtering operations. The parameter values are: (3) n = 1,
m=2¢=0®n=1,m=2,é=x (n=2 m=4,
6=0 Mn=2, m=8, ¢ =

rier plane (left panels) and plots of the same filter pro-
files against the variable of orientation (right panels).

Finally, it should be noted that the angular filtering
operations specified in Equations 5 and 6 are equivalent
to certain operations carried out entirely in the space do-
main. For example, although we do not present the
detailed derivation here, the case of angular filtering with
the function S(f) in which m = 1 and n = 1 in Equa-
tion 6, namely an hourglass filter similar to that shown
in panel a of Figure 1, is equivalent to convolving an im-
age with the space-domain singular kernel s(x,y):

4xycos (2¢)sin(2¢) + (x* —y?) (cos*(2¢) —sin® (2¢))
(x?+y*)? ’

sx,y) =
)
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and for cases in which m is greater than 1, the equivalent
space-domain kemel becomes the m-fold autoconvolution
of this function.

RESULTS

Texture Segmentation

A human perceptual faculty that has attracted great in-
terest in recent years is the preattentive segregation of tex-
ture fields differing in their dipole statistics (Beck,
Prazdny, & Rosenfeld, 1983; Caelli, 1982, 1985; Julesz,
1981). We apply the technique of scale-invariant angular
filtering to this discrimination paradigm, and we note that
the segregation of the dipole texture fields can be achieved
by purely linear operations that have no sensitivity to spa-
tial scale.

Panel a of Figure 2 illustrates the perceptual segrega-
tion of texture fields differing in their dipole statistics,
as classically studied by Julesz, Beck, Caelli, and others.
This texture field has been filtered in Panel b with an an-
gular filter having parameters m =2, n =1, ¢ =0,
which extracts the central texture at the expense of the
surround. The converse operation is achieved in Panel ¢
with the filter’s angular phase rotated by 90°, thus

Figure 2. Application of the S(f) angular filter to a dipole tex-
ture field. In panel a, the original texture field is presented. Panels
b and ¢ show the effect of angular filtering with various angular
phasesp:b)n=1, m=2,¢=0; ©n=1, m=2, ¢ ==
In each case the texture colinear with the filter orientation is passed,
while the orthogonally oriented texture is strongly attenuated; some
orthogonal signal is transmitted due to the wide (A0,, = 45°) orien-
tation passband associated withm = 1.Inpanel d,n =1, m = 4,
¢ = x. The narrower passband of this filter (A6,, = 22.5°) almost
completely attenuates the orthogonal texture field. In this respect,
the human perceptual preattentive segregation of dipole texture fields
can be captured by scale-invariant, linear, angular filtering, without
loss of spatial resolution.
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preferentially favoring the surround texture field. Finally,
in Panel d the filter’s angular passband has been further
reduced (by increasing m to 8), resulting in still sharper
separation of the two texture fields. It should be noted
that these textural segregations have been carried out by
purely linear filtering, and without loss of spatial resolu-
tion. If we wished to represent the segregation via a bi-
nary classification (e.g., dark center, bright surround),
then a second purely linear operation, namely lowpass
filtering, would result in that representation of the two
texture components. It should be noted that earlier work
(Caelli, 1985) has simulated such perceptual grouping of
oriented textures by iterated nonlinear convolution and
impletion.

Data Compression

The relationship between images and the objects of
which they are projections ensures that high degrees of
spatial correlation exist in images. Objects possessing
some unifying physical characteristics yield images with
locally homogeneous signature (such as reflectance, al-
bedo, texture, etc.). This spatially correlated character
of real images lends itself to data compression via decor-
relating coding schemes. Raster-based video picture cod-
ing assumes that every pixel is different and statistically
unrelated to its neighbors, consuming data bandwidths at
the rate of typically 6-8 bits per pixel (requiring
megahertz-range television transmission bandwidths),
whereas more clever schemes exploit the intrinsic corre-
lations in image structure across space and across time.
The multiscale pyramid methods of picture coding pio-
neered by Burt (1984; sec also Burt & Adelson, 1983)
have led to representations consuming as little as 1 bit per
pixel with little noticeable image degradation. (For several
applications of pyramid methods, see Rosenfeld, 1984.)
More extreme data compression schemes replace gray-
scale structure with line drawings or semantically rich
primitives (for reviews, see Musmann, Pirsch, & Grallert,
1985; Pearson & Robson, 1985); such schemes are based
on a psychological kind of source coding in the sense of
Shannon and Weaver (1949).

Among the most interesting of recent efforts in severe
data compression was the work of Sperling, Landy, Co-
hen, and Pavel (1985) on picture-phone image coding to
allow deaf persons to converse in American Sign Lan-
guage over the switched telephone network. The difficulty
of such a project, as Sperling points out, is reflected in
the familiar saying that ‘‘a picture is worth a thousand
words’’: the analog bandwidth of a television channel is
4 million Hz, whereas that of a telephone channel is
3,000 Hz. Nonetheless, Sperling et al. did achieve such
1000:1 compression factors using either binarized images
(cartoons, polygons) or severe lowpass filtering. The goal
in such severe data compression, however, is gestural in-
telligibility rather than image fidelity.

The data-compression potential of the Fourier transform
of an image has been widely recognized (for reviews, see
Capellini, 1986; Hunt, 1983; Leger & Lee, 1982). Intui-
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tively, it arises from the fact that each point in the Fou-
rier transform contains information derived from every
point in the image, and so even partial Fourier domain
information specifies global image structure. Further-
more, images containing various kinds of coherence, such
as periodicities, preferred angles, or characteristic corre-
lation distances, will have clumped or clustered distribu-
tions of energy in the Fourier domain; thus, data com-
pression exploits dimensionality reduction. (Only
uncorrelated two-dimensional noise has a statistically uni-
form Fourier domain energy distribution.) These aspects
of natural, structured images allow partial Fourier domain

information to be used for compact image representation
(i.e., data compression).

The scale-invariant angular filtering approach developed
in the present paper can be used for image data compres-
sion of an apparently unexplored kind. By specifying the
parameters of the angular filter function S(6), so that only
that information contained in the Fourier transform along
certain angles is selected for, global image structure can
be recovered in a scale-invariant way from a fraction of
the quantity of information in the full transform. A sur-
prisingly small number of angles need be represented in
the Fourier domain in order to capture image correlations

Figure 3. Enmplwofdaucompraﬁon(dimendomﬁtyredmﬁon)wimoﬁenwdﬁlmmmﬁom.hndaistheoriginal picture. Panels

bthroughdshowtheresultofﬁlteringtheoﬁgimlwithfour-spokeﬁlters(seepandcofl‘igurel)lnvingdecreasingangular

band-

widths. The parameter values are: (b) n = 2, m = 16, ¢=0©n=2, m=64, 6=0; n=2,m=128 ¢ =0. Thecrossed—
diagonalﬁ]terstructunbeoomesincmsinglyappnrentasmincruses;inthelimitm—-oo,theﬁlterapproachesm“x,”lpuelmde,

in the Fourier domain. Relating the angular filter bandwidths to data com|

pression factors, relative to the original picture’s 6 bits per

pixel (BPP), the data rates are: (b) A9, = 5.94°, 0.84 BPP; (0) A9, = 2.98°, 0.42 BPP; and (d) Af,, = 2.11°, 0.30 BPP.



SCALE-INVARIANT ORIENTATION FILTERING

sufficient for intelligible recovery. Figure 3 illustrates this
for the case of filters containing only four principal lobes,
corresponding to two orientation bands (angular frequency
parameter n = 2) and various angular bandwidths cor-
responding to m = 16 (Af,, = 5.94°) in panel b;
m = 64 (A6,, = 2.98°) in panel c; and m = 128 (Af,,
= 2.11°) in panel d. Compared to the information con-
tent of the original (256 X256) picture in panel a, gener-
ated with 6 bits per pixel, these compressed images cor-
respond, respectively, to 0.84 bits per pixel, 0.42 bits per
pixel, and 0.30 bits per pixel.

DISCUSSION

Among the major thrusts of image-processing research
in recent years have been finding schemes for image seg-
mentation, based directly on signal structure,and finding
compact image representations for achieving data com-
pression, based on such schemes as transform and predic-
tive coding. In the present paper, we have sought to show
that scale-invariant orientation filtering can be useful in
both of these endeavors, as well as in studies of percep-
tual and biological orientation-based encoding of image
structure.

Invariances have played an important role in all domains
of signal processing concerned with pattern extraction and
recognition. For example, speech processing requires pho-
neme identification independent of the pitch (and rate) of
the speaker’s voice; and visual pattern recognition of, say,
printed letters should be size-invariant, translation-
invariant, and perhaps rotation-invariant. Important ef-
forts in optical pattern recognition (e.g., Casasent, 1977;
Hsu, Arsenault, & April, 1982) have incorporated one
or more of these invariances explicitly in coding schemes;
familiar strategies exploit the fact that the Fourier power
spectrum is image translation-invariant, and that the in-
tegrated power in annular rings around the origin of the
Fourier plane is image rotation-invariant, whereas the in-
tegrated power in radial wedges is image size-invariant.
Of course, the price paid when integrating spectral power
for classifying a signal into one of a set of possible
categories is that the original signal cannot be recovered.

Scale-invariant orientation filtering is a linear opera-
tion that segregates image structure on the basis of orien-
tation content across scales. The operation is thus or-
thogonal (both geometrically and conceptually) to the
more familiar methods of rotation-invariant spatial fre-
quency filtering. Interestingly, both methods can be used
for compact image coding with (qualitatively) roughly
comparable compression factors; more exact comparison
of these two approaches for a given standard of image
quality is left to future work. A second comparison of
the two methods of segregating image structure is found
in texture segmentation: rotation-invariant spatial fre-
quency filtering can segregate textures based on the sizes
of texture elements (mean, or first-order statistics), but
not on dipole statistics; scale-invariant orientation filter-
ing (as illustrated in Figure 2) can segregate textures by
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dipole, or second-order, statistics but not by first-order
statistics. As documented compellingly by Julesz (1981),
the human perceptual system is preattentively capable of
both orders of pattern segregation.

Undoubtedly, one of the most striking features of mam-
malian neural signal processing hardware is the cortical
sequence regularity of columns of orientation-tuned cells
(Hubel & Wiesel, 1974). Clearly, orientation filtering has
central importance in the logic of biological visual
representation, yet the salience of this fact is under-
represented in current image-processing methods. Major
genres of research that are intended to be biologically
based (Marr, 1982) employ only rotation-invariant oper-
ators, such as the Laplacian of a Gaussian, followed by
nonlinear zero-crossing extraction. Indeed, there is cur-
rently no significant theory, in the signal processing or
information-theoretic sense (Hartley, 1928; Shannon &
Weaver, 1949), of the neurophysiological orientation sam-
pling and coding logic. It is sometimes claimed (e.g., Watt
& Morgan, 1985) that the purpose of early orientation
filtering in human vision is to reduce two-dimensional sig-
nal processing to one-dimensional signal processing, but
this is doubtful in view of the wide angular bandwidth
(typically +15°) of spatial visual channels, not to men-
tion the logical problem of representing two-dimensional
structure with one-dimensional signals. Deeper analysis
of orientation coding in human vision, in combination with
spatial frequency coding for pattern analysis, has been
under way in the work of Caelli and co-workers (e.g.,
Caelli, 1982; Caelli & Huebner, 1983; Caelli, Huebner,
& Rentschler, 1985). In part we are hampered by the ab-
sence of a well-developed theory of sampling and signal
processing with polar variables, despite important con-
tributions by Stark (1979) and by Brown (1984). It is our
hope that the present work may encourage research into
these matters.
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